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Abstract—Automating warehouse operations can reduce logis-
tics overhead costs, ultimately driving down the final price for
consumers, increasing the speed of delivery, and enhancing the
resiliency to workforce fluctuations. The past few years have
seen increased interest in automating such repeated tasks but
mostly in controlled settings. Tasks such as picking objects
from unstructured, cluttered piles have only recently become
robust enough for large-scale deployment with minimal human
intervention.

This paper demonstrates a large-scale package manipulation
from unstructured piles in Amazon Robotics’ Robot Induction
(Robin) fleet, which utilizes a pick success predictor trained on
real production data. Specifically, the system was trained on over
394K picks. It is used for singulating up to 5 million packages
per day and has manipulated over 200 million packages during
this paper’s evaluation period.

The developed learned pick quality measure ranks various pick
alternatives in real-time and prioritizes the most promising ones
for execution. The pick success predictor aims to estimate from
prior experience the success probability of a desired pick by the
deployed industrial robotic arms in cluttered scenes containing
deformable and rigid objects with partially known properties. It
is a shallow machine learning model, which allows us to evaluate
which features are most important for the prediction. An online
pick ranker leverages the learned success predictor to prioritize
the most promising picks for the robotic arm, which are then
assessed for collision avoidance. This learned ranking process is
demonstrated to overcome the limitations and outperform the
performance of manually engineered and heuristic alternatives.

To the best of the authors’ knowledge, this paper presents the
first large-scale deployment of learned pick quality estimation
methods in a real production system.

I. INTRODUCTION

Automation in the industrial, manufacturing, and warehouse

sectors has the potential to lower overhead expenses associated

with producing, handling, and sorting goods. The increased

speed and precision for handling each product can lower

customer costs and improve product quality. Furthermore, it

can reduce risks to humans in manual operations and enhance

resilience to fluctuations in the labor market and overall

economy.

Robot manipulation systems have already gained significant

traction across industries, from car and garment manufacturing

to crating apples [16, 13, 20, 19]. Many repeated operations

in industrial settings include pick-and-place tasks using robot

arms [17, 3]. Induction robots pick items from one location

(e.g., a conveyor belt, a tote, or a box) and place them

Fig. 1: A robot induction (Robin) workcell used for the

statistics of this demonstration. The robotic arm is used for

automated package singulation by Amazon.com, Inc. It picks

packages from an unstructured pile on a conveyor belt and

places them on mobile drive robots.

in another spot with the goal of singulating the items or

feeding them to another machine (e.g., a sortation machine).

Automation is still far from perfect, however. Some robot

settings require a simplified environment to operate (e.g.,

only a single rigid object placed around the center of the

conveyor belt), while others can only deal with a subset of

the target objects, and the rest are passed on to humans (e.g.,

apple crating). Success metrics and cost benefits vary across

tasks, and while these systems are largely beneficial, recent

advances in robotics, computer vision, and machine learning

are providing additional opportunities for robots to become

financially viable in rather complex manipulation operations.

This work presents the learned pick quality system used in

the Robot Induction (Robin) fleet of Amazon.com, Inc., which

sorts several million packages per day [1]. Figure 1 shows a

Robin workcell picking packages from a conveyor belt, which

has been used for the statistics presented in this demonstration.

Once a package is picked, Robin scans and places the package

on a mobile drive unit to be routed to an appropriate drop

point.

There is variation in the arm setup among workcells due

to real-world constraints of industrial facilities, and the exact

information about the incoming items is generally unknown.

For this reason, a perception system has been developed, which

aims to provide information regarding the packages on the
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conveyor belt. Even with effective perception in the loop,

however, several challenges remain for successful picking,

including:

• The packages have different types of material (e.g., rigid

or non-rigid, smooth or rough, etc.), requiring different

picking strategies. For example, packages can be rigid

boxes, deformable polybags, or semi-rigid containers in a

mail sorting application.

• While the perception system can estimate an object’s dimen-

sions and material type, the mass and mass distributions of

the incoming objects are more difficult to evaluate.

• A typical scene of Robin will contain many packages, often

in a pile, with many objects only partially observed or some

wholly buried in the pile.

• The fleet of robots is generally heterogeneous across work-

cells. There are variations in the workcell design, the opera-

tion environments (e.g., the surface where the packages are

picked from or placed on), and the manipulator arm models,

and different end-of-arm tools (EoAT) may be used due to

changes in hardware over the deployment period.

A crucial metric in the robotic induction task is the success

rate of picking attempts. Ideally, in a pile of objects, the robot

should pick them one by one and place them in the target area

without dropping any items. Two significant types of failure

are possible: either the robot fails to find a suitable pick in

the scene (e.g., due to potential collisions or if the objects are

somehow out of reach), or the pick attempt is unsuccessful

(e.g., the object is dropped after being picked). We call the

former as planning failure and the latter as holding failure.

