
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Proceedings of the

32nd USENIX Security Symposium

is sponsored by USENIX.

Argus: A Framework for Staged Static Taint
Analysis of GitHub Workflows and Actions

Siddharth Muralee, Purdue University; Igibek Koishybayev, Aleksandr

Nahapetyan, Greg Tystahl, and Brad Reaves, North Carolina State University;

Antonio Bianchi, Purdue University; William Enck and Alexandros Kapravelos,

North Carolina State University; Aravind Machiry, Purdue University

https://www.usenix.org/conference/usenixsecurity23/presentation/muralee

ARGUS: A Framework for Staged Static Taint Analysis

of GitHub Workflows and Actions

Siddharth Muralee³∗, Igibek Koishybayev²∗, Aleksandr Nahapetyan², Greg Tystahl²,

Brad Reaves², Antonio Bianchi³, William Enck², Alexandros Kapravelos², Aravind Machiry³

³ Purdue University, {smuralee, antoniob, amachiry}@purdue.edu
² North Carolina State University, {ikoishy, anahape, gttystah, bgreaves, whenck, akaprav}@ncsu.edu

Abstract

Millions of software projects leverage automated workflows,

like GitHub Actions, for performing common build and de-

ploy tasks. While GitHub Actions have greatly improved the

software build process for developers, they pose significant

risks to the software supply chain by adding more dependen-

cies and code complexity that may introduce security bugs.

This paper presents ARGUS, the first static taint analy-

sis system for identifying code injection vulnerabilities in

GitHub Actions. We used ARGUS to perform a large-scale

evaluation on 2,778,483 Workflows referencing 31,725 Ac-

tions and discovered critical code injection vulnerabilities in

4,307 Workflows and 80 Actions. We also directly compared

ARGUS to two existing pattern-based GitHub Actions vul-

nerability scanners, demonstrating that our system exhibits a

marked improvement in terms of vulnerability detection, with

a discovery rate more than seven times (7x) higher than the

state-of-the-art approaches.

These results demonstrate that command injection vulnera-

bilities in the GitHub Actions ecosystem are not only perva-

sive but also require taint analysis to be detected.

1 Introduction

Continuous Integration and Continuous Deployment (CI/CD)

pipelines [29] have become ubiquitous in the software de-

velopment lifecycle. They automate various software devel-

opment processes, such as building, testing, and deploying

code. There are several well-maintained CI/CD frameworks,

including TravisCI [51], CircleCI [9], and Gitlab CI [43].

Since its introduction, the GitHub Actions platform has

gained tremendous popularity due to its convenience over

other public CI/CD providers [52]. Developers specify au-

tomation tasks using GitHub Workflows.1 A key convenience

is an ability to easily use third-party plugins called Actions,

∗Both authors made equal contributions to this work
1We use ªWorkflowsº to refer to GitHub Workflows throughout this paper.

which bundle common tasks, such as checking out a reposi-

tory. Actions enable developers to easily create Workflows by

referencing Actions rather than specifying all of the steps [32].

Securing CI/CD pipelines is essential to supply chain se-

curity. Researchers have discovered various GitHub Work-

flows are vulnerable to code injection vulnerabilities [28, 31].

OWASP has also the Top 10 CI/CD security risks [39] to

raise awareness on CI/CD vulnerabilities, defining Poisoned

Pipeline Execution (PPE) as a specific type of code injection.

Static analysis is commonly used to detect vulnerabilities.

Recent works [7, 23, 33] have tried to find vulnerabilities in

Workflows using pattern-matching. However, the complexity

of a typical Workflow demands more sophisticated analysis

to track the data flows that occur within it, particularly when

detecting code injection vulnerabilities. The prior approaches

also fail to analyze third-party Actions and reusable work-

flows, which are pervasive in the GitHub Actions ecosystem.

Consequently, prior approaches fail to identify many non-

trivial vulnerabilities, as we show in Section 5.5.

Static Taint Tracking (STA) is a well-known technique

for tracking untrusted (tainted) data flow and is effective for

vulnerability detection [3,4,34,36,41,55]. This paper proposes

an STA framework for holistic analysis of GitHub Workflows

and uses it to detect code injection vulnerabilities. There are

two key challenges for performing STA on Workflows:

1. Non-linear execution semantics of Workflows: At a high

level, a Workflow consists of jobs, each with a sequence

of steps. A job may depend on one or more other jobs

and will only be executed after all its dependencies are

complete. If there are no dependencies, multiple jobs can

run concurrently. Additionally, there may be data flows

between jobs, making it difficult to model the execution

flow, requiring new Control Flow Graph (CFG) structures

to perform flow-based static analysis.

2. Handling interactions with third-party Actions: Workflows

reference Actions by specifying their repository and input

parameters. Actions can generate outputs, access untrusted

input, and pass data to sensitive sinks. Outputs of an Action

USENIX Association 32nd USENIX Security Symposium 6983

are used by workflows to perform other tasks or as input to

additional Actions. For effective STA, tracking data flow

through Actions requires the context of a Workflow.

In this paper, we present the ARGUS2 framework for staged

static taint analysis of GitHub Workflows and Actions. AR-

GUS identifies code injection vulnerabilities by untrusted taint

sources to sensitive taint sinks derived from GitHub documen-

tation [19] and language libraries [46]. A key component of

ARGUS is its Workflow Intermediate Representation (WIR),

which tackles the first challenge by uniformly capturing the

Workflow execution flow, irrespective of the complex and

evolving specifications. We handle third-party Actions (the

second challenge) by decoupling their flow behavior from im-

plementation. Specifically, we create programming-language-

specific plugins that analyze Actions and create taint sum-

maries describing which inputs flow to which outputs. The

summaries are created offline and stored in a Taint Summary

Database. To analyze a given Workflow, ARGUS uses the

WIR to track the flow of tainted data across steps according

to the execution flow. When a step references an Action, AR-

GUS uses its taint summary and stitches in the taint tracking

information. Finally, ARGUS raises an alert whenever tainted

data reaches a sensitive sink. We further rank each alert based

on its impact on the underlying repository.

We performed a large-scale evaluation on 2,778,483 Work-

flows (1,014,819 repositories) referencing 31,725 Actions,

and ARGUS raised alerts on 27,465 Workflows (16,003 repos-

itories). We selected 5,643 workflows for manual verification

and confirmed the presence of code injection vulnerabilities

in 5,298 workflows. Out of these, 4,307 (High and Medium

severity) could be exploited to compromise the underlying

repository. We also identified 80 vulnerable Actions, which

render any Workflow that uses them vulnerable.

We also directly compared ARGUS to two state-of-the-art

pattern-based GitHub Actions vulnerability scanners, finding

seven times more vulnerabilities.

We make the following contributions in this paper.

• We designed a Workflow Intermediate Representation

(WIR) that provides a uniform representation of GitHub

Workflows.

• We propose ARGUS, the first static taint tracking frame-

work for GitHub Workflows. ARGUS works on the WIR

and uses taint summaries to track flow across Actions.

ARGUS will be publicly available upon publication.

• We demonstrate the scalability and effectiveness of AR-

GUS by performing a large scale evaluation on 2,778,483

Workflows and 31,725 Actions. We found code injection

vulnerabilities in 5,298 Workflows and 80 Actions.

2Available as open-source at: https://secureci.org/argus

2 Background

A GitHub Workflow is defined as a YAML file in the

.github/workflows directory of a repository. This section

uses Figure 1 to describe Workflow components and execu-

tion and why analysis is nontrivial.

2.1 Workflow Components

A Workflow represents a group of tasks and their execution

ordering, e.g., workflow.yml in Figure 1. Each Workflow is

composed of jobs listed under the jobs key. A job can use

other Workflows (called Reusable Workflows) as indicated

by 1 . However, a job is usually composed of a sequence of

steps listed under the steps key. Steps form the basic unit of

computation. A step can either (a) be a shell command, as in-

dicated by s in reusable-workflow.yml, or (b) reference

an Action, as indicated by a .

Actions enable code reuse inside Workflows. A step refer-

ences actions with the uses keyword. The reference should

be to a public repository containing code for the correspond-

ing Action. For example, org2/javascript-action@v2 re-

solves to code in the github.com/org2/javascript-act

ion respository under the tag v2. GitHub has a marketplace

where developers can discover Actions.

