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ABSTRACT
The Earth’s radiation budget relies on cloud properties like
Cloud Optical Thickness obtained from cloud radiance ob-
servations. Traditional physics-based cloud retrieval methods
face challenges due to 3D radiative transfer effects. Deep
learning approaches have emerged to address this, but their
performance are limited by simple deep neural network archi-
tectures and vanilla objective functions. To overcome these
limitations, we propose CloudUNet, a modified UNet-style
architecture that captures spatial context and mitigates 3D
radiative transfer effects. We introduce a cloud-sensitive ob-
jective function with regularized L2 and SSIM losses to learn
thick cloud regions often underrepresented in input radiance
data. Experiments using realistic atmospheric and cloud
Large-Eddy Simulation data demonstrate that our proposed
CloudUNet obtains 5-fold improvement over the existing
state-of-the-art deep learning, and physics-based methods.

Index Terms— Deep learning, remote sensing, cloud
property retrievals

1. INTRODUCTION
Clouds play a crucial role in protecting the Earth from

cosmic radiation. To estimate this protective capacity, vari-
ous cloud properties such as cloud optical thickness (COT),
cloud effective radius (CER), and cloud top height (CTH) are
utilized. Typically, satellites are employed to gather cloud
radiance data, enabling the estimation of these cloud proper-
ties [1, 2]. If the collected radiance data is one-dimensional,
then a simple 1D inversion would result in accurate cloud
properties retrievals [3]. However, in reality, clouds exist
in three dimensions, necessitating the attainment of 3D radi-
ance observations and the utilization of a 3D inversion method
for precise cloud property retrievals. Unfortunately, radiance
observations can be at most two dimensions, and attempt-
ing to retrieve cloud properties using a 2D inversion tech-
nique is hindered by the effects of 3D radiative transfer [4,
5]. The estimation of cloud optical thickness (COT) from ra-
diance data poses a challenging 3D inverse problem, lead-
ing researchers to propose approximate solutions. For in-
stance, Nakajima et al. [3] proposed the Independent Pixel
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Assumption (IPA), which assumes that each pixel in the ra-
diance data is independent and represents individual clouds.
However, this assumption is impractical since neighboring
pixels are dependent on each other due to the 3D radiative
transfer effect. Therefore, the estimated properties can dif-
fer significantly from the actual cloud properties. Recently,
Deep Learning (DL) solutions have been explored to enhance
remote sensing applications [6], particularly for cloud proper-
ties retrieval [7, 8]. Okamura et al. [7] developed a deep neu-
ral network (DNN) model to jointly retrieve COT and CER.
However, their method employed a simple feed-forward neu-
ral network with an L2 loss objective for training, which lim-
ited its ability to fully capture the spatial context inherent in
the radiance data. Another approach by Masuda et al. [8] fo-
cused on estimating COT from reflectance data captured by a
ground-mounted digital camera using a convolutional neural
network (CNN)-based model by mitigating the 3D radiative
transfer effects. However, their method is limited by data col-
lection methods and space-time averaging. Nataraja et al. [9]
posed COT retrieval as a segmentation problem and retrieved
COT using UNet [10, 11, 12, 13]. However, their approach
requires high-dimensional radiance observations and is com-
putationally expensive to train.

In this paper, we demonstrate that the above limitations
could potentially be overcome with the use of a more sophis-
ticated deep learning model and using refined training ob-
jective functions to effectively capture spatial context while
handling 3D radiative transfer effects. Our main contribu-
tions include proposing CloudUNet, a UNet-style neural net-
work, which employs a novel cloud-sensitive objective (CSO)
function with weighted L2 and SSIM [14] loss to retrieve
COT from 3D radiance data. Also, empirically we show that
our CloudUNet model obtains 5-fold improvement in per-
formance compared to the state-of-the-art deep learning and
physics-based methods. Additionally, we conducted ablation
studies to demonstrate the significance of the CSO loss func-
tion compared to the proposed methods in the literature.

