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Abstract

Learning to control unknown nonlinear dynamical systems is a fundamental prob-
lem in reinforcement learning and control theory. A commonly applied approach is
to first explore the environment (exploration), learn an accurate model of it (system
identification), and then compute an optimal controller with the minimum cost on
this estimated system (policy optimization). While existing work has shown that it
is possible to learn a uniformly good model of the system [1], in practice, if we
aim to learn a good controller with a low cost on the actual system, certain system
parameters may be significantly more critical than others, and we therefore ought
to focus our exploration on learning such parameters.

In this work, we consider the setting of nonlinear dynamical systems and seek
to formally quantify, in such settings, (a) which parameters are most relevant to
learning a good controller, and (b) how we can best explore so as to minimize
uncertainty in such parameters. Inspired by recent work in linear systems [2], we
show that minimizing the controller loss in nonlinear systems translates to estimat-
ing the system parameters in a particular, task-dependent metric. Motivated by this,
we develop an algorithm able to efficiently explore the system to reduce uncertainty
in this metric, and prove a lower bound showing that our approach learns a con-
troller at a near-instance-optimal rate. Our algorithm relies on a general reduction
from policy optimization to optimal experiment design in arbitrary systems, and
may be of independent interest. We conclude with experiments demonstrating the
effectiveness of our method in realistic nonlinear robotic systems'.

1 Introduction

Controlling nonlinear dynamical systems is a core problem in robotics, cyber-physical systems,
and beyond, and a significant body of work in both the control theory and reinforcement learning
communities has sought to address this challenge [3-5]. In many real-world scenarios [6—9], the
dynamics of the system of interest is unknown, or only a coarse model of them is available, which
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significantly increases the challenge of control—not only must we control such systems, we must
learn to control them. While a variety of methods exist to address this challenge, a commonly
applied approach is to first perform system identification, learning an accurate model of the system’s
dynamics, and then use this model to obtain a controller. Despite its promising potential, there are
still several fundamental questions that must be answered to make this approach practically effective.

Which parameters are most relevant to learning a good controller? Beyond some special cases,
little work has been done characterizing how the estimation error from system identification translates
to end-to-end suboptimality in the resulting controller of our nonlinear systems. In particular, certain
parameters of the system or regions of the state space may be irrelevant to learning a good controller,
and coarse estimates of these parameters would suffice, while other parameters may be critical to
learning a good controller, and we must therefore estimate these parameters very accurately in order
to effectively control the system. In the context of this work, where nonlinearities are considered, the
heterogeneity of the parameters is further accentuated. For instance, around a point of equilibrium,
some system parameters might be completely inactive, having no impact on the dynamics (see the
example in Section 1.1 for an illustration of this).

How can we best explore so as to minimize uncertainty in relevant parameters? Even if we are able
to determine which parameters are most important for obtaining a good controller on the true system,
it is not obvious how to use this information. How can we direct our system identification phase in
order to focus on learning these parameters as quickly as possible, without spending time estimating
the parameters of the system less critical for control? This is fundamentally a question of exploration.
While it is known in linear systems that random excitation will efficiently explore [10], exploration in
nonlinear systems is significantly more challenging since, in order to excite all parameters of interest,
non-trivial planning may be required to ensure all relevant states are reached (as is the case in the
example considered in Section 1.1).

We address both these questions in a particular class of nonlinear systems parameterized as:

Thyl = A*¢(mh,uh) + wy,. (1.1)
Here x;, € R% denotes the state of the system, up € U C R the input, wy, ~ N(0, 0121, -I) random
noise, ¢(-,-) € R% a (possibly nonlinear, known) feature map, and A, € R% <9 the (unknown)
system parameter. Systems of this form are able to model a variety of real-world settings [11-15]7,
and have been the subject of recent attention in the reinforcement learning community [1, 17, 14],
yet the aforementioned questions have remained unanswered. Towards addressing this, in this work
we make the following contributions:

1. For systems of the form (1.1), given some cost of interest which we wish to find a controller to
minimize, we (a) formally characterize how estimation error translates into suboptimality in the
learned controller, under the certainty equivalent control rule and (b) provide a lower bound on
the loss of any (sufficiently regular) control rule learned from 7" rounds of interaction with (1.1).

2. Motivated by this characterization, we present an algorithm which achieves the instance-optimal
rate, with controller loss matching our lower bound. To the best of our knowledge, this is the first
statistically optimal algorithm in the setting of nonlinear dynamical systems. Our algorithm relies
on a generic reduction from policy optimization to optimal exploration in arbitrary dynamical
systems (not necessarily of the form (1.1)), which may be of independent interest.

3. We present numerical experiments on several realistic nonlinear systems which illustrate that our
approach—efficiently exploring to reduce uncertainty in parameters most relevant to learning a
controller—yields significant gains in practice.

To further motivate our approach, we consider the following example.
1.1 Motivating Example

To motivate the need for effective exploration, we consider a simple 1-D system with nonlinear
dynamics given by:

10
Th4+1 = 01T + a2up + Zizlai+2¢i(mh) + wp,

*In real-world settings, ¢ is typically (1) from physics (i.e., the system structure is known but some parameters
such as drag coefficient are unknown [3]), (2) learned using representation learning or meta-learning [12, 15],
and/or (3) from random features (e.g., any sufficiently regular, smooth nonlinear system f(, u) can be modeled
by (1.1) using N random features up to a 1/\/N error [16]).



where ¢;(z) = max{1 — 100(x — ¢;)?,0} for some c;. We choose a; = 0.8,a2 = 1, and
az = ...=aja = —3. We assume a;.12 are unknown, (¢;)}2; is known, and set

cost(x,u) = (x — c1)? + 1007 - u?.

With this choice of cost, the optimal controller will attempt to direct the state @ to the equilibrium
point ¢; and maintain this position. Note that, with our choice of ¢;, ¢;(x) # 0 only when x is
very close to ¢;. This renders the parameters a4.12 irrelevant to learning the optimal controller, since
@2, ..., ¢10 will be inactive if we are playing optimally, but learning a; .3 is critical to performing
optimally. In particular, the coefficient of the first nonlinearity, a3, must be learned, as its value
significantly changes the dynamics at the goal state.

We illustrate the result of running on this system in Fig-
ure 1, comparing our proposed approach (Task-Driven
Exploration, Algorithm 1) to the approach which
chooses u;, ~ N(0,02) (Random Exploration), and
the approach proposed in [1] (Uniform Exploration)
which seeks to explore so as to estimate a1.12 uniformly
well. As can be seen, neither of these latter two approaches
are able to learn a good controller, while our approach eas-
ily finds a near-optimal controller. The failure modes of
each of these approaches is somewhat different. Here v S
Random Exploration fails since the chapce of reaching Figure 1: Performance on Motivating
thq point zj, ~ ¢y is extrgmely small if the input is random Example

noise—reaching c; requires playing a particular sequence

of actions which are very unlikely to be played if uy, is

chosen randomly. The Uniform Exploration approach does, in contrast, plan and, given enough
time, is guaranteed to estimate all parameters accurately. However, as it aims to estimate all parame-
ters uniformly well, it will attempt to estimate a4.12 accurately despite their irrelevance to control,
which will slow down the rate at which it is able to estimate as. Only our approach, which both
plans and takes into account the cost while exploring, is able to reach a3 enough times to efficiently
estimate it, and learn a good controller.

=W Task-Driven Exploration (Ours)
=@~ Random Exploration
=88~ Uniform Exploration

Mean Excess Controller Loss
o - N w S w o ~ ©

This example illustrates that it is critical both to explore efficiently, and also to let the objective—
learning a good controller—guide this exploration. We emphasize that the behavior in this example is
only exhibited in nonlinear systems—though taking into account the task while exploring in linear
systems is known to yield provable improvements [2], even playing random noise allows every
direction to be learned in such systems. In nonlinear systems, however, this is not the case—one may
fail to learn completely unless careful planning is performed.

2 Related Work

Learning for control. Recently, there has been increased interest in studying control problems from
a learning-theoretic perspective, largely for linear system settings such as online LQR or LQG with
unknown dynamics [18, 10, 19-26]. In the nonlinear setting, [27-29] provide formal guarantees on
system identification in several different classes of nonlinear systems, yet they only consider noiseless
systems, or systems that are significantly easier to excite than (1.1). [17] study systems of the form
(1.1), but consider only the regret minimization problem. While their bounds would yield a polyno-
mial complexity via an online-to-batch conversion, the resulting guarantee would scale at a O(1/ VT )
rate, significantly slower than our O(1/T) rate. Several additional works in reinforcement with gen-
eral function approximation encompass nonlinear systems of the form (1.1) [30-32], yet these results
also achieve a slow O(1/ \/T) rate. The most relevant work [1] proposes an active learning approach
to identify unknown parameters in (1.1), with the goal of minimizing the Euclidean distance in the
parameter space. However, they do not provide end-to-end guarantees on learning controllers and, as
shown in Section 1.1, this approach could be significantly worse than learning a model with the goal
task in mind. Also very related to our work is [2], which seeks to answer a similar set of questions: per-
forming system identification in order to learn a good controller. This work is restricted to the setting
of linear dynamics, however, and does not address the additional complexities of nonlinear systems.

System identification, dual control, and iterative learning control. There is a large body of
classical work in system identification [7], and our work can be seen as an instance of active system



identification. While a variety of approaches have been proposed for active system identification
[33-40], these tend to only consider linear systems, or lack rigorous theoretical guarantees. Recently
deep learning approaches have also been applied in system identification [6, 8, 9, 41, 42]. In these
works, the system identification phase is separate from the downstream controller design. Instead, in
the control community, estimating parameters while simultaneously optimizing for performance has
been formulated as a dual or iterative learning control problem [43—45], yet these settings focus on
stability or asymptotic convergence whereas our work quantifies the end-to-end suboptimality gap.
Model-based reinforcement learning. This paper falls into the broad category of model-based
reinforcement learning (MBRL), where an agent explores the environment to learn a model and then
computes an optimal policy using the learned model. On the empirical side, deep MBRL has made
exciting progress in many domains [46—48], and several task-aware methods have been designed to
improve MBRL’s performance [47—49], yet these works lack formal guarantees. On the theoretical
side, a variety of different model-based approaches exist [S0-55, 14]; however, the majority of these
consider restricted settings such as tabular or linear MDPs. Of particular interest is the work of
[14] which presents a result in systems of the form (1.1). While they show that polynomial sample
complexity is possible, their guarantee scales at a O(1/ TY 6) rate compared to our much faster
O(1/T) rate.

Adaptive nonlinear control. Adaptive nonlinear control also seeks to control an unknown nonlinear
system with parametric uncertainties [3, 4]. In particular, the key idea of model-reference adaptive
control (MRAC) bears affinity to this paper, in that the adaptation law in MRAC adapts unknown
parameters in a task-aware manner. There are two main differences between MRAC and our work.
First, adaptive control does not explicitly optimize a cost function—the objective is typically tracking
error convergence and Lyapunov stability, whereas our framework allows general cost functions—
and the focus is typically on asymptotic convergence, while we give non-asymptotic optimality
guarantees. Second, adaptive control has by and large been limited to specific system classes (e.g.,
fully-actuated systems [4, 15]) and policy classes (e.g., policy to directly cancel out the matched
uncertainty [12, 13]), whereas our framework allows more general systems and policy classes.

3 Preliminaries

Notation. | - ||, denotes the operator norm (matrix 2-norm), || - ||r the Frobenius norm, and || - || ps
the Mahalanobis norm, defined as ||| s := V& T Ma for M = 0. vec(A) denotes the vectorization
of matrix A. B,(A;r) := {A" : |[A—-A'||, <r}. [H ={1,2,...,H}. Welet E4[-] denote
the expectation over trajectories induced on system with parameter A, and E 4 . [-] the expectation
induced when policy 7 is played. poly(-) denotes some term that is polynomial in its arguments,
with exponents absolute constants. We use < informally to highlight key parameters in an inequality.

Setting. In this work, we are interested in systems of the form (1.1). We consider the episodic setting,
where episodes are of length H, and assume that each episodes starts from a given state ;. We also as-
sume || A, |lop < B4 for some known B4 > 0. We note that the setting considered here encompasses
many real-world systems of interest in robotics and control (e.g., [12, 14, 11, 15] and Section 6).

The goal of the learner is to find a policy (controller) 7 = (7))L, which achieves minimal cost on
(1.1), for the cost defined by some (known) function (costy (-, -))fL, with costy, : R x U — R,
For a given policy 7, we define the expected cost on system A as

j(ﬂ'; A) = EAJ [Zthlcosth(mh, uh)} .
We consider the following interaction protocol:

1. Learner interacts with (1.1) for T" episodes, at each episode playing a policy Texp € Ilexp.
2. After T episodes, the learner proposes a policy 7 € II*.
3. The learner suffers cost J (7; Ay).

The goal of the learner is therefore first to explore and, after T" episodes of exploration, to propose
its best guess at the optimal controller for (1.1), 7. Here we take Ilc.p, to be a (known) set of
admissible exploration policies (for example, policies with bounded input power), and IT* a (known)
set of admissible control policies. We assume that policies in II* are deterministic, but allow for
randomized policies in Ilqy,. Policies may be either open- or closed-loop.



System Notation. We let 7 denote the space of all possible state trajectories, 7 C Ré= X (H+1)
and, for any T € 7, let T1.;, denote the first h states and inputs in T. For any policy 7, we denote

AA,Tr = EA,W ZhH:1¢(m}L7uh)¢(mh7uh)T:|

the expected covariance induced by playing 7 on system A, A, := A4, », and A= 14, ® A the
Kronecker product of I;_ and A. Finally, we let €2 denote the convex hull of covariance matrices
induced by Heyp, Q := {Er[Ar] + w € Aq,, }, for A, the set of distributions over ILey,.

exp exp

3.1 Regularity Assumptions

In order to make learning in (1.1) tractable, we need several regularity assumptions.
Assumption 1 (Bounded Features). For all x € R% and u € U, we have ||p(x, u)||s < Bg.

Assumption 2 (Bounded Cost). There exists some rcost(Ayx) > 0 such that, for all A €
Br(Ay; reost (Ay)) and all m € TI*, we have ]EA,TF[(Z}Ijzl costy (zh, un))?] < Leost-

Assumption 3 (Uniform Feature Excitation). There exists w € Anexp such that
Amin (B i Aoy ) 2 Afpin for some Ao, > 0.

We remark that these assumptions have appeared before in work on systems of the form (1.1) [1, 17].
In particular, Assumption 3 implies that every direction of A, can, in principle, be excited, allowing
it to be learned. In order to precisely quantify the optimal rates of learning, we require that our
system satisfy certain smoothness assumptions. First, we require that ¢(-, -) is differentiable in its
second argument.

Assumption 4 (Smooth Nonlinearity). For all x € R% and u € U, ¢(x, ) is four-times differen-

tiable in w. Furthermore, ng)¢(a:,u)||op < Lg, Vi €{1,2,3,4}, z € R%, and u € U.

We also require that the class of admissible control policies, II*, has a parametric form, II* = {7r‘9 :
0 € R}, and that the parameterization is smooth in the following sense.

Assumption 5 (Smooth Controller Class). 78 (ty.;,) is four-times differentiable in 0 for all T € T
and h € [H]. Furthermore, VS)WZ(Tl:h)HOp < Lg forVi € {1,2,3,4}, 0 € R% andt € T.

Assumption 5 is satisfied for commonly considered classes of controllers, such as linear controllers,
but is also satisfied by more complex classes such as neural network controllers. While the learner
may propose any 7 € IT*, we are particularly interested in the certainty equivalence decision rule
(i.e., the learner decides 77 as if the estimated system is the actual one), defined as:

To(A) = 7% for  0,(A) := argmingga J(7; A). (3.1)
To ensure that 7, (A) is well-defined and sufficiently regular, we make the following assumption.

Assumption 6 (Unique Optimal Controller). We assume that the global minimum of J(7%; A,),
0.(A,), is unique, and that ng(wo; A)lo=0,(a,) = 0.

In general, the policy optimization problem in (3.1) may not be computationally tractable. As we
show in Appendix D, the globally optimal decision rule of (3.1) can be replaced with a locally optimal
decision rule (i.e. 74 (A) a local minimum of 7 (7; A)). Furthermore, Assumption 6 can be replaced
by assuming the differentiability of 6, (A) with respect to A for A near A,. For ease of exposition, in
the main text we assume that Assumption 6 holds and that 7, (A) is defined as in (3.1). With these
definitions and under Assumptions 1, 2, 4 and 5, we can show that 7 (7r9; A,) is differentiable in 6
and, combined with Assumption 6, that 8, (A) is differentiable in A, for A € Br(A4;79(A)) and
some 79 (A,) > 0. We let L, denote an upper bound on the norm of the derivatives of 6, (A).

