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ABSTRACT
In the age of digital manufacturing, efficient realization of

high-performing designs into high-quality products through ad-
vanced manufacturing remains a challenge. One of the critical
reasons for this challenge is the need for more design knowledge
at the manufacturers’ end, which severely hinders manufacturers’
exploration and exploitation of innovative designs. Manufactur-
ers often have no choice but to adopt designer-optimized designs
without the ability to make enhancements. However, the advent
of data-driven reverse engineering based on generative model-
ing has shown promise for addressing this issue. As industries
increasingly adopt digital manufacturing strategies, integrating
AI-assisted design generation and optimization tools could enable
efficient production outcomes. By leveraging large datasets and
powerful machine learning techniques, manufacturers can now
explore the vast design space in an efficient, automated manner,
enabling them to drive innovation by uncovering novel design
opportunities. The expanded design knowledge gained through
generative modeling allows manufacturers to move beyond just
implementing others’ designs and truly innovate themselves to
create higher-quality and more optimized products. Neverthe-
less, while generative models have been widely explored for two-
dimensional (2D) design and optimization, generative modeling
of three-dimensional (3D) shapes still remains under-explored.
Although a variety of 3D shape generative models have been
developed, the resolutions and surface qualities of the gener-
ated designs can hardly meet manufacturing requirements. To
bridge this gap, this paper proposes a generative denoising dif-
fusion model (DDM) to generate new voxel-represented 3D de-
signs, where the model is trained with historical 3D design data
available to manufacturers. This research is important, not only
because manufacturers’ design knowledge can be improved, but
also because design exploration can be expanded and expedited
when more feasible designs can be generated faster to pursue
designs with improved manufacturability, higher feasibility, and
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optimized performance. DDMs have been extensively explored to
synthesize 2D pixel images, and also have achieved state-of-the-
art generation quality. Motivated by the capabilities of DDMs
in generating high-quality images, we adapt the application of
DDMs from 2D space to 3D space and develop a voxel-DDM
for high-quality 3D topology generation. Moreover, we develop a
surrogate model for efficient and gradient-based evaluation of the
manufacturability of 3D designs via additive manufacturing. We
further integrate the surrogate model as a guidance module into
the voxel-DDM to steer the denoising process toward generat-
ing new designs with optimized manufacturability. To showcase
the proposed guided voxel-DDM and validate its effectiveness, we
implement it through a real-world manufacturing case study to de-
sign a Microbial Fuel Cell (MFC) anode structure that enables an
efficient, reliable, and high-quality manufacturing process. This
research can help manufacturers overcome their lack of design
knowledge in design space exploration and lead to high-quality
designs for the manufacturing process in pursuit of optimized
manufacturability.
Keywords: 3D Shape Generation, Design for Manufacturing,
Generative AI for Design, Guided Denoising Diffusion

1. INTRODUCTION
Additive manufacturing (AM) has emerged as a highly dis-

ruptive technology that provides unprecedented design freedom
and customizability for the production of end-use parts [1]. How-
ever, to realize the full potential of AM, it is necessary to overcome
critical technical barriers, which currently limit the widespread
adoption of AM across manufacturing industries. One major
limitation that hampers the progress of AM is the lack of robust
design tools and knowledge available to manufacturers to effec-
tively utilize the capabilities of AM processes [2]. Currently,
manufacturers are severely constrained in their ability to inno-
vate AM designs and fully exploit the benefits of the technology.
In most cases, manufacturers have no choice but to directly im-
plement three-dimensional (3D) models provided by designers,
without the ability to make further enhancements or refinements
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themselves to improve manufacturability [3]. This overreliance
on outside design expertise creates a bottleneck that restricts
manufacturers’ capacity to unlock the full innovation potential
of AM through design optimization. There is a critical need for
capabilities that empower manufacturers with expanded design
knowledge and tools to take ownership of innovating optimized
AM designs themselves.

The development of AI-powered generative design frame-
works tailored for AM has the potential to overcome this bar-
rier by providing manufacturers [4] with the expanded topology
knowledge and automated exploration capabilities needed to take
ownership of AM design innovation themselves. Democratiz-
ing robust design capabilities through AI assistants could greatly
accelerate AM adoption across industrial sectors. By learning
from large datasets of previous designs and simulations, gen-
erative models can rapidly explore extremely vast and complex
design spaces to uncover novel high performance optimized de-
signs for target manufacturing processes such as AM [4]. This
advancement enables manufacturers not only to implement ex-
isting designs, but also to innovate and create higher quality and
more optimized products. Specifically, generative modeling ap-
proaches leverage state-of-the-art image synthesis methodologies
and have the potential to achieve high-fidelity 3D shape genera-
tion capabilities previously inaccessible to manufacturers.