GitHub supports three types of Actions. JavaScript Ac-

tions are written in JavaScript and can use npm pack-

ages. In Figure 1, org2/javascript-action/action.yml

is an example of JavaScript Action. Most of the stan-

dalone actions are JavaScript-based [33]. Composite Ac-

tions combine commands and Actions. They are spec-

ified in a similar manner to Workflows. In Figure 1,

org3/composite-action/action.yml shows an example

Composite Action. Finally, Docker Actions use an implemen-

tation of a Docker container, which may be referenced di-

rectly from DockerHub or from the repository containing the

Dockerfile. This paper focuses on JavaScript and Composite

actions, because (a) Docker Actions contain arbitrary binaries,

and (b) 70% of Actions in our dataset are either JavaScript or

Composite Actions (Table 2).

2.2 Workflow Execution

Workflows are executed in response to specific events. Event

triggers are specified using the on keyword as indicated by T

in Figure 1. For instance, the Workflow in Figure 1 is executed

when a pull_request occurs for the containing repository.

When triggered, the GitHub runner [20] executes jobs based

on the configuration.

Job Dependencies: A job can depend on other jobs, specified

using the needs keyword. A job will be executed only when

all of its dependencies finish executing. Multiple jobs can run

in parallel if there is no dependency relation. For instance, the

build and scan jobs in workflow.yml of Figure 1 will run in

6984 32nd USENIX Security Symposium USENIX Association

repository and carry out specific operations such as pushing

changes, creating releases, adding labels and tags, etc. This

token can be accessed using the GitHub context, denoted as

${{github.token}}.

Permissions: By default, GitHub assigns the GITHUB_TOKEN

read/write permissions across all scopes 3. Users can also

modify permissions of GITHUB_TOKEN for a specific workflow

using the permissions keyword within workflows. This

keyword can be utilized both at a workflow level as well as at

a job level.

Access Based on Triggers: Workflows triggered because

of a forked repository (e.g., pull request from a fork) will

not have access to any repository secrets (Even if they

are specified in the Workflow) and GITHUB_TOKEN will

have only read-only access. Developers can avoid this by

using pull_request_target trigger, which also triggers

Workflows on pull requests, but in addition, the Workflow

will have default privileges for GITHUB_TOKEN and access to

secrets Ð same as other triggers. The Table 1 summarizes a

Workflow’s access to secrets and GITHUB_TOKEN permissions

based on triggers.

Intra-repository pull request: During our experiments, we

found an undocumented feature that GitHub allows arbitrary

users to raise pull requests between different branches of the

same repository, e.g., merging dev to main. This clearly vio-

lates the pull-request policy [10], which requires the user to

have write access to either source or destination. Further-

more, as shown in the second column of Table 1, Work-

flows triggered because of such pull requests have privi-

leged GITHUB_TOKEN and access to secrets. We provide de-

tails of this behavior in Appendix A.1.

3 Motivation and Threat Model

Listing 1 shows a real-world code injection vulnerability (dis-

covered by ARGUS) in the issue_type_predicter.yaml

Workflow of the DynamoDS/Dynamo [12] repository (1,300

stars). The Workflow can be triggered by opening an issue, the

body of which can be controlled by an attacker. The untrusted

input github.event.issue.body (w) is first saved into an

environment variable ISSUE_BODY (1). Next, it is passed as

input to the frabert/replace-string-action@v1.2 ac-

tion (2), which replaces " with - and returns the output

through a variable named replaced (3). Later, replaced

is used in a shell command (4). While the string re-

placement prevents the attacker from terminating the ",

it does not prevent the attacker from performing a com-

mand substitution attack. For example, an attacker can

exploit the vulnerability by opening an issue and using

$(set +e; curl evil.com?token=$GITHUB_TOKEN;) as

the issue body to exfiltrate the GITHUB_TOKEN.

3GitHub in Feb 2023, reduced the permissions for GITHUB_TOKEN to

’read-only’ by default for all newly-created repositories [11].

name: Issue Predicter

on:

issues:

types: [opened,edited]

jobs:

issuePredicterType:

name: Issue Predicter

runs-on: ubuntu-latest

...

steps:

...

- name: Remove conflicting chars

env:

1 w
ISSUE_BODY: ${{github.event.issue.body}}

3 # produces output with the name: replaced

uses: frabert/replace-string-action@v1.2

id: rem_quot

with:

pattern: "\""

string: ${{ 2 env.ISSUE_BODY}}

replace-with: '-'

- name: Check Information

id: check-info

run:

ls -la

echo "analysis_response= \

$(.. "${{ 4 steps.rem_quot.outputs.replaced}}"..)"

Listing 1: Snippet of the issue_type_predicter.yaml

Workflow in the DynamoDS/Dynamo [12] repo demonstrat-

ing an Arbitrary code execution vulnerability requiring Inter-

Workflow-Action analysis ± newly found by ARGUS.

Table 1: Permissions of GITHUB_TOKEN and access to secrets

based on event triggers.

Sensitive

Component

Pull request Other

Triggersb/w branches

of the same repo

from

fork

GITHUB_TOKEN default read-only default

Access to

Secrets
YES NO YES

To find this vulnerability through static taint tracking,

we need to track the flow of the tainted values within

the Workflow to correctly determine that replaced con-

tains a tainted value. Doing so requires analyzing the

frabert/replace-string-action@v1.2 Action. Finally,

we should track the flow of this output to the echo command

(a sensitive sink). In summary, this analysis requires tracking

tainted data flow across all the components of a Workflow.

3.1 Threat Model

As suggested by OWASP [39] recommendations for building

a secure CI/CD pipeline, we assume that an attacker should

not be able to: (i) execute arbitrary commands on the server

where the pipeline is executed, without visible code changes;

(ii) gain unauthorized read/write access to the repository (vio-

lating GitHub privilege model); and (iii) exfiltrate confidential

secrets. Hence, if an attacker can achieve any of these mali-

6986 32nd USENIX Security Symposium USENIX Association

to construct a bash script (as depicted in Figure 1). As for

JavaScript, all functions capable of running arbitrary com-

mands are classified as sinks.

4.2 Taint Summary Creator

As mentioned before, this component generates taint sum-

maries for Actions or, more in general, any component that a

step can reference, such as a composite Action or a reusable

Workflow (as shown in Figure 1). Based on the type of Ac-

tion, we follow different methods, which we call Plugins (see

Figure 2). The generated summaries are saved in a database

and will be used by the Workflow analysis component.

4.2.1 Composite Action

This type of Actions contains a sequence of steps. In this

case, we generate a summary by combining the summaries

of each step. For instance, consider a step that contains a

sequence of shell commands under the run key. We ana-

lyze each of these commands to see if any of these com-

mands use a tainted value or produce any output. ARGUS

uses regexes to parse the commands to look for output vari-

ables and stores the output as tainted if any input is tainted.

We focus on the two common ways a run step can set outputs.

(1) echo "::set-output name=value::" (deprecated, but

still in use); (2) echo "name=value" >> $GITHUB_OUTPUT.

We only consider cases where the value is a template string

(${{}}), e.g., "OUT=${{TVAR}}". If the variable used as part

of the value is tainted (i.e., TVAR), then we consider the output

variable (i.e., OUT) tainted. Similar steps are performed for en-

vironment variables. If a step references a JavaScript Action,

then we will get its taint summary (or create one if it does not

exist in the database) and stitch the taint flow. Finally, we will

save the taint summary in the database.

4.2.2 JavaScript Actions

This type of Actions (which is the most common) uses

JavaScript code to perform its functionality. To handle it, we

developed a dedicated static flow analysis using CodeQL [6],

a framework that converts code into a relational database and

enables easy implementation of static analysis techniques

as relational queries. Also, CodeQL supports all Node JS

versions that are supported by GitHub CI.

We first defined the taint sources (Table 13 in Appendix)

and dangerous sinks in JavaScript. As a taint source, we de-

fined all the JavaScript-specific APIs that can be used to

read from taint sources, e.g., the getInput function from

the "@actions/core" library, as shown in Figure 1.

Then, we defined specific JavaScript APIs that are used

to generate (1) output for other steps to consume, and (2)

new code and/or commands as taint sinks. For example, in

Figure 1 the "org2/javascript-action/index.js" file

1 CommitMessage: core.getInput('commit_message'),

2

3 const commitMessage = getCommitMessage(

4 inps.CommitMessage,

5 ...

6);

7 await commit(inps.AllowEmptyCommit, commitMessage);

8

9 export async function commit(allowEmptyCommit: boolean, msg:

string): Promise<void> {↪→

10 ...

11 await exec.exec('git', ['commit', '-m', `${msg}`]);

12 ...

13 }

Listing 2: The peaceiris/actions-gh-pages [40] action uses an

input argument (‘commit_message‘) in the exec function, but

this is not vulnerable as it’s provided as a list of options

uses the setOutput function to set new output, and, in the

"org4/js-action/index.js" file, a tainted source reaches

the infamous eval function.