2. DATA AND PROBLEM FORMULATION
First, we describe the data used for COT retrievals before

introducing our problem formulation.
Data: A realistic representation of the atmosphere and



Fig. 1: Cloud Optical Thickness Retrieval Framework to estimate COT from the radiance data. Radiance Data are first trans-
formed into small patches and DL/ML model is used to retrieve COT for corresponding patches. Data Post-processing generates
the full COT profile from COT patches.

clouds is provided by Large-Eddy Simulation (LES) ARM
Symbiotic Simulation and Observations (LASSO) since this
representation is consistent with observations from the Atmo-
spheric Radiation Measurement (ARM) program [15]. The
LASSO LES cloud field (denoted as cloud profile) has a large
domain size of 14km ×14km×15km with horizontal reso-
lution of 100m and vertical resolution of 30m below 5km
which extends to 300m above 5km with all the cloud prop-
erties specified. The large domain size and high-resolution
of LASSO LES cloud fields, makes it suitable for our three-
dimensional (3-D) effects radiative transfer studies. To con-
duct radiance computations in 3-D, we utilized the spheri-
cal harmonics discrete ordinate method (SHDOM) developed
by Evans et al. [16], operating at two specific wavelengths:
0.66µm and 2.13µm. The angular resolution of the SHDOM
used was 12 and 24. The radiative transfer calculation was
performed at solar zenith angle (SZA) 60 degrees, solar az-
imuth angle (SAA) 0 degrees and view zenith angle (VZA) 0
degrees with double periodic horizontal boundary conditions.
The surface was treated as a Lambertian surface with surface
albedo of 0.05. Thus, from the simulations at 200m resolu-
tion we have the COT as 72 × 72 matrix and radiance data
as 72 × 72 × 2 tensor, where the 2 represents the two wave-
lengths, and the remaining dimensions represent height and
width of cloud profile, respectively.

Problem Formulation: We formulate the problem of
COT retrieval as a regression task of predicting continuous
COT value matrix provided the input radiance tensor data.

3. OUR COT RETRIEVAL FRAMEWORK
Our COT retrieval framework, shown in Figure 1, in-

cludes data processing modules and our proposed CloudUNet-
based COT retrieval model.

Data Processing: The data processing module includes
Pre-processing and Post-processing blocks. The Pre-processing
block generates patches from the cloud profile’s radiance data
and maintains a hash table of patch locations. A patch repre-
sents a small region in the cloud profile, e.g., a 10×10 region.
Using patches instead of the entire cloud profile allows for
efficient data handling and training of smaller COT retrieval
models. It’s worth noting that simulating a large number
of LES cloud profiles is time-consuming and costly, but it’s
necessary to train larger COT retrieval models. The Post-
processing block uses the hash table to combine the COT

patches retrieved by the COT retrieval model and generates
the complete COT for the full cloud profile.

COT Retrieval Model: We propose CloudUNet as the
COT retrieval model for accurately estimating COT values
given radiance input data. Our CloudUNet, shown in Fig-
ure 2, is a UNet model and uses a customized loss function
called Cloud Sensitive Objective to regress COT values from
the radiance data. Additionally, like the popular UNet-style
models used in computer vision [17, 18, 19], our CloudUNet
model extracts spatial features at multiple scales, and uses
skip connections to pass context from preceding layers.

Our CloudUNet model works as follows: given that the
radiance patch data of size 10 × 10, the model incorporates
only two downsampling layers. In each layer, features are
extracted using a 3 × 3 convolutional operation. To down-
sample the data before proceeding to the next layer, a 2 × 2
max-pooling layer is applied. Since border pixels are lost dur-
ing this process, the feature maps are cropped before being
concatenated with the deconvolved layer. The inclusion of
skip connections between opposite layers serves a dual pur-
pose. It addresses the issue of gradient vanishing and pro-
vides additional context to the preceding layers. Overall, our
CloudUNet model architecture is suited for COT retrieval be-
cause the convolutional filters at multiple scales helps to cap-
ture the local structure of the radiance data while the skip
connections aids in preserving the global context of the en-
tire patch.

Cloud Sensitive Objective function: We propose a cus-
tomized Cloud Sensitive objective (CSO) function, shown in
equation 3, for training our CloudUNet model. Our CSO
function comprises two components: the L2 loss and the SSIM

Fig. 2: Our Proposed CloudUNet Architecture



loss, each of which plays an important role during the model’s
training, as discussed below.

L2 loss is a commonly used objective function for regres-
sion task. In COT retrieval task, the rare thick cloud regions
which represent the high COT regions, are difficult to learn
using L2 loss [20] (Please see Figure 4). To enforce our
CloudUNet model to learn the underrepresented high COT
values, we propose a simple modified L2 loss function with
a weighting parameter as shown in Eq. 1. Here, ŷ and y are
the estimated and ground truth COT respectively. When the
target COT values such as high COT regions are larger than
a user-specified threshold θ, then the L2 loss is multiplied by
a weighting factor α (α > 1). In experiments, we found that
the tail distribution corresponds to the high COT regions and
used 90th percentile of the COT training data in choosing the
threshold.