4 Optimal Exploration in Nonlinear Systems

In this work, we are interested in characterizing the instance-optimal rates of learning a controller
7 € II* which minimizes the loss J (7; A, ). The following result, a generalization of Proposition
8.2 of [2] to nonlinear systems, is the starting point of our analysis.



Proposition 1 (Informal). Under Assumptions 1, 2 and 4 to 6 and on the system (1.1), we have
T (me(A); A) = T (mu(Ar); Ar) = [Ivec(As = A)[Fya,) + O (AL — A2
Sfor
H(AL) = V4T (1.(A); Ad)|a=a.
and where O*(-) hides factors polynomial in the regularity parameters of Assumptions I to 6.

The quantity H(A,) := V4T (m.(A); Ay)|a=a,, referred to as the model-task Hessian in [2],
corresponds to the curvature of the loss of the certainty-equivalence controller 7, (A) around A < A,.
It precisely quantifies how estimation error in each coordinate of A, translates into suboptimality of
the controller—providing an answer to our question of which parameters are most relevant to learning
a good controller—and reduces the problem of minimizing the controller loss to estimating A, in a

particular norm. The following result gives a bound on this estimation error, ||vec(A4, — A) H;( A

Proposition 2 (Informal). Consider interacting with (1.1) for T episodes, and let Ap =
S p(xt, ul ) b(ah, ul)T denote the observed covariates and

n . T —H
A=argming 37,37, @y — A (@), up)|3

the least-squares estimate of A,. Recalling that A = 14, ® A7, we have, with high probability:

lvec(As = A3, S 0% - tr(H(A)AL").

4.1 Algorithm and Upper Bound

Proposition 2 motivates our algorithmic approach: explore to collect covariates A minimizing
tr(H(A4)AL"). There are two primary challenges to achieving this: we do not know H(A,), as it de-
pends on the (unknown) parameter A, and, even if we did know (A, ), it is not clear how to explore

50 as to collect data minimizing tr(#(A,)AL"). We address both of these challenges in Algorithm 1.

Algorithm 1 Optimal Exploration in Nonlinear Systems (informal)

1: inputs: episodes 7', (costh)}lle, confidence d, control policies 1I*, exploration policies ey
Al 0, KT — |—10g2T/8—‘, Ty + 2t

cfor(=1,2,3,...,¢r do

4 Compute estimate of model-task Hessian: H, + H(A?)

5: Run DYNAMICOED on ®,(A) < tr(H, - A=) to learn exploration policies I, C ey,
6: Rerun each policy in ITy Ny = [Ty/|I1,|] times, denote collected data D,
7
8

BN

. o . H
Estimate A,: A“! = argminy >, Z(m}L+17u}l7m}L)€®[ [@hs1 — Ad(xh, un)|3
: return 77 + 7, (A7) € TI*

Algorithm | proceeds in epochs of exponentially increasing length. At each epoch it first approximates
H(A,) by computing the model-task Hessian of the estimated system, A°. Using this approximatiom

of H(A,), it seeks to explore to minimize tr(H(A?)A"). This exploration routine is encapsulated
in the DYNAMICOED (dynamic optimal experiment design) function, an adaptive experiment-design
routine inspired by recent work in reinforcement learning [56] and described in more detail in Sec-
tion 5. DYNAMICOED returns a set of exploration policies, II,, which we run to collect data ©,. As

we will show, the collected covariates, Ay := Zthl 2 (un,wn)eo, P(@n, un)d(xn, up) ", satisfy
tr(H(ADA;Y) < Tt - mingeq tr(H(AD)AY),

which implies that DYNAMICOED collects data minimizing tr(’H(A\e)[\Zl) at a near-optimal rate.

Given the data ©,, we form the least-squares estimate of A,, ﬁ”l, and the process repeats. After
running for T" episodes, the certainty-equivalence controller on the last estimate obtained, 77 =

T (/TET“), is returned. The following result bounds the suboptimality of 777 as compared to 7, (A, ).



Theorem 1. Under Assumptions 1 to 6, if T > Cpoly - max{1, 7cost (As) 2, 70(Ax) "2}, then with
probability at least 1 — 9, Algorithm 1 explores with policies in ey, at every episode, runs for at
most T episodes, and returns T € I1* satisfying:

o2 6dzdg n Choly

~ . . w . -1
J(@r; Ay) — T (e (Ay); Ay) < - ~Ir\ne13tr (H(A*)A ) -C'log 3 T3/2

where we recall S is the set of possible expected covariates on (1.1), C' is a universal constant, and

Cpoly = poly(de, da, H, Ba, By, Ly, Lo, Leost Lr, , 0w, 035 53— 108 )

Theorem 1 shows that Algorithm 1 is able to explore so as to optimally minimize the exploration loss
tr(H(A*)A;l), up to a lower-order term scaling as 7~3/2 and polynomially in system parameters.

While Propositions 1 and 2 show that collecting data which minimizes tr(?—[(A*)[\;l) is in some
sense fundamental, it is not clear it is necessary. We next show that it is indeed necessary.

4.2 Lower Bounds on Learning Controllers

Our goal is to show that, up to constants and lower-order terms, the bound given in Theorem 1 is not
improvable, regardless of which controller estimate we use. To obtain such lower bounds, we need
several additional assumptions. In particular, we require that the loss 7 (7?; A) grows quadratically
in the distance 6 is from 6, (A), and strengthen Assumption 3 to ensure (1.1) is sufficiently easy to
excite. Formal statements of these conditions are given in Appendix F. Our lower bound is as follows.

Theorem 2 (Informal). Under Assumptions I to 6 and the additional regularity assumptions men-
tioned above, as long as'T' > Cyy, for any wexp € An,,,, we have

02 < C]b

i T . — . > 2% i -1y _ b

min max Eornawe, [T (T(Dr); A) — T (7. (A); A)] > 7 in tr(H(ADA™) T8/
for By := Bp(Ax; O(T %)), Enynt s [] = Erexpmwory BDrna, ro, 1] the expectation over

trajectories generated by running policies T ~ wexp, on system A for T episodes, T any mapping
from observations to policies in I1*, and Cy, some value scaling polynomially in problem parameters.

Note that this lower bound holds for any A, and mapping ¢, as long as our assumptions are met. Up
to constants and lower-order terms, the scaling of Theorem 2 matches that of Theorem 1—both scale
with minaeq tr(#(A,)A~')—which implies that Algorithm 1 is indeed optimal (under certain
additional regularity conditions). To the best of our knowledge, this is the first result characterizing the
optimal statistical rates for learning in nonlinear dynamical systems. We emphasize that Theorem 2
holds for any decision rule 7—it does not require that we use the certainty equivalence decision
rule. As Algorithm 1 does rely on certainty equivalence, this result also implies that the certainty
equivalence decision rule is optimal for (certain classes of) nonlinear dynamical systems.

The proof of Theorem 2 builds on the work [2], which shows a similar result for linear dynamical
systems. It critically relies on our quadratic decomposition of the controller loss in Proposition 1,
which reduces the problem of obtaining a lower bound on controller loss to a lower bound on
estimating A, in the 7 (A, ) norm. Given this, the result can be obtained by applying lower bounds
on regression in general norms.

5 Optimal Experiment Design in Arbitrary Dynamical Systems

We turn now to the DYNAMICOED routine, which is the key algorithmic tool we use to prove
Theorem 1. DYNAMICOED is a general reduction from policy optimization to optimal experiment
design in arbitrary dynamical systems, and is an extension of a recently proposed approach for
experiment design in linear MDPs [56]. This section may be of independent interest.

To illustrate the generality of this reduction, in this section we consider the following system:
Th41 :fh(a:h,uh,wh), h:1,2,.‘.,H, (51)

where x;, € X C R% denotes the state, u;, € U C R% the input, and w;, € R%> the noise. We take
the dynamics (f5,)_, to be unknown and arbitrary. We assume there is some known featurization of



our system that is of interest, ¢(x,u) — R, and an experiment design object on this featurization,
@ : R%>de — R. Our goal is to collect some set of trajectories {T;}7_; which minimizes ®:

O (27 - L S ol ul)p(ah, ul)T).

As an example, if ®(A) = log det(A), this reduces to D-optimal design, and if ®(A) = tr(H A1),
the setting considered in Section 4, this reduces to weighted A-optimal design. As before, we assume
we have access to some set of exploration policies IL.«p,, and define A and Q as in Section 3, but

with respect to this new feature map ¢ and system (5.1). We also define Q to be the space of all
possible covariance matrices:

ﬁ = {Zthld)(wh,uh)cb(wh,uh)T DXy € X,’U,h S Z/{,Vh S [H]}

To facilitate efficient experiment design in this setting, we will make the following assumption on .

Assumption 7 (Regularity of ®). ® is regular in the following sense:
1. @ is convex, differentiable, and [3-smooth in the norm || - || (with dual-norm || - ||.):

IVAB(A) = Va®(A)] < B-[A—A'|, YA A €Q.

2. There exists some M < oo satisfying sup , g SUDge x weu |P(T, u) TVAP(A)p(z,u)| < M.

The key algorithmic assumption we make is access to a regret minimization oracle on (5.1).
Assumption 8 (Regret Minimization Oracle). Let costy,(z,u) = ¢(x,u) ' Qno(x,u) for some
Qn € R%*9% sych that | > ) costp(xh, up)| < 1forall @, € X,up, € U. We assume we have

access to some learner A, which is able to achieve low regret on costs {costp, (-, ) }iL | with respect
to policy class eyp,. That is, with probability at least 1 — 6:

Z?:1Ef,m [Zthlcosth(:cz, wh)] — T - minger,,, Efﬁ[zz[dcosth(wh, up)] < Cg - logP® L .7
Sor some Cr > 0, pr > 0, and o € (0, 1), and where T, is the policy A plays at episode t.

Note that the regret minimization algorithm satisfying Assumption 8 may be arbitrary. For example,
for linear systems, we could apply provably efficient algorithms for the Linear Quadratic Regulator
[25, 20]; for nonlinear systems of the form (1.1) we could apply the LC? algorithm of [17]; for
more general settings of reinforcement learning with function approximation, algorithms such as
BILIN-UCB [30] or E2D [31] could be applied. In practice, though they may not formally satisfy
the guarantee of Assumption 8, deep RL approaches could be used. We have the following result.

Theorem 3. FixT' > 0 and denote R := sup, ,,.q [|A — A’|. Under Assumption 7, and assuming

we have access to a learner A satisfying Assumption 8 with « = 1/2, DYNAMICOED runs for T
episodes on (5.1), and with probability at least 1 — ¢ collects data {(xz, 'U'?L)}he[H],te[T] satisfying

T H 2 pPr 2T 1/2 4T
1 t T . BR*logT + HM (Cg log"™ %~ + 3log™/~ %)
*(7 22 oo - pig i) < o

where ¢}, := ¢(x! ,ul), and we recall QU is the set of possible expected covariates on (5.1).

Theorem 3 shows that, given access only to a regret minimization oracle, it is possible to solve
experiment design problems on arbitrary dynamical systems. The requirement that o = 1/2 is for
expositional purposes only—we generalize this result to arbitrary o (and more general feature maps) in
Appendix C. Under certain conditions, it can be shown that, if the exploration policies DYNAMICOED
runs to collect ® are rerun, the newly collected data satisfies a similar guarantee as Theorem 3. This
lets us run DYNAMICOED to learn an approximate solution of mina o ®(A), and then rerun the
learned policies as many times as desired to collect additional data approximately minimizing ®.

5.1 Overview of DYNAMICOED Algorithm

DYNAMICOED is inspired by recent work on experiment design in reinforcement learning [57, 58,
56, 59], and can be seen as an extension of the FWREGRET algorithm of [56] to arbitrary systems. We



refer the reader to [56] for a more in-depth discussion of the FWREGRET algorithm, and briefly sketch
its extension to arbitrary systems here (see Appendix C and Algorithm 4 for precise definitions).

Algorithm 2 Dynamic Optimal Experiment Design (DYNAMICOED, Informal)
1: input: objective ®, episodes T, confidence J, regret algorithm Ax, exploration policies Iley,
2: Set K < O(T?*3),N + O(T"?), yp ¢+ =5
Hp™ = @™ uy™) for (x)", u)™™) the state-input at step h of episode k of iteration 7
Play any Texp € Hexp for K episodes, set Ag < Zle Zthl ¢Z’O(¢’;’O)T
forn=1,2,...,Ndo
Compute derivative of ®(A,_1), E,  VAP(A)|a=A, _,
Run A on cost cost] (z,u) < 17 - ¢(z,u)" (Z,)¢p(x,u) for K episodes
n K H k‘,n k,n
Ay~ (1 =)Aot + 77 ) Zk:l Zh:l ¢h (¢h )T
N K H ko, kn
return 7 32,0 > Yoy 93 (#) T

A A

Conceptually, DYNAMICOED runs a variant of conditional gradient descent on the objective
®(A). At each iteration, n, it computes the gradient of the loss at the current iterate, =, <
VA®P(A)|a=A,_,- Torun a standard gradient descent algorithm on this objective, we would simply
update A,,_; by taking a step in the direction =,,. However, our objective is to minimize ® over the
constraint set, £2. Thus, rather than taking a step in the direction =,,, we wish to take a step in the
direction of steepest descent within the constraint set.

The challenge is that the constraint set in our setting, €2, is unknown, as it depends on the expectation
over trajectories induced on the unknown dynamics (f5,)f_,, and therefore we cannot directly
compute this steepest descent direction. The key observation is that the computation of this steepest
descent direction is equivalent to solving:

argming, e, Brre, (S5 @@n, un) T (En)dlan, un)).
This is simply a policy optimization problem, however, and can be solved approximately by Ax
under Assumption 8. Thus, in the call to Ax on Line 6, we approximate the steepest descent direction,
and on Line 7 update A,,_; in this direction. Convergence of this procedure to the optimal value,
minpcq P(A), can then be shown by the standard analysis of conditional gradient descent. We
remark that, under Assumption 7 and Assumption 8, this argument is completely generic and does
not require that our system, (5.1), exhibit any additional properties.

5.2 From Theorem 3 to Theorem 1

In Algorithm 1, our goal is to collect covariates, A_el, on (1.1) such that tr(?—l(ﬁl)./v&;l) is as
small as possible. To achieve this, we apply DYNAMICOED to the dynamics (1.1) and oi)jective
Dy(A) = tr(H(AY)A~1), with Assumption 8 instantiated by the LC? algorithm of [17]. By the
guarantee given in Theorem 3, after running for a number of episodes /N which scales 1polynomially
in problem parameters, DYNAMICOED will collect covariates A such that (Dg(NA N) < 2-
ming e ®¢(A), which implies tr(?—[(ﬁe)[&;,l) < £ - minpco tr(H(AY)A~1). By rerunning
the policies DYNAMICOED used to collect this Ay for T;/N additional times, we can ensure

tr(?—[(gz)[&;j) < A minaco tr(H(AY) A1) as desired.

We remark that the LC? algorithm requires access to a computation oracle. As the focus of this work
is primarily statistical, we leave addressing this computational challenge for future work. Furthermore,
as we show in the following section, computationally efficient, sampling-based implementations
of our approach are very effective in practice. We remark as well that the objective we ultimately
care about minimizing is tr(#(A,)A~"). As we show, by including a small amount of uniform
exploration, we can ensure that the suboptimality incurred optimizing tr(?—[(ﬁé YA~1) instead of
tr(H(A,)A~") only contributes to the lower-order terms of the final guarantee in Theorem 1.

6 Experimental Results

Finally, we demonstrate the effectiveness of our proposed approach (Algorithm 1, the Task-Driven
Exploration method in Figures 1 to 3) on several systems motivated by robotic applications. We
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compare Algorithm 1 with an approach that plays uj, ~ N(0,02 - I) (Gaussian Exploration),
and an approach inspired by [1] (Uniform Exploration), which seeks to estimate A, uniformly

well, playing inputs that reduce ||A — A, llop-

To benchmark the performance of these approaches, we consider an affine system with dynamics
corresponding to that of a simplified 3-D drone (i.e., 3-D double integrator with a gravity term),
and a nonlinear system with dynamics corresponding to that of a 2-D car. For both systems, we
choose H = 50, and plot the value of J (7y; Ax) — J (74 (Ay); Ay) for 7, the certainty-equivalence
controller computed on the estimate of the system obtained at time ¢. For the drone, we let IT* be
the class of linear-affine feedback controllers, and for the car, II* is a set of nonlinear controllers
with dimension 4. While the optimal controller for the drone can be computed in closed-form,
for the car we rely on a sampling-based routine to find an approximately optimal controller. The

model-task hessian 7 (A*) is computed via automatic differentiation. For the exploration policies of
Task-Driven Exploration and Uniform Exploration, Il,, we rely on MPC-style sampling

based methods. For all approaches, we require that E4 ., [Zthl lunl3] < ~? for some 2 > 0
and all Texp € Iexp. On all examples, we implement DYNAMICOED with A a posterior sampling-
inspired version of the LC? of [17]. Figures 1 and 3 shows performance averaged over 100 trials, and
Figure 2 over 200 trials. Additional experimental details can be found in Appendix G.