An additional type of failure arises in item singulation when

inadvertently more than one item is picked and placed at the

same time. We call this type of failure multi-pick failure.

To deal with planning failures, in theory, it is possible

to check for reachability and collisions for a large finite

number of picks in the scene until a viable pick is found.

In practice, however, computing collision-free arm trajectories

and performing reachability checks are expensive, and the high

throughput requirements of the industrial operation limits the

number of picks that can be analyzed for each scene. Even if

viable picks are found that pass the checks, there is a need to

choose the picks that succeed in holding and transferring the

package to the mobile robot.

In this context, this work demonstrates how machine learn-

ing models trained on historical pick outcomes from a pro-

duction system can be leveraged to overcome these challenges

and improve the performance of such large-scale deployments.

Moreover, as the model’s ability to predict outcomes improves

with more data, the estimated pick qualities become more

accurate over time. In particular, the contributions of this

demonstration can be summarized as follows:

• We demonstrate a large-scale system for predicting pick

qualities using machine learning. During our evaluation, this

system picked up to 5 million packages daily (i.e., over

200 million packages over the corresponding period).

• We describe a ranking strategy for the picks, which uses

the learned pick quality prediction system. This strategy

has improved the production system’s metrics compared to

manually engineered, heuristic methods.

• We show that retraining the model on more recent data

improves performance, indicating that this learning system

is already effective with smaller amounts of data but can also

improve over time with more recent and increasing datasets.

The rest of this demonstration paper is organized as follows:

Section II reviews the related work and state of the art;

Section III formalizes the problem considered in this work;

Sections IV and V explain the methods for pick success

prediction and learned pick ranking used by the demonstrated

system; Section VI describes the evaluation performed and dis-

cusses the results of the corresponding tests in the production

system; finally, Section VII discusses the lessons learned and

future efforts in this area.

II. RELATED WORK

Having an induction scene with several objects (short-

handed as an induct), the robot needs to execute one pick to

move an object out of the pile and place it in the desired spot

at each step. The robot may consider many candidate picks,

but at each stage needs to choose and execute just the one

with the highest predicted chance of success.

Ideally, the highest-ranking candidate pick should be the

one chosen for execution, eliminating the need for suggesting

more than one candidate pick. However, a complete feasibility

evaluation of all potential candidates is usually impractical due

to computational and time constraints. Therefore, an ordered

list of candidate picks should be provided to the robot; the

robot will evaluate the candidate picks one by one and execute

the highest-ranked candidate that passes the feasibility checks

(e.g., collision and robot arm reachability checks).

Various strategies can be devised to order the candidate

picks. Some of these methods are based on hand-crafted

intuitive heuristics, such as prioritizing the larger objects or

the objects at the top of the pile and preferring the picks

closer to the center of the objects and the ones having a

higher number of activated suction cups during EoAT’s contact

with the object. In practice, such heuristics may work for a

nominal induct but fail in complex scenarios and edge cases.

Trying to manually handle all possible scenarios with more

heuristics quickly becomes intractable. As an alternative, we

can consider a data-driven approach that uses machine learning

to learn a metric for the success probability of a particular pick

and then rank the picks based on this score.

Pick selection based on a score learned from data has been

an active research area in the past two decades. Morrison

et al. [12] learn to estimate grasp qualities, angles, and

gripper widths for each pixel in a depth image, assuming that

the parallel jaw gripper’s center is aligned with that pixel.

The learning model is trained using a dataset of actual and

simulated grasps. However, it does not work for non-vertical

grasps and requires only a single object in its region of interest.

Morales et al. [11] use a set of visual and geometric features

with K-Nearest Neighbor clustering to predict grasp success



for BarrettHand™. However, it is only suitable for 2-D planar

shapes and does not generalize to the 3-D cluttered scene of

industrial inducts.

Araki et al. [2] propose a learning method for simultaneous

object detection, semantic segmentation, and grasping detec-

tion. However, as a black box, it is difficult to improve the

grasp quality using this method. A more modular approach

would allow simpler debugging for settings outside the lab’s

controlled environment.

Mahler et al. [9, 10] show the feasibility of directly predict-

ing grasp qualities from point clouds with sufficient training

data. It is designed for a gripper and a single suction cup at

the EoAT. Similar to the work by Araki et al. [2], the biggest

drawback of this method is that the output is hard to interpret,

and it is difficult to intelligently improve the performance

beyond increasing the training dataset size. However, many

ideas from this work inspired our solution.

Zeng et al. [18] focus on robotic manipulators with multiple

EoATs. They propose having various sets of grasps for differ-

ent EoAT types based on the robot’s perceived environment

and selecting the EoAT based on the highest predicted success

probability. It considers each affordance (e.g., which suction

cups are active or inactive on the EoAT) as context rather than

as a feature, producing many grasp sets to evaluate against the

scene when there are many affordances. This drawback makes

the approach infeasible for real-time applications with EoATs

that have many affordances.