LP (ŷ, y) =
1

N

N∑
i=1

{
α · (ŷi − yi)

2 : yi > θ
(ŷi − yi)

2 : yi ≤ θ
(1)

LSSIM (ŷ, y) =
(2µŷµy + c1)(2σŷσy + c2)

(µ2
ŷ + µ2

y + c1)(σ2
ŷ + σ2

y + c2)
(2)

Ltotal(ŷ, y) = λ1×LP (ŷ, y)+λ2×(1−LSSIM (ŷ, y)) (3)

The second loss term, shown in equation 2, corresponds
to the Structural Similarity Index Measure (SSIM) [14] qual-
ity metric. We used the SSIM metric to capture the global
structure similarity between the ground-truth COT and the
predicted COT. If the ground-truth and predicted COT ma-
trices are identical, then SSIM is +1, otherwise, it is < 1 and
will be -1 if there are completely incorrect. Here, c1 and c2
are constant terms, and µ and σ are mean and standard devia-
tion respectively.

We trained our CloudUNet model using our proposed
CSO loss function with two hyperparameters, λ1 and λ2, to
adjust the weights of the L2 and SSIM losses. The intuition
behind 1−LSSIM is that when the estimated COT is close to
the ground truth, the LSSIM would be close to 1 and subtract-
ing it from 1 would result in zero loss and when the estimated
COT is not the optimal one, it would increase the total loss.
Empirically we have found that both loss terms in Eq. 3 have
similar ranges and therefore we have chosen λ1 = λ2 = 1 in
our experimental setup.

4. EXPERIMENTS
In this section, we discuss the dataset preparation and the

implementation details of our experimental setup.
Data preparation: For this study, a total of 102 LASSO

LES cloud fields were simulated by employing the cloud Liq-
uid Water Content (LWC) form, and a constant cloud droplet
effective radius of 12µm for every column in all profiles. To
account for the limited dataset size, we employed five-fold
cross-validation (CV) in our experiments. During training,
the Data Pre-processing block generated 1024 patches from
each profile using a stride of 2. A thresholding operation was

Table 1: Comparison of COT Retrieval Methods
Methods

MSE
(↓ Better)

RRMSE (%)
(↓ Better)

Physics Based IPA (Nakajima et. al [3]) 1.966± 0.390 14.49± 6.35
Random Forests [22] 2.956± 0.133 16.05± 4.97

Feed forward DL (Okamura et. al [7]) 1.891± 0.142 12.95± 3.64
CloudUNet (Ours) 0.342 ± 0.038 5.81 ± 2.10

performed to ensure at least 25% cloudy region is present in
each patch, specifically for deep learning (DL) training pur-
poses. During inference, we used the Data Processing block
to generate non-overlapping patches for COT retrievals, and
combined these patches to obtain the complete cloud profile
prediction. For example, our CloudUNet model predicted
COT with a dimension of 10 × 10, so a stride of 10 was
used during inference. Each fold of CV had 47,700 training
samples, 19,050 validation samples, and 19,050 held-out test
samples. The actual range of target COT values was 0 to 360,
however, the majority of data is concentrated within a smaller
range of 0 to 10. To effectively capture this sparse region, we
employed a log scale for estimating COT.

Implementation: We conducted experiments using the
PyTorch [21], employing various hyperparameters such as
optimizers, learning rates, schedulers, and batch sizes. Our
CloudUNet model achieved the best results with a learning
rate of 0.1, batch size of 128, trained for 250 epochs with
early stopping and patience of 50 epochs. The learning rate
was adjusted using ReduceLR.

Model Comparisons: We compared the following mod-
els: (a) IPA retrievals - a physics-based method [3] used by
NOAA, (b) Random Forests Regressor [22], (c) state-of-the-
art deep learning model [7], (d) Our proposed CloudUNet
model. For evaluations of the predicted COT retrieval with
respect to the ground truth COT, we employed two metrics:
Mean Squared Error (MSE) and Relative Root-Mean-Squared
Error (RRMSE). MSE [23] is computed by taking the average
of the squared difference between the predicted and the target
COT. A lower MSE denotes better retrievals. Relative RMSE
(RRMSE) [24] is calculated by dividing RMSE by the aver-
age of the squared ground truth where RMSE is the squared
root of MSE. When RRMSE is less than 10%, it is considered
excellent performance [25].

