FuncTeller: How Well Does eFPGA Hide Functionality?

Zhaokun Han', Mohammed Shayan*, Aneesh Dixit", Mustafa Shihab*,
Yiorgos Makris*, and Jeyavijayan (JV) Rajendran’
TTexas A&M University, *The University of Texas at Dallas
T {hzhk0618, aneeshdixit, jeyavijayan}@tamu.eduy,
*{shayan.mohammed, mustafa.shihab, yiorgos.makris}@utdallas.edu

Abstract

Hardware intellectual property (IP) piracy is an emerging
threat to the global supply chain. Correspondingly, various
countermeasures aim to protect hardware IPs, such as logic
locking, camouflaging, and split manufacturing. However,
these countermeasures cannot always guarantee IP security.
A malicious attacker can access the layout/netlist of the hard-
ware IP protected by these countermeasures and further re-
trieve the design. To eliminate/bypass these vulnerabilities, a
recent approach redacts the design’s IP to an embedded field-
programmable gate array (eFPGA), disabling the attacker’s
access to the layout/netlist. eFPGAs can be programmed with
arbitrary functionality. Without the bitstream, the attacker can-
not recover the functionality of the protected IP. Consequently,
state-of-the-art attacks are inapplicable to pirate the redacted
hardware IP. In this paper, we challenge the assumed security
of eFPGA-based redaction. We present an attack to retrieve
the hardware IP with only black-box access to a programmed
eFPGA. We observe the effect of modern electronic design au-
tomation (EDA) tools on practical hardware circuits and lever-
age the observation to guide our attack. Thus, our proposed
method FuncTeller selects minterms to query, recovering the
circuit function within a reasonable time. We demonstrate
the effectiveness and efficiency of FuncTeller on multiple cir-
cuits, including academic benchmark circuits, Stanford MIPS
processor, IBEX processor, Common Evaluation Platform
GPS, and Cybersecurity Awareness Worldwide competition
circuits. Our results show that FuncTeller achieves an average
accuracy greater than 85% over these tested circuits retrieving
the design’s functionality.

1 Introduction

1.1 Hardware IP: Threats and Defenses

The monetary loss associated with intellectual property (IP)
theft is comparable to the amount of US exports to Asia [72].
This ongoing theft results in a loss of revenue for the IP devel-
opers and diminishes incentives for investment in research and

development. Many leading semiconductor companies out-
source design and manufacturing while owning the hardware
IP. In 2020, such companies constituted 33% of the entire
semiconductor market [37]. Consequently, there is an eco-
nomic incentive for reverse engineering, unauthorized usage,
and overproduction of hardware IPs. For example, accord-
ing to a report from the US Department of Justice in 2018,
the worldwide supply for dynamic random access memory
(DRAM) is worth nearly $100 billion, and Micron controls
20-25% of the DRAM industry; however, IP theft in Micron
caused an estimated loss of $8.75 billion [27]. These delete-
rious consequences underline the need for countermeasures
against IP theft in the semiconductor industry.

Semiconductor fabrication facilities are concentrated in
countries prone to geopolitical tensions and conflicts [78].
Except for Intel, IBM, and Samsung, nearly all chip fabrica-
tion is carried out in such foreign territories. Consequently,
the supply chain of the semiconductor industry is vulnerable
to threats [76]. Since untrusted foundries and testing facili-
ties have access to the hardware IP, rogue employees from
these entities may attempt to pirate the IP. Additionally, an
untrusted end-user can purchase a chip from the market and
use reverse engineering to extract the hardware IP netlist.

Numerous countermeasures have been proposed to prevent
hardware IP theft: logic locking, camouflaging, and split man-
ufacturing are three prominent examples [8, 38, 40, 62, 82].
Logic locking protects the design by adding extra logic con-
trolled by additional key inputs [62, 82]; only the correct
key restores the correct functionality. Logic locking can de-
fend against reverse engineering as it obscures the IP. Cam-
ouflaging deters reverse engineering attacks from end-users
by designing a chip that looks alike but performs different
functionalities, which is known only to the owner [8]. Split
manufacturing protects the IP by splitting the manufactur-
ing process among different foundries, thereby preventing a
single foundry from obtaining the complete design informa-
tion [38, 40]. While these approaches increase trust in the
supply chain, they are still vulnerable to several attacks.

The existing IP protection techniques become vulnerable



Table 1: The relationship between various hardware security threats and countermeasures. A v//X denotes the countermeasure is
secure against/vulnerable to the threat, and “N.A.” denotes the threat is not applicable to the countermeasure.

Threat Countermeasure
Logic locking [62, 82] | Camouflaging [8] | Split manufacturing [38, 40] | FPGAs [10, 11, 30, 55, 73, 83]
IP piracy [14] v v v v
Reverse engineering [75] v 4 v v
Algorithmic attacks [29, 48, 49, 65, 67, 80] X X X v
Bitstream extraction [9, 45, 70, 84, 87] N.A. N.A. N.A. v

when the attacker has oracle access, i.e., a functional chip sold
on the market. For instance, some defenses are vulnerable
to input-output (I/O) query-based attacks [29, 67], where se-
lected input patterns are applied, and the output differences be-
tween the locked design and the oracle are observed to extract
the key. In addition, the attacker can analyze the structural
traces in the locked netlist and recover the original design;
these attacks are referred to as structural attacks [32, 49, 65].
Collectively, I/O and structural attacks render most logic lock-
ing, camouflaging, and split manufacturing techniques vulner-
able, as listed in Table 1.

1.2 FPGA-based IP Protection

Given the weakness of existing IP protection techniques,
researchers have proposed to redact the complete design
information from the untrusted supply chain using a field-
programmable gate array (FPGA). An FPGA is a repro-
grammable integrated circuit that can be programmed to have
an arbitrary functionality by uploading a bitstream to the
FPGA. In contrast, traditional application-specific integrated
circuits (ASICs) are designed to perform a specified function
and cannot be reconfigured. While ASICs comprise multi-
ple gates derived from a specified technology library, FPGAs
consist of multiple programmable logic blocks. These logic
blocks, in turn, consist of multiple lookup tables (LUTs),
which are programmable based on the desired functions.
Therefore, an FPGA netlist appears as a cluster of LUTs
and does not provide any meaningful information unless pro-
grammed with a bitstream. Thus, compared to the conven-
tional integrated circuit (IC) design model, the hardware IP is
the bitstream rather than the FPGA platform itself.

Xilinx FPGAs can protect the IP at the software level by
encrypting the bitstream and preventing the attacker from
using the readback functionality to extract the bitstream [9,
83, 87]. Recent attacks attempting to recover the bitstream
have been published [9, 45, 70, 84, 87]—however, advanced
bitstream protection mechanisms thwart these attacks [30, 73,
83]. These protections safeguard the bitstream at the software
and hardware levels. Thus, due to their security and versatility
(as shown in Table 1), FPGA-based countermeasures have
gained interest in academia and industry [10, 11, 25, 39, 54,
551

FPGAs can also be embedded into ASIC, referred to as
embedded FPGAs (eFPGAs). A design implemented on an

ASIC with an eFPGA offers the reconfigurability of FPGAs
while mostly retaining the power, performance, and area (PPA)
cost-effective benefits of ASICs. eFPGAs have also piqued in-
terest due to their security capabilities. Particularly, it has led
to the development of an IP piracy countermeasure known as
eFPGA-based hardware redaction. This IP protection has cap-
tured significant interest [10, 11, 55]. Obfuscated Manufac-
turing for GPS (OMG) [54] and Structured Array Hardware
for Automatically Realized Applications (SAHARA) [25]
are two notable projects supported by the Defense Advanced
Research Projects Agency (DARPA) utilizing this technol-
ogy. The recent Cybersecurity Awareness Worldwide (CSAW)
2021 competition supported by Siemens et al. also included
designs redacted by eFPGAs [43]. Importantly, the US mili-
tary has selected Intel’s structured ASIC technology, a hybrid
of FPGA and ASIC, to protect hardware IPs [25, 39].

1.3 Our Goals and Contributions

In this work, we ask a question: How secure are eFPGAs?
We answer it by attempting to recover an IP implemented
on an eFPGA with only I/O (oracle) access. To this end,
we develop a heuristic attack, FuncTeller, overcoming the
following challenges of recovering hardware IPs on eFPGAs:

1. The size of the search space for an attacker is 2", where 7 is
the number of inputs of the redacted design implemented
on the eFPGA. Many practical hardware designs have a
large number of inputs, e.g., the IBEX processor has 1,386
inputs [81]. This renders brute-force search impractical
and forces the attacker to smartly choose input patterns for
retrieving the redacted design (Section 2.2).

2. A heuristic algorithm may predict approximate functional-
ity, but it sacrifices accuracy for efficiency. Thus any prac-
tical attack must ensure accuracy scaling, particularly for
hardware IPs with a large number of inputs (Section 2.2).