Our CodeQL queries will search if there is a dataflow path

from any of the taint sources to a dangerous sink. We run

the CodeQL query before analyzing the workflow to create

a map of all taint sources into all taint sinks seen in the

JavaScript Action and store the results in the database. The

final summaries of the JavaScript actions will include a list of

new taint sources created by using setOutput-like functions

and a list of taint sinks reached by the given taint sources.

Handling Sanitization: We take care of implicit sanitizations

that occur because of using tainted values in composite data

structures such as a list (Listing 2) using pattern matching. We

ignore explicit sanitizations, such as if-conditions, because

(i) the majority of actions are small with simple data flows

and do not perform any sanitization; (ii) Identifying valid

sanitization routines is hard and, if performed incorrectly,

could result in false negatives. The high precision of our taint

analysis, as shown in Section 5.2, demonstrates that ignoring

explicit sanitization is a reasonable design choice.

4.3 Workflow Analysis

Given a Workflow, we first convert it to WIR and generate

its WDG. Next, we analyze the WDG and track taint flows.

Workflow Intermediate Representation (WIR): The main

design principle of WIR is to have a generic representation

to specify job dependencies and data used and produced by

each step along with its execution environment. Figure 3

shows an example of a Workflow and its WIR representa-

tion. We use taskgroups to represent jobs. Each taskgroup

has a numerical identifier execution_id which is used to

encode dependency. As shown on the left of Figure 3, the

job deploy depends on the build job as indicated by its

name specified under needs key. In WIR, this gets trans-

lated as dependency under the ªdeployº taskgroup where

the execution_id of the build taskgroup is used.

Each step is called task. Each task has the following

6988 32nd USENIX Security Symposium USENIX Association

Algorithm 1: Algorithm for Workflow Taint Tracking

G←WDG(W)
DB← Taint Summary Database

function MAIN

J← TopoSort(G)
T ← global known taint sources

forall ji ∈ J do
Ti = GetJobTaintSummary(ji,T)

T = T ∪Ti ▷ updated known taint sources

function GETJOBTAINTSUMMARY(j,Tj)

S← StepSequence(j)
T ← Tj

forall si ∈ S do
Ti = GetStepTaintSummary(si,T)

T = T ∪Ti ▷ update known taint sources

return T

function GETSTEPTAINTSUMMARY(s,Ts)

T ← Ts

if s is run then
▷ Process bash commands

T = ProcessBashCommands(s, T)

else
▷ Apply taint summary

T = ApplyTaintSummary(DB, s, T)

return T

tainted data is head_ref (i.e., branch name) Ð this requires

a pull request from a fork with an attacker-controlled branch

name, e.g., Listing 3. As explained in Section 2.3, Workflows

triggered from foreign branches do not have access to read-

only GITHUB_TOKEN and no access to secrets.

High: We classify vulnerabilities impacting the repository

(write access GITHUB_TOKEN or has secrets) as High if the

exploitation is easy and does not require maintainer approval.

We consider all Workflows with non pull request targets easy

to trigger and classify vulnerabilities as High severity (marked

as H1 and H2). Even for pull_request trigger, vulnerabili-

ties caused by the title or description can be easily exploited

by raising an intra-repository pull-request, and, for this reason,

we consider them as High severity (marked as H3), e.g., List-

ing 6. As mentioned in Section 2.3, Workflows triggered this

way have privileged access to the repository and do not require

maintainer approval (Appendix A.1).

Medium: Finally, as indicated by M1, we consider Medium

severity vulnerabilities those that can impact the repository,

but triggering the corresponding Workflow requires main-

tainer approval. For instance, pull_request or push Work-

flows with taint sources, such as commits.*.author.email

(commit author’s email) or commit.message (commit mes-

sage), can only be exploited if the maintainer first approves

pull requests without verifying these parameters. After the

pull request has been merged, the attacker can raise another

intra-repository pull_request from the branch containing

the merged commit Ð thereby controlling the taint sources

and having access to write-access GITHUB_TOKEN and secrets.

M1

L1 L2

H1

Decision Types

GITHUB_TOKEN
has write

permissions?

Pull request
target?

Has Secrets in
the Workflow? Low

High

Medium

Yes

Yes

Yes

No

No

Is title or
description

tainted?

Yes

Pull request?
No Yes

Is head_ref
tainted?

Yes

No

Ease of
Exploitation

Control of the
Exploit Payload

Impact on the
Repository

No

No

H2 H3

Figure 4: Decision process of Impact Classifier.

on: pull_request

jobs:

build:

runs-on: macos-latest

steps:

...

- name: Update version

uses: reedyuk/write-properties@v1.0.1

with:

path: 'gradle.properties'

property: 'version'

github.head_ref <- w
value: "${{ steps.read_version.outputs.value }}-${{

github.head_ref }}-${{ env.short_sha }}"↪→

Listing 3: GitLiveApp/kotlin-diff-utils [25] contains a work-

flow vulnerable to Low severity Code Injection as it passes

Tainted Data (github.head_ref (w)) as the argument

for value parameter to the Action (Listing 9) that directly

uses it in exec (unsafe sink).

5 Evaluation

We evaluate ARGUS by answering the following questions.

Q1 (Taint Analysis on Actions): How accurately can our Plu-

gins perform taint analysis on Actions? What is precision

and recall?

Q2 (Taint Analysis on Workflows): How accurately can AR-

GUS perform taint analysis on Workflows? What is the

precision, recall, and performance of our analysis?

Q3 (Vulnerability Identification): How effective is ARGUS

at finding vulnerabilities? What is their security impact?

Q4 (Comparative Evaluation): How effective is ARGUS

compared to existing state-of-the-art vulnerability de-

tection techniques?

5This count does not include 79 actions due to them being taken down by

the time of analysis and one action due to cloc failing to run on the repository

6990 32nd USENIX Security Symposium USENIX Association

Table 2: Dataset 1: Public Repositories

Workflows Repos
Actions

Type Num Analyzable

2,778,483 1,014,819

JavaScript 22,433 22,433 (100%)

Composite 9,292 9,292 (100%)

Docker 13,445 0 (0%)

Total 48,369 31,725 (70.2%)

Table 3: Source Line of Code (SLoc) stats for Dataset 1.

Component
SLoc Stats (KLoc)

Min Avg Median St. Dev Max

Workflows 0.006 0.1041 0.058 0.1539 5.2

Actions 5 0.001 67.60 6.935 272.88 8,146.2

5.1 Datasets and Experimental Setup

Dataset 1 (Public Repositories): GitHub’s rate-limiting pol-

icy for its direct search functionality prevented us from sim-

ply scraping all of GitHub to get workflows from all public

repositories. We overcame this limitation by (1) querying all

public repository names from the GHArchive [17] database

on November 2022, and then (2) using those repository names

and fetching the latest version from GitHub during November-

December, 2022. We extracted Workflows from each repos-

itory by traversing the .github/workflows directory and

collecting all Workflow files (i.e., .yml). Each repository

can have multiple Workflows. Shown in Table 2, we col-

lected 2.7M Workflows in 1M unique repositories. We also

extracted all Actions referenced by each Workflow. An action

can have multiple versions (e.g., actions/checkout@v2 and

actions/checkout@v3), and Workflows can refer to differ-

ent versions of the same Action. We analyzed every version

of an Action that is referenced by a Workflow in our dataset.

Table 2 shows the total number of action/version combina-

tions corresponding to their types. Finally, Table 2 shows the

total number of analyzable actions by ARGUS. Even with-

out handling Docker actions, ARGUS could analyze 70% of

the actions. Statistical details of the sizes of Workflows and

Actions are shown in Table 5.

Dataset 2 (VWBENCH): We collected previously reported

vulnerable workflows [28, 31] to create a ground truth vul-

nerable dataset of 24 workflows, which we call VWBENCH.

These Workflows have unsafe sinks to which tainted data can

flow, resulting in command injection vulnerabilities.

Experimental Setup: We performed all our experiments on

an Intel(R) Xeon(R) Gold 5120 CPU with 128GB RAM. We

set a time limit of 5 minutes for analyzing each Workflow

and a time limit of 30 minutes for analyzing each Action.

Most of the Actions (80%) finished within in 3 minutes. As

mentioned previously, the Action summaries are computed

6We only count total number of unique workflow here, as some workflows

may have both multiple sinks or sources

Table 4: Results of Taint Analysis on Actions.