As illustrated in Figures 1 to 3, our approach yields a non-trivial gain over existing approaches on all
systems. In particular, in Figures 2 and 3 it improves on the sample complexity of existing approaches
by roughly a factor of 2—for example, in the drone system, reaching excess controller cost of 10
after less than 20 episodes, as compared to over 40 episodes for existing approaches.

Our implementation is very modular, and any piece (for example, the parameterization of Il and
II*, the policy optimizer, or the exploration routine) can be easily replaced with other procedures. Our
results highlight that, even when using, for example, a possibly suboptimal policy optimizer, exploring
S0 as to minimize uncertainty in the model-task hessian yields a non-trivial gain. We expect that this
would hold true regardless of the policy optimizer used—the model-task hessian will adapt to the
structure of the policy optimizer. Integration of our approach with deep model-based RL approaches is
an interesting direction for future work, but we believe the approach will scale to these settings as well.

7 Conclusion

In this work, we have characterized the instance-optimal rate of learning controllers in nonlinear
dynamical systems. To the best of our knowledge, this is the first work to obtain an optimal sample
complexity for learning in nonlinear dynamical systems. Furthermore, our experimental results
demonstrate the effectiveness of our proposed algorithm in realistic nonlinear systems. This work
opens the door for several interesting directions for future work. First, it is not clear that the
assumption on uniform feature excitation, Assumption 3, is necessary. Can this be removed with a
more refined analysis (or shown to be necessary)? Second, while in many settings ¢ is known or can
be effectively represented by random features, in some settings it is helpful to learn it [12]. Can we
obtain end-to-end guarantees on learning both ¢ and A, ? Finally, it is of much interest to extend our
experimental results to larger-scale systems for real-world deployment.
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A Technical Tools

Additional Notation. We let S~! refer to the unit ball in d dimensions and S‘_f_ (resp. S‘j_ 4) the
set of positive semi-definite matrices (resp. positive definite matrices) in R?*<. Throughout, O(-)

denotes standard big-O notation, O(-) hides additional logarithmic factors. poly(-) denotes some
term that is polynomial in its arguments, with exponents absolute constants. /A x denotes the set of
distributions over set X'.

Lemma A.1. Let w; ~ N (0,1,,) foralli € {1,2,...,n}. Then,

<Z ||wi||2> ] < n? - poly(dg).

E

for c an absolute constant.

Proof. We first bound

n
(Z; [will2)® < n-max|lwilz < Z [[wi[3-
The result then follows since we can bound the E[||w;||5] < poly(d) for w; ~ N(0,I) and ¢ an
absolute constant. O

Lemma A.2 (Lemma 1.4 of [2]). Assume A, B € S‘Lr, A — Bllop < € and € < Amin(B). Then
€

min(B>(/\min(B) - 6) '

||A71 - Bil”op § )

A.1 Martingale Regression in General Norms

For the following two results, we consider the martingale regression setting of [2] (referred to as the
MDM setting). In particular, we consider observations of the form

Yo = (1", 2¢) + wy, (A.D)

for y, € R, unknown parameter p* € R | | Foo1 ~ N (0,0121,), and z, JF._i-measurable,
for a filtration (F;)¢>1. This setting therefore encompasses general stochastic processes where the
observations are linear—the evolution of z, could be arbitrary.

We consider the setting where we interact with (A.1) for T steps, collecting observations { (2¢, y+) }i_1,
and then form the least-squares estimate of p*:

T
n= (Z ztz,j> Zztyt.
t=1 t=1

We also denote X7 := Z::l 2.z, . The following results characterize the estimation error of fi in
the M -norm and 2-norm.

Proposition 3 (Theorem 7.2 of [2]). Fix any matrices T' € S‘i‘;, M e Sd“, with M # 0. Given a
parameter 3 € (0,1/4), define the event

E = {HET - I‘Hop S /BAmin(F)}-
Then, if £ holds, the following holds with probability at least 1 — §:

- N 6d _
i — w3 <5(14¢) - o, log — - tr(MT Y

where ¢ = 2632 Amax (T)tr(T1).
Proposition 4 (Lemma E.1 of [2]). On the event

Eop = {Amin(T1) > AT, X7 < TI1},
then we have that with probability at least 1 — §:

O log1/6 +d,, + logdet(Ty /A + T
IIM—MIIQSC-o—w\/g/ ntogdetTa/Ax D),
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A.1.1 Connection Between (1.1) and (A.1)

We will apply the results Proposition 3 and Proposition 4 in the setting of (1.1) in order to obtain
estimation bounds on A,. As the setting of (1.1) has vector observations, we briefly describe here
how it can be mapped into the setting described above.

Recall that (1.1) evolves as
Lh+1 :A*¢(mh7uh)+wh7 h:17"’7H7

for ¢, € R%, ¢(z,u) € R, and A, € R%*Xde  We assume that =, is some
fixed starting state. Assume that we have run for 7' episodes, and collected observations
{(xf,ul, b, ... 2], ul, 2l )}/, Now let u* := vec(A,). Furthermore, for any ¢, h, and
i € [dg), lett = (t, h,i) and 2, = [0g,(i—1), d(x],, u},), 04, (4, —i)] € R where 04 denotes the
zero vector of length d. Then we see that

[wzH]i = (K", z¢) + [wﬂz

Setting yy = [x],,,]; and wy = [wy}];, it is clear that this follows the observation model of (A.1)
with d,, = dgdz and T = d,T'H. It is also straightforward to see that the measurability assumptions
of the setting of (A.1) are satisfied by this.

B Proof of Main Result

Algorithm 3 Optimal Exploration in Nonlinear Systems (Full Version of Algorithm 1)

1: inputs: number of episodes to run 7', cost function (costh)thl, confidence 9, control policies
IT*, exploration policies I1eyy,

2: Al « anything, {7 < [log, T/8]

3: for/{=1,2,3,...,{p do

4: Ty < 2°,64 < 6/1202

Compute estimate of cost matrix: H, < H(A")

IT;, +— LEARNEXPII(H,, Ty, 8¢, A, Iexp) (Algorithm 7), with Ag the LC3 algorithm [17]

Rerun each policy in IT, Ny = [T;/|I1,|] times, denote collected data D,

Estimate system parameters

LoeRaW

H
AL — argjninz Z ||33h+1 - A¢(xhauh)”§

h=1 (xp41,un,@n)EDy

10: return 7y < m, (Al +1)

Theorem 4 (Full Version of Theorem 1). Assume Assumptions [ to 5 and 13 hold. Then if

T 2 poly (dg, da, H, Ba, Bo, Lgs Lo, Leosts L. 0ws 7' 5 log ) - mac {1, -—Lor, dr |
(B.1)

with probability at least 1 — 0, Algorithm 3 plays exploration policies Toxp, € ey, at every episode,
runs for at most T episodes, and the controller T returned Algorithm 3 satisfies, with probability at
least 1 — 0:

6dzde  Clot

RTE

2
Ow

T

J(@r; Ay) — T (me(Ay); Ay) < . 11{1613 tr (H(A)A™") - Clog

for C a universal constant and

Opoly = POIY (dtﬁa dmv Hv BAv Bd)a Ld)a Lg, Lcost; L7r* s Ow, 01;;17 )\%7 log %) .

Proof. Let & denote that the good event of Lemma B.3 holds at round ¢ which, by Lemma B.3,
occurs with probability at least 1 — 65,. By our setting of d, = §/12¢2, we have that the total failure
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probability of &, for all £ is bounded as

= )
D6 @ <9

(=1
Henceforth we assume that £ := N,&, holds. Let A= EZTH, and A~ := A",

Before proceeding to the main proof, we note that the conclusion that Algorithm 3 only explores with
policies in Ilex,, follows from the definition of LEARNEXPII and LC3. Note that LEARNEXPII only
interacts with (1.1) through calls to DYNAMICOED, which itself only interacts with (1.1) through
calls to A, instantiated in Algorithm 3 by LC?. Inspection of the LC? algorithm in [17] reveals that
LC? only interacts with (1.1) by playing policies in ey, from which the conclusion follows.

Bounding the Number of Episodes. Denote 77°¢ = |II,|. Note that by construction we always
have Nnged > Ty. By Lemma B.2, as long as (B.1) is met, we can bound the total number of
episodes collected up to and including round ¢ by 47} for ¢ € {{r, ¢ — 1}. We therefore, in the
following, will make use of the fact that

¢ T<NK;<c-T
for ¢ € {1, ¢y — 1} and absolute constants ¢, ¢’. Furthermore, it also follows from this that the total
number of episodes run by Algorithm 3 is bounded by

4DT:UL2“%TB]§8-%::T

)

so Algorithm 3 runs for at most 7" episodes.

Approximating the Controller Loss. Let 7o (Ay) := min{1, reost (Ax), 70 (Ax) }, fOr 7eost (Ax)
as in Assumption 2 and r¢(A,) as in Assumption 13. By Lemma D.2, under Assumptions 1, 2, 4, 5

and 13, as long as A € Br(A,;rest(A,)), we have
T (s A) = T (ma(A); A < vee(A = A) By
+ pOl}’(Lmv ”A*HOpv L¢7 Lo, Leost, 0;1’ H, dm) : ”A\ - A*”gp'
Furthermore, we can bound

lvee(A = A5,y = lIvee(A = A5, 52, + vee(A = A) T(H(AL) = H(A™))vec(A - A,)

< (A= A)THADNA - A) + A7 = A IH(AD) — HA)lop-

Bounding the Hessian Estimation Error. On &£, by Lemma B.3 and as long as (B.1) is met, we
have (note that at the final epoch, the plug-in estimator 7{(A ™) is given as input to DYNAMICOED):

~ 60 ~ s 6d.d
HVeC(A—A*)||iL(27) S W Il;négtr (H(A )A 1) U'lQUlOg :g ¢

1 T 1
+p01>/<d¢a o BB log - H [ g o 722 ) -
min éT

6dwd¢
5

c . VA1) . 2
§T~knelgtr(H(A A )-leog

1 T\ 1
+ poly <d¢’dm’ A\~ BA7B¢710g ,H, ”H( HopalOg 5) : ﬁ

min Ow

where the last line uses that N, Te"fd is within a constant of 7', and that Tfed can be bounded by

1 T
poly <d¢,dm, e BA,B¢,10g , H,log 6)

min
by Lemma B.3. By Lemma B.4 we can bound
2dydy
)\*

min

min tr (’H(A\_)A_l) < min 2tr (H(A*)A_1> + IH(AL) — ,H<A\_)H0p

AeQ A2

17



and by Lemma D.3, under Assumptions 1, 2, 4, 5 and 13, and as long as A- € Br (A rest (Ax)),
we can bound

HH(A*) - H(A\_)HOP < poly(Ln,, ||A*||0va¢vL97LcostvUz_ulaHv dw) ’ ||A\_ - A*HOP'

Let
1 T
Clot := pOly L7l'*7BA7B¢5L¢5L95LCOSt;dm7d¢7 i ;Ow, O H ||H( )HopalOgE

min

denote some lower-order constant, whose precise polynomial dependence may change from line to
line. On &, by Lemma B.3 we can bound

1
VT’
and so assuming the burn-in (B.1) is met, we can bound || A~ — Aillop < Frest(As) and A —
Ay lop < Arest(AL). This then implies that

HA\_ A*Hopa HA\_ - A*Hop S C(lot . (B2)

~_ 1
||H(A*) - H(‘A )Hop S C(lot . ﬁv
so in particular we can bound

T
Bt B Holog - [H(A) g o8 5 )

1
pOly (d¢7 dil‘:7 )\*

T
< poly <dd>7da:7 v Ba By, H, log II”H «)llop; log 5) :
We have therefore shown that
~ C < 1 9 6dpdg
J(mr; Ay) — T (me(Ax); Ay) < i ?ztr (H(A*)A ) -0, log Cg

Gy (|2 A, +IAT = A+ A - A*|op)

c . < 1 9 6dzdey  Clot
< T II\rlElgtr (H(A)A™Y) - o2, log 5 T T3/2°
The final result follows from using Lemma D.4 to bound

||H(A*)||Op < pOly(HA*Hopa B¢, Ld)a L07 LCOsty L‘IT* P 0_;1’ H7 da:)

O

Proof of Theorem 1. The proof of Theorem 1 is identical to that of Theorem 4, the only difference
being that we replace Assumption 13 with Assumption 6. However, by Proposition 6, the conditions
of Assumption 13 are met when Assumption 6 holds. O

B.1 Supporting Lemmas

Lemma B.1. Under Assumptions I and 3, the system (1.1) satisfies Assumptions 11 and 12 with

H
() Io, © Y (@f,uf)p(xf,uf)", D =dHBj,
h=1

dy < dedy, and where x} (resp. uf) denotes the state (resp. input) at step h of trajectory T.
Furthermore, it satisfies Assumption 10 with A instantiated with the LC? algorithm of [17] and

Cr = C-H\Jdg(dy + ds + Ba) -log(1 + ByH/ow). pr=3/2, a=1/2

for a universal constant C.

18



Proof. That Assumption 12 is satisfied is immediate under Assumption 3. It is clear that ¥(T) €

Si"’dw. To obtain a bound on D, we only need to bound the trace of 1)():

H
©) = Y tr(la,) - tr(B(af, uf))p(af, uf) )

H
— 4. Y [(aF.uD);

h=1
2
<d.HB
where the inequality holds under Assumption 1.

To show that Assumption 10 is satisfied in this setting, we have by Theorem 6 that with probability at
least 1 — &, LC? has regret bounded as (using that ¢, < 1 in the setting of Assumption 10):

1
Rr<C-H d¢~(d¢+dm+BA+10g5)

for C' a universal constant. We can therefore take o« = 1/2, pgr = 3/2, and

T -log (1+ BgaHT/04)

Cr = C' H\Jdg(dy + dy + Ba) -log(1 + ByH/o,).
0

Lemma B.2. Let T, denote the total number of episodes collected by Algorithm 3 at round {. For

1 T
T, > poly (d¢, = 5 Ba B¢710g ,H,log ;) (B.3)
on the success event of Lemma B.3, we have 2T, > T, and
-1

2Ty >

%

<.

1

Proof. Recall that T, = 2¢ and N, = [T,/T2Y] for T¢ed = |II;|. By Lemma B.3, T} can be
bounded as

Ty < NI 4 (16 + 21log Tp°d) T

and th’ed can be bounded as
1 T
T2°d < poly (d¢, o BA,B¢,log ,H, log ;) (B.4)

Note that we can bound
Ti S NiﬂOEd + (16 + 210gﬂoed)117;08d
< T+ (17 + 2log TP 17!

A )

1 T
< T; + poly <d¢, de, ~—, Ba, By, log H log Z)
From this it is immediately obvious that 27, > Ty as long as (B.3) is satisfied.

To show the second conclusion note that, by our choice of T; = 2¢ we have that T; > Zf: T;, so it
therefore remains to show that

-1
T,
T, > poly <d¢,dm, 8 BA,B¢,log . H,log 5>
i=1 min
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However, we can bound

= 1 T, 1 T,
> poly <d¢, #35— Ba, By, log — Hlogé) < poly <d¢, w35 Bas By, log — Hlog5> 1og T,

i=1 min min

so a sufficient condition is

1
)\*

min

Ty
Ty > poly <d¢,dm, BA,B¢,10g , H,log — 5 ) -log Ty

which we see is met when (B.3) holds. O]

Lemma B.3. Consider running Algorithm 7 with weight matrix H, parameter N, and confidence 0,

and rerunning each policy in Il N < N times. Then, under Assumptions 1 and 3, with probability
at least 1 — 66:

" , o 6dgd
[vec(A — A,)|3, < N7 Rin (HA™) - o, log = ¢

min

1 1 N\ 1
+poly <d¢7dm’ A BA,B¢,10g , H, HH”op»lOg 5) m

where A denotes the least-squares estimate of A, obtained on the data generated by rerunning I,,z.
In addition, we have

~ N 1
|4~ A,ls < poly <d¢,dm, 5o Bats B o, Hlog ) Niss
Furthermore, we have
1 N
Tout < pOly <d¢>7 dtca N BAa B(}Sa IOg H IOg 5 )

and the total number of episodes collected by this procedure is bounded by N Tout+ (1642 1og(Tout))-
TOUt! for Tout = |Hout |

Proof. By Lemma B.1, the assumptions of Lemma C.6 and Lemma C.7 are met, so we can therefore
apply these results in our setting. By Lemma C.6, the event .., occurs with probability at least
1 — 4. Throughout the remainder of the proof we union bound over the success event of Lemma C.7
and Eexp, Which together occur with probability at least 1 — 40.