3. eFPGAs have a generalized structure independent of the
implemented design, and the number of I/O pins is design-
agnostic. Generally, some output pins are unused by design.
Such unused output pins are driven to a constant 0/1. For
example, the IBEX processor [81] implemented on an
FPGA with 18 K gates has 117 outputs with constant 0/1
functionality. Identifying these corner cases is crucial for
reducing the execution time of a successful attack.



To overcome these challenges, we leverage several proper-
ties of hardware designs to develop a practical and effective
attack, FuncTeller. The salient features of FuncTeller are:
Firstly, FuncTeller predicts the Boolean function of a hard-
ware IP by querying a small number of input patterns within
the entire search space of size 2". The prediction is made
by carefully selecting the input patterns, leveraging the fact
that the input patterns with similar behavior are clustered to-
gether, and the distance between them is small (Section 4.2).
Secondly, FuncTeller parameterizes the prediction algorithm,
enabling the user to find the appropriate trade-off between
accuracy and efficiency. These parameters are empirically
derived to optimize the FuncTeller prediction (Section 4.2).
Thirdly, FuncTeller predicts each output independently. Thus,
it allows the attack to be executed parallelly on each output,
thereby speeding up the overall prediction (Section 4.3). Fi-
nally, FuncTeller identifies special cases, such as constant
logic 0/1 outputs, allowing it to reduce prediction time and
improve accuracy (Section 4.4).

The paper’s contributions can be summarized as follows:

1. We present a heuristic solution, FuncTeller, to ex-
tract redacted hardware IP with high accuracy, for
FuncTeller achieves an accuracy of 91% on the IBEX
processor [81] (Section 5).

2. FuncTeller can achieve 1.22x more accuracy than the
existing state-of-the-art attack [18] for predicting a black-
box circuit’s functionality (Section 5).

3. We evaluate the performance of FuncTeller on various
open-sourced and widely-used circuits, including seven
academic benchmarks (ISCAS’85 [33] and ITC’99 [26])
and three industrial circuits, such as Stanford MIPS pro-
cessor [34] (4 K gates), IBEX processor [81] (18 K gates),
and Common Evaluation Platform (CEP) GPS circuit [35]
(213 K gates) (Section 5.3).

4. We present an analysis of the trade-off between accuracy
and efficiency while running FuncTeller. In a case study
on IBEX [81], the trade-off curve describes the variation
in accuracy from 81.2% to 88.5%. This analysis allows
the attacker to ascertain the estimated accuracy for a given
time limit before running FuncTeller (Section 5.5).

5. The paper discusses potential countermeasures to defeat
FuncTeller, to motivate the development of better counter-
measures to safeguard the hardware IP (Section 7.2).

In addition to the listed contributions, we plan to open-
source our attack tool.

2 Background and Prior Work

This section describes an intellectual property (IP) piracy
countermeasure using embedded field-programmable gate
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Figure 1: Design netlists before and after hardware redaction.
Gates and wires inside the black box are eFPGA-redacted.

arrays (eFPGAs) and discusses why multiple attempts to cir-
cumvent the countermeasure have failed. Finally, we detail
hardware design principles from the field of logic synthesis.
These principles will form the backbone of our attack.

2.1 eFPGA-based Hardware Redaction

As described in Section 1.2, a field-programmable gate ar-
ray (FPGA) netlist does not provide valuable information to
an attacker. This fact is utilized to design a special class of
circuits wherein a traditional application-specific integrated
circuit (ASIC) is embedded with an FPGA. This eFPGA
can implement a part of the hardware IP. Thus, “hiding” or
redacting the said part of the circuit. Post-manufacturing, the
eFPGA is loaded with the bitstream. Due to the lookup table
(LUT) based structure of FPGAs, the netlist does not reveal
the hardware IP that it has been programmed with. Using an
eFPGA to “hide” the IP is termed as eFPGA-based hardware
redaction [10, 11], as represented in Figure 1.

2.2 Prior Work

All digital circuits implement a Boolean function. Thereby,
the problem of extracting hardware IP from a black-box de-
sign is similar to the problem of learning the Boolean func-
tion implemented by the design. Thus, we can observe the
responses of black-box design to chosen queries and use the
results to recover the Boolean function or its approximation.

Multiple works follow the same principle and provide so-
lutions for learning a Boolean function [13, 19]. However,
these algorithms are borrowed from the field of circuit design
and are designed for traditional ASICs requiring a netlist. As
discussed in Section 2.1, a meaningful netlist with design-
specific information is not accessible for eFPGA-redacted
hardware. Without the netlist, Angluin et al. [4] show that
these learning algorithms require querying all 2" input pat-
terns, where » is the number of inputs, rendering these algo-
rithms inefficient for practical scenarios.

A Satisfiability (SAT) based approach [67] can successfully
retrieve IP for ASIC designs, even if the circuit is protected




by state-of-the-art IP protection mechanisms, by solving con-
junctive normal forms (CNFs) with a SAT solver. However,
this approach does not apply to FPGA designs because FP-
GAs consist of programmable LUTs. LUTs with large input
sizes result in a computational complexity exponential to the
number of inputs. Thus, applying SAT solvers to deduce the
designs implemented on FPGAs is computationally infeasible.
A recent work on deobfuscating eFPGAs, Rezaei et al. [61],
proposes to apply a SAT-based approach that simplifies the
CNF conditions (eliminating structural loops) by leveraging
the usage information/parameters of the FPGA (such as the
input size and the number of used LUTs) [61]. However, these
parameters (the input size and the number of used LUTs) are
not accessible to the attacker under our threat model, where
the attacker has only black-box access.

Generic logic regression-based approaches [63] attempt to
recreate a Boolean function by fitting a model on a collection
of data points. These data points are obtained by querying the
oracle with input patterns and observing outputs. However,
this approach does not consider properties specific to practical
hardware circuits and operates on the entire Boolean space.
Further, it results in low efficiency and lack of scalability to
larger circuits, as shown in Section 2.3.

Chen et al. [18] propose a circuit learning approach
based on Boolean regression. To the best of our knowledge,
this presents the state-of-the-art attack to retrieve black-box
Boolean functions. Chen et al. [18] overcome the severe draw-
back of generic logic regression methods by considering prop-
erties specific to hardware circuits. However, this approach
maps the outputs to a library of Boolean functions to speed up
the algorithm, and this speed benefit may not be universally
applicable to all circuits. Thus, its practicality is limited.

2.3 Limitations of Existing Approaches

The logic regression techniques mentioned in Section 2.2
face issues while scaling up to large circuits. More impor-
tantly, these logic regression techniques have low accuracy.
For example, the state-of-the-art tool from Chen ef al. [18] can
recover IBEX with an accuracy of only 56.68%. Further, we
observed that some IPs, such as Common Evaluation Platform
(CEP) GPS [35], cannot be recovered even after three days of
run-time. These techniques choose queries randomly without
adapting them to the underlying practical hardware design
properties. This hardware-agnostic approach results in low
accuracy and efficiency and is a deficiency for all traditional
logic regression techniques, including Chen et al. [18].
FuncTeller overcomes these drawbacks by focusing on: (i)
specificity towards practical hardware designs, (ii) scalability,
(iii) accuracy, and (iv) usability. FuncTeller specifically targets
practical hardware IPs in contrast to previous works, which
are mainly extensions of theoretical solutions. As a result,
FuncTeller significantly improves accuracy and can scale to
larger designs. Additionally, FuncTeller’s heuristic nature

provides users flexibility through user-defined parameters and
allows them to tune the attack to different settings.

2.4 Logic Synthesis

As mentioned in Section 2.3, FuncTeller considers hardware-
specific properties which enable it to outperform previous
attacks. These properties are rooted in fundamental logic
synthesis principles, which are outlined in this subsection.

Consider a Boolean function f with single output and mul-
tiple inputs, a, b, and c. The Boolean function is written as
Jf = abc+ abc. This representation of the function is referred
to as the sum of products (SOP), and every individual prod-
uct is referred to as a minterm. Here, each product can be
regarded as an ON-set minterm if it returns f = 1 when it is
an input; otherwise, an OF F-set minterm if the resultis f = 0.
Note that there are 2" minterms for an n-input function, and
each minterm is either ON-set or OFF-set.

For some cases, multiple ON-set minterms can be com-
pressed/merged into an implicant. The implicant is repre-
sented by elements from {0, 1,-}, where “-” is a don’t care
covering both 0 and 1 cases. For example, I} = ab- is an
implicant with one don’t care bit. /; covers two minterms:
abc and abc. Therefore, the Boolean function of f can be
simplified as f = ab.