Some scenes may be void of any picks estimated to succeed

with high probability. In this case, Liu et al. [7] propose a

novel interactive exploration strategy that learns to push the

objects around to obtain a better set of possible grasps in a

complicated environment. While this method can potentially

help in scenarios with no feasible picks or grasps, it is time-

consuming and cannot be directly deployed in fast-paced

industrial tasks.

Most of the research on grasp and pick quality and success

prediction has been done in controlled lab settings, allowing

to hold assumptions such as having singulated, rigid, or 2-

D shaped objects or only performing vertical picks. In order

to have a working system in real-world uncontrolled settings,

such as a package fulfillment center or a mail package sortation

facility, the method should be able to overcome these limiting

assumptions.

In our proposed method, we have identified a selection of

relevant features and have developed models that can assess

the pick’s quality in a cluttered uncontrolled scene without

the limitations of other methods and within the industrial

computational and timing constraints. The methods are de-

ployed across a fleet of Robin manipulator robots in fulfillment

centers and have been responsible for picking over 200 million

packages during our evaluation period. To the best of our

knowledge, our work is the only method for predicting the

pick quality and ranking of picks that can work with different

EoAT orientations, uncertain object material and properties,

and cluttered environments.

III. PROBLEM STATEMENT

Consider the picking task illustrated in Figure 1. The task is

initiated when a scene of cluttered packages of different types

arrives at a reachable area via a conveyor belt. The conveyor

belt and the scene remain static throughout the picking process

until the scene is “cleared,” which occurs when no reachable

packages remain or when some exception occurs, and the next

scene arrives.

The action of picking is performed by an induction manip-

ulation robot consisting of a multiple-DoF arm with an end-

of-arm tool (EoAT). The EoAT may consist of one or more

suction cups. Depending on the EoAT design, each suction

cup may be controlled individually, only as groups, or only

all together.

Each pick is defined as a set of variables determining the

actions of the robot: a 3-D point in space (i.e., the desired pick

point where the EoAT makes contact with an item’s surface),

the desired 3-D orientation of the EoAT at the pick point, and

a set of desired active suction cups on the EoAT. Note that a

single package or even a package segment may be associated

with many candidate picks.

At each time t, we will use xt to represent the state of the

current scene and Pt to denote the complete set of possible

picks over the scene, determined by an elementary filtering

process (e.g., making sure the pick point is on an item).

Given a scene xt and any pick p ∈ Pt, we can construct

a d-dimensional feature vector φ(xt, p) ∈ R
d that encodes

not only the parameters defining the pick p but also how the

pick relates to the scene. For example, it may include the

distance from the bottom of each suction cup to the surfaces

of the packages beneath, estimated from point-cloud data. See

Section IV-B for the extracted features used in our current

deployment.

The role of the pick ranker is to use φ(xt, p) for each p ∈ Pt

to define an ordering over the candidate picks Pt. This ordered

list is passed through an final filtering step (e.g., checking the

feasibility of planning the arm motion without a collision),

and the robot executes the first feasible pick. The scene is

cleared if no viable picks are found (i.e., planning failure).

Once a feasible pick is executed, whether successful or not,

the process starts all over again on the next scene, which may

be a slightly modified or entirely new scene.

Ideally, the pick ranker would have perfect knowledge of

the final filtering step and would dictate just a single pick to

be executed. In practice, the final filtering process can vary by

location and other constraints of the particular deployed robot,

which may not be known beforehand. To minimize complexity,

we only consider memoryless pick ranking systems: only the

current scene is considered when choosing a pick, and there

is no effort to plan ahead a sequence of picks.

We assume there exists a function F : Rd → [0, 1] such that

for a scene xt and any pick p ∈ Pt the probability that a pick

p will be successful is equal to F (φ(xt, p)) ∈ [0, 1]. Note that

this model assumes φ(xt, p) contains all necessary information

about whether a pick will be successful. This simplifying as-

sumption does not reflect that there may be unobserved factors



influencing pick success, such as the weight distribution inside

the package. Extending our model to handle such partially

observed settings is ongoing work.

To maximize the probability of a successful pick at time t,

an ideal pick ranker would rank the picks of Pt in decreasing

order of F (φ(xt, p)). Note that under this model, the success

probability F (φ(xt, p)) is agnostic to picks p that do not pass

the final filtering process and thus can take an arbitrary value.

In practice, we evaluate a surrogate for F (φ(xt, p)) (which

takes a non-negligible amount of computation), so ideally, Pt

would only include those picks that pass the final filtering

process.

Of course, the true F is unknown, but we can estimate

it with data and an appropriate machine learning model (see

Section IV).