Automated 3D shape synthesis [5] has immense potential
to transform engineering design and manufacturing. 3D shape
synthesis [6] can accelerate engineering design by automating
high-fidelity 3D shape generation from abstract descriptions of
representations such as text and sketches. This can expedite early
design iterations through easier visualization and evaluation, as
well as allow efficient design space exploration by significantly
reducing the efforts needed for manual 3D modeling. Integrating
AI tools to enhance manufacturability will be critical for manu-
facturers to keep pace with AM’s rapid innovation and unlock its
design freedom potential.

The key knowledge gap that drives this research is the lack
of generative modeling for high-fidelity 3D shape generation and
design optimization driven by manufacturability [7]. Although
generative models have shown increasing success in 2D image
synthesis [8], their extension to 3D design remains underexplored
despite the massive potential impact. Existing 3D generative
models [9] rely on voxel or point cloud representations, which
impose limitations on resolution, surface quality, and manufac-
turability guidance. There is an unmet need for generative models
producing manufacturing grade, printability-optimized 3D ge-
ometry. Most 3D design optimization [9] still relies on manual
CAD modeling iterations requiring extensive expertise and trial
and error. Automating intelligent 3D design space exploration
with AI-guided generative models remains an open opportunity.
Developing generative frameworks specifically designed for man-
ufacturing could transform prototyping and innovation. Another
gap is in incorporating manufacturability considerations into the
design process. Generated designs are often theoretically sound
but might be impractical due to manufacturing constraints. In-
tegrating AI into 3D design also faces computational and data
challenges. This research aims to develop rigorous generative
models for high-fidelity, manufacturability-optimized 3D shape

generation.
This paper aims to address knowledge gaps by introducing a

generative modeling framework Figure 2 tailored for AM design.
Innovation in this paper is the adaptation of state-of-the-art de-
noising diffusion models (DDMs) [10] for image synthesis from
the 2D space to the 3D space for high-quality 3D shape gener-
ation. We develop a voxel-DDM (voxel-DDM) using a dataset
of 3D designs. The model employs the 3D adaption of U-Net
to handle voxel input and a factorized attention mechanism to
learn both intra-layer and interlayer features for 3D generative
modeling. The model is further enhanced by a regression guid-
ance model [11] that is adapted from a pre-trained surrogate
model. The surrogate model can provide efficient manufactura-
bility evaluations to steer the denoising sampling process toward
highly manufacturable designs by estimating a gradient to guide
the sampling process. To validate the ability of the proposed
framework to expand manufacturers’ design knowledge and im-
prove manufacturability, a case study is conducted to generate
new 3D topologies of a Microbial Fuel Cell (MFC) anode [12]
for an AM process. By learning from historical data, realistic 3D
designs are generated. This strategy helps close the high-fidelity
3D design knowledge gap faced by manufacturers. The proposed
guided voxel-DDM is tailored for design for AM and represents
a significant advancement in the field of 3D generative modeling
using voxel data.

The key technical contributions of this paper include:

• A labeled 3D topology dataset supporting 3D surrogate mod-
eling and generative modeling.

• A voxel denoising diffusion framework Figure 2 that adapts
state-of-the-art image synthesis techniques from 2D space
to 3D space for high-fidelity 3D shape generation.

• A surrogate model for fast and accurate prediction of manu-
facturability to guide the denoising process of the proposed
Voxel-DDMs.

• Manufacturability-driven generative guidance based on a
pre-trained surrogate model for manufacturability optimiza-
tion during the generation process.

• Expanded design knowledge and improved manufacturabil-
ity of 3D MFC anode structures for AM.

The rest of the paper is organized as follows: Related Work,
Methodology, Results and Discussion, and Conclusions.

2. LITERATURE REVIEW
3D representations are critical in engineering design and

manufacturing due to their faithful portrayal of shapes with high-
level details, particularly in the middle to late design stages for
design evaluation, optimization, and manufacturing. 3D shape
synthesis, due to the complexity of 3D representations, currently
stands as a significant challenge. Given that shapes can be rep-
resented by structured voxels [13], unstructured meshes [14] and
point clouds [15], parametric representations [16], and implicit
representations [17, 18], each representation enables the use of
different generative models to generate new designs [19].
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Voxel representation, the counterpart of 2D pixel data in the
3D domain, is commonly used for 3D shape generation. Leverag-
ing the success of convolutional neural network (CNN) architec-
tures in 2D image synthesis, various generative models exploit 3D
CNN architectures to synthesize 3D shapes represented by vox-
els. Among them, 3D CNN-based multimodal auto-encoder (AE)
models aim at 3D shape reconstruction by transforming one or
more 2D views (with depth information) into 3D shapes [20, 21].
3D CNN-based variational AEs (VAEs) [22] and generative ad-
versarial networks (GANs) [23, 24] can generate new 3D shapes
randomly or conditioned on textual and visual descriptions. Due
to their high computational costs caused by dimension increase,
these 3D CNN-based models often suffer from low generation
resolution and low training speed. Accordingly, multiple-stage
models have been explored to increase the resolution of the final
output [25].