Most logic synthesis algorithms aim to reduce the cost
of logic implementation by removing redundant implicants.
Implicants uncovered by other implicants are called prime
implicants (Pls). A set of PIs containing all ON-set minterms
forms a prime implicant table (PIT). For most practical de-
signs, PIs are distributed close to each other. PIs are rarely
far apart, according to Han er al. [32]: this is an attribute
of the Boolean functions of these designs. In the modern
hardware design cycle, powerful commercial tools, such as
Synopsys Design Compiler [68], Cadence Genus [15], and
Siemens Precision RTL [52], utilize this attribute of Boolean
functions while performing synthesis processes to optimize
the circuit, simplify the logic, and reduce hardware cost. For
example, consider the Boolean function of f = abc + abc. If
each of the function’s minterm is implemented individually
(without any optimization), the function can be realized using
six logic gates, as shown in Figure 2(a). However, the same
function can be simplified/synthesized to f = I} = ab-, so
the circuit can be realized with one logic gate, as shown in
Figure 2(b). This type of optimization is a hallmark of all
synthesis tools that aggressively minimize the number of PIs
in order to minimize the number of gates, which in turn min-
imizes the circuit’s area and power. FuncTeller exploits the
fact that most practical designs have this property (PIs are
distributed close to each other) so that synthesis tools can
utilize it and simplify PIT.
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Figure 2: The circuits of Boolean function f = abc + abc (a)
before and (b) after synthesis.

3 Threat Model

We consider a threat model consistent with previous works
on embedded field-programmable gate array (eFPGA) based
hardware redaction [11], attacks on eFPGA [21, 61], and the
Cybersecurity Awareness Worldwide competition [43].
Attacker’s Locations: The attacker could be a collusion of
an untrusted foundry/testing facility and an untrusted end-
user. The attacker in the foundry/testing facility has access
to a chip netlist with the unprogrammed eFPGA. The at-
tacker can procure a functional chip from the market and can
isolate eFPGA by analyzing the chip netlist and identifying
the scan chains connected to the eFPGA using reverse engi-
neering [75]. Note that the purchased functional chip is the
application-specific integrated circuit (ASIC) integrated with
the configured (loaded with a certain bitstream) eFPGA.
Attacker’s Capabilities: In this threat model, the attacker
has the following capabilities:

* The attacker can isolate the eFPGA from the rest of the
design by accessing dedicated scan chains of eFPGA, a
feature commonly supported by eFPGA vendors [21]. Al-
ternatively, the attacker can perform a probing attack to iso-
late eFPGA by locating and accessing the ASIC’s internal
signals to control/observe eFPGA’s inputs/outputs [21, 79].

* An attacker is unable to retrieve the hardware intellectual
property (IP) by performing a side-channel attack or bit-
stream extraction. Over the years, multiple schemes have
been proposed to mitigate these attacks [30, 45, 70, 73, 84].

* After isolating the eFPGA, the attacker can enable scan-
chain access by stripping scan-chain protections [2, 3, 23,
51]. Further, the attacker can access input-output (I/O) pins
through scan chains to query the hardware IP design. Ap-
pendix A provides more details on the mechanisms to en-
able or unlock scan-chain access, including attacks on scan-
chain protections [2, 3, 23, 51].

Attacker’s Goal: The attacker aims to accurately and effi-
ciently recover the hardware IP’s functionality by only query-
ing the black-box combinational part of the hardware design.

4 FuncTeller: Technical Approach

In this section, we present our attack, FuncTeller, to recover
a design implemented on an eFPGA under the threat model
described in Section 3. Recall that logic synthesis on practical
circuits optimizes power, performance, and area (PPA) by
minimizing the number of prime implicants (PIs) and literals
in the circuit’s prime implicant table (PIT). As a consequence,
logic synthesis clusters ON-set minterms into several PIs.
This behavior is a consistent feature of practical hardware
designs and has the following two implications:

* A single PI covers multiple ON-set minterms that are con-
sistent with the literals in the PI representation. We use this
property to predict each PI by expanding from a discov-
ered ON-set minterm (seed): attempting to replace each
literal with a don’t care and heuristically verifying each
replacement.

 The distance between any two PIs in a PIT is usually much
smaller than the input size. We use this property to reduce
the search space when updating the predicted PIT with the
new PI. The generation of new PI requires the discovery
of the next ON-set minterm. Therefore, we limit the search
space for the next ON-set minterm to being in close prox-
imity to the current PlIs.

For the remainder of Section 4, we show FuncTeller ex-
ploits these implications. Further, we describe the mecha-
nism of FuncTeller, using the example circuit in Figure 3.
Consider a circuit cone' with n inputs (a,as, -+ ,a,) and
one output; the circuit implements the Boolean function f
with n = 6, as shown in Figure 3(a). The Boolean function
is f(ay,az, - ,a6) = ajaxds + asdg + ajag, and its PIT is
shown in Figure 3(b). Note that the expression of PIT for a
certain Boolean function is non-canonical.”
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Figure 3: An example circuit: (a) the netlist and (b) the PIT.

4.1 Initialization

FuncTeller initializes by finding an ON-set minterm mg. We
search for mg by querying the oracle with random minterms,

' A multi-output circuit could be collapsed into several 1-output circuits.
Such a l-output circuit is referred to as a cone.

2A circuit representation, which is not unique, is considered non-canonical.
Here, there may exist multiple valid PITs for the same output.



and it ends upon finding an ON-set minterm within r queries
(r € NT). If all the r queries are OFF-set minterms, then
FuncTeller regards the output’s function as constant 0 and
terminates out of the purpose of efficiency.

4.2 Expanding from ON-set Minterm to PI

After finding an ON-set minterm myg, FuncTeller predicts the
PI containing my. This is referred to as “the expansion of the
ON-set minterm my to a predicted PI PI,,.,”. Algorithm 1 de-
scribes the corresponding routine. We first set a variable string
“cube” equal to the binary pattern of the ON-set minterm .
We update each literal of cube to form predicted PI Pl .

For each (') literal of the cube, we recursively construct a
new group of minterms {m, } by inverting the i’ cube literal
and replacing the don’t cares (if any) with binary “17/0”.
After constructing each minterm m;, we query it using the
oracle O. If the query shows that m is in the OFF-set, we stop
generating new minterm m; corresponding to the i’ literal
inversion. Instead, we keep the i literal as in m( and move to
the next literal. On the other hand, if all the minterms formed
by inverting the i"* cube literal belong to the ON-set, then
the i"" cube literal is updated to a don’t care “~”” and then we
move to the next literal. Once it has been through all literals
in my, the algorithm returns the updated cube as Plyeq.

During the PI prediction, the number of minterms to be
queried is exponential to the number of don’t cares in the cube.
Algorithm | uses a heuristic approach to avoid querying all
covered minterms and can be inaccurate while predicting.
The probability of prediction error depends on the number of
minterms queried during the prediction routine. To control
the error while keeping FuncTeller efficient, we introduce a
“linear limitation parameter p.” When updating each literal,
the maximum number of queries is capped at p times the
number of don’t cares. Thus, the PI prediction for an n-input
function requires querying at most p x n> minterms. Thus,
the algorithm takes time complexity O(p x n?) = O(n?). We
further discuss the performance improvement of Algorithm |
in Appendix B and Appendix C.

We now explain Algorithm 1 with the aid of an example.
Consider the minterm my = 000110, which belongs to f’s
ON-set, as shown in Figure 3. We expand this minterm to a
PI in 6 stages, as shown in Figure 4 and described below:

1. Initially, the first literal a; is flipped to obtain a query
100110. The oracle returns “1”, i.e., the queried minterm
belongs to the ON-set. As a result, a; is replaced with a
don’t care “~” and the cube is updated as -00110.

2. Then, the second literal a; is flipped, and the don’t care
(ap) is replaced by “1” and “0” to obtain the next set of
queries. Recall that we use the linear limitation parameter
(p = 1.1) to limit the number of queries.” This implies

3Based on our tested designs, p = 1.1 is an empirically derived constant.