Type Source Sink
Number of Actions

JS Comp. Total

Input Input Code Exec 3,218 5,465 8,683

Flow Arguments Arb. File R/W 2,099 N/A 2,099

Direct Tainted Code Exec 27 109 136

Flow Values Arb. File R/W 0 N/A 0

Total 6 5,219 5,574 10,918

Table 5: Precision of Taint Analysis by ARGUS on Actions.

Type
Javascript Composite

TP FP Precision TP FP Precision

Input Flow 138 10 93.2 % 46 1 97.9 %

Direct Flow 27 0 100 % 109 4 96.4 %

Cumulative 175 10 94.2 % 155 5 96.8 %

offline once for every version of the Action. These summaries

are referenced while analyzing Workflows that uses them.

5.2 Q1: Taint Analysis on Actions

ARGUS supports JavaScript and Composite actions, which

are of 70% of all Actions in our dataset of public reposito-

ries (Table 2). For these Actions, Table 4 shows our taint

analysis results categorized by the types of sources and sinks.

As this evaluation considers Actions in isolation, the table

differentiates input flows (where an argument to the action

flows to an unsafe sink) and direct flows (where the Action

consumes an attacker controllable taint source that flows to

an unsafe sink). Table 6 shows the Top-5 taint sources and

sinks used in Actions. Notably, the issue title is one of the top

taint sources, and exec is the most popular sink, indicating

the prevalence of arbitrary code execution vulnerabilities. We

manually verified all the taint summaries for direct flows and

all input flows which were passed tainted values, as shown

in Table 5. We further grouped root causes by unique Ac-

tions and ignoring versions. For example, embano1/wip@v1

and embano1/wip@main are counted as a single unique ac-

tion. We found that 80 Actions (146 including versions), con-

tained direct flow vulernabilities.

Precision: As depicted in Table 5, we achieve a precision of

94.2% for Javascript actions. Our false positives arose in cases

where, even though the taint flow was accurate, there were

checks in place that prevented an attacker from triggering the

taint path (e.g., Listing 4).

In contrast, composite Actions had a precision of 96.8%.

The false positives primarily resulted from insufficient

handling of specific embedded sanitization constructs,

e.g., toJson.

Recall: There is no ground truth for taint flows in Actions.

Therefore we used random sampling to compute an approxi-

mate metric for recall (true negatives). Specifically, we ran-

domly picked 100 actions that were considered safe by our

USENIX Association 32nd USENIX Security Symposium 6991

Table 6: Top-5 Taint sources and sinks used in GitHub Actions

Taint Sources Taint Sinks

(% of Total) (% of Total)

github.head_ref (59.64%) exec (49.73%)

github.event.pull_request.head.ref (15.10%) spawn (13.28%)

github.event.head_commit.message (9.90%) downloadTool (12.99%)

github.event.pull_request.title (4.95%) execSync (9.66%)

github.event.issue.title (3.91%) spawnSync (4.46%)

const vercel_bot_name =

core.getInput('vercel_bot_name');↪→

if (comment.user.login !== vercel_bot_name) { µ
await cancelAction(); // exit

}

...

const regex_matches =

comment.body.match(preview_url_regexp); w↪→

...

const vercel_preview_url = regex_matches[1];

if (vercel_preview_url) {

....

core.setOutput('vercel_preview_url',

vercel_preview_url); ï↪→

Listing 4: Simplified snippet from binary-com/vercel-preview-

url-action [8] Action that contains a sanitization check (µ)

before the tainted value (w)±flows into a output funciton

(indicated by ï) which is not detected by ARGUS

analysis and manually verified how many of these are indeed

safe, i.e., whether any flow identified is missed by ARGUS.

Input Flow Examples: Listing 5 (Reedyuk/write-

properties [42]) and Listing 9 (embano1/wip [14] show an

example of a Composite and JavaScript Action with input

flows newly discovered by ARGUS. The figures annotate

input values (�) and the unsafe sinks (F) to where they flow.

It is important to note that these Actions are only vulnerable

when used by a Workflow that allows adversarially-controlled

values to pass to the input variables. Listings 6 and 3 show

real-world Workflows that use these Actions in a vulnerable

way. These examples show the necessity of static taint

analysis across Workflows. Without the context of Listing 5,

it is not possible to know that Listing 6 uses the default value

for inputs.title. Similarly, Listing 3 is needed to know

that Listing 9 is passed github.head_ref. We also consider

flows from both input arguments and tainted context into

output functions such as core.setOutput, that allow it to

be used in the future, by the workflow as input flow itself.

Direct Flow Examples: Listing 7 (94dreamer/create-

report [1]) shows an Action where the known taint source

context.payload.issue.title is directly used in exec.

Any Workflow that uses this Action is vulnerable, regardless

of whether or not it uses a known taint source itself. The

vulnerable example Action in Listing 7 is used by 64 Work-

flows, including Tencent/tdesign-vue [47] (Listing 8). We

name: "Check WIP"

description: "Checks for WIP patterns in Titles"

...

inputs:

title: �
description: "Text to perform pattern match against"

required: true

default: "${{ github.event.pull_request.title }}" w
regex:

...

runs:

using: "composite"

steps:

- shell: bash

run: |

set -ex

...

F
if [['${{ inputs.title }}' =~ ${{ inputs.regex }}]]; then

...

Listing 5: Simplified snippet of embano1/wip [14] composite

Action that uses input argument title (�) in a run command

(unsafe sink) indicated by F. Also, note that by default, the

Action uses a tainted value (w) for title.

name: Check "WIP" in PR Title

on:

pull_request:

types: [opened, synchronize, reopened, edited]

jobs:

wip:

runs-on: ubuntu-20.04

steps:

- name: Check WIP in PR Title

uses: embano1/wip@v1 a

Listing 6: Snippet of a workflow in vmware/govmomi [54]

repo that has an High severity Arbitrary Code Execution vul-

nerability because of an Inter-WF-Ac flow. The workflow uses

(indicated by a) embano1/wip@v1 Action (Listing 5) with

no arguments. However, the Action uses a user-controllable

(tainted) default value for an argument resulting in Arbitrary

code execution.

found many other examples, including Actions from verified

organizations, e.g., tj-actions/branch-names [49], that directly

use tainted data (e.g., github.head_ref) into an exec sink,

making any Workflow using it vulnerable.

5.3 Q2: Taint Analysis on Workflows

ARGUS’s taint analysis of a Workflow combines the taint

summaries of the Actions used by the Workflow. Table 7

shows our Workflow taint analysis results categorized by

the flow type and severity. The table differentiates two

types of flows. Intra-Workflow (Intra-WF) flows occur when

the taint is passed within the Workflow itself. In contrast,

Inter-Workflow-Action (Inter-WF-Ac) flows occur when the

taint sink is passed through or originates from an Action.

Section 5.2 showed several real-world Inter-WF-Ac exam-

6992 32nd USENIX Security Symposium USENIX Association

function renderMark() {

return > **${context.payload.action === 'reopened' ?

context.payload.sender.login + 'issue' : 'issue'}**

> **:** ${context.payload.issue.title} w
..

}

const markdownString = renderMark(); ï
exec(

`curl ${wxhook} \

-H 'Content-Type: application/json' \

-d '

{

...

"markdown": {`

F
`"content": "${markdownString.replaceAll('"',

"'")}"↪→

}

}'`...

);

Listing 7: Simplified snippet from 94dreamer/create-report

[1] Action that unsafely has tainted value (w)±flowing (ï)±

into an exec function (indicated by F).

name: Issue Synchronize

on:

issues:

types: [opened, reopened]

jobs:

...

steps:

- uses: 94dreamer/create-report@main a
with:

wxhook: ${{ secrets.WX_HOOK_URL }}

token: ${{ secrets.GITHUB_TOKEN }}

type: 'issue'

Listing 8: Tencent/tdesign-vue [47] contains a workflow vul-

nerable to High severity Code Injection as it uses (indicated

by a) the Vulnerable Action (Listing 7).

ples discovered by ARGUS. An example Intra-WF flow is

shown in Listing 10. Even in this simple case, taint anal-

ysis is needed to identify the flow of information from

the untrusted github.event.issue.title variable to the

developer-defined env.ISSUE_TITLE variable.

ARGUS performed exceptionally well on our VWBench

dataset (bottom of Table 7). It successfully and precisely

found all the taint flows. This high performance is expected

as these workflows contain Intra-Workflow taint flows, and

our WIR helps precisely capture flows within a Workflow.

Severity: As mentioned in Section 4.4, we classify all the

vulnerabilities into three classes, i.e., High, Medium, and Low.