Let
NTout NTout H
=Y Y =L,® Y Y b ul)),ul)’
t=1 t=1 h=1

denote the features returned by rerunning every policy in Il N times. By Lemma C.7, we then
have that:

_ Vo \/8d¢d log(1 + 8v/NTou) +8log 1/5
o VN - 6272d g d,, log SN
=8

HA N - Zﬂ'enout T AInin (N : Eﬂenout]&ﬂ') .

Applying Proposition 3 with £ the event that the above conclusion holds and I" := N - ZW ETlous A,
we obtain that, with probability at least 1 — § (using the mapping to the martingale regression setting
described in Appendix A.1.1):

Ivee(A — A3 < 5(1+ ) - 02 log =% L y(r-1)
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for ¢ = 2682 Anax(T)tr(T' 1) and 3 as defined above. Since ||¢(x, u)||2 < By under Assumption 1,
we have ||1VX,r Iz < Bi, so we can upper bound Ay« (T') < NToutBi. By Lemma C.7, we can also
bound (using that D = d . H B} by Lemma B.1):

1
tr(P1) < prp

Combining these and using that

. ~
SO BA,B¢,10g , H,log ](\S[> (B.5)

min

Tout < pOly <d¢7 T

as shown in Lemma C.8 (and using our bounds on C'’z and pz in Lemma B.1), we can therefore
bound

D 0 N

min w

1 1 N\ 1
¢ < poly <d¢,d BA,B¢,logJ,H,log> - —.

Using that tr(HT 1) < ||H]|op - tr(I'"1), and the bound on tr(T'~!) given above, it follows that

6y
5

Ivee(A — A,)[3, < 50% log o

min

tﬂ7ifl)%p0bf<d¢,dm,

Finally, by Lemma C.7, we can bound

- min tr(HA™!).
out A€

tr(HT 1) <

By Lemma C.8, we can bound the total number of episodes collected by Algorithm 7 by (16 +
210g( out)) : Tout-

Bound on Frobenius Norm Error. By Lemma C.7, we can lower bound

N
Amin(A) > N - 6272d d¢I{B¢log§%$7

Furthermore, since ||¢(x, u)||2 < By, we always have HKHOP < NToutBi, which implies A <
N ToutB?ﬁ - 1. By Proposition 4, we then have that with probability at least 1 — § (again using the
mapping to the martingale regression setting described in Appendix A.1.1):

10g1/6+dmd¢, +10gdet(W I+I)

[A-Allp<C-0o
) v - 6272dd g H B3 log BN

N 1
SPOIY <d¢nda:7 )\:ﬂm BAaBt,‘b?O-uHH lOg 5) ﬁ
O
Lemma B.4. Under Assumption 3, for any H, H', we can bound
. . 2dgd
min tr(HA ") < min 2tr(H'A™") + == ¢ \H - H ||op-
AeQ AeQ /\mln

Proof. We have
min tr(HA™!) = min tr(H' A1) + tr((H — H)A ™)

Ae Ac

< min tr(H A7) + |H — H |lop - tr(A™Y)
A2
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Under Assumption 3, we know that there exists some A’ € € such that Apin(A’) > A%,,. We can
then bound

min tr(HA) 4+ [ = H op - tr(A™)
Q

Ac
: / 14 1 A1 / 14 1 A1
<mintr(H' (zA+ -A)7) + |H —H'|lop - tr((zA+ ZA)7H)
Aen 2 2 2 2
. X —1 / dwdtb
< min 2tr(H'A™") + 2||H — H'|op -
Ac )\min
which proves the result. O

C Experiment Design in Arbitrary Dynamical Systems

In this section we generalize somewhat the setting of Section 5. In particular, our goal will now be to
collect some set of trajectories ® = {7;}_,, which minimize

L I
b .
(53we0)
for some general feature mapping ¥ : 7 — R%, @ : RY — R, and 7 = (X x U)H¥ x X the space of

possible state-input trajectories, T = (g, Ug, €1, ..., LH—1,UH—1,LH) € T. We will assume that
1) can be decomposed additively as

H
(1) =Y Pu(@n, un).
h=1

In Section 5 we considered the special case where 1, (x,u) = ¢(x, u)¢(x,u) " ; in this section 1)
could instead be any arbitrary mapping.

As before, we will be interested in defining optimal exploration with respect to some set of exploration
policies, Ilexp,. Let

Qy = A{Erw[Ex[¥(7)]] : we An}
denote the space of expected value of 1 (T) for mixtures of policies in ITep,. To distinguish elements

A € Q from elements in Q,, we will let I' = E, ., [E,[¢(7)]] refer to elements of €, and
in particular define I'; := E[¢(Tt)] (where it is assumed that the expectation is collected over

trajectories on (5.1)). We will usually denote unnormalized sums of features, e.g. Zle P (Ty), with
3. We also define 2, to be the space of all possible combinations of ¥(T):
Qy = {Eru[¥(T)] : we A7}
We generalize Assumption 7 and Assumption 8 as follows.
Assumption 9 (Regularity of ®). We make the following assumptions:

1. @ is convex, differentiable, and [3-smooth in the norm || - ||:
IVe®(T) = V& (T, < 8- T = T'|, ¥I,T' € Qy
Sor || - ||« the dual norm of || - ||.

2. There exists some M < oo satisfying

sup sup [(Vr®(I'), ¥ (1)) < M.
I‘Eﬁd, TeT

Assumption 10 (Regret Minimization Oracle). Let costy(T) = (Qn,n(T)) for some Qp, € RY,

and cost(T) = Zle costy, (T) the total cost of trajectory T. We assume we have access to some
learner Ag which, in the setting when |cost(t)| < 1 for all T € T, is able to achieve low regret on
{costy (-, -)}}i[:1 with respect to policy class Ileyp,. That is, with probability at least 1 — 0:

T

T

g Ef x [cost(ty)] =T - i%f Ef [cost(T)] < Cr -logl® 5 ST
wEllexp

t=1

Sor some Cr > 0, pr > 0, and a € (0, 1), and where 7, is the policy A plays at episode t.
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Algorithm 4 Dynamic Optimal Experiment Design (DYNAMICOED)

1: input: objective ®, number of episodes T" (OR number of iterates N, episodes per iterate K),
confidence 4, regret minimization algorithm Ay, exploration policies Ilcyp

2: Play any policy Texp € Ilexp for K episodes, collect trajectories D¢ = {T0}5 |, set Ty «

K150 ()

3: forn=1,2,...,N do
4. Set vy, < %—i—l
5: Run A% on cost

cost, (T) En, ¥n(xn, up)) for Z, < Vr®(T)|r=r,_,

A
for K episodes, collect trajectories D, = {T?}_|, denote policies run as II,

- K n
. Fn — (1 _’Vn)]-‘n—l +7nK 1Zk:1 ’l/J(Tk)
7: return (N + 1)KT y, UY_ 1T, UN_ D,

n=0

We define DYNAMICOED as in Algorithm 4. We then have the following generalization of Theorem 3.

Theorem 5 (Full Version of Theorem 3). Let Assumption 7 hold, and assume that we have access
to a learner Ax satisfying Assumption 8. Fix N, K > 0. Then, with probability at least 1 —
9, DYNAMICOED runs for at most (N + 1)K episodes, and collects a dataset satisfying ® =

{Ti s bnso satisfying

1 Y& , BR2(log N + 1) L2NK
¢<Wn§;¢<%>>r%qmﬁzuv+1>+M'<CR1°g” 5 K
8log(4N/3)
=)

where R = supp. 1, IT —T|.

ey

In this work we are particularly interested in the case where v (T) € Sf”. We encapsulate this in the
following assumption.

Assumption 11 (Matrix Experiment Design). We assume that 1(t) € Sii” and that, forallT € T,
tr(¢(t)) < D for some D > 0.

The following corollary instantiates Theorem 3 under Assumption 11 with objective ®(I") =
tr (#(T + Ty) "), the objective considered in Algorithm 1.

Corollary 1. Consider the objective
() =tr (K- (T+To) ")

and assume that H = 0 and Assumption 10 holds with o = 1/2 and Assumption 11 holds. Fix N, K,
let T := (N + 1)K, and consider running Algorithm 4 on this objective and with these choices of N
and K. Then Algorithm 4 will run for at most T episodes, and, with probability at least 1 — §, will
return data satisfying

< —
~— T reqy, T(N +1)

T -1 4 —13

1 8D H|lopTo " Ia

tr ”H<§ 1/;(Tt)+T1“0> - min tr (KT +To)™ ") + [#lopIITo llop
t=1

N 8D||Hlop|I Ty (12, (log"/? AL + O logP™ 2L)
TVK

C.1 Proof of Theorem 3 and Theorem 5

Lemma C.1 (Lemma C.1 of [56]). Consider running Algorithm 5 with some convex function f that
is B-smooth with respect to some norm || - ||, assume that y,, € Y for some ) and all n, and let
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Algorithm 5 Approximate Frank-Wolfe

1: input: function to optimize f, number of iterations to run [V, starting iterate &
2: fort=1,2,...,Ndo

3 Setyn ¢ i

4: Choose y,, to be any point such that

Vi(zn) yn <minVf(z,) y+en
yeZ

5: Zp41 & (1 - ’Yn)zn + YnYn
6: return x4

R :=sup, yczuy [z — yl|. Then for N > 2, we have

, BR?(logN+1) 1 &
Java) —min f(2) < =5 5 N1

n=1

Lemma C.2 (Lemma C.2 of [56]). When running Algorithm 5, we have
1 N
ENHLE N <nz:1yn +Z1> .

Proof of Theorem 3. By our assumption on Az, Assumption 8, we have that, at round n, with
probability at least 1 — /2N,

K
2NK
E E,, [cost™(ty)] — K - i%f E, [cost™ ()] < Cg logl® 5 -K®
TEoxp
k=1

where we have used that, under Assumption 9 and by the definition of cost} (T),
all T € T. This implies that

cost™(T)| < 1 for

1 & a _ ONK .,
— ZE’W [(En, ¥ (tk))] < M- inf Eg[cost"(T)] + MCgrlogh® —— - K*7".
K=" 5

Wenexp

Furthermore, by Azuma-Hoeffding and under Assumption 9, we have that, with probability at least
1-4/2N,

K K
1 - ! = 8M?2log(4N/6)
(@ ) — 2 DB l(En ¢(Tk)>]’ c |[EIoRlaNe]
k=1 =1
This implies that
K
e ! K o 81og(4N/3)
_ = < . n ) G Slog(AN/8) |
K ;< () <M wel%ip E, [cost™ ()] + M (CR log : K N g

(C.1)

Note that
(Ens¥(tr)) = (Ve ®(T)|r=r,, ¥(7)),
and that for any I € Q,,, we have
(Vre([@)lr=r,,T) = Eruo[E-[(Vr@(T)|r=r,, ¥(7))]]

for some w. This implies that

Fielg¢<v1"q)(r)|1":1"n ) F> = wielgn Erw [EWKVFQ)(F”F:FM ¢(T)>H

= inf E,[(Z,, (1))

Wenexp
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=M - inf E;[cost™(T)].

TE€Mexp

By (C.1) above, we have that
1K
K Z Y(Tk)
k=1
is an approximate minimizer of M - sup ¢y, Ex[cost”(t)], with approximation tolerance
M(CrlogP® 2NE . ra—1 1 [81o8UN/3)) we can therefore apply Lemma C.1 with

A AN

to get that

2
BTy 1) — min () < S UsN+1) 2NK

. Koz—l
res, 5(N + 1) +

8log(4N/§

The result then follows since 'y 1 = m SN S (T by Lemma C.2.

O

Proof of Corollary 1. By Theorem 5, for any setting of N and K, we have that with probability at
least 1 — §:

1 N K . -1 ' )
! H<W§§¢(Tk>+FO> — min tr (H(T +To) ")

BR%log N MCnlong¥ N SIOg%
- N+1 Kl-« K

which implies

N K —1 . )
tr | H (Z > () + TI‘0> _ minpeg tr (H(T' +To) ")

n=0 k=1 T
BR2logN  MCglogh® MK 1 [8log ¥
~ T(N+1) TVK T K
This gives
N K -1 . 1
t r+rT
o <Z Z"MTZ) N TF0> < minregq tr (7;( +To) ")
n=0k=1

BR%logT M (3log'/? AT | Oplogh® 2L)
T(N+1) TVEK :

It then remains to bound R, 3, and M. By Lemma D.6 of [56], we have that

Vr®(T)[L] = —tr (H(I‘ £ o) (T + 1“0)—1) .

We can then compute the second derivative as, using Lemma D.6 of [56]:

V28 (I)[T,T] = % {—tr (’H,(I‘ 4+ Ty + D)\ + T + tf‘)*l)}

— tr (H(I‘ + )" 'T(T + L) "' T(T + ro)fl)
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+tr (H(I‘ + o) 'T(T + L)~ 'I( + 1“0)*1) .
Recall that M is any bound on

sup sup (Vp®(T'), (1))
reQ, TeT

By the above computation of the gradient, we can bound this as

sup sup [{(Vr®(T),1(7))| < sup sup |tr (H(I‘ + 1) ") (T + 1"0)*1)|
Feﬁw TeT F€§¢ TeT

< [ Hlop|ITg 13, - sup tr(3(T)) (€2
TeT
< D[ H|lop|IT5 13-

To bound 3, by the Mean Value Theorem it suffices to bound the operator norm of V&®(T'). Using
the expression above, we can bound this as

Csup  [VER(D)[gh(t1), ¥(t2)]| < 20[Hopl T 3, - sup (L)
L TeQ, L TeQ,

< 2D%||H]lop |G [25-
Finally, it’s straightforward to bound R < 2D. Putting all of this together gives the result. O

C.2 Collecting Full-Rank Data

Algorithm 6 Minimum Eigenvalue Maximization (MINEIG)
1: input: scale IV, confidence J, regret minimization algorithm Ax, exploration policies Il¢xp
2: forj =1,2,3,...do
3: Nj < [QJ/S—I — 1,Kj < [22j/3—|,Tj «— (N] + 1)Kj7)\j — 77]-_1/18,5]' < 41%

4 2]‘, Hj — DYNAMICOED((I), Nj, Kj, 6]') Ag, HCXp) for <I>(I‘) = tr((l" + )\j . 1)71)
S0 if Amin(Z5) > 12544 Ddy, log 2NCE52T) ghen
6.
7

: break
: return II;

In this section, we consider the setting where ¥ (t) € Si‘”, and our goal is to collect {T;}] ;
such that 9 (1 Zthl (7)) > 0. For this to be achievable, we need the following assumption, a
generalization of Assumption 3.

Assumption 12 (Full-Rank Data). Consider v(T) such that ¥(t) € Si¢~ Then we have
SuPreq,, Amin (L) > A%, for some Xf, > 0.

Throughout this section we also assume that Assumption 10 is satisfied with o« = 1/2 (though all
results generalize in a straightforward way for o # 1/2). We have the following result.

Lemma C.3. Under Assumptions 10 to 12, running Algorithm 6 we have that with probability at
least 1 — 0, it will terminate after collecting at most

1 N
p01y (d’l/M Ta Da CR? long 5)

min
episodes, and return policy set 11 such that
68N
0

Furthermore, if we rerun each policy in I1 once, the resulting features 3 will satisfy, with probability
at least 1 — §/N:

Amin (X renTr) = 6272Ddy, log

68N
/\min (2) Z 6272Dd¢ log 5 .
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Proof. By Lemma C.4 and our choice of N; and K in Algorithm 6, we have that if \; < ’Z‘;‘;‘ and
1/3 L & —2/13y—1 pr 1 Anin
T/ >Q( (| DAA(D°A; + Cg - logh® —) ) - 22 ) | (C.3)
: T 5') Ty
then A\pyin (32;) > Z%i,f - T; with probability at least 1 — ;. It follows that, with probability at least
1 — ¢;, the if statement on Line 5 will be true once A; < 2\1‘;1‘:, (C.3) holds, and
X 2N (2 + 32T
fmin 7> 12544 Ddy, log M. (C.4)
4dy, 1)

By our choice of \; = Tj_l/18

4

~ dy \"* DN\ 1 A \”? DdZ,  NT;
T‘ > Q min DC 1 PR _— . ‘min . 1 J .
= <max { <>\?nin> "\ dy 7 L P Nom S

Since T; = [27/3][2%/3] € [27,4 - 27], it follows that the if statement on Line 5 will be met after
running for at most

~ dy \'* DN\ 1 A, \"? Ddi N
@) T DCgr -logh® — . 1 -log — C5
(max { ()‘fnin) 7 ( dw ) ’ < o 5J d’lP > , )‘fnin o8 0 ( )

episodes.