Algorithm 1: Expansion of an ON-set minterm to PI

Input: Oracle O, output index w, ON-set minterm m, linear
limitation parameter p
Output: Predicted PI PIy,q
1 Function expand_minterm_to_PI (O, w, my, p):

2 cube 1= my >Initialize cube
3 for index € {1,2,--- ,len(mg)} do
4 num_dc := cube.count (“-")
5 iter_limit := min{2””m—d“,p x num_dc}
6 cube := update_cube (O, w, cube, index,
iter_limit)
Plyyeq := cube
8 return Ply.q
9 Function update_cube (O, w, cube, index, iter_limit) :
10 flag =1
1 forie {1,2,---iter_limit} do
12 m := pick_random_minterm(cube, index)
13 response := O.query_oracle(mj,w)
14 if response == 0 then
15 flag :=0 >Fail to replace with don’t care
16 ‘ break
17 if flag ==1 then
18 ‘ cube := replace_with_dc_bit(cube, index)

19 return cube

|Startingpoint000110 | o | Check cube - - -2 10
Y —)5:9 Query 000010 OFF
_ | Checkcube 200110 7 Cube 110
g{;a Query 100110 ON v
A Cube -00110 Checkcube - - -1?0
Y Query 000100 ON
o | Checkcube  -20110 - 010100 ON
2 Query 110110 ON gb 100100 ON
k] 010110 ON & 11100 ON
Cube --0110 Cube ---1-0
N'Z Y
Checkcube - -?110 Check cube - - -1 -?
Query 111110 ON © | Query 000101 ON
o 011110 ON & 010101 ON
ED 001110 ON 7 100101 OFF
mCube ---110 Cube ---1-0
Y
3 Predicted PI - - - 1-0 |

N
>

Figure 4: The PI expansion from the initial minterm (starting
point/seed) mp = 000110 to Pl,,.q = ---1-0.

that we replace a, to obtain 1.1 x d ~ 2 queries: 110110
and 010110. Since both queried minterms belong to the
ON-set, ay is replaced by “~” to update the cube as --0110.

3. Now, a3 is flipped, and the two don’t cares (aj, ay) are
replaced randomly by “1/0” to obtain 1.1 x d = 3 queries,
as shown in Figure 4. After observing the result, a3 is
replaced by a don’t care, and the resultant cube is ---110.

4. Next, aq4 is flipped to “0”, and the don’t cares are replaced,
as in the earlier stages. The first query 000010 returns “0”,



i.e., the queried minterm is OFF-set. Therefore, as = 1,
and cube (---110) is restored back, as shown in Figure 4.

5. Then, as is flipped, and 1.1 x d = 4 queries are generated
by replacing the three don’t cares, as shown in Figure 4.
As all queries belong to the ON-set, the cube is updated to
---1-0 by substituting a5 with “-”.

6. In the last step, ag is flipped to “1”. The oracle is queried
by replacing don’t care bits as earlier. However, the third
query 100101 returns “0”. As a result, the step terminates
by retaining the cube ---1-0, forming the predicted PI.

The time complexity of Algorithm 1 is O(n?). Thus, scala-
bility is a concern when 7 is large. To reduce the worst-case
time complexity, we rely on the following observation: In
most practical circuits, not all inputs participate in the compu-
tation of a given output. Thus, effective inputs* of the output
are usually much less than all inputs. If these effective inputs
can be identified for each output, then the time taken for PI
expansion can be reduced by querying fewer minterms. Ap-
pendix B provides an algorithm and more details on how to
scalably expand from an ON-set minterm to a predicted PI.

4.3 Searching for the Next ON-set Minterm

After expanding an ON-set minterm to a predicted PI,
FuncTeller searches for another ON-set minterm to be ex-
panded as the next PI. Rather than randomly searching for
the next ON-set minterm in the complete Boolean space (B"),
FuncTeller uses a satisfiability (SAT) solver to reduce the
search for the next ON-set minterm. Specifically, the search
space is encoded with the following constraints:

4An effective input can propagate its value to the output.
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Figure 5: Search space for the next ON-set minterm when the
current predicted PIT is {---1-0}, as shown in the example of
Figure 4. Gray shade denotes the space covered by the current
predicted PIT, yellow shade denotes space with d = 1 from
PIT, and the entry with * denotes the starting point .

(1) The search space for the next ON-set minterm excludes the
current predicted PIT. In other words, the next minterm is
not within the distance of dy = 0 of any existing predicted
PI. The gray shade in Figure 5 showcases the excluded
space when the current predicted PIT is {---1-0}.

(2) The search space for the next ON-set minterm only in-
cludes the neighboring minterms of the current predicted
PIT. More specifically, the search space is bounded within
the distance of dy to the current predicted PIT.” The yellow
shade in Figure 5 showcases this constraint when dy = 1.

For an n-input function, if the current predicted PIT has one
PI with x don’t care bits, the size of the search space for the
next ON-set minterm is (n — x) x 2* instead of 2". In Figure 5,
n==6andx=4.

We now elaborate on the encoding process for the next
ON-set minterm search according to constraints (1) and (2).

First, we construct a conjunctive normal form (CNF) CNFy
describing the inverse of the predicted PIT. In other words,
the next candidate minterm m’ belongs to the OFF-set of the
current predicted function f,,.q. Thus, CNF is encoded as

{ml ‘ fpred(ml) = 0}' ()

Next, we add constraint (2) to walk through the uncovered
space incrementally. This is done by searching within the
distance of d from the PIs in the predicted PIT. The distance
d is incremented from 2 to n (the number of inputs) to ensure
that the search is efficiently directed. Therefore, the candidate
minterms belong to the following set

{m'|3my € B", s.t. fprea(mo) = 1 and D(m',mg) < d}. (2)

This CNF encoding is denoted as CNFZ, . The constraint
CNF for the next ON-set minterm search, CN Fy.qycp, 1S

CNFyearch = CNFy ACNEZ, . (3)

These constraints are fed to a SAT solver that returns a
candidate minterm 77’. This minterm (') is queried using
the oracle. If m’ belongs to the ON-set, then the search is
terminated, and the minterm ' is expanded to a predicted PI
as described in Algorithm 1. On the other hand, if m’ belongs
to the OFF-set, the SAT solver is called again to return another
candidate minterm. However, to avoid SAT solver returning
the same solution, CNF is updated to exclude the previous
result. Assume my,. is the previous OFF-set minterm, then
the CNF constraint in Equation (1) is updated as

CNFy = CNFy A (—mppp). 4

The process of generating candidate minterms is recur-
sive until either finding an ON-set minterm or consecutively

SDistance is the number of pairs of (0,1) and (1,0) between two PIs. The
concept of distance is similar to “Hamming distance,” except distance takes
into account PIs containing don’t cares, but Hamming distance does not.



Algorithm 2: Prediction on the w-th output

Algorithm 3: Predicting entire circuit’s functionality

Input: Oracle O, output index w, distance parameter dy,
linear parameter p, convergence parameter pcony,
time limit 7
Output: Predicted PIT PITy,.q
1 Function predict_cone (O, w, dy, p, Pconvs T'):

2 PlTyreq =2

3 m{*t = search_for_1st_ON_set_minterm(O)

4 PI[l,fg , := expand_minterm_to_1IstPI(O,w, m(l,“ )

5 PIT g := PIT)yeq U{Pl},f; 7

6 while exe_time < T do

7 CNF, := exclude_PIT(PIT}.q)

8 d:=dy

9 CNFyuren = CNFy ACNFZ,,

10 solution := query_SAT_solver(CN Fyeqrcn)

1 counter :=0

12 while solution # UNSAT & exe_time < T do
13 if counter > pcony then

14 break >Consecutively visit pcon OFF-set

minterms

15 m' := extract_minterm(solution)

16 if O.query_oracle(mg,w) == 1 then

17 my:=m'

18 Plyreq = expand_minterm_to_PI(O,w, mg, p)
19 PITpred = PITpred U{Plpred}

20 goto line 6

21 else

22 counter := counter + 1

23 Mmpypp =’

24 CNFearcn = CNFyoqren N\ (_‘m/()FF)
25 solution := query_SAT_solver(CN Fyeqrcn)
26 if exe_time < T then

27 d:=d+1

28 if d ==n+1 then

29 ‘ return PIT),,.4

30 else

31 | goto line 9

32 return PlTyq

visiting peony OFF-set minterms (Peony € NT). peony is @ user-
defined convergence parameter for balancing between effi-
ciency and accuracy, as shown in Algorithm 2. Appendix C
details the analysis on pcopy- If peony OFF-set minterms are
consecutively visited, then the constraint CNFZ,, is updated
by incrementing d in Equation (2). If d = n+ 1 (the first time
that d > n), FuncTeller terminates.

4.4 Recovering Single Output

The process of searching for the next ON-set minterm and the
subsequent PI expansion is repeated till one of the termina-
tion conditions is met. One termination conditionisd =n-+1,
as described at the end of Section 4.3. Another termination
condition is reaching a user-defined time limit 7. When the
time exceeds the specified time limit, the attack terminates

Input: Oracle O, distance parameter dg, linear parameter p,
convergence parameter Pcony, time limit 77

Output: Entire predicted circuit Cpreq

1 Function predict_circuit (O, doy, p, pcon» T):

2 out put_size := count_number_of_outputs(O)

3 Conespreq '= 2

4 for we {1,2,--- Joutput_size} do

5 PIT,q := predict_cone (O, w, do, p, peonv» T)

6 Cones;fre 4 -= convert_PIT_to_netlist(PITp,.)

7 Cprea := merge_cones_to_circuit(Cones ,,q)

8 return Cpreq

and returns the predicted PIT generated during attack execu-
tion, as described in Algorithm 2. The time limit termination
condition is checked after each PI expansion and during the
search for the next ON-set minterm.