IV. LEARNING TO ESTIMATE PICK SUCCESS

This section describes our data-driven approach to estimat-

ing the probability of success for a given pick in a scene.

First, we provide the details for the training datasets used in

our work, and then we briefly outline the features extracted

for our model. Finally, we explain the details of the models

developed for this project.

A. Training Dataset

We compiled three datasets from hundreds of actual induc-

tion cells in Amazon fulfillment centers. Due to the nominal

success of pick ranking heuristic methods used in the past, an

independent and identically distributed (IID) random draw of

inducts would lead to a severely imbalanced dataset, with pick

success examples vastly outnumbering the failure examples.

Therefore, we oversampled failures in all the training datasets

to create a more balanced dataset.

• TrainDataset-Center: This dataset contains ~395K robotic

inducts composed of 335,226 successful and 59,646 failed

examples. Additionally, due to the used heuristics, the

location of the picks in the dataset is as close to the center

of package segments as possible.

• TrainDataset-Random: For this dataset, ~41K randomly

selected inducts from TrainDataset-Center are replaced with

new inducts that were randomly distributed to be picked

anywhere on the packages’ segments with a higher chance

of being close to center when a center pick is possible. The

new set of inducts comprises 34,715 successful and 6,673

failed picks, and the total size of the newly-created dataset

is the same as TrainDataset-Center.

• TrainDataset-Past: This dataset is compiled from historical

data collected from inducts executed before the timeframe

of TrainDataset-Center and TrainDataset-Random inducts.

It contains ~230K inducts composed of 195,408 successful

and 34,482 failed examples. Similar to TrainDataset-Center,

the location of the picks in the dataset is as close to the

center of package segments as possible.

Each induction consists of the RGB image data captured

by a camera at the top of the workcell looking straight

down, depth images, and metadata. The metadata includes

information on the induct, such as the ground truth on the

success or failure, as well as information about the workcell

(e.g., the station code, the type of manipulator arm and EoAT).

B. Feature Extraction

We compute a set of features for each induct using the meta-

data, RGB, and depth images. Specifically, the camera data is

processed by our perception system to generate segments of

the packages and tag each segment with an associated package

type label. Additional statistics are computed for each segment

using depth information (e.g., surface normals and the quality

of plane fitting). An overview of our perception system design

to extract the required features is shown in Figure 2.
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Fig. 2: An overview of the perception system design to extract

features for the learned pick success model.

The segmentation module is a deep network based on Mask

Scoring R-CNN [6] with a Swin-T backbone [8] for predicting

the package material, instance segmentation masks, and the

classification and segmentation scores. The rest of the features

extracted for the model are directly computed from the input

pick and point-cloud data.

Based on our feature importance studies, we identified the

following features as significant predictors:

• Package height: We believe this feature correlates with the

package’s momentum and, therefore, can impact the shear

force at the suction cups and the pick’s stability.

• Quality of plane fitting: We fit a plane on each segment,

and we speculate that a better plane fit correlates with a

better seal between the suction cups and the package.

• Number of activated suction cups: More active suction

cups can mean a more stable pick, reducing the failure

probability.

• Alignment quality between the suction cups and the

package surface: This feature is computed as the offsets

between the package surface normal vector and the normal

vector of the suction cups. We also expect this feature to be

significant since a better alignment indicates a better seal

between the suction cups and the package surface.

In addition to the above and other segment-specific features,

we compute features that describe each segment’s relation-

ship with its surroundings, including the number of nearby

segments and the adjacency graph features. To compute the



adjacency graph features, we construct a graph that captures

the topological order of the package segments. This graph

captures each detected segment’s relative height with respect

to its adjacent neighbor segments. Figure 3 shows an example

where the numbers represent the relative position ranking of

the segment among its neighbors.

Fig. 3: Example of an adjacency graph for a cluster of items.

C. Pick Success Model

The features described in Section IV-B, along with the

ground truth knowledge of induct success or failure, were

extracted for the inducts in the training datasets (Section IV-A).

The AutoGluon library [4] was leveraged for training, model

selection, and hyperparameter tuning for the pick success pre-

diction binary classification task. Many models showed similar

performance, but a gradient boosting tree, specifically a Cat-

Boost model [15], was among the top performers and was cho-

sen for our implementation. We also evaluated other machine

learning libraries and modeling options, such as multilayer

perceptron (MLP) with Scikit-learn [14]; however, models

trained with AutoGluon showed superior performances.

In contrast to our strategy of extracting interpretable (tab-

ular) features, prior works have trained models that directly

predict the pick success from some combination of the input

RGB image, depth, and pick features. We also benchmarked

that approach but did not see a significant improvement over

our model’s performance. Moreover, our method has a few

advantages over the pixels-to-prediction approach:

1) Interpretability: We found it challenging to understand

what made a particular scene easy or difficult with the

pixels-to-prediction approach and why a specific pick

failed. In contrast, the tabular features we extracted were

easy to interpret and allowed us to characterize different

failure modes. This helps to identify weaknesses in the

training dataset to refine it later.