, a sufficient condition to ensure \; < )\dw ,(C.3),and (C.4)is

By Lemma C.5, if Ayin(2;) > 12544 Ddy, log w and we rerun all policies in I}, then we

will collect data 3 such that Ay, () > %)\min(Ej), with probability at least 1 — §/2N. As the
if statement on Line 5 will only be true once this is met, it follows that, with probability at least
1 —4/2N, rerunning all policies in IT; once, we will collect data 3 which satisfies

IN(2 + 32T,
Amin(£;) = 6272Ddy log w

The lower bound on Ayin (D <y T'x) follows analogously from Lemma C.5.

63N
Amin(2) > > 6272Ddy log ——.

N | =

The result then follows noting that the failure probability of running DYNAMICOED is at most

=0
y <62
= 4

C.2.1 Supporting Lemmas
Lemma C.4. Under Assumptions 10 to 12, consider running DYNAMICOED on the objective
() =tr(T+A- 1))

with N = [2/3] =1 and K = [2%/%], for some A > 0 andi. Let T := (N +1)K. Then if A < /Z‘Z’i—;‘:
and

T3 > Q ((DA—2(D3A—1 + Cr - logP® (15)> : Aj‘“) , (C.6)
P

with probability at least 1 — 0,



Proof. Applying Corollary 1 with H = [ and 'y = A - I, we have that, with probability at least
1-9:

T -1 _ - 1/2
1 8DIA"3  8DA 2(log'/? T + Cr logP® L)
§ X1 < — . mi r+x-0)! 0 o
tr (t_l P(T) +TA ) <7 nn tr(C+A-1)77) + TN+ 1) Vi

1 24DA)N3 24D)\*2(10g1/2 T, Cr logP® Z)
< — . 3 . -1 5 5
- T rrggld, r(T+A- D7) + T4/3 T4/3

where the second inequality follows since
T = |‘2i/3‘| |‘22i/3w < 4. 2i
which implies N + 1 = [2¢/3] > TV/3/41/3 and K = [2%/3] > T?/3/42/3_ If T satisfies (C.6),
then we can bound
24D 24DA2(log'? § + Crlog™ §) _ 1 dy
T4/3 T4/3 - T M.

Furthermore, under Assumption 3 there exists some I' € €2, such that I' = A% - I, so we can upper
bound

d
. ) <« &Y
Frg;;}ptr((l“ﬂ% n—) < —

and we can lower bound

T -1
tr (Z W(T) +TA- 1) > L
t=1

B Amin(zzzl w(’ft)) + T\ )

Thus,
1 1 2d d T
P min
S e - Amin ¢(Tt) Z —= =T\
Amin(Xpmy ®()) +TA ~ T Afin <; 2dy
It follows that if \ < ;\1‘:“1“‘“ , then we have
W
T \*
Amin <Z wm) 2T

t=1

which proves the result. ]

Lemma C.5. Consider running some policies (7,)1_,, for =, F,_i-measurable, and collecting
covariance X = 23:1 (1) Then under Assumption 11, as long as

2+ 32T

Amin(27) > 12544Ddy log

with probability at least 1 — 0, if we rerun each (m,)1_,, we will collect features iT such that

=01
= 1
)\min(zT) Z iAlnin(ET)-

Furthermore,

T
1
)\min (Z F7r,.> Z iAmin(xT)'

=1

Proof. This follows from applying Lemma D.7 of [56] to the matrix %ET. Note that while [56]
considers the setting of linear MDPs, the proof of Lemma D.7 of [56] does not make use of the
linear MDP assumption, and the proof therefore extends immediately to our setting. Furthermore,

though it is not explicitly stated, the lower bound on )\min(ZT T':_) is also proved in Lemma D.7

T=1

of [56]. O
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Algorithm 7 Learn Minimizing Exploration Policies (LEARNEXPII)

1: input: H, iterates bound N , confidence ¢, regret minimization algorithm Ax, exploration
policies ITeyyp,

2: fori=1,2,3,...do ,
3: N; [21/3—‘ — LKz — [221/31,1—% — (Nz + 1)K1761 — 6/422
4 e ¢ MINEIG(NT;, 6, Ag, Hexp)
5: Run policies in Iy g6 T3/ Megnec] ] times, set T to collected features
6 O + tr(HT +T,'T)~Y)
7: T, II{  + DYNAMICOED(®, N;, K;, 6, Ag, lexp)
8: if
jgiaxi |Hi/[INEIG| <T (&)
16D Hl|op|(T; ' To) M2, 16D Hl|opl|(Z; To) 1|2, (log!/? 21 4 C logP™ 2L . .
Hllop | (73" To) ™" llgp [Flopl|(7;""To) ™ llop(log "~ Z5* + Cr log"™ =5 )gtr(H( 4T 1)
Ti(Ni+1) TV K;
(C.8)
2 X -
tr(’H)-D\/QTi\/Sch[, log(1 + 8+/2T;) + 8log1/6 - . — < tr (’H( tw +T0) 1)
Amin (I‘%w + 1—‘10)
(C9
1 _ _
D\/2Ti\/8d1,, log(1 +8v/2T;) +810g 1/8 < S Awin (Th +T) (C.10)
9: then ' ' _ (T Mo
10: Lout I‘%w + I‘%)v Hout H}\/IINEIG U (szzl e H%w)
11: return I, Io ¢

C.3 Rerunning Policies

In this section, we build on the analysis of the DYNAMICOED algorithm to show that, not only do the
features collected by DYNAMICOED approximately minimize ®, but that, under certain conditions,
if we rerun the policies that DYNAMICOED ran to collect this data, we will collect a new set of
features which also approximately minimizes ®.

In particular, we specialize this argument to objectives of the form ®(T") = tr(HI'~!). LEARNEXPII
(Algorithm 7) proceeds by first calling MINEIG to collect full-rank data, using this data as a regularizer
of ®(T"), and the running DYNAMICOED on this objective. After meeting a certain termination
criteria, it terminates, and returns the policies it has run over its operation.

Lemma C.6. Let Eqy, denote the event that, for all i = 1,2,3, ..., the success event of MINEIG and
DYNAMICOED occur, and

; ; 68N
Amin(ro) > [ﬂ/|HMINEIG|] : 6272Dd¢ IOg T

Then if Assumptions 10 to 12 hold, P[Eexp] > 1 — 4.

Lemma C.7. Consider rerunning each policy in Il ,x N < N times, and let T denote the obtained
features. Then, if Assumptions 10 to 12 hold, with probability at least 1 — 39, on the event Eoxp:

Vo \[8dig log(1 + 8V NToue) + 8log 1/
< .

f‘ — N - I‘Tr = )\min N - T I‘Tr )
H Eoretlo op VN - 6272d,, log %N V- Zrem Ir)
(C.11)
N - 6272Dd, log 68N _ nin {Amm (NS ren.. T ,/\mm(f)} , (C.12)
and
1 12 . _
tr (H (Sen,, Tx) ) < g mintr (M0 (C.13)
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for Tout = |Hout|'

Lemma C.8. On the event Eyp, under Assumptions 10 to 12, we can bound

min

1 N
Tout < pOly (dw, )\*7, D7 CR,IOgPR 6) .

Furthermore, the total number of episodes collected by Algorithm 7 is bounded by (164 2 log(Tout)) -
Tout‘

C.3.1 Supporting Lemmas and Proofs
Lemma C.9. Under Assumption 11, for any T' = B[00 ()] and H = 0 we can bound
tr(HT 1) > D71 - tr(H).
Proof. By Von Neumann'’s Trace Inequality we can lower bound
tr(HT ) > Amin (DY) - t2(H) = LI, - tr(H).
By our assumption that tr(¢(t)) < D, we can bound ||T'||o, < D, which proves the result. O

Lemma C.10. Assume tr(¢(t)) < D forall t. Let Tk denote the time-normalized features obtained
by playing policies {mg}f:l, where Ty, is Fr_1-measurable. Then, with probability at least 1 — 9,

1 K
2T T
k=1

_ D\/8d¢ log(1 + 8VK) + 8log1/6
< R .

op

Proof. This follows from an argument identical to the proof of Lemma C.4 of [56]. While [56]
considers the setting of linear MDPs, we note that the proof of Lemma C.4 of [56] nowhere relies on
the linear MDP assumption. The result stated here then follows identically as Lemma C.4 of [56],
after normalizing 1 (T) by D. O

Proof of Lemma C.6. By Lemma C.3, the failure probability of running MINEIG at round i is
§; = 0/8i2, and by Corollary 1 the failure probability of DYNAMICOED at round i is also bounded
by §; = §/8i>. It follows that the total failure probability of running MINEIG and DYNAMICOED is
bounded by

|

2.4

Furthermore, by Lemma C.3, we have that rerunning all policies in 1}, g, We will obtain features
I" satisfying, with probability at least 1 — ¢;/NT;:

68N
Amin(T') > 6272Dd,; log 5

7

Repeating this [7; /|1, gc|] times and union bounding, we have that

68N

Amin(To) = [Ti/|Mygio|] - 6272Ddy log ==

with probability at least 1 — 6 /NT; - [T} /|iynpiel] = 1 — 6/N. O

Proof of Lemma C.7. Let Ilyngig, To, Hiw, I'ew denote the policies and features obtained on the
round at which Algorithm 7 terminates. Let Tt, = |Ilg| denote the number of episodes of DYNAMI-
COED on the terminating round, and Ngy,, Ky the corresponding values of NV; and K;. Throughout
the proof we make use of the fact that at termination of Algorithm 7, all of (C.7)-(C.10) are met.
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Proof of (C.11) and (C.12). By Lemma C.10 we have that, with probability at least 1 — §:

Hf SN Y e Tal| < DV NTou - \/8dy log(1 + 8y/NToe) + 8log 1/6.
op

On Ecxp, by Lemma C.3, we can bound

1 NT,,
|HMINEIG| < poly <d¢, )\*77 D,Cgr, long (St>

min

and, furthermore, we can lower bound

68N
Amin (L rettye, L) = 6272Ddy log ——.

Since [Iyineig € oy, it follows that

68N
)\Inin (N : Eﬂ-enoutrﬂ-) 2 N - 6272Dd¢ log 5

Combining these, we therefore have that, with probability at least 1 — §:

VNTows - \/8dy log(1 + 8Y/NTowg) +8log 1/5

T-N-Y_ .|| < _ Amin (N -3 r,).
H Ellous op N. 6272d¢ 10g @ ( €llous )
In addition, also by Lemma C.3, we have that with probability at least 1 — &/ N Towt - N > 16, that
- 68N
Amin(I') > N - 6272Dd,, log 5
Proof of (C.13). By Corollary 1, on £.p, we have that:
_ i tr (H(T + T, To)
@(Ffw) — tr (H (I‘fw + I‘O) 1) S minreQ r( 7(_‘ fw 0) )
fw
8D*|[H|op||(Tr,'To) 13, 8D Hlop||(T5,'To) "1, (log"/? = + O logP™ i)
TfW(NfW + 1) wa V wa
Since T}y, satisfies (C.8), we can bound
8D* | Hllopl(Tie' To) 13, 8DIH|lopl|(Tr,'To) " ||2, (log!/? e + O logP™ 2Eix) < }(I)(F )
wa(wa + 1) wa V wa -2 -
It follows that
i tr (H(D+T,'To)™ ) 1
@(Ffw) S Hiren r( ( fw O) ) + 7¢(Ffw)
Cijw 2
i tr (H(T + T;,'To)~?
— ®(Ty,) < 2. ireal (H( e T0) ™) (C.14)
wa
By Lemma C.10, we have that, with probability at least 1 — ¢:
1> ren, . Tr — (T + ro)Hop < D\/Tout\/de log(1 + 8y/Tyut) + 8log1/4.
Since (C.10) is satisfied and |14, g,s| < T3, we have
1
D/ T /8y 108(1 -+ 8y/Towg) +81081/6 < A (Tr + To).
By Lemma A.2 it follows that
- _ 2
H(zﬂen T) 7 (T +To)7Y < D\/Tout\/de log(1 + 8v/Tout) + 8log 1/ - .
o op )\min (Ffw + FO)
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This implies that

tr (H (Zwenoutl“w)%) < tr (7—[ (Tpw + FO)—l)

+ t2(H) - D/ Tt \/de 1og(1 + 8v/Tout) + 8log 1/6 -

2
)\min (Ffw + FO)2 .

Now if

tr(H) - D/ Tous \/8d¢ log(1 + 8v/Tout) + 8log1/6 -

2
>\min (Ffw + FO)

2 S tr (H (Ffw + FO)_l) 9
(C.15)

we can bound this all by
_ 4
< - 1) < _— . mi )t
< 2tr (H (P +T0) ) < e min e (H(D 4 T3,'T) )

where the last inequality follows from (C.14). However, note that (C.15) since (C.9) holds. Finally,
note that
Tout = wa + [wa/‘HMINEIGH ‘HMINEIG‘ < 2wa + |HMINEIG| < 3wa

where the last inequality follows since (C.7) holds. We can therefore upper bound % < ==
Putting this together proves the result.

Proof of Lemma C.8. To bound T, it suffices to show that (C.7)-(C.10) are satisfied for sufficiently
large T;.

On E.xp, by Lemma C.3, we can bound

_ 1 NT;
|H]1V[INEIG| S pOIY <d¢7 )\*7.7 D7 CRa long (5’L> )
so to ensure (C.7) is met it suffices that
1 N
n Z pOly <d1/J7 )\*77 D7 CR710ng (5) .

min

On Eqxp, we have

i i i i 68N
Amin(Py +T0) = Amin(T) = [15/|[IMyigis || - 6272Ddy, log 5
Which also implies
Sy T T 1 JusemeE
H(Ti 1F0) 1”0]) = A ]_-\i S T Hi ’ 68N S S 68N
win(To) ™ [T5/Miess |1 6272Dd log BN~ 6272Ddy log BN

Furthermore, by Lemma C.9 we can lower bound

)—1) S tr_(?-[) _ S tr(?—l).
N D<TZ + ’—Ti/‘HlZVllNEIGH ‘HIZVIINEIGD ~ 3DT;

tr (M (T, + T

Combining these and using that N; = O(Til/g) and K; = (’)(Tf/g), it is easy to see that (C.8)-(C.10)
will be met once

1 N
Tz' Z pOly (dw, )\*77D7C72710gp73 6) .

min

The bound on T,,,,; then follows since T; = [27/3][22//3] € [27,4-27], s0 it can be at most a constant
larger than the sufficient condition before terminating.
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Let ¢* denote the round that Algorithm 7 terminates on. Note that at round ¢, MINEIG runs for
at most |II}; g/, DYNAMICOED runs for at most T; episodes, and we run for an additional
[T/ |va1_1NE1c.H - I} ynErc| €pisodes on Line 5. In total, then, the number of episodes Algorithm 7
runs for is bounded by

Sk *
7,

Z(Tz + |H%VIINEIG| + ’—Ti/‘H%\/IINEIGI—l ’ ‘H%\/IINEIGI) <2 Z(TZ + |Hli\/[INEIG|)

i=1 i=1

*

< 1675+ +2 Z |Hi4[NEIG|
i=1
where the last inequality follows since T; € [2°,4 - 2’]. Now note that, since Algorithm 7 only
terminates once (C.7) is met, we will have max;—1 . ;« [I{;xgig] < Ti+. This implies that
23 Miywge] < 20T < 2log(Ti+) - Ti«. Bounding T+ < Tiy gives the result.
O

D Smooth Nonlinear Systems

In this section we restrict to the nonlinear regulator system of (1.1). Our goal will be to show that,
under our assumptions, the nonlinear regulator system exhibits certain smooth behavior. As we have
assumed

I = {x® : 6 c R%},

it will be convenient to define 7 (8; A) := J(7%; A) and 0, (A) = 6,. For the remainder of this
section, we will typically use @ in place of 7. In addition, when considering radius terms such as
79 (Ay) and 7¢ost (A ), to simplify results we assume that 79 (A,) < 1 and reost (Ax) < 1. Note that
this does not change the validity of the result since, for example, if a result holds with A € Br(A,;r)
for some r > rg(A,), it also holds for A € Bp(A.;re(A,)). Throughout this section, we let
V. f(x)[A] refer to the directional gradient of f(x) in direction A.

We first have the following result, which shows that under our assumptions, the controller loss is
differentiable.

Lemma D.1. Under Assumptions 1, 2, 4 and 5, for any A satisfying A € Br(As;r9(AL)), the
controller loss J(0; A) is four-times differentiable in 0 and A. Furthermore, we can bound

IV T(8: A)lop < poly (| Allops Bgs L Lo, Leost 0 H, d)
Sori,j €{0,1,2,3,4} satisfying 1 <i+j <3.