Special Case: Outputs with Constant Logic 0/1. The num-
bers of input and output pins utilized in an eFPGA design are
defined by the function being implemented. The remaining
pins are constant 0/1. If we can identify these constant 0/1
outputs, then it allows us to allocate more time to predict other
non-constant outputs. If the first predicted PI (P }W ;) consists
of all don’t cares (“-”") and with no literal (“0”/“1”), we regard
the output’s functionality as constant 1. On the other hand, if
the algorithm cannot find the first ON-set minterm, we con-
sider the output’s functionality as constant 0. If the output is
determined as constant 0/1, then the prediction terminates.

4.5 Recovering the Entire Circuit

Having described how to recover a single output, we now
discuss how to recover the entire circuit. The prediction on
each output can be made in parallel, as shown in Algorithm 3.
Once the predictions on all outputs finish, we collect all pre-
dicted PITs. Electronic design automation (EDA) tools can
synthesize the design, such as Synopsys Design Compiler [68],
Cadence Genus [15], and Siemens Precision RTL [52], to sat-
isfy the desired PPA constraints for the predicted circuit.

4.6 FuncTeller in IC and FPGA Design Flows

Since the predicted logic format is PIT, it raises the question
of how to utilize the predicted design in the IC design flow.
We address this by discussing the steps the attacker can take
after using FuncTeller. After recovering an eFPGA-redacted
design, the attacker can flexibly choose to either upload the
bitstream with predicted design information on the FPGA or
replace the redacted components with ASIC netlist and gener-
ate its layout, as shown in Figure 6. To generate the bitstream
of the FPGA or the layout of the ASIC, the attacker could
utilize academic tools (e.g., Berkeley ABC [12]) and industry-
standard commercial tools (e.g., Xilinx Vivado [83], Synopsys
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Figure 6: The IC design flow with FuncTeller-predicted PITs.

Design Compiler [68], Cadence Genus [15], and Cadence
Innovus [17]. Next, we describe in detail the bitstream and
layout generation.

Bitstream Generation. FuncTeller predicts PITs of the target
design with input-output query access. After collecting the
predicted PITs of all outputs, we convert them into a struc-
tural netlist by converting the logic of each output’s PIT into
a Verilog file using Berkeley ABC [12]. This gate-level design
is then passed on to Xilinx Vivado [83] for synthesis, imple-
mentation, and bitstream generation. Thus, the attacker can
upload this bitstream of the predicted design on the FPGA.

Layout Generation. Similar to the process of generating
bitstream, the attacker can convert the predicted PITs to the
Verilog design, as shown in Figure 6. Then, we use Cadence
Genus [15] to generate the synthesized netlist Verilog design
with the selected library, as shown in Figure 6. In this synthe-
sis process, Cadence Genus also merges/optimizes the logic
and generates an industry-standard SDC file containing de-
sign constraints and timing assignments. Further, to generate
the layout, we provide the netlist Verilog file, SDC file, and
library as inputs to Cadence Innovus [17], the physical imple-
mentation tool. Cadence Innovus optimizes the placing and
routing processes to generate the optimal layout. The timing,
power, and size characteristics of the FuncTeller-recovered
design will vary and depend on what synthesis tools and con-
straints are used by the attacker and the defender. eFPGAs
are purported to protect functionality [11, 55], which is the
challenge we target in this work.

5 Results

In this section, we run FuncTeller on select practical
circuits and discuss the efficiency and effectiveness of
FuncTeller compared to the state-of-the-art technique, Chen
et al. [18]. Later, we verify the validity of the underlying as-
sumptions of our attack and corroborate these assumptions
with our results. Finally, we further analyze FuncTeller’s per-
formance on a few selected circuits and present them as case
studies for more in-depth understanding.

5.1 Simulation Setup

FuncTeller targets practical circuits considering only black-
box access to the combinational part of a design. Specifically,
FuncTeller attacks hardware designs redacted by embedded
field-programmable gate arrays (eFPGAs). To reduce the im-
pact of inherent variation among multiple vendors due to fac-
tors such as field-programmable gate array (FPGA) board size
and clock speed, we evaluate FuncTeller by testing it against
circuits implemented on the OpenFPGA framework [71].

Environment: We run the attack simulations on a 32-core
Intel Xeon processor at 2.6 GHz with 512 GB RAM. We
use Verilator [66] for generating executable binary oracles of
tested circuits, Synopsys Design Compiler [68] for synthesis,
and the Berkeley ABC tool [12] for converting to Verilog.

Tested Circuits: We select a wide range of test circuits at
different scales, including seven circuits from ISCAS’85 and
ITC’99 benchmark suites, two processor circuits (Stanford
MIPS and IBEX), and the Common Evaluation Platform
(CEP) GPS circuit [26, 33-35, 81]. Further, we evaluate
FuncTeller’s performance on circuits from the Cybersecu-
rity Awareness Worldwide (CSAW) 2021 competition [43].°

5.2 Evaluation Metrics

To assess the performance of FuncTeller, we employ the fol-
lowing two metrics: (i) equivalence checking and (ii) an accu-
racy metric quantifying the functional similarity between the
predicted and original circuits.

Equivalence Checking: This metric considers the ratio of
functionally equivalent outputs to all outputs. Commercial
tools such as Synopsys Formality [69] and Cadence Confor-
mal [16] are used to perform the equivalence check. The
equivalence checking tool identifies whether a predicted out-
put is equivalent to the original circuit. Naturally, the tool does
not quantify the error rate or functional similarity. Thus, this
metric may be misleading as a design may have a very low er-
ror rate (<0.01%) but may have a low equivalence check score.
Thus, we use another metric to quantify the error rate/accuracy
and provide an in-depth evaluation.

Simulation-based Accuracy: Due to the drawback of the
equivalence checking-based metric, we need to formalize an
output accuracy-based metric to ensure a fair comparison with
previous work and correctly measure attack effectiveness. To
this end, we employ a simulation-based method to quantify
the functional similarity between the original and predicted
designs. For every ' output (i € {1,2,--- ,m}, where there
are m outputs), we test the original and predicted circuits with
a set of randomly chosen minterms and record the number of
minterms with matched output responses from both circuits.
Thus, we calculate the accuracy of the i/ output as

__ # minterms with matched responses

AC; x 100%.

# tested minterms

6CSAW is the largest student-run cybersecurity event in the world [43].



Table 2: A performance comparison between Chen et al. [18] and FuncTeller on multiple test circuits using different metrics.
Some cells are marked as “erroneous case,” which implies the failure of Chen et al. [18] to run on the tested circuit.

Success rate Efficiency
Circuit # inputs | # outputs | # gates Formal (%) Simulation (%) Attack time (hour)

Chen et al. [18] | FuncTeller | Chen et al. [18] | FuncTeller FuncTeller
c432 36 7 160 0 28.57 82.51 99.86 0.09
% c880 60 26 383 0 53.85 82.01 96.12 1.06
s | cl355 41 32 546 0 0 61.02 50.77 1.01
g c1908 33 25 880 0 0 63.73 81.82 1.00
5 | c7552 207 107 3,512 0 53.27 72.05 86.66 1.25
= bl4 277 299 9,821 erroneous case 20.40 erroneous case 92.46 1.39
b20 522 512 6,787 0 11.91 64.26 84.10 9.92
¢ | MIPS 466 330 3,902 0 63.39 81.97 95.49 1.84
g IBEX 1,386 1,385 18,087 0 16.46 56.68 90.96 72.85
© | GPS 9,707 9,731 213,125 | erroneous case 25.36 erroneous case 68.89 44.44

We repeat this process on all outputs and take the average

m
value AC = ¥ AC; /m as the accuracy of the entire design.
i=1

5.3 Performance of FuncTeller

We use the following parameter values to run FuncTeller:
distance parameter dy = 2, linear parameter p = 1.1, con-
stant limitation parameter py = 8, and convergence parameter
Peonv = 50. We obtain these values empirically.

Table 2 shows that FuncTeller has a higher accuracy com-
pared to the state-of-the-art technique, Chen et al. [18], on
all tested circuits except for c1355. The average accuracy
(simulation-based) of Chen et al. [18] and FuncTeller is
70.5% (excluding bl4 and GPS) and 84.7%, respectively.
Thus, FuncTeller has an improvement of 14.2% compared
to Chen et al. [18]. FuncTeller achieves an accuracy of
70% while attacking GPS, with an attack time of 44.4 hours.
Meanwhile, Chen et al. [18] fails to run on b14 and GPS,
while it runs for more than 5 days on IBEX and achieves
an accuracy of only 56.68%. We believe these anomalies
are due to mismatches between the circuits and the tool’s
presumptions. Chen et al. [18] relies on similarities in port
names and the presence of few selected linear operators,
whereas FuncTeller makes no such presumptions. Therefore,
FuncTeller achieves better prediction performance compared
to Chen et al. [18] and recovers more designs.