The Table 7 show the distribution of vulnerabilities according

to their severity. A few of these are because of the Intra-

repository pull request capability (Section 2.3), Table 11 in

7We only count total number of unique workflow here, as some workflows

may have both Intra-WF and Inter-WF-Ac flows

const property = core.getInput('property'); �
console.log(`property:${property}`);

const value = core.getInput('value'); �
console.log(`value:${value}`);

F exec(`grep -r "^[#]*\s*${property}=.*" "${path}"`,

(grepError) => {

if(grepError != null) {

...

} else {

F exec(`sed -ir \

"s/^[#]*\s*${property}=.*/${property}=${value}/" \

"${path}"`,

(error, stderr) => {

...

});

Listing 9: Simplified Snippet of Reedyuk/write-properties

[42] JavaScript action that uses both its inputs arguments (�)

as arguments to exec function (indicated by F).

name: close

on:

issues:

types: [closed]

...

jobs:

...

env:

ISSUE_TITLE: ${{ github.event.issue.title }} w
steps:

- run: |

F
curl -d $'message=${{ env.ISSUE_TITLE }}

?\encircle{t_{2}}?' -H 'X-TYPETALK-TOKEN: ${{

secrets.TYPETALK_TOKEN }}'

https://typetalk.com/api/v1/topics/${{

secrets.TYPETALK_TOPIC_ID }}

↪→

↪→

↪→

↪→

Listing 10: Snippet of a workflow in yagipy/habit-manager

[58] repo demonstrating Intra-WF flow by directly us-

ing Tainted Data (i.e., github.event.issue.title w)

through ISSUE_TITLE (environment variable) in a unsafe

sink (shell run) resulting in High severity code injection.

Appendix shows the classification excluding them. For work-

flows with multiple reports, we selected the highest severity

report to represent the severity of the workflow. As Workflows

(and repositories) can contain multiple vulnerabilities, num-

bers in Total columns (unique Workflows and repositories)

will be less than the sum of corresponding columns. Most

(60%) of the vulnerabilities are Low and have no impact on

the repository. There are still a significant number (∼3K) of

High severity vulnerabilities, which unauthorized attackers

can exploit to gain privileged access to the underlying repos-

itory. This demonstrates the prevalence of the problem and

the need for a system like ARGUS. Furthermore, it is not easy

to fix these vulnerabilities. We present a detailed discussion

in Appendix A.4.

Precision: Due to the large number of vulnerabilities identi-

fied in the Public Repositories dataset, we focused on sam-

pling based on their severity. Specifically, we manually ver-

ified all 3,643 High severity vulnerabilities and randomly

USENIX Association 32nd USENIX Security Symposium 6993

Table 7: Severity Assignment of Vulnerabilities using the

Method in Section 4.4 and the Low vulnerabilities have no

impact on the repository. (W - Workflows, R - Repos)

Severity
Intra-WF Inter-WF-Ac Total7

W R W R W R

Public Repositories

High 3,189 2,383 863 820 3,643 2,799

Medium 6,602 1,710 1,015 488 7,443 2,031

Low 13,402 9,155 3,256 2,406 16,379 11,173

VWBench

High 23 23 N/A N/A 23 23

Medium 1 1 N/A N/A 1 1

Low 0 0 N/A N/A 0 0

Total 23,193 13,248 5,134 3,714 27,489 16,027

name: Docs

...

jobs:

prepare_env:

steps:

...

- id: skip-docs-comment

name: Process comments on Pull Request to skip Docs

if: ${{ github.event.issue.pull_request }}

run: echo "::set-output name=value::$(echo ${{

contains(github.event.comment.body,

'/skip-docs') }})"

↪→

↪→

Listing 11: A false positive found by ARGUS in solo-io/gloo

[45], where github.event.comment.body is inside a CI

function which only returns a boolean

sampled 1,000 each from Medium and Low severity vulner-

abilities resulting in a total of 5,643. The Table 8 shows the

results of our manual verification and precision across each

severity. We found that 4,111 (92.65%) Intra-WF reports

and 1,671 (94.89%) Intra-WF-Ac reports were true, result-

ing in an overall precision of 93.29%. An example of a false

positive is shown in Listing 11. The two main reasons for

false positives were: (1) not handling certain embedded san-

itization constructs such as contains (similar to Actions);

and (2) failure to identify whether members of tainted objects

(e.g., context.payload.issue) are indeed used in certain

complex sinks.

Recall: To measure false negatives, we randomly sam-

plied 100 workflows that were considered safe for manually

verification. Similar to the Actions, we found all the results to

the true. Again, this high performance is due to the fact that

Workflows are usually small and have simple dataflows that

can be precisely captured by our WIR.

5.4 Q3: Vulnerability Identification

In this section, we present previously unknown code injection

and arbitrary code execution vulnerabilities detected by AR-

GUS, as summarized by Table 8. The input flow and direct flow

columns were explained in Section 5.2 along with correspond-

ing examples. Many of the affected Workflows have the same

root cause. For example, Tencent/tdesign-vue-next [48] and

Tencent/tdesign-vue [47] both pass tainted data to the same

Action and version (94dreamer/create-report [1]). The Unique

Root Causes column in Table 8 shows the total number of

unique root cause groups. The column Unique Actions shows

grouping according to the unique Actions. These numbers

are still large, demonstrating the importance of analyzing

Inter-Workflow-Action flows.

The Intra-WF and Inter-WF-ac rows were explained in

Section 5.3 along with corresponding examples. We verified

all findings manually and validated them by creating sample

exploits on isolated copies of the repositories. We present

an analysis of Workflow vulnerabilities and the responsible

actions in Appendix A.3.

Popularity of Affected Repositories: Although most of the

vulnerable Workflows are in less popular repositories, many

are popular. For instance, the opencv/opencv [38] repository

with more than 66,000 stars contains a vulnerable Workflow.

Exploiting such vulnerabilities in popular repositories en-

ables attackers to launch high-impact supply chain attacks

and hence an attractive target. We present complete results

in Appendix A.2.

Exploitability. To exploit a vulnerable Workflow, an attacker

must trigger specific events and and provide exploit payload

as inputs through appropriate taint sources. Consequently,

the exploitation mechanism varies with different triggers and

types of exploit payloads, which depend on tainted data flows

and sinks. We identified eight types of triggers (and corre-

sponding taint sources) and three types of taint data flows:

Intra-WF, Inter-WF-Ac, or Intra-Ac (Source and Sink both in

Action).

For each category, we selected a representative real-world

vulnerable Workflow or created a synthetic Workflow (when a

real-world case does not exist) and provided proof-of-concept

exploits for them 9. Although our exploits are aimed at steal-

ing GITHUB_TOKEN, they can be easily modified to execute

any arbitrary code.

5.4.1 Responsible Disclosure

Due a large number of affected workflows, we decided to

reach out to the GitHub Security Lab [24] for assistance

in reporting these vulnerabilities. GitHub Security Lab sug-

gested that the best way to report our vulnerabilities is through

GitHub’s private vulnerability reporting [22].

9Available as open-source at: https://secureci.org/poc

6994 32nd USENIX Security Symposium USENIX Association

Table 8: Summary of New (zero day) Code Injection Vulnerabilities Detected by ARGUS. The numbers in the braces show the

precision of the corresponding severity.

Flow Type
Num. Workflows

Num. Repos
Direct Flow Actions Input Flow Actions

High

(Total: 3,643)

Medium

(Sampled: 1,000)

Low

(Sampled: 1,000)

Total

(Expected: 5,643)

Unique

Root Cause

Unique

Actions

Unique

Root Cause

Unique

Actions

Public Repositories

Intra-WF 2,875 467 769 4,111 3,226 N/A

Inter-WF-Ac 787 597 287 1,671 1,257 55 33 34 13

Total 8 3,322 (91.18%) 985 (98.5 %) 991 (99.1%) 5,298 (93.88%) 4,000 55 33 34 13

Table 9: Disclosure status at the time of writing. IC (Issues

Created) denotes repositories where we have created issues.

Type IC Reported Confirmed Fixed Advisory

Workflow 1730 185 95 93 5

Actions 117 28 15 9 4

However, we found that only a few of repositories had this

feature enabled. Hence, we created issues requesting devel-

opers to activate the private vulnerability reporting feature in

their respective repositories. If the feature was already acti-

vated, or once the developers activated it in response to our

request, we manually filed a vulnerability report and collab-

orated closely with the developers to rectify the identified

vulnerability. In instances where the repository owners had

defined a security policy, we adhered to the specific protocol

outlined therein. Our disclosure process is ongoing. We have

created issues to request private vulnerability reporting for all

repositories with vulnerabilities we classified as High severity.

Table 9 shows the disclosure status at the time of writing.