In this section, we generalize Assumption 6 to the following.

Assumption 13. We assume there exists some 19(Ay) > 0 such that, for all A € Br(Ax;re(Ay)),
0. (A) satisfies:

* VoJ(0;A)lo—0,(a) =0,

* 0,(A) is three-times differentiable in A, and we can bound HVS)B*(A) llop < L, for some
L. >0andi€ {1,2,3}.

The first condition requires that 8, (A) corresponds to a stationary point of the loss. This will be
met, for example, by choosing 6, (A) to be a minima (local or global) of 7 (8; A). It is not obvious,
however, that the first and second condition can be simultaneously satisfied. In the following we show
that, assuming V3.7 (6; A,) lo—6, (a,) is full-rank (which will be the case, for example, when 6, (A,)
is a strict local minimum of 7 (7?; A,)), there always exists some 6, (A) satisfying both conditions
of Assumption 13, with L, scaling polynomially in problem parameters, and rg (A, ) scaling inverse
polynomially in problem parameters. Note that this definition of 7, (A) is general enough to capture
settings where the global minimum of 7 (7; A) cannot be efficiently computed—it suffices to take
7, (A) alocal minimum of the loss.
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Proposition 5. Assume that Assumptions 1, 2, 4 and 5 hold and that in (V3T (0; Ax)|o=e, (4,)) >
0. Let rg(Ay) > 0 be some value satisfying

1
Amin(V3T (05 Ad)lo=0, (4,))

Then there exists some function 6, (A) such that, for all A € Br(As;re(Ay)):
* VoJ(0;A4)lo=6,(4) =0,

* 0,(A) is three-times differentiable in A,

-1
TG(A*) = min {rcost(A*), POly ( 5 ||A*||op7 B¢,, Ld)a Lg, Lcost; 0—;17 H7 dm) } .

and it suffices that we take

1
L, = poly (

Amin(V3T (0; Ad)lo=0, (A.))

N Axllons Ba, L, Lo, Leost, 0t H, dg |
P (o] (o] w

While Proposition 5 shows that there exists some 6, (A) satisfying Assumption 13, it does not directly
give a recipe for constructing such a map. The following result shows that under a mild additional
assumption, the minimizer of the loss satisfies Assumption 13.

Proposition 6. Let

0.(A) := argmin J(0; A).
6cRe
Then under Assumptions 1, 2 and 4 to 6, there exists some T9(A,) > 0 and L., < oo such that
0. (A) satisfies Assumption 13.

The scaling of L., in Proposition 6 can be shown to match that of Proposition 5, but in general
rg(A,) could be smaller than the value of r¢(A4) given in Proposition 5. In particular, in the
setting of Proposition 6, we can only show that rg (A, ) scales with minggg, g, (4,):r) J (05 Ax) —
J(04(Ay); A,) for some r > 0 which scales inverse polynomially in problem parameters. While
we can show that 7(0; A,) — J(0+(A); A,) scales inverse polynomially in problem parameters,
including in Amin (V3.7 (0; Ay)|o=6, (4,)), for 6 approximately a distance of r from 6, (A,), it is
possible 7 (0; A, ) has some local minimizer " arbitrarily far away from 6, (A,), such that 7(6'; A,)
and J(0.(A.); A,) are arbitrarily close, in which case A*, and therefore r¢ (A, ), could be arbitrarily
small. The failure mode here is that, while 8, (A, ) may be the global minimum of 7(6; A,), for A
arbitrarily close to A,, the global minimum of 7 (6; A) could instead be near ', which would render
the map 6, (A) discontinuous.

By making further assumptions on 7 (6; A,) which exclude this case, we can obtain a value of
rg(A,) scaling similarly to in Proposition 5. For example, in the following, we show that under the
assumption that 7 (0; A) is convex, this holds.

Proposition 7. Assume that there exists some Teonv(Ay) > 0 such that, for all A €
Br(Ay; Teonv(Ax)), T (05 A) is convex in 0, and set

0.(A) = argmin 7(0; A).
OcR%

Then we have that 8, satisfies Assumption 13 with

To (A*) = min {Tconv(A*)> Tcost (A*)7

-1
1
pOl 7A* 7B 7L ’L97LOS,O-_17H7d> }
5 (S T30 Amar 1l B Ll

and it suffices that we take

1
L, = poly (

Amin(VaT (0; Ad) o0, (4,))

) ||A*||Op7 Bd)a Ld)a Lea LCOSta 0.1:;17H7 dw) .

Note that, if J(0;A) is p-strongly convex in 6 for all A near A,, we can lower bound
)‘rrlin(vgj(0§ A*)‘B:O*(A*)) > [
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Approximating the Controller Loss. In order to efficiently direct our exploration, it is convenient
to derive a quadratic approximation to the controller loss. The following result shows that, under our
assumptions, this is indeed possible.

Lemma D.2 (Formal Version of Proposition 1). Under Assumptions 1, 2, 4 to 5 and 13, for A €
Br(Ay; min{rcost (Ax), 70 (Ax)}), we have

T(0.(A); A) — T(0.(A); A,) < vec(A— A)TH(A)vec(A— A,) + M[A— A, A— A, A—A,].
for some tensor M such that

IM[A ~ A, A~ A, A— Allop < POy (La,, | Axllops Bgs Leps Loy Leosss 0t Hy d) - [ A — A2,

In practice we do not know H (A, ) and must estimate it. The following result shows that the distance
between H(A,) and H(A) can be bounded.

Lemma D.3. Under Assumptions 1, 2, 4, 5 and 13, and lfﬁ € Br(Ag;min{reost (As), 7o (A45)}),
we can bound

IH(AL) = H(A)lop < poly(La,. [|Adllop, By, L Lo, Least 05+ H, ) - [ A = Auop-

D.1 Proof of Smoothness of Nonlinear System

We let f,,(-) denote the density of the noise (which, by assumption, is simply an isotropic Gaussian
density). We let f4 ¢(-) denote the density over trajectories induced by playing controller € on
system A. We will overload notation somewhat and let f4 g(zp+1 | T1.n) denote the density
over 41 induced by playing controller @ given trajectory Ty.,. Note that f4 g(Zpy1 | T1n) =

.fw (w}z+1 - A¢(ZEZ, W}?(Tllh))) and

H
fao(®) =[] fae(@nia | Ton).

h=1

Throughout this section we let 7 (resp. uf,) denote the state (resp. input) at step h of trajectory .
Under our regularity assumptions (Assumptions 1, 2, 4 and 5) and since the noise is Gaussian, we
can swap derivatives and integrals, which we make use of throughout the following proofs.

Proof of Lemma D.1. Let cost(t) denote the cost of trajectory T. Then we have
7(6:.4) = [ cost(v) o)

Let Ay := A+t A + 1A + tgA:? and O, := 0 + 51 A9 + 55AY + s3A8, for some A and A?,
which we assume satisfy [|AZ|qp, |A?]lop < 1. Rather than differentiating 7 (6; A) with respect to

0 or A, we will differentiate 7 (04; A¢) with respect to some x1, T2, 3,24 € {1, t2,t3, S1, S2, S3}
Note that, for example,

d
17 (05 A msmo = VAT (6, A)Af,

i.e. the directional gradient of 7 (@, A) with respect to A in direction Af!, and that this similarly
holds for gradients with respect to other ¢;, s;, or higher-order derivatives. Thus, if we can show that
J(0s; A) is differentiable with respect to any x1, o, 23, x4 € {t1, 2, t3, S1, S2, 3}, and this holds
for any choice of A%, A?, then we have that 7 (6, A) is four-times differentiable with respect to
6 and A. Furthermore, we can bound the operator norm of V 4. 7(6, A), by bounding the value of
ﬁj (0s; At)|t—s—o for all Af satisfying [|A!]|l,p, < 1 (and we can similarly bound the operator
norm of the higher order derivatives of 7 (8, A)).

j(@, A) is Differentiable. Let X1,T2,X3,Tq4 € {tl, tg, t37 81,82, 53}. ‘We have

d d
170040 = £ [ cost(n)fa,0, ()0
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Mif&ﬁs (t)cost(T)dT
1

fas0.(T) dx
d
— [ 4108 a0, (0) - cost(D)f 0, ()
Differentiating this gives

d d d d
T T, A
J( 1) = dog | day

dJEQ d$1
d d
=/<(M110ngt,es(T)> (delngAt,es(T)) - cost(T) fa,.6,(T)dT

log fa,.6,(T) - cost(T) fa, 6, (T)dT

log fa,.6,(T) - cost(T) fa,,0,(T)dT

dx dx
and

iiix7(‘9s,14t) /(Olillogfm,es(’f)> (Cézlogfm,es(’f)) <ddx310ngt.,es(T)> - cost(T) fa,,0,(T)dT

dxs dxs dxy
+/ (dd dd log fa,.0.(T )) ((Sglongt,es(TO +cost(T)fa, 6, (T)d7

+/ <d(aicl log fa, .. (’l‘)> <d;1‘3ddm2 log fa,.0. (T)) - cost(T) fa,.0.(T)dT

d d d
7771 . t d
das dag Az, og fa,.e.(T) - cost(T)fa, e, (T)dT

[ (10 a0, )] (5 108 fa,0, (1)) - cost(e) a0 ()T

The fourth derivative of 7 (8; A) can be similarly calculated by differentiating -4 Tos E EJ (0s; At);
we omit it for brevity. We have

log fa,.6,(t) = log H Fave, (@ iy | Tin)

= Zlog fuo(@f ) — Aep(x), 7% (T10)))

h=1
*Z 2Hwh+1 Ar (@, 7% (Tr0)) |2 + C

for some C' which does not depend on t or s. Given that ¢(x, u) is four-times differentiable in u
and wzs (1.5, is four-times differentiable in & (which hold by Assumption 4 and Assumption 5), it is
clear that log fa, e, (T) is four-times differentiable in ¢; or s;, regardless of the choice of A or A?.
This proves the first result.

Norm Bounds on Gradient. Note that

H
d 1 T T T
at, log fa,.,6.(T)|t=s=0 = Z JT(whﬂ — Ag(af, 7y (tin)) " - Al g(af, mh (Tin)),
h=1 W
H
d 1 T T T
I, 0, (T)|t=s=0 = Z UT($;,+1 — Ag(xf, 7] (1)) | - AVu(af, ) (T1n)) - Vo (Tin) - AL,

h=1 """

Furthermore, differentiating these expressions further with respect to ¢; or s; will simply yield
higher-order derivates of ¢(z,u) and 78 (71.5). Using the norm bounds on the gradient of ¢(z, u)
and 79 (71.;,) given in Assumption 4 and Assumption 5, and the norm bound of ¢(z, w) given in
Assumption 1, we can then bound

H
IVDV§ 108 fa.6(Tllop < POly(1Alops Bgs Lo Loy o) - S (1+ ek g — Ad(F, i (tin)ll2)
h=1
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fori,j € {0,1,2,3,4} satisfying 1 < ¢ + j < 4 (where we have used the fact noted above that,

to bound the operator norm of VX)Vg ) log fa,6(T), it suffices to bound the directional gradient in
every direction). It follows that we can bound

VOV T(8; A)lop
H

4
< poly(||Allop, Bg, Lg, Lo, 03') - / (Z(l + &y — Ad(@h, 7 (1)) 12 )) ~cost(T) fa,0(T)dT
h=1

(a)
< poly(|Allop, Bg, L Lo, 73,") \//Cost(T)QfA,e(T)dT

H

8
/ (Z(l +llzf, — A, 7f (tin)) |12 )> fae(T)dT

h=1

(b)
< polY(”A”opvBtbaLtbaLOaLCObta o H d )

where (a) follows from Cauchy-Schwarz, and (b) follows from Lemma A.1 and Assumption 2, since
we have assumed A € Br(Ay; Teost (A4))- O

Proof of Proposition 5. Existence and Differentiability of 6,. By Lemma D.l1 we have that
J(0; A) is four-times differentiable in its arguments. By the Implicit Function Theorem, since
Amin (VT (05 AL)|o—p, (4,)) > 0 by assumption, we have that there exists some 7(A,) > 0 and
unique function 8, (A) defined on Br(A,;75(A)) such that Ve 7 (6; A)|g—p, (a) = 0, and 6, (A)
is three-times differentiable (note that, while the Implicit Function Theorem is typically stated to give
that the resulting function is only one-time differentiable, it can be extended to k-times differentiable,
assuming the implicit equation is k-times differentiable [60]).

By Lemma D.1 and the continuity of elgenvalues it follows that for A close enough to A,, we
have Amin (V3T (0; A)lo=6, (1)) = 2 Amin(VaT (65 AL)|e=s, (4,)) > 0. We can therefore apply the
Implicit Function Theorem as above to any A satisfying this, to get that there exists some unique

6. (A’) defined for all A’ near A such that Vo7 (6; A') g_g. (4, = 0 and 6,(A’) is differentiable.
By the uniqueness of 8, (A) on Br (A,; 5 (AL)), it follows that any 6, (A’) defined in this way must
be identical to 0, (A) on Br(A.;75(A,)) (assuming the regions on which they are defined overlaps).

We can therefore define 6, (A ) to simply be the extensmn of 0, ( ) to all such 6, (A), defined for all
A near A, such that Ayin (V2T (0; A)|o=6, (1)) = 3 min(VET(0; AL)lo=e, (4,)). and will have
that 8, (A) is three-times differentiable and satisfies ng (8; A)|g—=0, (a) = 0 for all such A.

We then choose 79(A.) to be defined such that, for all A € Bp(As;re(As)), we have
Amin(V3T (05 A)|o—6,(4)) > $Amin(VaT (05 AL)lo—0,(4,)). By Lemma D.I, we know that
V27 (6; A) is continuous and furthermore we know that eigenvalues are continuous. Using the

gradient bounds given in Lemma D.1 to bound the Lipschitz constant of V3.7 (0; A), it follows that
we can take

1
Amin(V2T (0; As)|o—, (4.))

-1
T@(A*) :pOIy ( b HA*HOP)Bq’)an.')aLGaLCOStvo—;laHa dw) .

Bounding Norm of Gradients. Fix A € Bp(A,;rg(As)). We know that 0, (A) satisfies
VoJ(0; A)lo=o,(a) = 0.

We wish to differentiate 6,(A) with respect to A, and bound the magnitude of up to the third
derivative. Similar to the proof of Lemma D.1, we let A; := A + t; A + 5 A% + t3A4 for some
A# satisfying || A2{|op < 1. As noted in the proof of Lemma D.1, we have

d
a0 (A)le=0 = V40.(4) [A7]
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(and similarly for higher-order derivatives). Thus, to show the result, it suffices to show that 6, (A¢)
is differentiable in ¢4, t5, t3 for all Af‘, and to bound the magnitude of this derivative for all A{‘ with
|A2]|op < 1. We have
d A
Tﬁvej(e’ t)|0=6. (A1) | 4o = 0
— VaVeT(0; A)|o=o,(4),4=a[A1]+V5T(6; A)lo—sp, (1) - Vab.(A)[AT] =0 (D.1)

=:G1(A,A)

which implies
Va0 (AAY] = (V3T (8: Alo=a.(n) - C1(A, A7)

which is well-defined since we have assumed that V%j (8; A)|o=0, (a) is full-rank, and 7 is differen-
tiable in both its arguments by Lemma D.1. To compute the second derivative of 0,, we differentiate
through (D.1) which gives

d

I, (G1(Ag, AY) + V5T (05 Ag)lo—g. (a,) - VaOL(A)[AT]) |,_, =0
d

= — (G1(As, AT) + V3T (0; At)loe, (a,) - VaO(A)AL]) |,_,

dt,

::Gz(A,A{‘,AZA)
+ V3T (0; A)lgg, (a) - V4O (A)[AL, AL] = 0.

Note that Go(A, A, A2') involves at most a third-order derivative of 7 (0; A) and first-order deriva-
tive of 6, (A), both of which we know exist by Lemma D.1 and what we showed above. This then
further implies

-1
V40, (A)AY A = — (V3T (0; A)lo—s, (1) - Ga(A, AL, AL,

which is well-defined since we have assumed that V3.7 (6; A)lo—o, () is full-rank. Finally, we
compute

d
ditg (GQ(At7 A{l7 A?) + ng(ea At)|0:9*(At) ' v?ﬁle*(At)[Af’ A?D |t:0 =0
d
~ I (Ga(Ae, AT, AY) + V5T (05 Ab)lo=o. (4,) - VAO(A)AL, ALY |,

—:Gs(A,AR,A2,A2)
+ V5T (0: A)lo=o, (1) - VAO(A)AT, A, Ag] = 0.
Note that G3(A, A, A2, A4') involves at most a fourth-order derivative of 7(0; A) and second-

order derivative of 8, (A), both of which we know exist by Lemma D.1 and what we showed above.
We therefore have

-1
Vi‘B*(A) [AlAv A§17 A3A] = - (vgj(gv A)|9:9*(A)) . GS(A7 Af} A?) A?)

which is well-defined since we have assumed that V3.7 (0; A) lo—o, () is full-rank. As each of these
expressions is defined for all choice of A#, the differentiability of 6, (A) follows.