The attack time for FuncTeller is the sum of two parts: (i)
the maximum execution time while predicting single outputs
and (ii) the time taken to merge all predicted single output
cones into the entire circuit. For an attacker unconstrained by
a lack of computational resources, it may be possible for them
to run all single output predictions in parallel to speed up (i).
However, considering computational limits, we run our attack
on a maximum of 50 outputs in parallel.

In addition to the tested circuits in Table 2, we also run
Chen et al. [18] and FuncTeller on the circuits featured in
the CSAW 2021 competition [43]. The logic locking event in-

cluded circuits redacted with eFPGA based on the OpenFPGA
framework. For details, please check Appendix E.

5.4 Survey on Distance Between Pls

As mentioned in Section 5.3, we choose the distance param-
eter dy = 2 in FuncTeller. In this subsection, we explain the
reason behind this decision. The choice of dy = 2 is due to the
distances between prime implicants (PIs) on most practical
hardware intellectual properties (IPs). To understand these
distance properties on practical circuits, we conduct a study
on IBEX [81] and investigate the prime implicant table (PIT)
of each output using the Berkeley ABC tool. First, for each
PIT, we calculate the distance between any two PIs within the
PIT. Then, we collect the distance distribution among all ex-
tracted outputs PITs, as shown in Figure 7. In each extracted
PIT, all pairs of PIs are with a distance of < 19. This result
gives a preliminary idea of the distance distribution for each
pair of PIs. Further, to show how close each PI is to the rest
of the PIT, we investigate the minimum distance of each PI
to all other PIs in the same PIT, as shown in Table 3. Table 3
shows that the minimum distance between each PI to other
PIs in the same PIT is either O, 1, or 2. In other words, in the
same PIT, for an arbitrary PI PI;, there always exists another
PI PI; in the same PIT, such that D(PI;,PI;) < 2. Thus, to
make the process of searching for the next ON-set minterm
efficient and effective, we choose dy = 2. The findings of
this analysis are generalizable to most practical circuits as
the findings are an outcome of electronic design automation
(EDA) algorithms clustering minterms together during the
design encoding stage. Thus, the choice of dy = 2 is valid for
most practical hardware IPs.

5.5 Performance Trade-off

To observe the trade-off between the time limit and the ac-
curacy, we repeat FuncTeller on IBEX [81] 10 times. We
choose IBEX as the design to be tested as IBEX has 1,386
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Figure 7: The distribution of the distance between two PIs of
the extracted PIT for the case study of IBEX [81].

Table 3: A case study of IBEX [81]: the distribution of the
minimum distance for PlIs.
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Figure 8: The performance trade-off between accuracy and
the attack time of FuncTeller on IBEX [81].

inputs and 1,385 outputs and can be considered a large-scale
design. Further, we calculate the accuracy with different time
limits. The time limit estimates the total attack time. Note that
FuncTeller terminates PIT predictions within the time limit;
however, the actual attack time may exceed the time limit due
to the last PI expansion still taking place and the PIT merging
processes for individual cones.

Figure 8 shows the box plot considering 10 sets of attacks
on IBEX when the time limit (7') ranges from 0.5 hours to 10
hours with AT = 0.5 hours as the time step. When 7' = 0.5
hours, the average accuracy is 81.2%; when T' = 10 hours, the
average accuracy is 88.5%. Among the repeated 10 attacks on
IBEX, the standard deviations of accuracy with different time
limits are always within 1.5%. Thus, the accuracy results are
stable since the random processes in FuncTeller do not result
in significant accuracy deviations among repeated attacks.
Further, by observing the tendency of the accuracy vs. time

curve, the attacker can fit the collected data in a mathematical
model, such as a logarithmic model, and use it to estimate the
accuracy for a desired time limit 7', and vice versa.

5.6 FuncTeller on a Real-World Application

Recall that we evaluate the performance of FuncTeller by
calculating the accuracy metrics discussed in Section 5.2. We
now show that the design recovered by FuncTeller can mean-
ingfully work by evaluating the performance of FuncTeller at
the application level.

We consider a hardware-software co-design application
for image processing [28]. The core of this application is a
hardware design in Verilog, image_processing.v. This ap-
plication reads an image and generates an output image based
on Gaussian blur, an image processing function. There are a
total of eighteen 16-bit adders in the image processing circuit.
We assume that this circuit is protected by redacting all the
16-bit adders to an eFPGA. We then use FuncTeller to recover
the circuit by predicting and replacing the redacted modules.
Thus, the recovered image processing circuit contains eigh-
teen FuncTeller-recovered 16-bit adders. In our evaluation,
we compare the output images of: (i) the golden image pro-
cessing circuit with programmed eFPGA, (ii) the protected
image processing unit with un-programmed eFPGA, and (iii)
the recovered image processing circuit with FuncTeller pre-
diction.

We use a 128 x 128-pixel image of Peppers for our eval-
uation, as shown in Figure 9(a). We perform Gaussian blur
image processing on this input. Figure 9(b) shows the output

() (b)

© (d)

Figure 9: (a) Input image, (b) original output image, (c) output
image when all the 16-bit adders are redacted by eFPGA, and
(d) output image after the recovery of FuncTeller.



image of the original hardware, which is the golden reference.
Figure 9(c) shows the output of the image processing circuit
with un-programmed eFPGA. Recall that all eighteen 16-bit
adders are redacted to an eFPGA. To mimic the behavior of
the un-programmed eFPGA, we replaced all 16-bit adders
with random number generators. The result in Figure 9(c)
shows that the image content is not recognizable. Finally, Fig-
ure 9(d) shows the output image of the FuncTeller-recovered
image processing circuit. A comparison of Figure 9(b) and
Figure 9(d) images shows that the output image of recovered
hardware is similar to that of the golden one.

6 Related Works

Application-specific integrated circuits (ASICs) and field-
programmable gate arrays (FPGAs) allow for a variety of intel-
lectual property (IP) protection mechanisms. Since there has
been a significant interest in developing IP protection mecha-
nisms, it is essential to determine the impact of FuncTeller in
the field. To this end, we present related works in IP protection
to understand FuncTeller’s relation to the current literature.

6.1 IP Protections and Attacks on ASIC

Preventing piracy of ASIC designs led to the genesis of ini-
tial IP protection countermeasures. Concurrent efforts by the
research community led to the development of multiple defen-
sive countermeasures, where most countermeasures protected
against threats emerging from untrusted entities with minor
differences in their threat models and use-case scenarios. No-
tably, almost all developed defenses were also successfully
broken by innovative attacks.

Logic Locking inserts additional circuitry along with addi-
tional key inputs. The functionality is retrieved only with the
correct key [62, 82]. Thus, logic locking can defend against
threats such as reverse engineering and IP piracy. Logic lock-
ing has gained significant interest as an IP piracy countermea-
sure. For instance, the Siemens Security TrustChain platform
integrates logic locking as a countermeasure [53]. However,
powerful input-output (I/O) query-based and structural at-
tacks [49, 65, 67] break many logic locking techniques.
Camouflaging [8] adds additional dummy layout structures
to hide the IP layout details. Notably, Rambus utilized cam-
ouflaging and developed its proprietary camouflaging tech-
nology [59]. However, a design protected by camouflaging
can be mapped to a logic-locked design [86]. Thus, pirating
the hardware IP protected by camouflaging is equivalent to
breaking the corresponding logic-locked design [29].

Split Manufacturing is an IP protection technique applied to
IP layout. The layout layers are split into the back-end-of-line
(BEOL) and front-end-of-line (FEOL) layers. Then, the FEOL
layers are sent to an untrusted foundry, and a trusted foundry
fabricates the BEOL layers. Without the BEOL connections,
the attacker (in the FEOL foundry) cannot directly pirate the

design. The Intelligence Advanced Research Projects Activity
(IARPA) proposed split manufacturing to protect chip fabri-
cation [36]. However, there have been successful algorithmic
attacks against split manufacturing, such as proximity attacks
on split-manufactured designs [48, 80].

Multiple proposed attacks defeat IP protection techniques
on ASICs. As stated in Table 1, algorithmic attacks can cir-
cumvent the previously mentioned countermeasures (logic
locking, camouflaging, and split manufacturing) on ASICs.
However, algorithmic attacks cannot successfully adapt to
eFPGAs. I/O attacks, such as Satisfiability (SAT) attack [67]
and its variants, cannot scale to attack eFPGAs. This incom-
patibility is due to the exponentially increased complexity
of attacking large lookup table (LUT) based structures for
SAT solvers. Structural attacks [49, 65] are not applicable to
eFPGAs due to the lack of meaningful structural traces since
each LUT’s function and routing information are not readily
available. Thus collectively, algorithmic attacks, one of the
most popular forms of IP theft attacks, fail to break eFPGAs.