Compared to voxels, point clouds provide a more accurate
3D shape representation. Their high representation efficiency,
compactness, and ease of acquisition attract intensive research
interests for 3D shape generation tasks [26]. Since point clouds
lack the characteristics of spatial order and arrangement, order-
invariant operations such as max-pooling as in PointNet [27] or
multiple transformation matrices before the convolution opera-
tor [28] are needed to compensate [26]. On this basis, various
models founded on AE [29], VAE [30], and GAN [31] have been
developed using fully connected layers, graph neural networks
(GNNs) [32], or their variants with attention mechanisms [30]
as decoders or generators for image or text guided point cloud
generation. ShaperCrafter employs a different architecture, using
a vector-quantized VAE as an encoder and a transformer-based
autoregressive model as a decoder for text-guided 3D shape syn-
thesis [33]. In recent years, denoising diffusion models (DDMs)
have been drawing increasing attention for the generation of un-
conditional and text- or image-guided 3D shapes [34].

Meshes are another accurate, unstructured, 3D shape repre-
sentation. In addition to vertex (i.e. point) coordinates, meshes
further convey local face information of 3D shapes to record topo-
logical connections between mesh vertices, providing a higher
quality 3D shape representation than a point cloud [26]. To
effectively learn mesh features, various architectures such as
GNNs [35] and their variants (e.g., graph convolutional net-
works [36]) have been developed by defining basic deep learning
operators (e.g., convolution, pooling) based on specialized mesh
structures. Similarly to 3D CNN to voxel representations, GNNs
are the basic building blocks of a set of AE [37], VAE [38], and
GAN [39] models for text or image-guided mesh generation. An-
other group of models aims to predict the displacement of each
vertex to deform a given 3D mesh to generate new meshes [40].

Unlike the explicit representations reviewed above, implicit
representations, formulated as implicit functions such as the oc-
cupancy function [41] or the signed distance function [17], can
be used to infer the boundary of a 3D shape by predicting a value
for each sampled point, which indicates that this point is inside
or outside the boundary of the 3D shape. These implicit repre-
sentations have been integrated with various embedding modules
to learn latent representations of 3D shapes learned from images,
text descriptions, or shapes [17], which are input to predict 3D

shape boundaries. On this basis, different AE [42], VAE [43],
and GAN [18] models have been developed for conditional shape
generation. Additionally, CLIP-Forge marries an implicit repre-
sentation with a flow-based model for the generation of 3D shapes
guided by text or images [44].

Additionally, another strand of models maps 3D shapes to
2D parameter spaces, generates 2D samples using GANs, and
then converts them into 3D meshes [45, 46]. Among them,
Rank3DGAN [45] and XDGAN [47] extend this approach to
conditional settings, allowing semantic manipulation during 3D
shape generation.

Although a variety of 3D shape-generative models have been
developed employing explicit and implicit 3D shape representa-
tions, these approaches share two common drawbacks. First, the
resolution and quality of the 3D shapes generated by these mod-
els are generally low. This is caused by the characteristics of the
representations. While the structural arrangement of voxel rep-
resentations is favored by deep learning models, the increase in
dimensionality from two to three significantly raises the required
computational cost, which limits the representation resolution.
Point-cloud and mesh representations consume less memory and
computational cost than voxel representations of the same reso-
lution because they only convey the boundary information rather
than the entire volume. However, the irregularity of point clouds
and meshes and the complexity of the mesh topology make it
difficult to use for deep learning [26]. Continuous efforts are
needed to explore ways of learning latent vector embeddings of
point-cloud and mesh representations that can be used for effec-
tive 3D shape synthesis. Compared to all others, on the one hand,
implicit representations allow for flexible shape topology and a
continuous increase in representation resolution with reasonable
memory consumption. On the other hand, an implicit represen-
tation, as the generator output of a generative model, does not
convey the geometric features of the generated 3D shape in a
straightforward manner. A preprocessing module is needed to
convert the implicit representation into an explicit 3D shape for
downstream tasks, which introduces additional loss and impairs
the quality of the 3D shape.

Second, although conditional models can generate 3D shapes
according to semantic or visual prompts [34], these models do
not support the evaluation and optimization of engineering per-
formance during the 3D shape generation process [48]. The per-
formances of 3D shapes, such as manufacturability and strength,
are critical in engineering applications. However, these require-
ments and constraints are not considered by the models developed
in other domains. To mitigate these two issues, we propose a new
3D shape generative model to synthesize 3D MFC anode designs
for manufacturing. We get inspiration from some recent papers
that extend DDMs from 2D space to 3D space for the generation
of 3D spatiotemporal video [49].