5.5 Q4: Comparative Evaluation

ARGUS is not the first security analysis tool for GitHub Work-

flows. However, prior tools do not have the ability to perform

static taint analysis. This section compares ARGUS to state-

of-the-art tools to demonstrate the need for taint analysis.

• GHAST [7] is an enhanced variant of GWCHECKER [33]

that uses better pattern-matching to identify seven types

of security issues potentially affecting Workflows ranging

from incorrect usage of GitHub secrets to the improper

usage of Workflows permissions.

• GITSEC [23] is a CodeQL query developed by the GitHub

Security team to detect command injection and arbitrary

code execution vulnerabilities in Workflows.

We configured these tools to detect code injection vulner-

abilities and, in a few cases, enhanced them for a more fair

comparison. For instance, we modified GITSEC by adding all

9We only count total number of unique workflow here, as some workflows

may have both Intra-WF and Inter-WF-Ac flows

Table 10: Comparative Evaluation of ARGUS with other state-

of-the-art works in finding Code Injection Vulnerabilities.

Tool
High/Medium Low

TP FP FN P TP FP FN P

GHAST 744 157 3,563 82.6% 331 363 660 47.7%

GITSEC 1,527 53 2,780 96.6% 204 3 787 98.5%

ARGUS 4,307 336 0 92.8% 991 9 0 99.1%

our taint sources and sinks. And for GHAST we filtered out re-

ports that are related to code injection and ignored others. We

then ran both tools on our full dataset of public repositories.

Precision (P): From the set of workflows that we manu-

ally verified, we compared the results with the reports from

GHAST and GITSEC and found that they have the precision

of 67.4% and 96.87%, respectively. In contrast, ARGUS has

a precision of 93.89% (Section 5.3). We found that out of

5,298 vulnerable Workflows, GHAST and GITSEC identi-

fied 1075 and 1,731, respectively. It is important to highlight

that these tools do not perform a severity impact assessment.

However, we employ our own impact classifier to categorize

the workflows reported by these tools.

Table 10 shows the results of our comparative evaluation.

It is interesting to see that ARGUS flagged 27,465 alerts,

whereas GHAST and GITSEC raise only 3,775 and 2,607 each.

And among this GHAST flagged 362 Workflows as vulnera-

ble which were not found by ARGUS, but they were all false

positives, whereas all alerts from GITSEC were reported by

ARGUS. The results are consistent even across different sever-

ity levels. Although the precision of GITSEC is slightly higher

(96.6% v/s 92.8%) on High/Medium severity Workflows, AR-

GUS was able to identify additional 2,780 Workflows missed

(i.e., false negatives (FN)) by GITSEC.

5.6 Limitations and Future Work

This section describes the current limitations of ARGUS and

our plans to handle them as part of our future work.

False negatives: Our current implementation only has sup-

port for JavaScript and Composite actions. However, we ob-

served many actions (30%) are developed as Docker con-

tainers. Which we do not support and might have missed

vulnerabilities resulting in false negatives. Similarly, we do

not track taint flows through files. Our extensible framework

allows us to add support for this easily. As part of our future

USENIX Association 32nd USENIX Security Symposium 6995

work, we plan to add plugins for Docker actions and track

flows across files.

Conditional Statements: Our current system does not eval-

uate conditional expressions between steps. However, our

framework is designed in such a way that it can be easily

extended to support this feature in the future.

Impact classifier: We determine the privileges

of GITHUB_TOKEN at Workflow level. However, permissions

can be defined or modified at job level. Consequently, our

approach can result in incorrect impact classification. We

plan to add support for job-level permissions in our future

work.

Tool Limitations: We use CODEQL to develop our taint

analysis, and consequently, we also inherit its limitations. For

instance, we may not be able to detect taint flows in case of

obfuscated JavaScript actions [2]. However, we did not find

any such actions in our dataset. Our plugin interface enables

us to easily integrate any other better future tools.

6 Related Work

GitHub Workflows Analysis: A few recent works imple-

mented automated analysis of Github CI workflows. In par-

ticular, Benedetti et al. [7] focused on 7 types of security

issues potentially affecting GitHub workflows (ranging from

incorrect usage of GitHub secrets to the improper usage of

workflows’ permissions). To detect these issues, the authors

developed GHAST, a tool using a pattern-matching approach

to analyze each workflows’ YAML files. Similarly, Koishy-

bayev et al. [33] developed a tool, named GWCHECKER, to au-

tomatically audit workflows, aiming at detecting the presence

of secrets in plaintext, insecure triggers, and the usage of non-

updated actions. Finally, GitHub has developed a CodeQL-

based script to detect Command Injection vulnerabilities in

workflows [23]. All these existing tools cannot precisely char-

acterize workflows’ execution flows across multiple actions,

since they use a pattern-matching, heuristic approach. On the

contrary, ARGUS uses static taint analysis to track data flow

across workflows and their used actions.

CI/CD Security Analysis: Other works explored the security

of CI/CD systems without focusing specifically on GitHub

workflows. In particular, Dullmann et al. [13] highlighted how

standard software engineering practices (such as A/B testing

and Fault Injection) should also be applied to CD pipelines

to guarantee their reliability and security. Shahin et al. [44]

further elaborated on this topic by performing a systematic lit-

erature review of approaches, tools, and practices related to the

deployment of Continues Integration pipelines. More recently,

Vassallo et al. [53] implemented a tool, named CD-Linter,

to automatically identify and fix ªconfiguration smellsº (i.e.,

CI pipeline issues caused by improper configuration) affect-

ing GitLab repositories. Additionally, Gruhn et al. [26] and

Fernandez et al. [16] proposed using, respectively, virtual

machines and Docker containers to compartmentalize the ex-

ecution of CI pipelines, mitigating possible security issues.

Unfortunately, the adoption of these systems requires signifi-

cant changes to the existing CI infrastructure.

Static Taint Analysis: Static Taint Analysis (STA) has been

extensively used in the past for security applications. For

instance, Kashyap et al. [30] and Madsen et al. [35] imple-

mented tools to perform static taint analysis of JavaScript

code. Similarly, the tools LeakMiner [59], Flowdroid [5], and

Amandroid [56] have been used to perform security vetting

of Android apps. None of these approaches could be applied

directly to the analysis of GitHub workflows since, in this

case, we need to ªfollowº tainted data across multiple lan-

guages (such as Javascript and Bash) and across multiple

actions, interacting with each other according to their YAML

specification.

7 Conclusions

GitHub CI has gained tremendous popularity among devel-

opers because of its convenience over other public CI/CD

providers and easy use of third-party Actions. It is important

to ensure the security of GitHub Workflows to prevent supply

chain attacks. We present ARGUS, a framework for static taint

analysis of GitHub Workflows and Actions. Our framework is

based on the use of WIR for Workflows and taint summaries

for Actions. Our large-scale evaluation of over 2M Workflows

and 30K Actions revealed a total of 5,298 vulnerable Work-

flows (including 4,307 critical vulnerabilities) outperforming

state-of-the-art tools.

Acknowledgments

A special note of thanks goes to Jaroslav Lobačevski and

GitHub Security Lab for their assistance and support during

our study. We are also grateful to our reviewers and shepherd

for their invaluable insights and guidance. We would also like

to extend our gratitude to Sourag Cherupattamoolayil, whose

assistance and contributions were instrumental in carrying

out this research.

This research was supported by in part by the National

Science Foundation (NSF) under Grants CNS-2247686, CNS-

2207008, Amazon Research Award (ARA) on ªSecurity Ver-

ification and Hardening of CI Workflowsº and by Defense

Advanced Research Projects Agency (DARPA) under con-

tract number N6600120C4031. The U.S. Government is au-

thorized to reproduce and distribute reprints for Governmen-

tal purposes notwithstanding any copyright notation thereon.

Any opinions, findings, conclusions, or recommendations ex-

pressed in this material are those of the author(s) and do

not necessarily reflect the views of the NSF, Amazon or the

United States Government.

6996 32nd USENIX Security Symposium USENIX Association

References

[1] 94dreamer. 94dreamer/create-report. https://gith

ub.com/94dreamer/create-report.

[2] Ismail Adel AL-Taharwa, Hahn-Ming Lee, Albert B

Jeng, Kuo-Ping Wu, Cheng-Seen Ho, and Shyi-Ming

Chen. Jsod: Javascript obfuscation detector. Security

and Communication Networks, 8(6):1092±1107, 2015.

[3] Nabil Almashfi and Lunjin Lu. Static taint analysis for

javascript programs. In Tools and Methods of Program

Analysis (TMPA): 5th International Conference, Tbil-

isi, Georgia, Revised Selected Papers, pages 155±167.