6.2 IP Protection Techniques on FPGA

Bitstream Protection. Previous works have considered ex-
tracting the design from the bitstream [9, 87]. The bitstream
of an FPGA is encoded with the design functionality. Thus,
bitstream extraction would enable reverse engineering of the
design implemented on the eFPGA. Thus, it is important
to protect the eFPGA bitstream by developing countermea-
sures. Bitstream extraction attacks can be circumvented by
disabling read-back capabilities, ensuring strong encryption
on the bitstream, and storing the bitstream in a tamper-proof
memory [83]. Furthermore, other bitstream protections from
a hardware perspective [30, 45, 70, 73, 84] defend against
side-channel attacks. The increased interest in developing
bitstream extraction countermeasures calls for newer attack
methods to recover the design redacted by eFPGA.

6.3 Alternative Attacks on eFPGA

Chhotaray et al. [20] stated that, for a protected design, the
main objective should be function recovery rather than recov-
ering the correct key when facing a strong attack model [20],
such as the threat model in this paper. Functional recovery
considers the ratio of input patterns that result in the correct
output and total input patterns. The concept of function re-
covery is useful in quantifying attacks for eFPGA redacted
hardware. This paper uses this concept to quantify the perfor-
mance of FuncTeller, as shown in Section 5.2.

Recently, attacks following this principle have been pro-
posed. Chowdhury et al. [21] use a predictive model which
aims to map the eFPGA redacted design to a previously
known circuit. This approach requires obtaining data from a
large pool of circuits [21]; however, creating such a dataset is
challenging, especially for proprietary designs, such as indus-



trial processors, as they are not open-source. FuncTeller does
not need such a dataset and, thus, can be applied to propri-
etary designs. Recent research also investigates the percent-
age of redacted fabric in the design. Ulabideen et al. [77]
found that an obfuscation rate of 80% on SHA-256 prevents
most template-based attacks. Further, they could synthesize
the stated design to match current state-of-the-art constraints.
FuncTeller, due to its heuristic approach, remains effective as
the attack is independent of the design’s obfuscation rate and
is not dependent on a dataset of previous designs, which is a
drawback of predictive and template-matching approaches.

7 Discussion

Even if FuncTeller broadly breaks most practical hardware
designs efficiently and effectively, some limitations exist.

7.1 Limitations of FuncTeller

Table 2 shows that the FuncTeller predicts circuit functionality
with an average accuracy of 85%. However, the accuracy
drops to close to 50% on c1355 and Advanced Encryption
Standard (AES) circuits. Analyzing these corner cases helps
develop countermeasures against FuncTeller.

c1355 is a 32-bit single-error-correcting design [33]. This
implies that, for any two adjacent minterms keeping a distance
of 1, one of the minterms belongs to the ON-set, and the other
belongs to the OFF-set [31]. In other words, on each output
of 1355, each ON-set minterm is a prime implicant (PI), and
there are 232~! PIs in each prime implicant table (PIT). The
PIT of each c1355’s output contains the exponential number
of PIs to the input size, which is not scalable. As a result,
FuncTeller predicts ¢c1355 with low accuracy, even though
c1355 is small-scale with 41 inputs, 32 outputs, and 546 gates.

AES, a popular and well-researched cryptographic core,
is also seemingly secure against FuncTeller. To verify this
hypothesis, we choose to test FuncTeller on an AES design
for 10 rounds with an unknown key. We run FuncTeller on the
AES circuit with the time limit set at 24 hours per output. As
a result, FuncTeller achieves an accuracy of 49.99% on AES.
When the key is unknown, the AES design is a pseudo-random
function. However, we demonstrate FuncTeller performance
on most practical circuits, such as processor IPs, which con-
stitute a major share of the hardware IP market, according to
a recent semiconductor market analysis [44].

7.2 Potential Countermeasures

The threat model of FuncTeller assumes that the attacker can
obtain the unauthorized scan-chain access by performing at-
tacks [1-3, 6, 7, 22, 23, 51], as described in Appendix A.
Dishonest oracle (DisORC) [50] protects the black-box de-
sign (oracle) and remains unbroken against various attacks. If
the attacker tries to enable the scan access, the functionality

of the design is corrupted, and hence, the outputs are incorrect.
However, DisORC may not sufficiently protect a circuit from
recovery by FuncTeller because DisORC’s effectiveness is
limited. The Hamming distance (HD) between the correct
output and the output on applying a random key introduced
by DisORC is insufficient [50, 58], so the attacker may still
use FuncTeller to recover functionality, as described in Ap-
pendix A. Therefore, a potential countermeasure to defeat
FuncTeller should consider both strong security of scan-chain
access and sufficient HD. Further, a defender can harden the
recovery of the redacted designs against FuncTeller by care-
fully selecting and redacting the logic module whose PI distri-
bution profile is similar to that of the AES or c1355. In other
words, if the redacted logic PIT has a large number of PIs and
literals (e.g., exponential to the input size), the redacted logic
is secure against FuncTeller, as discussed in Section 7.1. Yet,
this may also exponentially increase the hardware size.

8 Conclusion and Ramifications

This paper proposes a heuristic approach, FuncTeller, to ex-
tract the approximate functionality of the design implemented
on an embedded field-programmable gate array (eFPGA).
FuncTeller exploits the attribute of most practical hardware
Boolean functions, where the prime implicants (PIs) are close
to each other. FuncTeller can effectively recover most prac-
tical designs, including benchmark circuits and processors.
Significantly, FuncTeller achieves > 90% accuracy on the
IBEX processor. However, FuncTeller cannot recover pseudo-
random functions, such as Advanced Encryption Standard
(AES). In this paper, we have focused our discussion solely
on the eFPGA platform, as our goal is to challenge the secu-
rity of eFPGA-based hardware redaction; we plan to extend
FuncTeller to other hardware platforms such as ASICs, FP-
GAs, and cloud FPGAs.
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Appendix

A Scan-Chain Access for FPGA Designs

Similar to scan chains in application-specific integrated
circuits (ASICs), scan chains can be utilized in field-
programmable gate arrays (FPGAs), as shown in Figure 10.
Scan chains allow arbitrary test patterns to be loaded into
flip-flops on an FPGA [57, 60, 74]. Note that testability is im-
portant for embedded FPGAs (eFPGAs) as they are integrated
with an ASIC design.

Usually, scan chains are not open to end-users or attackers.
Techniques, such as flipped scan [64], XOR scan [1], double
feedback XOR scan [7], and sub-chains based scan [5, 46, 47,
56], protect scan chains and restrict their access; however, they
are broken by attacks, including Mukesh et al. [1], Subhadeep
etal. [7], Banik et al. [6], and Cui et al. [22]. Some techniques
disable access to scan chains using AES algorithm [85]—
however, such AES-based techniques are vulnerable to at-
tacks, including DaRolt et al. [23] and Ali ef al. [2]. Some
other scan-chain protections were developed using the con-
cept of logic locking, such as Encrypt Flip-Flop [41] and dy-
namic scan obfuscation (DynScan) [42]. Yet, these scan-chain
protections are vulnerable to attacks, such as ScanSAT [3] and
DynUnlock [51]. In this case, the attacker is able to obtain
unauthorized scan-chain access to perform FuncTeller after
the testing stage. Currently, there are secure scan-chain tech-
niques robust to all existing attacks, such as dishonest oracle
(DisORC) [50]. However, DisORC may not sufficiently pro-
tect a circuit from recovery by FuncTeller because DisORC’s
effectiveness is limited. For example, the Hamming distance
(HD) between the correct output and the output on applying a
random incorrect key is 11.30% for b20 in DisORC [50], but
the ideal HD should be 50% on average [58].
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Figure 10: The eFPGA redacted design with the scan chain.
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Algorithm 4: Scalable PI expansion

Input: O, w, my, PIT,eq, ps Po
Output: Pl
1 Function get_hard_dc (mg, PITpeq)
hard_dc .= @
for index € {1,--- ,len(mg)} do
hard_dc_flag := is_dc_always(index,PIT,.q)
if hard_dc_flag == True then
‘ hard_dc := hard_dc\J{index}
return hard_dc
Function get_iter_limit (cube, index, hard_dc, p, po):
num_dc := cube.count (*“="")
if index € hard_dc then
‘ iter_limit == min{2""m-4¢_py}
else
‘ iter_limit = min{2™"4¢ px num_dc)}
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return iter_limit
Function expand_scalably (O, w, mg, p, po):
hard_dc := get_hard_dc (my, PIT),eq)
cube := myg
for index € {1,2,--- |len(mg)} do
iter_limit := get_iter_limit (cube, index,

[ R
e *® 9 W

hard_dc, p, po)
20 cube := update_cube (O, w, cube, index,
iter_limit) > update_cube () in Algorithm 1|

21 Plyyeq = cube
22 return Ply,.q

B Scalably Expanding from Minterm to PI

Algorithm 4 provides a solution for scalable expansion from
an ON-set minterm to a predicted prime implicant (PI) com-
pared to Algorithm 1. In Algorithm 4, The time taken in
determining a PI is proportional to the number of don’t cares.
The non-effective inputs are always don’t cares in all the
PIs. We refer to these as hard don’t care (hard_dc) bits. To
reduce the time taken in determining a potential don’t care
bit, the number of queries on the hard_dc bit is limited to
a constant value pg, where py < p X num_dc in most cases.
We consider pg as the constant limitation parameter in Algo-
rithm 4. Suppose, out of n inputs, there are n, effective inputs
(n, < n). In the worst case, the complexity is O(n2), which is
less than O(n?). Thus, Algorithm 4 has higher efficiency than
Algorithm 1 since O(n2) < O(n?) when n, < n.