2) Computation: A gradient boosting tree is much faster to

train and evaluate than a typical image classification model.

This means that at deployment, we can evaluate many picks

very quickly.

3) Uncertainty quantification: The CatBoost package na-

tively supports sampling models from a posterior, which

can be used to generate ensembles. In anecdotal studies, we

found that these ensembles capture uncertainty very well.

Because our training data does not cover all possible picks

for all scenes, capturing such uncertainty helps provide

more conservative predictions.

V. PICK RANKING

Let us assume that the robot has selected several picks in

the scene. For example, the system may generate one or more

picks per each object segment in the robot’s region of interest.

The model described in Section IV can output estimated

probabilities of successfully picking up and holding the desired

items for each candidate pick. Assuming the estimate closely

correlates with the actual probability of success, the picks with

a higher likelihood of success should be prioritized.

Ranking the picks based on their success probability esti-

mate provides two benefits: the throughput of the workcell is

improved due to the higher chance of picking each item up

on the first try, and, by picking up the “easier-to-pick” items

first, the “harder-to-pick” items become easier to pick (e.g.,

the occluding or very close items are removed around them,

leaving them singulated).

In our work, we rank the picks in two steps. First, the

picks are grouped by package segments, and the pick suc-

cess probabilities or other heuristics are leveraged to rank

the segments. When picking success probability is employed

directly, we estimate the success probability of a segment as

Psegment = max
i=1...n

P i
pick, where P i

pick is the success probabil-

ity of the segment’s ith pick. Finally, once the segments are

ranked, for each segment, we order its picks based on their

success probability predictions. The two-step ranking is due

to the logistics behind our system structure and the desired

flexibility to try different methods for the two steps.

Figure 4 shows two examples of package rankings using

our model, where the flat and large package segments are

prioritized over the crumpled and small ones.

Fig. 4: Examples of ranking the packages based on the highest

success probability estimate of their corresponding picks. A

smaller rank number represents a higher priority.



Figure 5 shows the predicted success probability of three

picks on a deformable package for picking with the suction

cup arrangement illustrated in Figure 6(b). All three picks have

two activated suction cups on the package. However, the model

appears to prioritize the pick configurations where the EoAT

is less likely to collide with the surrounding packages and is

more likely to succeed.

(a) Ppick = 0.708 (b) Ppick = 0.756 (c) Ppick = 0.825

Fig. 5: Estimated success of different picks on a deformable

package. The circles correspond to the suction cups. The green

and red circles are the active and inactive suction cups.

VI. EXPERIMENTS AND RESULTS

The methods proposed in Sections IV and V have been

deployed and tested in multiple Amazon sites worldwide. This

section presents our testing conditions, experiment results, and

our analysis.

A. Hardware

The proposed method is implemented for Robin robot [1]

used in Amazon fulfillment centers. The main arm consists of

FANUC M-20iD/35 with six controlled axes, 35 kg payload,

and 1831 mm reach (Figure 6(a)). The EoAT consists of 8

suction cups arranged in an “X” configuration with a size of

25× 25 cm. Each suction cup can be controlled individually.

Figure 6(b) illustrates this EoAT configuration.

(a) (b)

Fig. 6: Robin robotic arm used in our experiments. (a) Ma-

nipulator arm. (b) A simulation of the end-of-arm tool design

with eight suction cups.

B. Baselines and Experiments

To evaluate the performance of different pick success mod-

eling options, we first consider the following two baselines:

• AlwaysSuccess: Always predicting pick success;

• BoostedTree-Past: Our pick success model described in

Section IV-C trained with the historical TrainDataset-Past

data (see Section IV-A);

Historically, our robots were programmed to pick up pack-

ages at poses close to the package centers. However, there

are cases where the robots must choose picks further away

from the package center to avoid collisions, such as with other

packages or fixtures on the conveyor belt. To be able to see

the effect of choosing off-center picks, we trained two pick

success models:

• BoostedTree-Center: Our pick success model described in

Section IV-C trained with the TrainDataset-Center data (see

Section IV-A);

• BoostedTree-Random: Our pick success model described

in Section IV-C trained with the TrainDataset-Random data

(see Section IV-A).

CNN-Center: Finally, we also report the performance

of an image-based model, which is a network trained on

TrainDataset-Center using RGB image crops around the target

packages (Figure 7).
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Fig. 7: Network architecture for extracting the RGB image

embeddings. The input is a 400× 400 patch around the target

pick point (resized to 224 × 224), and the output is the pick

success prediction. The blocks before the AvgPool layer are

the first three convolution layers of a pre-trained Resnet50

model. The output of the second fully-connected layer (fc2)

is used as the embedding. The size of the fc2 layer output

(fc3 layer input) is set to 20, 48, or 96 for the desired image

embedding sizes.