3. METHODOLOGY
In this paper, we develop a generative modeling framework,

voxel-DDM, Figure 2 that allows the optimization of the manu-
facturing features tailored to the design of AM. This framework
leverages the techniques of DDMs [10], a class of generative
models renowned for their high-quality outputs, and adapts the

3 Copyright © 2024 by ASME



64

64

64

3D design

512

512

64

64

Voxel

(b)

Voxel Diffusion Model

Surrogate Model

(a)

Slice

Flatten

FIGURE 1: 3D Design data preprocessing to prepare data for train-
ing the voxel denoising diffusion model and surrogate model, re-
spectively.

DDM architecture from image generation to voxel generation us-
ing a 3D U-Net [49], contributing a novel approach in the realm
of 3D shape generation. Voxel-DDM is further enhanced with a
manufacturability metric optimization guidance module, which
is adapted from a surrogate model developed to predict manufac-
turability metrics and incorporated to optimize the metric during
the generation process. We demonstrate and validate guided
voxel-DDM using a case study of the 3D MFC design [12].

3.1 Dataset
The proposed guided voxel-DDM is trained and validated

in a set of 2,735 3D MFC designs generated from a previous
study [12]. As the proposed research is an exploratory research
to propose AI-based design generation tools, the 2,735 3D MFC
anode designs in our dataset are simplified, consisting only of
designs with cell counts of 1 and 2. In the future, we will expand
our dataset by including anode structures with larger cell counts.
The original designs in the dataset are presented in STL format
and labeled with a manufacturability metric, "minimum feature
size" (MFS) (measured in millimeters, ‘mm’) of the MFC anode
structure [12], which is obtained from simulations. The MFS is
the smallest possible 3D printable feature of a 3D model, typically
determined by the diameter of the nozzle and the 3D printer
motors, which is 2 mm in our case study [12]. In this study, we
wanted to maximize the MFS to improve the manufacturability of
MFC anode designs via AM. We prepare the dataset for training
and validating the guided voxel diffusion model by converting
each input 3D design from STL format into a voxel representation
with a dimension of 64 × 64 × 64 (x, y, z; voxel-size of 0.2mm),
as shown in Figure 1-(a).

To take advantage of advanced computer vision algorithms
for the surrogate modeling of manufacturability metrics, we or-
ganize the voxel representation in a different way. The 3D design
in STL format is converted into voxel representation, which is
sliced 64 times along the Z-axis, resulting in 64 layers of 2D
slices (64 × 64). Now, these 2D slices are arranged in a grid
format with 8 rows and 8 columns (8× 8, totaling 64)), forming a
512× 512 image (8× 64(= 512)) as shown in Figure 1-(b). Each
image in our dataset is labeled with the corresponding manufac-

turability metric to train the surrogate model [50].

3.2 Voxel Denoising Diffusion Model
Similar to general DDMs [10, 49], the proposed voxel-DDM

consists of two distinct phases: the forward diffusion process and
the reverse denoising process, as shown in Figure 2. During the
forward diffusion process, the model incrementally introduces
Gaussian noise into the input voxel data 𝑧0 ∼ 𝑞(𝑧0), transforming
the data distribution into a Gaussian noise distribution 𝑧𝑇 ∼ N

(𝑇 is the number of steps of the diffusion process, which is 400
in our study). This is a Markovian process in which each step
introduces a controlled amount of noise to the data, as expressed
in the equation 𝑞(𝑧𝑡 |𝑧𝑡−1) := N(𝑧𝑡 ;

√︁
1 − 𝛽𝑡 𝑧𝑡−1, 𝛽𝑡 𝐼). Here, 𝑧𝑡

represents the latent of the same dimension as 𝑧0 at time 𝑡, and 𝛽𝑡
is the variance of the noise added at the time step 𝑡, which controls
the step size. The variance schedule (𝛽1, ...𝛽𝑡 ) is meticulously
chosen to ensure a smooth transition from the data distribution to
the noise distribution.

Conversely, the reverse denoising process [49], where the
generative power of the model is manifested, involves iterative
removal of Gaussian noise from the data to reconstruct the input
data from its latent state, i.e., noised state. This reverse process
is governed by 𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 ) := N(𝑧𝑡−1; 𝜇𝜃 (𝑧𝑡 , 𝑡), Σ𝜃 (𝑧𝑡 , 𝑡)). In
this equation, 𝜇𝜃 (𝑧𝑡 , 𝑡) and Σ𝜃 (𝑧𝑡 , 𝑡) are the predicted mean and
variance at time step 𝑡 − 1by the model. The success of this
reverse process is critical, as it directly impacts the fidelity and
accuracy of the generated voxel data.