5. RESULTS AND DISCUSSION
Quantitative Results: Table 1 illustrates that our pro-

posed CloudUNet model outperforms all the other models
by a significant margin. CloudUNet achieves at least 82%
lower MSE and a 55% lower Relative RMSE compared to
the Okamura et. al [7] and Physics-based IPA retrieval meth-
ods [3], and achieves 88% lower MSE and a 64% lower Rela-
tive RMSE than Random Forests model. We believe the skip
connections in CloudUNet facilitate information reuse and
enable the extraction of complex spatial features from differ-
ent layers.

Qualitative Results: We present the visualizations of the
estimated COT retrievals of different models for the qualita-



Fig. 3: Cloud Optical Thickness (COT) Retrievals using different methods. Colorbar represents the intensity of the COT value
in log scale. Blue color indicates thinner or no cloud regions while red color denotes thicker cloud regions.

tive results. Figure 3 shows the COT estimation and MSE er-
rors of an example profile for all the models. The colorbar (in
log scale) represents the COT value where red indicates the
highest possible COT values or thick cloud regions, and the
blue indicates the lowest COT values or thin cloud regions.
From this Figure 3, we see that the CloudUNet’s COT re-
trieval closely aligns with the ground truth compared to state-
of-the-art deep learning-based (Okamura [7]) and physics-
based (IPA [3]) retrievals. The IPA retrievals are sharp but
tends to overestimate the COT value across different regions,
resulting in a high MSE loss. Conversely, both the Okamura
and Random Forest models fail to produce sharp retrievals.
By referring to the corresponding MSE scores, we can clearly
observe the advantage of CloudUNet.

Remarks: Both the qualitative and quantitative results en-
tail the advantages of CloudUNet and its training objective
function. The model’s architecture preserves global context
using skip connections while capturing local features with
downsampling and upsampling blocks, and the training ob-
jective accounts for the underrepresented thick cloud regions.

Fig. 4: COT Retrievals from CloudUNet trained with differ-
ent objective functions. Top row represents the COT Profiles
and the bottom row is the zoomed version of the specific area
from the profiles which are marked by the rectangle.

6. ABLATION STUDIES
In this section, we investigate the effectiveness of our ob-

jective functions for COT retrieval.
Impact of the Objective Function: We compare and

contrast the performance of CloudUNet model trained with

different objective functions such as Binary Cross-Entropy
(BCE) loss [9], L2 loss and proposed CSO function to study
the impact of the training objective functions. Note that for
the BCE loss we posed the COT retrieval as a 32 class seg-
mentation problem as in [9] for fair comparison. Table 2
shows that the CloudUNet model achieves a lower MSE error
with our CSO loss compared to the BCE and L2 loss indi-
cating its effectiveness. The high MSE error for BCE based
retrieval is due to the quantization effect i.e., each retrieved
pixel always contains error because they are never the exact
value rather an approximate one bounded by the bin range.

In Figure 4, we see that when the CloudUNet is trained
with L2 loss, the high COT value regions (thick cloud re-
gions) are not estimated accurately. This is because the data
inherently has a tail distribution i.e, the thick clouds are rare
compared to the clear sky, and an L2 loss provides an aver-
age estimation ignoring these regions. Our objective function
places more weight on the underrepresented regions so that
the model also learns these COT values along with the domi-
nating low COT value regions. The rarity of thick clouds also
explains the small improvement in MSE and RRMSE scores.

Table 2: Ablation Studies-CloudUNet results with different
objective functions

Objective
Function MSE RRMSE (%)

BCE Loss [9] 9.006± 3.775 25.60± 5.33
L2 Loss 0.407± 0.052 6.38± 2.47

CSO (Ours) 0.342 ± 0.038 5.81 ± 2.10

7. CONCLUSIONS

Estimating cloud properties, such as Cloud Optical Thick-
ness (COT), holds great importance in atmospheric sciences
due to its impact on climate and weather. In this paper, we
demonstrated that UNet-style deep learning model architec-
tures, such as our proposed CloudUNet model with novel loss
function, are well-suited for reducing 3D radiance effects, as
supported by both quantitative and qualitative COT retrieval
results. In future research, we plan to extend our methods to
multi-view data, where both Solar Zenith Angles and View
Zenith Angles vary.
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