The following testing datasets are designed to evaluate the

pick success estimation models:

• EvalDataset-Center: Consisting of ~60K picks that are

close to the package center. This dataset has an overall pick

success rate of 94.40%.

• EvalDataset-Random: Consisting of ~38K picks randomly

chosen to be anywhere within the package segment. This

dataset has an overall pick success rate of 94.01%.



For ranking segments on the actual robots, we considered

several heuristic approaches, including:

• Z-order: Ranking the picks by the package’s target surface

elevation. This heuristic is motivated by the assumption that

a package whose surface is at the top of the pile is easily

reachable, and the robot can avoid collisions or mistakenly

pick other occluding packages when trying to pick it up.

This heuristic is simple to implement but omits information

about actual occlusions and, in practice, fails for unreachable

picks and in instances where a portion of the package is

at the top of the pile, but the rest is buried under other

packages. In addition, since this method is only concerned

with the elevation of the package’s surface, it is useless for

packages lying on the conveyor belt.

• Package size: Ranking the picks by the package size (or

segmentation area). This heuristic assumes that picking

packages with a larger visible area will have higher success

and that moving out these larger packages first will help

declutter the scene, making picking smaller packages easier.

A major issue with this heuristic is when smaller packages

lie on or overlap with larger ones. This can result in

collisions with other packages, difficulty lifting a larger

package from under smaller packages, or picking more than

one package simultaneously, resulting in holding or multi-

pick failures.

• Topological order: Ranking the picks based on the order

of occlusion of the packages. Picks to package faces that

appear unoccluded get the best score. Picks on package

surfaces that are only occluded by unoccluded packages get

the next highest score, and so on. This heuristic is mod-

erately simple to implement and prioritizes the unoccluded

packages to improve the success probability. However, it

fails to recognize the unreachable package surfaces and the

occluded packages with unoccluded surfaces, and similar to

the Z-order method, it does not differentiate between the

picks on the same package surface. Moreover, this method

heavily relies on an accurate perception system to compute

the segment overlaps.

Any combination of the above heuristics may also be em-

ployed. For example, a topological order method can be used

as the primary ranking criteria, with the Z-order method as

the tie-breaker when two packages have the same topological

ranks. Some other heuristic approaches are also worth men-

tioning, such as the measure of how quadrilateral a package

is or the confidence score given by the instance segmenta-

tion method. These approaches try to indirectly measure a

package’s occlusion or deformation level but have their own

drawbacks and challenges.

The heuristics above only rank the segments to be picked

and cannot differentiate between various picks inside a seg-

ment. Once the segments are ranked, a reasonable heuristic

approach for ranking picks inside a segment can be giving a

higher score to the picks closer to the center of the segment

and the ones with a higher number of activated EoAT suction

cups.

Having experimented with these heuristics, we establish the

following baseline and experiment to evaluate our proposed

pick ranking approach:

• Baseline: Topological order with Z-order as the tie-breaker

for ranking segments; picks with EoAT poses with a higher

number of active suction cups, and then the ones with the

center of active cups closer to the center of the segment are

given higher rank within segments;

• Experiment: Topological order with learned pick success

estimation as the tie-breaker for ranking segments; picks

within segments are also ranked with the learned pick

success estimation.

To evaluate our approach without bias to a particular

planning strategy, we allow the robots to select EoAT poses

randomly anywhere as long as the poses are within 30 cm

distance from the center of the packages on the estimated

package surface plane.

Moreover, additional large-scale experiments were per-

formed through A/B tests on the Robin fleet to assess the

performance of different methods. Based on the possible

heuristic approaches, we established the following baselines

to evaluate against our proposed pick ranking approach:

1) TopoZ-Center: Topological order with Z-order as the

tie-breaker for ranking segments; picks within segments

chosen close to the center of the package’s segment with

higher rank given to the EoAT poses with a higher number

of active suction cups;

2) Z-Center: Same as TopoZ-Center, but only Z-order used

directly for ranking segments;

3) TopoZ-Random: Same as TopoZ-Center, but picks within

segments are chosen randomly anywhere in the package’s

segment, with a higher chance for picks closer to the

segment’s center.

For evaluation of the ranking methods through learned pick

success estimation, we designed the following experiments:

1) TopoLPR-Center: Topological order with learned pick

success estimation as the tie-breaker for ranking segments;

picks within segments chosen close to the center of pack-

age’s segment with learned pick success estimation used

for ranking;

2) LPR-Center: Same as TopoLPR-Center, but learned pick

success estimation is directly used for ranking the seg-

ments;

3) LPR-Random: Same as LPR-Center, but picks within seg-

ments can be chosen randomly anywhere in the package’s

segment.