Similar to the adaptation of CNNs from 2D to 3D, the pro-
posed diffusion model exploits a sophisticated adaptation of the
U-Net framework [49] from 2D to 3D to handle voxel data [51].
The 3D U-Net model is trained to predict the mean 𝜇𝜃 (𝑧𝑡 , 𝑡) and
variance Σ𝜃 (𝑧𝑡 , 𝑡) at each time step using the last sampled latent
𝑧𝑡 as input in the reverse denoising process. This architecture,
with its downsampling and upsampling paths connected by skip
connections, excels in retaining both local and global information
in voxel frames, a crucial feature for accurately representing 3D
structures.

Training the model involves optimizing the parameters 𝜃

of the 3D U-Net [49] that define 𝜇𝜃 (𝑧𝑡 , 𝑡) and Σ𝜃 (𝑧𝑡 , 𝑡). The
objective is to minimize the difference between the input data and
the data reconstructed by the model through the reverse denoising
process. The loss function used for training is formulated as
𝐿 (𝜃) = E𝑡 ,𝑥, 𝜖 [| |𝜖−𝜖𝜃 (𝑧𝑡 , 𝑡) | |2]. Here, 𝜖 is the noise added during
the forward process, and 𝜖𝜃 (𝑧𝑡 , 𝑡) is the noise removed during the
reverse denoising process. This loss function guides the model
to become better at predicting the noise added at each step of
the forward process, thereby enabling it to effectively reverse this
process. The proposed model’s architecture is further refined
with a factorized attention mechanism [49], including an intra-
layer attention block and an inter-layer attention block. These
attention blocks facilitate the learning of complex layer-wise and
cross-layer topological features, respectively.

Once the voxel-DDM is well trained, we can apply the de-
noising module as a generator to sample detailed and coherent
new designs. The denoising module takes a random sample
drawn from the Gaussian distribution N as input and applies the
learned reverse denoising process iteratively. With each iteration,
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FIGURE 2: The proposed guided voxel-DDM that integrate the vanilla voxel-DDM with the surrogate model. In this study, the voxel-DDM is
trained in 16K epochs with 400 sampling timesteps.

the model refines the sample, reducing its noise and bringing it
closer to the distribution of the training data. This iterative re-
finement is the crux of the sampling process. The factorized
attention mechanism employed in this model can further enhance
the quality of the sample. This model not only showcases the
potential of AI in manufacturing design but also offers a path
for creating complex designs that were previously challenging to
conceptualize and materialize.

3.3 Surrogate Model
In the proposed research, the surrogate model plays an inte-

gral role in the generative framework (Figure 2) for the design of
the manufacturing. The surrogate model, a modified version of
the ResNet-50 [50] architecture, is specifically tailored to predict
the manufacturability metric, MFS, of the MFC anode designs
[12] represented as 521 × 512 images. We modify the architec-
ture of ResNet-50 to suit our data. The model initially uses the
pre-trained ResNet-50 as a feature extractor, where the parame-
ters of these layers are frozen to retain the knowledge they have
already acquired. The final fully connected layers of ResNet are
replaced with additional linear layers. This sequence consists of
several blocks of linear layers interspersed with Rectified Linear
Unit (ReLU) activation functions. Specifically, it includes a trans-
formation from the original feature space to a 512-dimensional
space, followed by subsequent reductions to 128, 64, and finally
to an 8-dimensional space, each step accompanied by ReLU ac-
tivation for non-linearity. The final layer is a linear layer that
maps the 8-dimensional space to a 1D output value (the predicted
metric). Table 1 summarizes the architecture of the surrogate
model.

The MFS values of the MFC anode designs in our dataset
range from 1.51 mm to 15.97 mm. To facilitate the training
process, we normalized the values of the MFS to the range [0,1].
The mean squared error (MSE) is used as a loss function, which

TABLE 1: Architecture of the modified ResNet-50 surrogate model

Layer Type Parameters Output Dim
Input from ResNet-50 - 2048 features

Linear + ReLU 2048 → 512 512 nodes
Linear + ReLU 512 → 128 128 nodes
Linear + ReLU 128 → 64 64 nodes
Linear + ReLU 64 → 8 8 nodes

Linear + ReLU (Output) 8 → 1 1 node

is a standard choice for regression tasks. The MSE loss [52] is
defined as:

MSE Loss =
1
𝑛

𝑛∑︂
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

. Herein, 𝑦𝑖 is the true MFS and 𝑦𝑖 is the predicted value. An
Adam optimizer is used for training, with a learning rate (lr)
initially set to 0.001. The lr is adjusted during training using an
lr scheduler: reduces the lr by 10% for every 7 epochs. This
approach helps to refine the model weights more precisely as
training progresses. The model is trained and validated over
multiple folds (3 in this case) to ensure the generalizability and
robustness of the trained model. Since the trained surrogate will
be used to guide the denoising process, the intermediate noisy
output from the denoising phase of the voxel-DDMs will be fed
to the surrogate model to calculate the gradient for guidance based
on the predicted manufacturability metric.