Note that the above expressions for V40,(A)[A7], V40,(A)[AL As], and

V%H*(A)[A‘f,Aé“,Ag‘l all depend on at most a fourth derivative of [7(0;A), as well as
(VT (0; A)lg—g,(a))” - The norm bounds are then a direct consequence of Lemma D.1.

O

Proof of Proposition 6. By Lemma D.1 we have that 7(0; A) is four-times differentiable in its
arguments. Since we have assumed V%j (6; A,) |9:g*( A, = 0, by the Implicit Function Theorem

[60], it follows that there exists some ry > 0 and mapping g(A) such that, for all A € Bp(A,;1p),
VoJ(0; A) o—d(4) = 0, and 0(A) is three-times differentiable.
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Our goal is now to show that 8(A) = 6, (A) for A close enough to A,. By the continuity of eigenval-

ues, J(0; A), and 8(A), we have that there exists some 7 and 7y such that, for all @ € Br(6.(A,);T)

and A € Br(A,;ry), we have V37 (0; A) = 0 and, furthermore, 8(A) € B2(0,(A,);r/2) for all

A € Br(A,;ry). This implies that @(A) is strict local minimum of 7 (€; A) and, in particular, that
T(6:4) > T(B(A): A). V8 € By(8.(4.):7).0 # 6(A).

Let A* := minggs, (e, (4,);r) J (0; Ax) — T (6+(Ax); A,) and note that, since we have assumed the
global minimum of 7(@; A,) is unique, we have A* > 0.

Fix some A € Bp(A,;ry) and assume that 6(A) is not the global minimum of 7 (6; A). This
implies that 6, (A), the global minimum of 7 (0; A), is outside of B2(6,(A); r). Furthermore, by
the continuity of 7(@; A), we have, for some L, L’ > 0,

T(0.(A); AL) < T(0.(A); A) + L| A~ Al
0(A); A) + LI|A - Al
6(A); A,) + 2L A— A.ls
0.(A.); Au) +2L[| A — A,l|p + L]|6(A) — 0.(A)]|2
0.(A); A + L[| A= Adlp.
This implies that
L'rg > L'[A= Adlr = T(0:(A); Ar) — T (0.(A0); As) =A™
However, for r; small erE)ugh, this is a contradiction. Thus, it follows that §(A) is the global
minimum of 7(6; A), so 0(A) = 6,(A).

The result then follows since we already have that 6 (A) is three-times differentiable and satisfies
VoJ(0;A) |0:§(A) = 0, and by taking r¢(A,) to be the minimum of 7 and 7. The boundedness
of L., follows as in the proof of Proposition 5.

O

Proof of Proposition 7. Note that, by convexity and the KKT conditions, the solutions to
arg mingpae J(0; A) are described by

VoJ(0; A)lo=s,(a) = 0.

Thus, an equivalent definition for 6, (A) is that it satisfies V.7 (0; A)|g—g, (4) = 0. Assumption 13
can then be shown to hold by an argument analogous to Proposition 5. O

Proof of Lemma D.2. Let A(t) = tA+ (1 —t)A, and g(t) := J(6,(A(t)); A,). By Lemma D.1
and under Assumption 5, we have that both [7(€; A) and 6,(A) are three-times differentiable for

all A=tA+ (1—1t)A,,t € [0,1], so it follows that g(t) is three-times differentiable in ¢. We can
therefore apply Taylor’s Theorem to expand g(1) about the point ¢ = 0 to get:

9(1) = g(0) + VoI (0; Au)lo—a. (a.) - VaB.(A)| a—a,[A — A,]
+ Va0, (A) Aoy VET(0: A) oo, (4,) Va0 (A) aca, [A — A, A— A,
+ Vo (8; Ad)loo, (a.) - VAOL(A) aca, [A — A, A - A,
+ VAT (0. (A); A acar[A— A A— A A~ A]

where A" = A(t’) for some t' € [0, 1]. Under Assumption 13, we have that Vo 7 (0; A, )|g—g, (4,) =
0, which implies that, plugging in the definition of g(1) and g(0),

T(0.(A); Ay) = T(0.(A); Ay) + Va0 (A)| A_n. V3T (8; Ay )o—0, (4.)V 4O (A)| 4=, [A — A, A — A,]
+ VAT (04(A); A acar[A — Ay A— A A — A
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‘We can bound
V3T (0. (A); A acarlA— Ay A— A A— A < [[VAT(04(A); A azarflop - [ A — A2,

The expression for V3.7 (0.(A); A,) contains up to the third derivative of both J(0; A,) and
0.(A). By Lemma D.1 and under Assumption 13, since A’ € Bp(A,; min{rcost(Ax),70(Ax)}) by
construction, we can then bound

V4T (6.(A); A)|a=arllop < poly(Lx,, [|Acllops B, L, Lo, Leost; 0w Hyda).
The result follows by the definition of H(A,). O

Proof of Lemma D.3. Recall that H(A) = V4T (0, (A); A)| 4—a- To prove this, we will use that
this is differentiable by Lemma D.1, and will apply Taylor’s Theorem.

First, note that by Taylor’s Theorem we have
VAT (0.(A): A)] y_5 = VAT (0.(A); Al a—a, + VAT (0u(A); Dl an [A — A

for A’ = tA + (1 — t)A, for some t € [0, 1]. The third derivative of .7 (6, (A); A) will involve up
to the third derivative of both 7(6; A) and 6, (A), so using Lemma D.1 and Assumption 13, since
A’ € Bp(A,;min{reost(Ax), 79 (As)}) by assumption, we can bound

IV4T (0.(A); D) azarlA = Allop < POy (L, || Asllops B L, Lo, Leost: 0"y Hydoo) - [|A = Auop.

Next, we wish to relate V2 7 (0, (A); A)|a—a. to V2 2T (0:(A); Ay)|a=a, = H(AL). Again apply-
ing Taylor’s Theorem, we have

VAT (0.(A); A)|aca, = VAT (0.(A); A)|aca, + Va VAT (0.(A); A)aca, ar—an[A — A
for A” = tA+ (1 —t)A, for some ¢ € [0,1]. By Lemma D.1 and Assumption 13, we can bound
V4 VAT (0:(A); A') a=a. 4= 4[4 = A o
< poly (L, , [[Allop, L, Lo, Leost, a;l,H, de) - ||A\_ Allop-
The result follows. O

Lemma D.4. Under Assumptions 1, 2, 4, 5 and 13, for all A € Bp(Ay; min{reost(A4s), re(Ax)}),
we can bound

HH(A)HOP S pOIY(HA*HOP’ Bd’a L¢a LGaLcosmLﬂ'uUz_vla H’ dm)

Proof. Recall that 7—[(21\) = V3T (0,(A); A\)| +. The bound then follows from Lemma D.1 and
Assumption 13. O

E High-Probability Regret Bounds in Nonlinear Systems

In this section, we modify the proof the main result of [17] slightly to show a high probability regret
bound for LC3. For the sake of brevity, we omit details that are identical to the proof given in [17].
We will need the following assumption.

Assumption 14 (Bounded Cost). We assume that, for all trajectories T, we have cost(T) < Cmax-

We adopt the notation used in this work, modifying somewhat the notation from [17]. In particular,
we let 7 (m; A) denote the expected cost of playing policy 7 under system A, and we set

ZZd) xl b)), ul) T + NI

s=1h=1

denote the covariates obtained by the first ¢ episodes of LC? (plus a regularizer). We let ¢ denote
the policy played at episode ¢ of LC?. For a policy set II, we define regret as

T
_ t. _ . .
)= J(r' A = T min J(m; A,).
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We will also denote 7, := argmin_.r; J(7; Ay).

In addition to these notational changes, we modify LC? slightly to use the parameter

Bt = VABA + \/8dy log 5 + 8log(T det (%) det(Xo)~1/6)

in the construction of the confidence set, BALL?.

Besides the aforementioned changes, in the following proofs we adopt the same notation as [17]. We
have the following result.

Theorem 6. Under Assumptions 1 and 14 and with any policy class 11, with probability at least 1 — 0,
LC3 has regret bounded as

1
RT(H) < C - CemaxH d¢ . (d¢—|—dw + B + log g) -T -log (1 +B¢HT/Ow)

for a universal constant C.

Proof of Theorem 6. By Lemma E.2, we have that the event £ holds with probability at least 1 — 4.
We therefore assume £; holds for the remainder of the proof.

By the definition of the confidence set in LC3, on &£; we have that A, is the in confidence set for all
t < T. It follows that on &7,

T

Rr = Z [j(WtQA*) - j(ﬂ*;A*)]

t=1

—
S]
=

M=

[j(ﬁt; Ay) — j(ﬂ'*;;lt)}

-
Il

1

—~
=
=

] =

H
1 ~
Cmax * ]EAhﬂ-t lz min {J”(A* — At) . ¢($h, uh)||2, 1}] (El)

t h=1

1

where (a) follows from the optimistic property of LC3 when A, € BALL', and (b) follows from
Lemma E.1. On &;, we have

(A = AY(an, un)ll2 < |(As = AV, 2227 pln, )
< (1A = A9l + (A" = AVEL) - 12 plan, )
< QﬁtH(ﬁ(whvuh)”zt—l

where the last inequality follows from the definition of BALL' since At € BALL! by construction,
and by the definition of &;. This gives

T H 2t
ED <Y cmax - Ba, [Z min {J¢(mh,uh)||zt_l7 1}] .
h=1 w

t=1

By Lemma E.3, with probability 1 — § we can bound this as

% 5T T H
S % szln{||¢(w27u2)”2;171}+4CmaxH TIOg 1/6

w t=1 h=1

(a)

By Cauchy-Schwarz, we can bound (a) as

2 AT T H
() < 2225 VTS min (et w2001

g.
w t=1 h=1
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We have

T H T H
S min { gt uh) |2 0 1} < Zmin{z ||¢<xz,uz>||;tl,1}
t=1 h=1

t=1 h=1
< 2H log(det(E7) det(2g) 1)

where the last inequality uses Lemma B.6 of [17]. Putting all of this together, we have shown that
with probability at least 1 — 29, we have

T
Rr < Zomaxll VT - \/2H log(det(X7) det(Xg) 1) + 4cmax H/T log 1/6.

w

It remains to bound A7 and log(det(X7) det(Xo)™!). We have 3y = A, so det(Xg) = A%,
Furthermore, if ||¢(z, u)||2 < Bg, then we can bound det(X7) < (A + BT H)%. Putting this
together we have

log(det(Z7) det(20) ") < dg - log(1 + B5TH/\).

Recalling that

BT = VABA + 0wy/8dg log 5 + 8log(T det (1) det(To)~1/4)

we can similarly bound

BT 0w < VABAow + \/&zae log 5+ 8y - log(1 + BLTH/\) + 8log(T /)

< VABA/0w + c\/dy + de log(1 + BsTH/A) + log 1/6.
] o]

Choosing A = o2, completes the proof. O

E.1 Supporting Lemmas

Lemma E.1. Under Assumption 14, we can bound

H
1

T(m A) = T (15 A) < Cmax - Ea, o |3 min {Un(A* — A)p(@n, up)]2, 1}] .

h=1 w

Proof. Following the proof of Lemma B.3 of [17], and adopting the same notation, we have

T(m A) — T (m: 4) < in«:A [V min { (4, = At w1 ]

Under Assumption 14 we have Aj, < ¢2,, .. Plugging this in gives the result. [

LemmaE.2. Let B := VABA+041/8dy log 5 + 8log(T det(X,) det (o) ~1/0) and let &, denote

the event
<p'h.
op

£ = {w <7 (- a) s
Then running LC? we have P4, [E1] > 1 — 6.

Proof. The proof of Lemma B.5 of [17] shows that with probability at least 1 — 4,

H (A - A,) 2§/2H0p < VA A llop + Tew/Sdg 10g 5 + 8log(det () det(Xq)~1/3).

The result then follows from this, since | A,||op < Ba, and a union bound. O
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Lemma E.3. With probability 1 — §, we have

T H 24t 24T T H
ZEA*J\" [Zmin{%||¢<mhau}b)Etlal}] S ZZ mln{“¢(w27uz)”2;171}
t=1 h=1 t=1 h=1
+4H+/Tlog1/o.
Proof. This is an immediate consequence of  Azuma-Hoeffding, since

ZhH:1 min { % lo(xr, ur) ||2;1 , 1} < H almost surely, and from upper bounding

. 2 t t t < 26T : t t
min o ||¢(wh7uh)||2t—171 =5 min ||¢($h7uh)”2t—171 :
w

w
O
F Lower Bounds on Learning in Nonlinear Systems
In this section, we assume that 8, and 7, correspond to the global minimizer:
0.(A) :=argmin 7(0; A), 7« (A):=argminJ(7;A). (FD
6cRe Tell*

Here we formally state the additional assumptions needed in Section 4.2, and provide a formal version
of Theorem 2.

Assumption 15. There exists some 1,(Ay) > 0 such that, for all A € Br(As,r,(AL)), e (A) is
unique and, furthermore, there exists some p > 0 such that

T(0; 4) > T (0.(A); A) + 510 — 6*(A)|]3.

Assumption 15 will be satisfied in cases where 7 (7%; A) is strongly convex in 6, but may hold even
when this is not the case. Intuitively, it requires that our controller class is not overparameterized—
moving 6 away from its optimal value will cause the loss to increase. We will additionally make the
following regularity assumptions on policies in IL.,;, and their induced covariates set, 2.

Assumption 16. There exists some A > 0 such that, for each A € Q, we have A\pin(A) > A

Assumption 16 requires that every exploration policy we consider excites all directions in ¢ space (in
contrast, Assumption 3 only assumes there exists some distribution over policies in Il which excite
all directions). We remark that this assumption is relatively mild if Assumption 3 holds. As we show
in Appendix C.2, under Assumption 3, a mixture over policies, w, satisfying Apin (Eqxmw[Ax]) > 0
can be learned using only a number of samples scaling polynomially in problem parameters. Given w,
a policy class Ilcxp, satisfying Assumption 16 can be obtained by simply mixing w with every other
exploration policy. We are now ready to state our main lower bound.

Theorem 7 (Formal Version of Theorem 2). Under Assumptions 1, 2, 4, 5, 13, 15 and 16 and if 7, is
defined as in (F.1), as long as T > Chy, for any wexp € Am1,,,, we have

exp’

2 C
. ~ . . . X—1 b
it 100 By [T (REO1): A) = T(ma(A) A)] = T2 - mmin tr(H(ADAT) =
fOr BT = {A : ||A - A*”% S 5dwd¢/(AdwTH)5/6}’ IEZ)T"’Aa“’exp [} = ET"NWexp [EQT’\’AJ"[.]]
denotes the expectation over trajectories generated by running policies m drawn according to Wexp
on system A for T episodes, T any mapping from observations to policies in 11*, and

Clb = pOly (dd)a dwa Ha ||A*||0p7 Bd); Ld); LO; LCOSt7LW*7UW7U;17 ia i? Tmstl(A*)7 7“0(14*)’ Tu({A*)) .

Proof of Theorem 7. This proof follows immediately from Lemma F.1, by lower bounding the right-
hand side of (F.2) by the min over all policies in II.
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Lemma F.1. Under Assumptions 1, 2, 4, 5, 13, 15 and 16 and if 0, is defined as in (F.1), as long as

T> pOIY(”A*”op» L¢> Lo, L7T*7LCOSt7 Uwag;ly Bd)u H,dg, d(baAil»/‘_l,rcost(A*)_la TQ(A*)_I,T#(A*)_l),

for any wexp, € A1, we have

2
Y A . Ow 11, O
mem 108X B9 1 fwer [T (0(D1); 4) = T(0.(A); A)] 2 5o - 1 (H(Aw) B, [A] ) = 75
(F2)

for By :={A : |A= A} < 5dpde/(ATH)>%}, where Eppn i we [] = Ernivey [Eopnarl ]
denotes the expectation over trajectories generated by running policies m drawn according to wWexp
on system A forT episodes, and

C(lb = pOIy(”A*Hopa L¢, L07 Lﬂ'* 3 Lcost; Ow, U;la Bt,‘ba Ha dw7 d¢7 A71> /J/_la rcost(A*)_17 TO(A*)_lv

Proof. This result is a direct consequence of Theorem 6.1 of [2]—to obtain the result we must only
verify that the assumptions of this result are met. We verify each assumption below.