Springer, 2021.

[4] Marcelo Arroyo, Francisco Chiotta, and Francisco Bav-

era. An user configurable clang static analyzer taint

checker. In 2016 35th International Conference of the

Chilean Computer Science Society (SCCC), pages 1±12.

IEEE, 2016.

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz,

Eric Bodden, Alexandre Bartel, Jacques Klein, Yves

Le Traon, Damien Octeau, and Patrick McDaniel. Flow-

droid: Precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps. Acm

Sigplan Notices, 49(6):259±269, 2014.

[6] Pavel Avgustinov, Oege De Moor, Michael Peyton Jones,

and Max Schäfer. Ql: Object-oriented queries on rela-

tional data. In 30th European Conference on Object-

Oriented Programming (ECOOP). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2016.

[7] Giacomo Benedetti, Luca Verderame, and Alessio Merlo.

Automatic security assessment of github actions work-

flows. In Proceedings of the ACM Workshop on Soft-

ware Supply Chain Offensive Research and Ecosystem

Defenses, pages 37±45, 2022.

[8] binary-com. binary-com/vercel-preview-url-action. ht

tps://github.com/binary-com/vercel-preview

-url-action/.

[9] Continuous Integration and Delivery - CircleCI. https:

//circleci.com/.

[10] Creating a pull request. https://docs.github.com/

en/pull-requests/collaborating-with-pull-r

equests/proposing-changes-to-your-work-wit

h-pull-requests/creating-a-pull-request.

[11] Default read-only tokens. https://github.blog/ch

angelog/2023-02-02-github-actions-updating

-the-default-github_token-permissions-to-

read-only/.

[12] DynamoDS. DynamoDS/Dynamo. https://github

.com/DynamoDS/Dynamo.

[13] T. F. Düllmann, C. Paule, and A. v. Hoorn. Exploiting

devops practices for dependable and secure continu-

ous delivery pipelines. In IEEE/ACM 4th International

Workshop on Rapid Continuous Software Engineering

(RCoSE), 2018.

[14] embano1. embano1/wip. https://github.com/emb

ano1/wip.

[15] Encrypted secrets. https://docs.github.com/en/a

ctions/reference/encrypted-secrets.

[16] David Fernández González, Francisco Javier Ro-

dríguez Lera, Gonzalo Esteban, and Camino Fernán-

dez Llamas. Secdocker: Hardening the continuous in-

tegration workflow: Wrapping the container layer. SN

Computer Science, 3:1±13, 2022.

[17] GHarchive. GHarchive’s open public dataset. https:

//www.gharchive.org/, 2021.

[18] github. actions/github-script. https://github.com/a

ctions/github-script.

[19] Github. Github variables. https://docs.github.co

m/en/actions/learn-github-actions/variable

s#using-contexts-to-access-variable-values.

[20] GitHub Action Runner. https://github.com/actio

ns/runner.

[21] GitHub investigating crypto-mining campaign abusing

its server infrastructure. https://therecord.media/

github-investigating-crypto-mining-campaig

n-abusing-its-server-infrastructure/.

[22] Github private vulnerability reporting. https://docs

.github.com/en/code-security/security-advi

sories/guidance-on-reporting-and-writing/p

rivately-reporting-a-security-vulnerabilit

y.

[23] GitHub Security Code Injection Finder. https://gi

thub.com/github/codeql/blob/main/javascrip

t/ql/src/Security/CWE-094/ExpressionInject

ion.ql.

[24] Github security lab. https://securitylab.github

.com/.

[25] GitLiveApp. GitLiveApp/kotlin-diff-utils. https://gi

thub.com/GitLiveApp/kotlin-diff-utils.

[26] Volker Gruhn, Christoph Hannebauer, and Christian

John. Security of public continuous integration ser-

vices. In Proceedings of the 9th International Sympo-

sium on Open Collaboration, WikiSym ’13. Association

for Computing Machinery, 2013.

USENIX Association 32nd USENIX Security Symposium 6997

[27] Hackers backdoor PHP source code after breaching in-

ternal git server. https://arstechnica.com/gadg

ets/2021/03/hackers-backdoor-php-source-co

de-after-breaching-internal-git-server/.

[28] How We Discovered Vulnerabilities in CI/CD Pipelines

of Popular Open-Source Projects. https://cycode.c

om/github-actions-vulnerabilities/.

[29] Jez Humble and David Farley. Continuous delivery:

reliable software releases through build, test, and de-

ployment automation. Pearson Education, 2010.

[30] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John

Wagner, Kevin Gibbons, John Sarracino, Ben Wieder-

mann, and Ben Hardekopf. Jsai: A static analysis plat-

form for javascript. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of

Software Engineering. Association for Computing Ma-

chinery, 2014.

[31] Keeping your GitHub Actions and workflows secure:

Preventing pwn requests. https://securitylab.gi

thub.com/research/github-actions-preventin

g-pwn-requests/.

[32] Timothy Kinsman, Mairieli Wessel, Marco A Gerosa,

and Christoph Treude. How do software developers

use github actions to automate their workflows? arXiv

preprint arXiv:2103.12224, 2021.

[33] Igibek Koishybayev, Aleksandr Nahapetyan, Raima

Zachariah, Siddharth Muralee, Bradley Reaves, Alexan-

dros Kapravelos, and Aravind Machiry. Characterizing

the security of github {CI} workflows. In Proceedings

of the USENIX Security Symposium, pages 2747±2763,

2022.

[34] Aravind Machiry, Chad Spensky, Jake Corina, Nick

Stephens, Christopher Kruegel, and Giovanni Vigna. Dr.

checker: A soundy analysis for linux kernel drivers. In

Proceedings of the USENIX Security Symposium, pages

1007±1024, 2017.

[35] Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static

analysis of event-driven node.js javascript applications.

In Proceedings of the ACM SIGPLAN International Con-

ference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA). Association for

Computing Machinery, 2015.

[36] Abdalla Wasef Marashdih, Zarul Fitri Zaaba, and Khaled

Suwais. An enhanced static taint analysis approach to

detect input validation vulnerability. Journal of King

Saud University-Computer and Information Sciences,

2023.

[37] Florent Moriconi, Axel Ilmari Neergaard, Lucas Geor-

get, Samuel Aubertin, and Aurélien Francillon. Reflec-

tions on trusting docker: Invisible malware in contin-

uous integration systems. In 17th IEEE Workshop on

Offensive Technologies(WOOT), San Francisco, United

States, 2023.

[38] opencv. opencv/opencv. https://github.com/ope

ncv/opencv.

[39] OWASP. OWASP Top 10 CI/CD Security Risks. https:

//owasp.org/www-project-top-10-ci-cd-secur

ity-risks/, 2022.

[40] peaceiris. peaceiris/actions-gh-pages. https://gith

ub.com/peaceiris/actions-gh-pages.

[41] Nilo Redini, Aravind Machiry, Dipanjan Das, Yan-

ick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan

Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-

gna. Bootstomp: On the security of bootloaders in mo-

bile devices. In Proceedings of the USENIX Security

Symposium, pages 781±798, 2017.

[42] Reedyuk. Reedyuk/write-properties. https://github

.com/Reedyuk/write-properties/.

[43] Set up Automated CI Systems with GitLab. https:

//about.gitlab.com/stages-devops-lifecycle

/continuous-integration/.

[44] M. Shahin, M. Ali Babar, and L. Zhu. Continuous inte-

gration, delivery and deployment: A systematic review

on approaches, tools, challenges and practices. IEEE

Access, 2017.

[45] solo-io. solo-io/gloo. https://github.com/solo-io

/gloo/.

[46] Cristian-Alexandru Staicu, Martin Toldam Torp, Max

Schäfer, Anders Mùller, and Michael Pradel. Extracting

taint specifications for javascript libraries. In Proceed-

ings of the ACM/IEEE 42nd International Conference

on Software Engineering, pages 198±209, 2020.

[47] Tencent. Tencent/tdesign-vue. https://github.com

/Tencent/tdesign-vue/.

[48] Tencent. Tencent/tdesign-vue-next. https://github

.com/Tencent/tdesign-vue-next.

[49] tj-actions. tj-actions/branch-names. https://github

.com/tj-actions/branch-names.

[50] Santiago Torres-Arias, Hammad Afzali, Tris-

hank Karthik Kuppusamy, Reza Curtmola, and

Justin Cappos. in-toto: Providing farm-to-table

guarantees for bits and bytes. In Proceedings of the

USENIX Security Symposium, 2019.

6998 32nd USENIX Security Symposium USENIX Association

[51] Travis CI - Test and Deploy Your Code with Confidence.

https://travis-ci.org/.