3.4 Guidance Module
In order to evaluate and optimize the MFS values of the MFC

anode structures during the generation process, we integrate the
trained surrogate model into the denoising module (Figure 2)
as a guidance module. We refer to the voxel-DDM with the
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guidance module as the “guided voxel-DDM”. This is achieved
through a regression guidance mechanism [53], which shifts the
mean predicted by the voxel-DDM by Σ · ∇𝑥𝑡 𝑓𝜙 (𝑥𝑡 ). In this
paper, Σ is the variance of the Gaussian distribution representing
𝑝𝜃 (𝑧𝑡 |𝑧𝑡+1), 𝑓𝜙 (𝑥𝑡 ) is the surrogate neural network predicting the
normalized MFS values of the MFC anode designs, and ∇𝑥𝑡 is the
gradient with respect to 𝑥𝑡 . Consequently, the updated mean is
formulated as 𝜇̂𝜃 (𝑧𝑡 , 𝑡) = 𝜇𝜃 (𝑧𝑡 , 𝑡)+𝜆·Σ·∇𝑥𝑡 𝑓𝜙 (𝑥𝑡 ), where𝜆 is the
gradient scale hyperparameter defining the weight of the guidance
module. This method modifies the predicted distribution from
which we sample at each step by favoring designs with large
MFS values. In the early phase of the denoising process, 𝑥𝑡 is
too noisy to be fed as input to the surrogate model Figure 7 to
predict the metric accurately, leading to meaningless guidance to
the denoising module. Consequently, we determine a maximum
level of noise beyond which the regression guidance should not
be included. In our case, the guidance module is only applied
when t < 200, which is selected through a few pilot studies.

Integrating the surrogate model as the guidance module of
voxel-DDM is crucial (Figure 2). This integration enables the
voxel-DDM to generate designs that are not only novel and high-
quality but also align with desired manufacturability metrics.
During the denoising process of the voxel-DDM, the surrogate
model provides real-time feedback on the predicted metric of the
generated design. This feedback is then used to guide the denois-
ing module to generate optimized designs, steering it towards
designs with larger MFS values. The surrogate model effectively
acts as an evaluator and optimizer, influencing the trajectory of
the generation process in the latent space. By favoring generated
designs with good features through gradient manipulations, the
surrogate model biases the voxel-DDM to explore regions in the
latent space that correspond to more manufacturable designs.

4. RESULTS AND DISCUSSION
This section presents the experimental results validating the

proposed guided voxel-DDM for generating optimized 3D MFC
anode designs [12] for AM. MFC anodes are critical components
that require precise topological attributes to ensure optimal per-
formance. These attributes include MFS, minimum cavity size,
connectivity of features/cavities, high surface area to volume ra-
tio, and electrical resistance [12]. The design of these anodes is
often constrained by traditional manufacturing methods, which
limit the ability to experiment with complex geometries that may
enhance manufacturability metrics. In this paper, we only con-
sider one manufacturability metric, which is the MFS, which can
be used to evaluate the manufacturability of a design through
AM. This case study offers us an exploration of the applicability
of the proposed voxel-DDM in a real-world manufacturing con-
text. In the following, we will present the generation capability of
the vanilla voxel-DDM, the performance of the surrogate model
[50], and the effectiveness of the guided voxel-DDM (Figure 2).

4.1 Quality of Designs Generated by Voxel Denoising
Diffusion Model
The proposed voxel-DDM (Figure 2) is trained on a dataset of

2,735 3D MFC anode designs. The hyperparameters of the voxel-
DDM are as follows: lr - 0.0001, input dimension - 64× 64× 64,

FIGURE 3: 3D designs generated by the proposed voxel-DDM
model

TABLE 2: Performance comparison between the guided and vanilla
(unguided) voxel-DDMs in terms of average Fréchet inception dis-
tance (FID) score, Inception Scores (IS), and average normalized
minimum feature size (MFS)