Verifying Assumption 3 of [2]. Part 1 of Assumption 3 of [2] is met by Assumption 15 within
diameter r,(A,). Furthermore, under Assumptions 1, 2, 4, 5 and 13 and by Lemma D.1, the
additional parts of Assumption 3 of [2] are also met with diameter min{rcos;(Ax), 76(As)} and
smoothness constant poly (|| A |lop, Leps Lo, L, s Leosts 0 s Hy ds)-

Verifying Assumption 4 and Assumption S of [2]. Assumption 4 of [2] is immediately met by
Assumption 16. Furthermore, Assumption 5 is met by Lemma F.2 with ccoy = 1, Leoy (64,7%) =

(dz), and Ceoy = 0.

Given that these assumptions are met, the result follows noting that, if we run for 7" episodes, then the
effective horizon is d,T'H (using the mapping from the setting of (1.1) to the martingale regression
setting described in Appendix A.1.1). Note that the final bound scales with % instead of dmﬁ as we

are able to bring the d H factor into the A,Tcxp term, since A is not normalized by d, H. O

Texp
Lemma F.2. Under Assumption 1, for any policy distribution w € A, and A, A’, we have

2 3

ETK‘NUJ[AA,TK‘} = EWNw[AA’JT] + pOIY( ) HA A,”F I

'U.J

Proof. We will prove that the desired bound follows for a particular 7 € Il¢y,, which immediately
implies that it holds for w € A, . By definition we have

H
= / (Z ¢<mz,u;>¢<mz7uzf> fan(T)dr
h=1

and

fATK'

Al@hy | @y, up)mn(up | 25).

H',:]m

Fix some v € S%~! and note that, given the expression above, we have

v AAwU—/Z o}, ufp))® - fax(v)dT

h=1

It follows that

VAU AAWU_/Z wh,uh) 'VAfA’,T(T)dT
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H
- / S (0T daF, ul)? - fan(T)Valog far(T)dT
h=1

As in the proof of Lemma D.1, we have, for any A,

1

Valog fax( Z oy (xhi1 — Ad(zg, up)) - Ad(xf, up),
h=1 W
so we can bound
[Valog far(T)llop < o2 Z”thrl d(zh, up)ll2
Tw

Furthermore, we can also bound (v ' ¢(z}, u}))? < Bi. We therefore have

H
Va0 A rollop < HB / S|ty — AG@, ub)ls - fan()dr

o2 Bg
where the last inequality follows from Lemma A.1. It follows from the Mean Value Theorem that
2 3
0T Apv—v Ay o] < ? . poly(ds) - |A— A'|p.
As this holds for all v € S, it follows that
2 3

||AA,7T - AA’,ﬂ'Hop S

2. poly(dy) - || A — A'l|p.

’U}

G Additional Experimental Details

In this section, we provide additional details on our experimental results presented in Section 6. All
experiments were run on a machine with 56 Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz CPUs,
and 64GB RAM. All code was implemented in PyTorch.

G.1 Details on Problem Settings and Controller Parameterizations

We first expand on the precise definitions of the systems considered. As noted in Section 6, for the
drone and car examples we set /1 = 50, and for the system of Section 1.1 we set H = 10. In addition,
for all examples the noise is distributed as wy, ~ N(0,0.1 - I). In all cases we set v> = 10H

(where v is a bound on Erenp [Zthl u; uy]), and we therefore let Il.x,, denote the set of all policies
satisfying B[S, ) up] < 42

G.1.1 System of Section 1.1 (Figure 1)

The dynamics for this system are given by

10

zp41 = 0.8y +up — Z3¢1(£Bh) + wy,
i=1

for ¢p;(x) = max{1 — 100(x — ¢;)?, 0}, and cost(z,u) = (x — c1)? + 10071 - u?. We set
CcC1 = 10,62 = —14,63 = —11,04 = —8,85 = —5,66 = —2,(37 = 1,68 = 4, Cg — 7.
This then corresponds to a system in the form (1.1) with

A, =108,1,-3,...,-3], o(x,u) =[x, u,di(x),...,d10(x)].
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For this system, we parameterize our controller class IT* as, for any 7% € IT* with parameter 6,

10
71'9((13) = 01.’1) + Z 01_,_1(]51(:1:) + 012.

=1

Note that the form of this controller lets us simply “match” the parameters of the system, and cancel
undesirable parameters. Given this, for this system we let 7, (A) be the controller which sets 81,11 to
cancel the dynamics of the system A, and set 815 = ¢; = 10.

See Appendix G.1.3 for details on the computation of H(A) on this system.

G.1.2 Drone System (Figure 2)

The dynamics of this system are given by

10001 0 0 0 0 o0 0
010 0 01 0 0 0 o0 0
001 0 0 01 0 0 0 0
Thii=1g 00 1 o0 o|ZTtlo1 o o|¥T| o [Twn (GD
000 0 1 0 0 01 0 0
000 0 0 1 0 0 01 —0.98

Here we interpret [x];.3 as the z, y, and z positions, respectively, and [x]4.¢ as the z, y, z velocities.
This system is therefore equivalent to three double integrator systems, with an affine term (which we
interpret as “gravity”) affecting only the z coordinate. We set the cost to

0.1 & 1
cost(a,u) = —= -} [2]} + ¢ - [u]] + [uf; + [u];
i=1

This then corresponds to a system in the form (1.1) with
10001 0 0 0 0 O 0
010 O 01 O O O O 0
001 o O 01 0 0 O 0

A=looo 1 0 0 01 0 o o |0 ¢@wW=ul

000 O 1T 0 0 01 0 0
0oo0o0 o O 1 0 0 01 -098

For this system, we parameterize our controller class IT* as, for any 7% € IT* with parameter 6,
™ (x) = 0w + 677

where 8> € R3%6 is the state-feedback portion of the controller, and 85t € R3 is an offset term.
It can be shown that the optimal controller for a system of the form (G.1) can be parameterized in this
way [23]. Furthermore, the optimal parameters can be computed in closed-form. As such, for this
system we set 7, (A) to be with the optimal parameters, computed using this closed-form solution.

In addition to computing the optimal controller in closed-form, we can also compute the cost of a
controller, 7 (7; A), in closed-form. To compute H(A) in this example, we then simply apply the
torch.autograd.functional.hessian function to J (m4(A); A).

G.1.3 Car System (Figure 3)

The dynamics of this system are given by

1001 0 0 0 0 0

01 0 01 0 0 0 0

oo 1 0 0 O 0.1-cos([xpls) O
Thit=1g 0 0 1 0 0% |01 sin([znls) 0 | W G.2)

00 0 0 1 01 0 0

00 0 0 0 1 0 0.1
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where [xp]5 denotes the Sth element of xj,. Here we interpret [xy]; as the x position, [xy]s as the

y position, [x}]3 as the = velocity, [x,]4 as the y velocity, [x]5 as the angle of orientation (that s,
the direction the car is facing), and [x;]6 as the angular velocity. The first control dimension, then,
corresponds to the “gas”, the power given to the car to move forward or backward, and the second
control dimension corresponds to altering the direction of the steering wheel. Similar to the drone
system, we set the cost to

cost(x, u) = - TQ Tl with Q= 0.1 T+ vivf +vav,
T T 0.1 T+ viv] + 090 [|op

for some v, v2. To write this in the form of (1.1), in order to make the problem more challenging we
choose an overparameterized ¢(x, u):

oz, u) = [2,u, cos([z]5), sin([z]5), [u]1 - cos([@]s), [uls - sin([x]s), [u]2 - cos([z]5), [u]2 - sin([z]5)]

and set
10 001 0 O O O O O O O 0O 0 O
01 0O 01 0 O O O O0wo0 O 0O 0 O
A — 0 0 1 0O 0 0 0 0O OO0 01 0 00O
*7 10 0 0 1 0 0 0 0 OO O 01 00O
0 0 O 0 1 01 0 O O 0 O 0 0 O
0 0 O 0O 0 1 0 01 0 0 O 0 0 O

For the car system, the controller class IT* is a hierarchical controller parameterized by some 8 € R*,
This controller first uses PD control to compute a “goal input”, the direction we would like to modify
the state in, as:

Ugoal(ﬁc) =-6; [w]lzz — 0 [«’15}3:4-

Given the underactuated structure of the system in (G.2), we cannot directly push the state in the
direction of wgoa1 (). Instead, we set u to the following:

u 1(SC)T CPS([m]5) .
gon Sln([w]S) for Bgoal(w) = tan ([ugoal(x)b/[ugoal(w)]l)-
—03([7]5 — Bgoal(x)) — Oa[T]s

Given the complex form of this controller and the dynamics, there does not exist a closed-form way
to set @ optimally. Instead, for this system, we rely on a simple random search procedure to compute
7, (A). To find an optimal controller for system A, we randomly sample parameters 8, compute the
cost they incur on system A, and then set 7, (A) to the randomly generated controller with lowest cost.
Note that this procedure is not differentiable, but we require 7, (A) is differentiable. To remedy this,
in situations where a differentiable 7, (A) is needed (in particular, in the computation of 7 (A)), rather
than returning a single controller, we return the softmin distribution over all controllers sampled,
weighting each controller by its estimated cost. As the softmin distribution can be differentiated, this
parameterization of 7, (A) is differentiable.

For this system, there does not exist a closed-form expression for J(m; A) and, as such, to
compute J(m; A), we simply perform many roll-outs of policy 7w on system A and aver-
age the cost. Given this and the search-based implementation of ,(A) outlined above, we
found that computing the hessian #(A) using the torch.autograd.functional.hessian as
in Appendix G.1.2 was very memory-intensive. Instead, we computed the Jacobian G(A) :=
VarJ (7 (A"); A)| a4, and then, in place of H(A), we use G(A)G(A)T. To compute G(A), we
use the torch.autograd.functional. jacobian function. While using G(A)G(A)" in place of
H(A) is not justified by our theoretical analysis, if we are in settings where 7, (A) is not precisely the
minimum of 7 (; A) (which will likely be the case here since we are relying on a sampling-based
implementation of 7, (A), which will incur some small error), then we argue that this is a reasonable

metric to use. In particular, in this setting, the approximation of 7 (77*(2); A,) given in Proposition 1
should have an additional first-order term of the form G'(A) vec(A, — A). As we can upper bound

G(A) Tvec(A, —A \/IIVeC HG(A YG(ANT
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optimizing for the metric G(A)G(A)T instead of H(A) can be seen as minimizing the first-order
Taylor-approximation of the excess loss. Intuitively, this metric quantifies the sensitivity of the loss to
particular parameters in A,, and in practice we found that optimizing this metric produced significant
improvements over existing methods. The implementation of the example from Section 1.1 relied on
this same approximation.

G.2 Implementation Details

For all methods considered, our implementation follows the basic structure of Algorithm 1: at every
epoch, we explore so as to minimize some exploration objective, form an estimate of A, on the
collected data, and then compute 7, (/Alt) on our estimate. Our main experimental results (Figures 1
to 3) show the loss of W*(A\t) as the time horizon ¢ increases. For each method, to collect an initial
set of data, we begin each trial by exploring randomly for some fixed number of episodes (10 for
the drone example, 100 for the car example). The first point in each plot then corresponds to the
performance after this initial random exploration. Each aspect of our implementation is modular,
and any given component can be easily replaced. Below we highlight our implementation of the
exploration routine, and choice of exploration objective, for the various approaches we consider.

G.2.1 Implementation of DYNAMICOED

Implementing the exploration procedure, DYNAMICOED, requires access to a regret minimization
oracle. While in principle the LC? algorithm of [17] could be applied to this problem to give such
an oracle, the LC? algorithm requires access to a computation oracle which is not clear how to
implement in practice. To remedy this, we implement a Thompson Sampling-inspired modification
to the LC3 algorithm of [17].

The primary computational challenge of implementing the LC? algorithm is the computation of the
optimistic policy:

argmin min JP(7; A)

T €Mexp A€BALL?
where [J°*P(rr; A) denotes the exploration cost that is minimized in LC? (i.e. the expected cost on

the cost function cost (z, u) + 47 - ¢(z,u)" (E,)¢(x, u) setin DYNAMICOED), and BALL' the
confidence set for A, at iteration ¢.

To avoid solving this optimization, we adopt a Thompson Sampling-inspired variation of this pro-
cedure. In particular, at iteration ¢, we sample A~ N (ﬁt, A 1), Standard Thompson Sampling
would then compute argmin ¢y, J P (7, ﬁt), but even this can be challenging, so we instead
rely on a sampling MPC-inspired approach. Given that we are at state x5, and have played inputs
uy,...,Up—1, We aim to approximately solve the following optimization:

H

3 n
min § costy (xp, up)
Uph,Uh41,.--, U ERIw h—h

(G.3)

S.t. Tpy1 = Avtd)(wh, up), Z'u,;uh < ’)/2.
h=1

To solve this approximately, we sample many possible u randomly, compute the value of the objective
of (G.3) on the trajectories induced by these w, and finally choose the input that minimizes this
objective. Rather than playing the entire sequence of chosen inputs, however, we simply play the
first input in the sequence, observe the new state on the actual system, and re-solve (G.3) on this new
state. Note that the implementation of LC? used for the experiments given in [17] relies on a similar
Thompson Sampling-based approximation to the LC? algorithm.

G.2.2 Implementation of Uniform Exploration

The goal of the procedure we have referred to as Uniform Exploration is to collect data which

will result in the estimation error, || A, — A ||Op, being minimized, the goal of the method given in [1].
It can be shown that this is equivalent to maximizing A, (A7), so this method reduces to choosing
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inputs that maximize Apin (A7 ). To implement this procedure, we rely on the same sampling-based
MPC approach as we outlined above, with the primary difference being that instead of minimizing
the objective of (G.3), we choose the inputs that maximize

H
Amin <At + ) d(@n, un) (@, uh)T> ;

h=1

where A; denote the covariates we have obtained so far at iteration ¢. While very similar in spirit to
the algorithm of [1], the implementation details are somewhat different than the algorithm proposed
in that work. We found that in practice our implementation performed better than directly imple-
menting (a sampling-based variant of) the algorithm from [1], and all reported results for Uniform
Exploration are therefore on this version.

G.2.3 Exploring via Cost Minimization

A natural point of comparison to our methods would be to forsake the system identification phase
entirely, and simply run standard policy optimization algorithms such as TRPO or PPO [61, 62],
to obtain a controller 7. The primary difficulty with these approaches in the settings we consider
is that these algorithms are on-policy, meaning that they primarily roll out trajectories using their
current estimate of the optimal policy, 7;, and using the collected data to do policy improvement on
;. In contrast, our setting is off-policy, in the sense that the learner must explore by playing policies
in Ilexp, but return some policy in II*. Since in the settings we consider Iy, 7# II*, on-policy
approaches are simply exploring very differently, and therefore cannot be compared with directly.

This is particularly an issue in our setting where stability may come into play. Indeed, it may be the
case that some controller in IT* will destabilize the system, and cause the norm of the state to increase
exponentially in h. Inducing such trajectories significantly improves one’s ability to perform system
identification as the signal-to-noise ratio also then increases exponentially. However, to induce this
trajectory with a state-feedback controller, the power of the input played by this controller will also
increase exponentially in h. Since we choose Il to include only policies with bounded power,
this is not a fair comparison (and, furthermore, is likely not an algorithm one would want to run in
practice).

While direct comparison with such approaches is therefore not possible, it is possible to compare
against algorithms that, instead of collecting data that minimizes or maximizes objectives such as
tr(HA 1) or Amin(A), instead simply aims to play policies minimizing 7 (7; A). In principle, such
algorithms are similar to approaches such as TRPO in how they perform their exploration—both
collect data by aiming to minimize the actual cost we are attempting to find a controller to minimize.

To implement this approach, we rely on a sampling-based MPC algorithm similar to that described in
Appendix G.2.1, but where the goal is now to solve
min J(m; A).
mEllexp

Note that the key difference between this approach and approaches such as TRPO is that we still
only play m € Il.xp. Using this objective to induce exploration, we then simply estimate A, on

-~

this collected data, and return 7, (A). The results of this approach on the drone system are given in
Figure 4 (with this cost minimization approach denoted as Cost Minimization Exploration).
As this illustrates, this approach is significantly worse than Algorithm 1, and is also outperformed by
Uniform Exploration or Random Exploration when the number of episodes is large enough.

G.3 Additional Results

Finally, in this section we present versions of Figures 1 to 3 with error bars in Figures 5 to 7. In all
figures, errors bars denote one standard error.
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Figure 4: Performance on drone with LC3 Exploration

Figure 5: Mean excess controller loss on instance of Section 1.1 with error bars

Figure 6: Mean excess controller loss on drone with error bars
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