[52] Pablo Valenzuela-Toledo and Alexandre Bergel. Evolu-

tion of github action workflows. In 2022 IEEE Interna-

tional Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 123±127. IEEE, 2022.

[53] Carmine Vassallo, Sebastian Proksch, Anna Jancso, Har-

ald C. Gall, and Massimiliano Di Penta. Configuration

smells in continuous delivery pipelines: A linter and a

six-month study on gitlab. In Proceedings of the 28th

ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of

Software Engineering, ESEC/FSE 2020. Association for

Computing Machinery, 2020.

[54] vmware. vmware/govmomi. https://github.com/v

mware/govmomi/.

[55] Gary Wassermann and Zhendong Su. Static detection of

cross-site scripting vulnerabilities. In Proceedings of the

30th international conference on Software engineering,

pages 171±180, 2008.

[56] Fengguo Wei, Sankardas Roy, and Xinming Ou. Aman-

droid: A precise and general inter-component data flow

analysis framework for security vetting of android apps.

ACM Transactions on Privacy and Security (TOPS),

21(3):1±32, 2018.

[57] xamarin. xamarin/backport-bot-action. https://gith

ub.com/xamarin/backport-bot-action.

[58] yagipy. yagipy/habit-manager. https://github.com

/yagipy/habit-manager.

[59] Zhemin Yang and Min Yang. Leakminer: Detect infor-

mation leakage on android with static taint analysis. In

2012 Third World Congress on Software Engineering,

pages 101±104, 2012.

A Appendix

A.1 Intra-repository pull requests

The creation of pull requests between two branches of a repos-

itory requires contributor access to that repository or member-

ship in the organization to which the repository belongs [10].

However, we found that it is possible to create a pull request

between two branches of a repository without possessing such

access rights.

This is significant because an attacker could misuse this to

trigger a vulnerable workflow, which is configured to run on

the pull_request event. And, since this event is triggered

from a branch of the same repository, first-time contributor

Table 11: Severity Assignment of Vulnerabilities excluding

those because of intra-repository pull-request. (W - Work-

flows, R - Repos)

Severity
Intra-WF Inter-WF-Ac Total10

W R W R W R

Public Repositories

High 2,909 2,130 564 530 3,244 2,451

Medium 5,699 1,436 933 453 6,468 1,731

Low 14,585 9,682 3,637 2,731 17,753 11,821

Total 23,193 13,248 5,134 3,714 27,465 16,003

protections are disabled, GITHUB_TOKEN runs with default per-

missions, and user-defined secrets are passed to the workflow.

However, since the attacker does not possess write ac-

cess to the repository, the modifications they can make

are limited to pull request parameters, specifically the title

(pull_request.title) and body (pull_request.body).

This limitation constrains the attacker’s ability to manipu-

late the content of the pull request but does not prevent them

from triggering a vulnerable workflow configured to run on

the pull_request event - if they manage to get malicious

git metadata inserted into the source branch through benign

commits.

It is crucial to note that a fix would necessitate changes in

the design of our impact classifier. Specifically, the attacker

would only be able to trigger vulnerable workflows with a

pull_request trigger from a fork, resulting in them not con-

taining secrets and a read-only GITHUB_TOKEN. Table 12 and

Table 13 also illustrate these sources with a t icon. Similarly,

any workflow with only a pull_request trigger will be au-

tomatically classified as low severity. We have implemented

this modified version of the impact classifier and present the

corresponding results in Table 11.

A.2 Popularity

The Figure 5 shows the popularity of the vulnerable Work-

flows based on GitHub stars. Although most of the vulnerable

Workflows are in less popular repositories, many are popular.

For instance, the opencv/opencv [38] repository with more

than 66,000 stars contains a Workflow with a Low severity

arbitrary code execution vulnerability that can be triggered by

any user on GitHub. Exploiting Workflows in popular reposi-

tories enables attackers to launch high-impact supply chain

attacks and hence an attractive target.

A.3 Workflow Vulnerabilities and Affecting

Actions

10We only count total number of unique workflow here, as some workflows

may have both Intra-WF and Inter-WF-Ac flows

USENIX Association 32nd USENIX Security Symposium 6999

1 on:

2 issues:

3 types: labeled

4

5 jobs:

6 type-invalid:

7 runs-on: ubuntu-latest

8 if: "${{ contains(github.event.label.name, 'Type: Invalid')

}}"↪→

9 steps:

10 - uses: actions/github-script@v6

11 with:

12 script: |

13 await github.rest.issues.update({

14 issue_number: context.issue.number,

15 owner: context.repo.owner,

16 repo: context.repo.repo,

17 state: "closed",

18 })

Listing 12: facebook/react-native [25] contains a Workflow

that uses actions/github-script [18] (an Input flow action) in a

safe way.

Unlike, Direct Flow Actions, not all Workflows that use

Input Flow Actions are vulnerable. For instance, Listing 12

shows an example of the Workflow that correctly uses an

Input Flow Action by not passing tainted data. We found that

most workflows use these Input Flow Actions in a safe way. In

contrast, some Actions such as backport-bot-action [57]

have no safe usages.

A.4 Challenges in Fixing Workflow Vulnera-

bilities

The adoption of GitHub Workflow is on the rise. Unfortu-

nately, this also increases the prevalence of vulnerabilities. Al-

though, in general, fixing the taint vulnerabilities is relatively

easy and requires adding proper sanitization. But depending

on the type of vulnerability, the fix should be done on the

action or the Workflow. For actions that directly use tainted

values, we need to fix the corresponding action by adding

proper sanitization (e.g., Listing 7). But for other actions,

the fix might have to happen on the Workflow. For instance,

the purpose of actions/github-script [18] is to execute the

command provided as input. So, it is the responsibility of the

Workflow not to pass tainted value to the actions/github-script.

In these cases, the fix needs to be added on the Workflow side.

0
1-10

11-50
51-100

101-500
>=501

20

40

60

80

100

3,930

775

161
42

187 203

Number of Stars on GitHub (�).

P
er

ce
n

ta
g

e
(%

)
o

f
R

ep
o

s.

Figure 5: Popularity of Repositories with Arbitrary Code

Execution Vulnerabilities.

Table 12: Workflow taint sources and the number of

workflows that use the taint sources. (t shows sources

with increased severity due to Inter-repository pull request

capabilityÐAppendix A.1)
Name Workflows Count

github.event.issue.title 3,579

github.event.issue.body 3056

github.event.discussion.title 395

github.event.discussion.body 312

github.event.comment.body 3,371

github.event.review.body 105

github.event.pages.*.page_name 0

github.event.commits.*.message 4

github.event.commits.*.author.email 1

github.event.commits.*.author.name 2

github.event.head_commit.message 7,374

github.event.head_commit.author.email 140

github.event.head_commit.author.name 321

github.event.head_commit.committer.email 44

github.event.workflow_run.head_branch 2114

github.event.workflow_run.head_commit.message 338

github.event.workflow_run.head_commit.author.email 13

github.event.workflow_run.head_commit.author.name 117

t github.event.pull_request.title 6,469

t github.event.pull_request.body 7,154

github.event.pull_request.head.label 624

github.event.pull_request.head.repo.default_branch 0

github.head_ref 32,568

github.event.pull_request.head.ref 16,102

github.event.workflow_run.pull_requests.*.head.ref 0

Table 13: Taint sources specific to JavaScript action. (t in

Table 12 are also applicable to actions) ±Appendix A.1)
Module name Properties/Functions

@actions/github All sources present in Table 12 are

sources in JavaScript as well and can

be accessed using the context parame-

ter (e.g., issue.title can be accessed using

context.payload.issue.title)

@actions/core getInput()

getMultilineInput()

Global objects process.env

7000 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Workflow Components
	Workflow Execution
	 Workflow Secrets and Permissions

	Motivation and Threat Model
	Threat Model

	Argus Design
	Taint Sources and Sinks
	Taint Sources
	Taint Sinks

	Taint Summary Creator
	Composite Action
	JavaScript Actions

	Workflow Analysis
	Workflow Taint Tracking

	 Impact Classifier

	Evaluation
	Datasets and Experimental Setup
	 Q1: Taint Analysis on Actions
	 Q2: Taint Analysis on Workflows
	 Q3: Vulnerability Identification
	 Responsible Disclosure

	Q4: Comparative Evaluation
	Limitations and Future Work

	Related Work
	Conclusions
	Appendix
	 Intra-repository pull requests
	Popularity
	Workflow Vulnerabilities and Affecting Actions
	Challenges in Fixing Workflow Vulnerabilities