FID IS Normalized MFS
Vanilla 556.58 1.23 ± 0.0 0.54
Guided 572.01 1.17 ± 0.0 0.63

loss function - MSE, sampling time steps - 400, training epochs
- 16,000, batch size - 2 and ema decay - 0.995. Figure 3 shows
some designs generated by the vanilla voxel-DDM. By visually
inspecting the generated designs, we can see that the model is able
to generate a wide diversity of novel 3D MFC anode topologies
by sampling the learned latent space. The quality of the generated
designs is assessed through the Fréchet Inception Distance (FID)
score and the Inception Score (IS) computed against the test data
distribution. Generally, diffusion models suffer from unstable
performances, so, to evaluate the performance of the proposed
Voxel-DDM, we performed a reproduction test by generating a
test dataset which consists of 100 designs generated by the guided
voxel-DDM and another 100 designs generated by vanilla voxel-
DDM using the same noise seeds. The normalized MFS values
of the generated designs were evaluated following the data pre-
processing pipeline introduced in Section 3.1). FID measures
[54] the similarity of the feature distributions between generated
and real samples, with lower values indicating greater fidelity. IS
evaluates [54] both image quality and diversity, with the higher
being better. Table 2 reports the average FID score, the average IS,
and the average normalized MFS values of 100 random designs
generated by the vanilla (unguided) voxel-DDM.

The FID score [54] provides an assessment of the similarity
between the generated designs and the real distributions of the
design data. The inception score (IS) [55] evaluates both image
quality and diversity, with the highest being better. A lower
FID score indicates a closer resemblance to real data, which is
often associated with higher-quality designs. In our study, the
vanilla voxel-DDM achieves an average FID score of 556.58 and
an average IS of 1.23. This FID score is competitive compared
to the FID scores achieved by other existing 3D shape generative
models [49], suggesting that the proposed voxel-DDM model is
capable of synthesizing designs that are statistically aligned with
real data. The Inception Score (IS) complements the FID by
evaluating the clarity and diversity of the designs.

A deeper analysis of these metrics reveals their inherent lim-
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FIGURE 4: The comparison between the ground truth and the pre-
dicted normalized MFS values of the 3D MFC anode designs in our
validation dataset.

itations and the complexities involved in assessing the quality
of the design. The FID score [54], while insightful, does not
account for the functional aspects of the designs. Therefore, our
evaluation extends beyond this score to include one manufactura-
bility metric predicted by the surrogate model, which provides
a direct indicator of each design’s manufacturability via AM.
In general, the generated design exhibits an average normalized
MFS of 0.54 for vanilla voxel-DDM and 0.63 for the guided voxel-
DDM. Quantitative metrics validate the ability of the proposed
voxel-DDM to produce novel high-fidelity anode designs on par
with existing ones (ground truth (ie, non-optimized designs w.r.t.
minimum anode feature size) average normalized MFS = 0.328)
[12].

4.2 Performance of the Surrogate Model
The surrogate model, leveraging a modified ResNet-50 archi-

tecture [50], exhibits impressive predictive performance in eval-
uating the manufacturability metric, normalized MFS. Through
rigorous training and validation, the model achieves a training
loss of 0.002 and a validation loss of 0.0015, with a high 𝑟2 score
of 0.96, denoting the variance explained by the model. These
metrics suggest that the surrogate model can make highly ac-
curate predictions, as evidenced by the strong linear correlation
between the predicted and ground truth values in Figure 4.

4.3 Manufacturability Metrics Optimization through
Guidance Module
The guidance module integrated into the voxel-DDM plays a

key role in aligning the generative design process with MFS opti-
mization. It utilizes real-time feedback from the surrogate model
during the denoising process, guiding the generation of new de-
signs towards optimal solutions. Based on the evaluation test
dataset (see section 4.1), the MFS distributions of the 3D anode
designs, respectively, generated by the guided and vanilla voxel-
DDMs are illustrated in Figure 5. In the evaluation test dataset,
the 100 random designs generated by the guided model have
a larger MFS mean value than the MFS mean value of 100 ran-
dom designs generated by the vanilla model (𝑚𝑒𝑎𝑛𝑔𝑢𝑖𝑑𝑒𝑑 = 0.63,
𝑚𝑒𝑎𝑛𝑣𝑎𝑛𝑖𝑙𝑙𝑎 = 0.54). Furthermore, during the pairwise Student’s
t test, guided voxel-DDM achieved: p < 0.000106, and T-statistics
= 3.954. Figure 6 shows two pairs of 3D anode designs, respec-
tively, generated by the vanilla (top) and guided (bottom) voxel-

Performance Score

Pr
ob

ab
ilit

y 
D

en
si

ty

FIGURE 5: Normalized minimum feature size distributions of 100
random designs respectively generated by the guided and vanilla
(unguided) voxel-DDMs

FIGURE 6: Two pairs of designs respectively generated by the
guided and vanilla (unguided) voxel-DDMs using two same noise
inputs along with their corresponding normalized MFS values. Top
- Vanilla voxel-DDM and bottom - guided voxel-DDM.

DDMs using the same noise input. The normalized MFS values
of the generated designs were estimated using the trained surro-
gate model. The top designs (a) and (b) generated by the vanilla
voxel-DDM have normalized MFS values of 0.24 and 0.35, re-
spectively; while that of the designs (c) and (d) generated by the
guided Voxel-DDM are 0.72 and 0.51. This comparison illus-
trates that the designs on the bottom have larger normalized MFS
values compared to those on the top, suggesting the effectiveness
of the guided voxel-DDM in consistently generating better de-
signs achieved compared to the vanilla model. This comparison
highlights the transformative impact of the module.