C Analysis of Parameters in FuncTeller

Time Limit T. With greater T, FuncTeller can achieve a
higher prediction accuracy because the total number of Pls
increases. Linear Limitation Parameter p. In the worst case,
n
the number of queries in each PI expansionis ) p X i= p X
i=1
2 . . .
%, where 7 is the number of inputs. Thereby, in the worst
case, the time complexity of each PI expansion is O(n?). Con-

stant Limitation Parameter py. Suppose the PI expansion
uses Algorithm 4. Assume a predicted PI has n, effective in-
puts. In the worst case, the number of queries in the PI expan-
sion is % p X i—ﬁ—n)—_?rpo =pX @ + po X (n—n,). Thus,
i=1 i=1
the time complexity of the scalable PI expansion is O(n?).
When n, < n (most inputs are non-effective inputs), the accel-
eration of the PI expansion process (comparing Algorithm 4 to
Algorithm 1) is huge since O(n?) < O(n?). Distance Param-
eter dy. In our simulations, we choose dy = 2 based on a case
study of distance distribution on IBEX [81], as described in
Section 5.4. Convergence Parameter pcony. Let ¢ be the con-
fidential probability of the following event: FuncTeller con-
secutively Visits peony OFF-set minterms. Suppose r° is the
ratio of the ON-set minterms in the search space for the next
ON-set minterm. Thus, ¢ = (1 — rOV)Peow_ Further, if we con-

1 _
sider peon as a fixed parameter, rON = 1 — creow . In our sim-

ulations, we choose pc.,y = 50. If this event happens, then
10% < ¢ < 100% implies 0 < rN < 4.5%. Thus, after con-
secutively visiting OFF-set minterms for p.,,, = 50 times
during the search for the next ON-set minterm, we conclude
that ON-minterms are rare in the current search space since
rON is negligibly small.

D FPGA Hardware Implementation

We construct an FPGA-based prototype to mimic an eFPGA
by solving two challenges: (i) High communication slack
between FuncTeller and oracle affects the attack time signif-
icantly. To reduce this communication slack, we implement
FuncTeller and oracle on the same SoC platform. (ii) Lack
of parallelization: To match the attack time of the software-
based results of FuncTeller, we implement multiple oracles
on the same FPGA. The number of oracles on the FPGA is
limited by resource constraints.

Implementation. We attack the circuits in Table 2 using the
FPGA prototype shown in Figure 11, using the PYNQ-Z2
board. The PYNQ-Z2 board contains a Zyng-7000 series SoC
platform containing both an FPGA (performing oracle) and
a processor (running FuncTeller). We use the Xilinx AXI4
interface [83] to reduce communication slack. Further, for
larger designs, we repeat this process for multiple boards.
Finally, all PITs are sent to a remote computer.

It ZYNQ SoC

nj Oracle; |

t | Remote Computer

1[ | Circuity

I ﬁ_ FuncTeller Synthesis (ABC,|| | | Recovered
" : :|(Microprocessor) Genus/Xilinx) design

I

|
1| Oracle, J
ey

Figure 11: FPGA prototype setting.



Results and Analysis. We empirically observe that the at-
tack needs approximately twice as long to recover the design
with the same accuracy compared to the simulation-based
version. These results on selected circuits are shown in Ta-
ble 4. While the software simulation runs on an Intel Xeon
processor running at 2.6GHz, our hardware implementation
is on a 650MHz dual-core Cortex-A9 processor. This leads
to a degradation in performance. Thus, the time taken per
query is approximately 2x the time taken per query in the
simulation-based setting, as there is a software overhead while
generating new queries. In this case, we are limited due to
SoCs available. Note that the three circuits (b20, IBEX, and
GPS) in Table 2 are not included in Table 4. Due to the FPGA
resource constraints, the extraction of these designs was not
complete. To further explain this, we present a scalability
analysis for these circuits.

Scalability Analysis. On the one hand, the circuits (IBEX,
GPS, and b20) excluded from Table 4 have a large number of
input/output ports; on the other hand, the interfaces available
on the SoC platform are limited. As a result, the number of
oracles that can be implemented on the SoC is limited, and
consequently, FuncTeller cannot be completed. For instance,
we can only implement 5 IBEX oracles on a single SoC. This
can be overcome by parallelizing the attack on multiple SoCs
to recover the entire design. Due to the lack of such resources,
we are unable to parallelize to the extent possible in soft-
ware (50 outputs in parallel). Next, we estimate FuncTeller’s
performance if additional SoCs were available.

Table 5 shows the estimated time needed to match the
simulation-based accuracy if the number of oracles is 50. Re-
call that the number of oracle implementations on a single
SoC is limited by the number of AXI4 interfaces. Thus, more
SoCs are needed to parallelize the attack to at least 50 oracles.
We derive the time estimate in Table 5 based on empirical
observations and validate these observations based on tests
for individual outputs. As stated previously, FuncTeller needs
approximately twice as long to recover the design if the num-
ber of oracles is the same. This is due to the communication
slack being 2x higher than the software-based implementa-
tion of FuncTeller. Notably, the communication slack is only
2x higher while the Cortex-A9 processor is approximately
3x slower compared to the Intel Xeon processor used for
simulation. Based on this analysis, we can conclude that pow-
erful SoCs which have a large number of AXI interfaces and
powerful onboard CPUs can effectively recover large-scale
redacted designs as FuncTeller can scale to larger designs
depending on the hardware platforms used.

E Results on CSAW Benchmarks

Table 6 shows FuncTeller’s performance on the FPGA-based
circuits from Cybersecurity Awareness Worldwide (CSAW)

2021 logic locking event. For all circuits across the main
benchmark sets, FuncTeller has an accuracy of > 90%.

Table 4: The results of FuncTeller on the FPGA prototype.

Circuit | # oracles At(tl::(cnli:;;ne Acf;:)a <y
c432 7 0.16 99.26
c880 26 1.96 95.23
c1355 32 2.34 52.33
¢1908 25 2.21 79.43
c7552 46 2.53 88.02
bl4 107 1.97 90.34
MIPS 75 2.63 93.24

Table 5: Estimated time and resources for FuncTeller to match
the simulation-based accuracy on FPGAs.

Circuit Max. # oracles | # FPGAs | Estimated
on each FPGA | required | time (hours)
b20 15 4 20
IBEX 5 10 144
GPS 1 50 88

Table 6: Comparison of performance between FuncTeller and
Chen et al. [18] on CSAW 2021 competition circuits [43].

. . Accuracy (%)
Circuit #inputs | # outputs Chen et al. [18] \ FuncTeller

setl_1 94 90 83.11 100.00
setl_2 98 94 83.33 100.00
setl_3 102 98 78.40 100.00
setl_4 106 102 78.29 100.00
setl_5 110 106 76.73 99.68
setl_6 114 110 75.78 99.68
setl_7 118 114 78.19 99.71
set2_1 94 90 84.26 100.00
set2_4 106 102 76.34 99.81
set2_5 110 106 75.82 98.63
set2_6 114 110 76.71 99.41
set2_7 118 114 78.47 98.51
set3_1 94 90 83.34 99.82

E set3_2 98 94 82.92 99.70
S | set3_3 102 98 77.57 99.79
set3_4 106 102 76.39 98.90
set3_5 110 106 75.27 99.17
set3_6 114 110 76.70 99.08
set3_7 118 114 78.84 98.80
setd_1 94 90 82.24 100.00
setd_2 98 94 81.97 100.00
setd_3 50 46 92.36 100.00
setd_4 186 182 65.30 99.42
setd_5 110 106 76.75 99.44
setd_6 114 110 75.82 99.47
setd_7 118 114 77.99 99.20

setl 198 194 63.15 95.84

set2 214 210 62.71 96.13

8 setd 246 242 66.42 96.23
% set5 262 258 67.79 96.74
== set6 278 274 67.21 96.65
set7 294 290 67.83 96.62
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