C. Evaluation Metrics

Due to the rarity of failed inducts, our evaluation datasets

are severely imbalanced. As a result, evaluating the classifica-

tion accuracy does not serve as an informative metric for this

task (for example, a baseline that always predicts pick success

will get over 94% accuracy).

On the other hand, the main objective of a pick success

classifier is to use its output estimates for ranking the picks so

that picks with a higher chance of success are ranked higher.



We choose Receiver Operating Characteristic (ROC) Area

Under the Curve (AUC) score as the metric for evaluating the

pick success models. Mathematically, the ROC-AUC score is

the same as the probability of a classifier ranking a randomly-

chosen positive example higher than a randomly chosen neg-

ative example, i.e., P (score(x+) > score(x−)) (see [5] for

the proof). Therefore, when all the successful picks in the

testing datasets are ranked higher than all the failed picks, the

ROC-AUC score would be 1.0, and when all the failed picks

are ranked higher than successful picks, the ROC-AUC score

would be 0. Therefore, the ROC-AUC score is a good metric

for evaluating the pick-ranking ability of different models.

To evaluate the pick ranking system on the actual hardware,

we also compute the percentage of picks when the robots fail

to transfer a package from the conveyor belts to the mobile

robots. We call this metric as failure rate.

D. Results

All models introduced in Section VI-B were evaluated on

both testing datasets EvalDataset-Center and EvalDataset-

Random. Table I presents the ROC-AUC scores of these

models with confidence intervals.

TABLE I: ROC-AUC scores with confidence intervals of

different models for the pick success estimation task.

Model EvalDataset-Center EvalDataset-Random

AlwaysSuccess 0.5 (0.5, 0.5) 0.5 (0.5, 0.5)
BoostedTree-Past 0.725 (0.717, 0.732) 0.807 (0.799, 0.815)

BoostedTree-Center 0.755 (0.748, 0.761) 0.802 (0.792, 0.810)
BoostedTree-Random 0.758 (0.752, 0.765) 0.848 (0.840, 0.855)
CNN-Center 0.570 (0.560, 0.579) 0.703 (0.693, 0.712)

As seen from Table I, all the machine learning models

beat the naive baseline AlwaysSuccess that always predicts

pick success. Additionally, all models perform better on

EvalDataset-Random compared to EvalDataset-Center. From

Figure 8, we observe that the ROC curves on the EvalDataset-

Center dataset (Figure 8(a)) are flatter than the ROC curves

on the EvalDataset-Random dataset (Figure 8(b)) for middle

range false positive rates. This indicates that there are more

pick failure examples that are hard to differentiate from the

pick success examples in the EvalDataset-Center dataset.

Upon further investigation of the datasets, we found that a

sizeable portion of pick failure examples is due to factors not

included in our feature set, such as suction cup degradations.

We believe the proportion of such examples is more significant

when the robot action space is more constrained, such as

always attempting to pick packages close to the center.

When comparing models trained with data from different

time ranges (i.e., BoostedTree-Past vs. BoostedTree-Center

and BoostedTree-Random), we observe the model performance

improves when it is trained with more recent data.

Additionally, we find that the model trained with picks

sampled anywhere within the segment (i.e., BoostedTree-

Random) slightly outperforms the model trained with picks
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Fig. 8: ROC curves of all models described in I tested on eval-

uation datasets (a) EvalDataset-Center and (b) EvalDataset-

Random.

always close to the center when evaluated on EvalDataset-

Center. On the other hand, there is a more significant margin

between BoostedTree-Random and BoostedTree-Center when

they are evaluated on EvalDataset-Random. This shows that

our pick success model can interpolate between centered picks

and picks that are more off-center, and including the off-

center picks in the training dataset helps with predicting pick

success for larger varieties of picks, which can be beneficial for

packages that are hard to reach and the robot has to select from

a list of off-center picks. Finally, the RGB image-based model

CNN-Center performs much worse than the other modeling

options. Given CNN-Center makes predictions only based on

the package appearance, it shows that additional information

about the picks is critical even if the robots attempt to pick

up the packages close to the center.

The Experiment ranking method (see Section VI-B) was de-

ployed for production on Amazon’s fulfillment center robotic

fleet and has been used for picking up over 200 million inducts

with a success rate of 98%. We analyzed ~180K random

robotic inducts performed using Baseline and Experiment

ranking methods to validate our proposed method. Table II

summarizes the results, which shows that Experiment method

improves the pick success rate by about 1.18%. This 23.7%

reduction in failures, when deployed at a large scale (e.g.,

millions of picks per day performed on our fleet), has a

significant impact on the operation costs.

TABLE II: Test results for validation of pick-ranking learned

method.