We further compare the denoising process of the vanilla and
guided voxel-DDMs. As illustrated in Figure 7, the design pat-
terns of the generated designs emerge at earlier stages during the
guided denoising process, while the patterns appear later during
the vanilla denoising process. This suggests that the surrogate
model is manipulating the gradient to generate the designs at
an early stage during denoising and then further optimize it to
maximize the minimum feature size.

Furthermore, the designs generated by the guided voxel-
DDM achieve an average FID score [54] of 572.01 and an aver-
age IS of 1.17 [54], while the vanilla model scores 556.58 and
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FIGURE 7: Impact of gradient manipulation of the surrogate model on Denoising process of the guided voxel-DDMs.

an average IS of 1.23, as reported in Table 2. These scores re-
flect a nuanced trade-off between the models: the guided model,
driven by metric optimization, produces designs with slightly
lower quality and diversity, while the unguided model, free from
such constraints, generates a slightly broader range of designs
with slightly higher quality. These findings in this section also
underscore the effectiveness of the surrogate model in evaluating
design features critical to manufacturability and its potential to
significantly impact the field of generative design for manufac-
turing.

The integration of the guidance module makes voxel-DDM
acutely responsive to the predictive insights of the surrogate
model, ensuring that the generated designs meet not only the
complexity and detail requirements, but also the predefined man-
ufacturing metrics or constraints. As a navigational tool, the
guidance module directs the design generation towards promis-
ing areas within the vast design space, specifically targeting MFC
anode structures with higher manufacturability. This guided
voxel-DDM empowered by the surrogate model allows for a
more concentrated exploration of the design landscape, espe-
cially beneficial in the realm of MFC anode design where mul-
tiple manufacturability metrics need to be carefully balanced.
The improved manufacturability metric achieved by the guided
model underscores the practicality and advantages of incorporat-
ing data-driven guidance into the design process. The case study
also highlights the framework’s ability to expand the knowledge
of viable anode design spaces.

4.4 Limitations and Future Directions
While the proposed guided voxel-DDM framework achieves

promising results, this study has a few limitations and leaves room
for further improvement. First, the dataset used in this study is
relatively small and needs greater variety, which may limit the
ability of the guided voxel-DDM to explore the solution space
in a more broad way. Future studies should aim to collect larger
datasets and retrain the generative model accordingly. Second,
in this study, only one manufacturability metric, the minimum
feature size (measured in millimeters ‘mm’), is considered to
demonstrate the proposed exploratory framework, leaving other
metrics unexplored, such as the minimum cavity size, anode con-
nectivity, anode resistance, and surface area. We will incorporate

more metrics in the future to assess the manufacturability, feasi-
bility, and performance of the generated designs more compre-
hensively. Third, the proposed framework has not been compared
with other benchmark models in a quantitative way. Various ex-
periments will be conducted to compare the effectiveness of the
proposed model with other 3D shape generative models in terms
of generation quality and performance optimization in the future.
Additionally, we will seek to adapt the developed framework for
various conditional generation scenarios, such as text-, image-,
or 3D-guided generation. These new features will enable more
controlled design refinements in the future. Finally, diffusion
models, which rely on Gaussian noise for a predictable progres-
sion towards a noise distribution, face challenges when introduced
to non-Gaussian noise, affecting model training, inference, and
the quality of generated outputs. In future work, adapting to non-
Gaussian noise involves modifications to the model’s architecture
and loss function, requiring technical adjustments and empirical
evaluation to maintain or improve performance.

5. CONCLUSION

In this paper, we develop a guided voxel denoising diffu-
sion model (voxel-DDM) that adapts state-of-the-art generative
modeling techniques to achieve high-fidelity 3D shape genera-
tion optimized for additive manufacturing (AM). The key inno-
vation is to adapt a denoising diffusion model (DDM) from the
2D space to the 3D space to generate intricate 3D topologies.
Manufacturability guidance is incorporated through a pretrained
surrogate model to steer the denoising sampling process toward
designs with higher manufacturability. Our work fills the knowl-
edge gap on generative design manufacturability by incorporating
a pre-trained surrogate model to guide the denoising process to
generate better manufacturable designs. Experiments on the de-
sign of Microbial Fuel Cell anode structures demonstrate the
ability of the framework to expand design knowledge, improve
manufacturability, and unlock greater innovation potential. By
combining data-driven generative modeling with manufacturing
design, this methodology enables the discovery of novel, high-
quality 3D designs tailored for target manufacturing processes.
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