Method Total Picks Pick Success Pick Failure Success Rate

Baseline 89,162 84,718 4,444 95.02%
Experiment 90,127 87,700 3,427 96.20%

To better understand the cases where these methods rank

the segments differently, we present a qualitative comparison

for two cases that assist with understanding the behavior of

the learned pick success method. In general, given similar con-

ditions for two packages, the learned pick success estimation

method seems to prefer flatter surfaces and packages with less

occlusion while disliking the packages close to the conveyor



wall or at hard-to-reach angles.

1) Case 1: Figure 9 shows an induct with its segment

ranking results for three methods: topological order with Z-

order for tie-breaking, topological order with learned pick

success estimation method for tie-breaking, and the learned

pick success estimation method. It can be seen that the learned

approach prioritizes the packages closer to the center of the

conveyor belt (away from the conveyor walls), where the robot

is less likely to have difficulties with reaching the pick at the

desired angle or colliding with the conveyor wall.

(a) (b)

(c) (d)

Fig. 9: Qualitative comparison of different segment ranking

methods. (a) An example induct scene with a marked ROI (the

blue rectangle). Results for: (b) topological order of segments

with Z-order used for tie-breaking, (c) topological order of

segments with learned pick success estimation used for tie-

breaking, and (d) learned pick success estimation method

directly used for segment ranking.

2) Case 2: Figure 10 shows an induct with its segment

ranking results for the same methods as Case 1. Comparing

the ranking for segments ranked 2 and 3 in Figures 10(b)

and 10(c), it is evident that the learned method prioritizes

the packages with less occlusion where the collision with the

occluding packages is less likely. On the other hand, when the

constraints of topological order are removed, it can be seen

in Figure 10(d) that the learned method slightly prefers the

packages with flatter surfaces (the box over the deformable

packages) where the chances of holding failure are lower.

Finally, to find the best method, the large-scale A/B test

was deployed across the fleet with a small percentage of total

inducts allocated to each experiment group in Section VI-B.

Table III summarizes the results of the A/B experiments.

The results show that using the learned pick success esti-

mation to rank the segments (i.e., TopoLPR-Center and LPR-

Center) improves the pick success for the robots compared

with the manual heuristic ranking methods (i.e., TopoZ-Center

(a) (b)

(c) (d)

Fig. 10: Qualitative comparison of different segment ranking

methods. (a) Another example induction scene with a marked

ROI (the blue rectangle). Results for: (b) topological order

of segments with Z-order used for tie-breaking, (c) topolog-

ical order of segments with learned pick success estimation

used for tie-breaking, and (d) learned pick success estimation

method directly used for segment ranking.

TABLE III: Results of A/B experiments for pick-ranking

methods.

Method Total Picks Failed Picks Success Rate

TopoZ-Center 1,158,353 89,378 92.28%
Z-Center 1,157,739 89,866 92.24%
TopoZ-Random 1,158,479 109,193 90.57%

TopoLPR-Center 1,156,697 83,535 92.78%
LPR-Center 1,160,005 72,789 93.73%
LPR-Random 1,157,342 79,820 93.10%

and Z-Center). Interestingly, the best improvement comes from

the more aggressive approach where we directly apply the

learned pick success estimation for ranking (LPR-Center).

Given that the heuristic ranking methods heavily depend on

the heights of the packages, this suggests that promoting high

packages can lead to more challenging picks, such as tall

but unstable packages. On the other hand, the pick success

model considers the package height only as an input feature

along with other information such as the package position,

surface normal, and adjacency graph features. Therefore, the

pick success model can reason better and deprioritize unstable

packages. It is also worth noting that if the picks are chosen

randomly, the pick success improvement from the heuristic

ranking method (TopoZ-Random) to the learned pick success

estimation ranking method (LPR-Random) is even more sig-

nificant (i.e., from 90.57% to 93.10%).

The pick success estimation model deployed in these A/B



experiments predicts the pick success probability by taking

the average of the predictions from five CatBoost models. The

number of trees in the five CatBoost models is 2236, 1069,

799, 1464, and 1208 respectively. For all five models, the depth

of the trees is 6, and we used a learning rate of 0.05.

VII. CONCLUSION

In this paper, we presented a large-scale deployed system for

package manipulation, which estimates the pick success using

a machine learning model. We demonstrated the effectiveness

of this system by evaluating it on over 200 million picks and

comparing it to heuristic baselines.

We believe that the recent developments in vision trans-

formers combined with a large amount of induction data from

our robotic fleet can improve our image-based network and

may provide more valuable image embeddings, enhancing the

prediction quality of the overall method.

Additionally, going through the mistakes made by our

model, we realized that a sizable portion of them are due to

hardware issues such as a dysfunctioning suction cup. In the

future, we intend to leverage the developed pick success model

for monitoring the health and analyzing the errors in our robot

fleet.
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DEMONSTRATION AT RSS 2023

During the presentation of this paper, we intend to have a

live demonstration of our evaluation or production workcells.

The demonstration will present live webcams from different

sites across the globe showing Robin robots picking and

placing incoming packages.
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