Evaluating Methods used to Quantify Racial Segregation

Abstract

Racial segregation has long been a problem in communities across the country.
One approach to help understand such an important issue is to attempt to describe
it quantitatively. Many metrics have been developed, all with various strengths and
weaknesses, but none fully capture the nuances of this complicated issue. This work
provides an overview of four of the mathematical approaches that have been developed
to study segregation, explains how they function using small examples, and compares
and contrasts their effectiveness in various situations. We then focus on segregation
in Los Angeles (LA) County, including a detailed exploration of the most recent score
proposed by authors Sousa and Nicosia, which conducts a random walk and outputs
the number of steps it takes to reach all racial classes in the system. While we found
there is a difference between the average step lengths of LA County vs. an unbiased
null model, attempts to standardize outputs erases crucial data, and compressing this
issue into one score is not representative of its complexity. This suggests that future
exploration should attempt to study segregation more comprehensively rather than
distilling an incredibly complicated and important issue into a single statistic. More
work is needed to quantitatively represent the complexities of racial segregation in an
effective matter.

1 Introduction

With a racially charged foundation and strong systemic discrimination, the United States
has various levels of segregation in place throughout the country: The patterns of today’s
residential segregation closely follow the discriminatory practices developed in response to
early racist ideals against marginalized groups [18]. The details in specific regions differ
across the country, but in this work we focus on Los Angeles County. With over ten
million citizens, LA county is the largest county by population in the United States of
America [3], but with its large community comes major instances of racial inequality. For
example, Black citizens represent only nine percent of the general population in LA County,
yet comprise forty percent of the population experiencing homelessness [1]. This outcome,
along with countless others that affect those in high-risk communities, can be traced back
to the redlining practices appointed in the early establishment of the county — though they
were implemented nearly a century ago their effects persist and harm racial minorities to
this day, continuously contributing to instances of racial segregation.

Many attempts have been made to mathematically quantify the existence and severity
of racial segregation in the U.S. Having a quantitative way to measure segregation allows
us to more effectively contextualize the level of impact that racial discrimination has on
communities, so that we can better understand and communicate the scale and scope of
this critical problem. The ability to compare levels of segregation across different states and
regions on a universal scale can help answer difficult questions about the allocation of scarce



resources, and comparing levels of segregation over time can help assess whether interven-
tions have been effective. However, as of now there is no agreement between researchers on
any single quantitative segregation measure to implement uniformly.

We will survey four measures of segregation that have appeared in the academic litera-
ture. Each captures certain aspects of segregation well, but fails to effectively describe other
features. First, we cover a score that is widely used in the geography literature, Moran’s
I, which given a region divided into some geographic sub-regions considers the difference in
the racial makeup of adjacent sub-regions [13]. Next, we examine the Dissimilarity Index:
True to its name, it measures how closely the racial makeup of a sub-region aligns with the
region’s overall demographics [7]. We then move to the Clustering Propensity score, which
looks at individuals rather than sub-regions and considers whether residents from a certain
group tend to live next to those of the same group [2]. Finally, we consider a method that
uses random walks: Given a graph with racial population proportions at each node, a ran-
dom walk is conducted across nodes until all racial groups have been encountered, allowing
us to evaluate the number of steps this takes [19].

We then consider what the random walk score tells us about Los Angeles County. We
focus on this score because it provides a much more representative basis to analyze segrega-
tion, and effectively allows us to analyze multiple racial groups in an efficient manner. As
discussed, analyzing the resulting levels of disparity from an objective, numerical point of
view can also reveal characteristics about the overall structure of the region — however, we
found that attempting to distill such salient data down to one score results in a substantial
loss of context and information.

Our principal takeaways are that these scores on their own are insufficient, as none
fully encapsulate the complete issue of segregation. We will see that some scores capture
certain aspects of segregation better than others, but assert that using multiple scores can
give a more complete picture than a single one on its own. Trying to distill a complicated
issue down into a single score will never fully capture the complexity of this problem, and
there is still work to be done in terms of finding a good combination of scores that can
comprehensively describe the most relevant aspects of segregation.

This paper is organized as follows: We will first address the severely charged racial history
of the U.S. and its impact on the development of Los Angeles County. An evaluation of
previous measures of segregation will be discussed, along with the benefits and limitations
of each measure. We provide several simple examples across all methods, followed by a full
justification of the reasoning behind the method that was chosen for the rest of the analysis.
We then provide a detailed explanation behind the measure and our adaptations, followed
by an analysis of our results. We conclude with a discussion on limitations, further study,
and a brief commentary on the implications behind this work.

2 Background

In order to comprehensively understand how racial segregation has been developed and
maintained in specific regions, we will first explore the background and causes more broadly
throughout the United States. This will allow us to recognize historical patterns of discrimi-
nation, form connections between the instances we see today, and develop a broader context
about the impacts these have on citizens.



2.1 A (Brief) History of Segregation in the United States

Racial segregation can occur for many different reasons, often unintentional (a desire to
form community and therefore residing close to family or others with similar racial back-
grounds, for example). However, there have also been intentional, systemic discriminatory
practices that enforce the separation of groups. This typically negatively affects those who
belong in a racial minority.

It would be vastly inaccurate to disregard the history of slavery in the United States
when discussing current practices of segregation: Though present informally for most of the
U.S.’s history, segregation became systematic primarily following the enactment of the 13th
Amendment [11] in order for those in positions of power to satisfy their desires to offset
the recent ending of legalized slavery. Formerly enslaved people were denied the full rights
and privileges of an average citizen so they would not constitute a threat to the previously
upheld slave regime. This was not limited to law; these trends grew throughout housing,
education, public accommodations, communities, businesses, and more, down to the subtle
yet impactful details of separate doors, elevators, and drinking fountains [10]. Despite slavery
being legally outlawed, several state segregation statutes came into being in order to uphold
this notion of racial hierarchy. In analysis of early documentation during the period of legal
enslavement, most laws contained explicit racial language, such as directly equating “slave”
with African Americans, and using them interchangeably in written accounts [8]. The
normalization of discriminatory language and practices ultimately contributed to instances
of racial profiling that still exist to this day.

One of the most glaring representations of systemic segregation in minority communi-
ties occurred in the mid 1930s, resulting from the implementation of redlining. During
this period the Home Owners’ Loan Corporation (HOLC) collected a series of data that
represented an area’s likelihood of safe vs. risky mortgage security. Among the data was
the neighborhood’s quality of housing, the recent history of sale and rent values, and the
racial and ethnic identity and class of residents [12]. The HOLC followed the guidelines of
the federal housing administration’s underwriting manual [9], which stated that “the infil-
tration of inharmonious racial groups will produce the same effects as those which follow
the introduction of nonconforming land uses, which tend to lower the levels of land values
and lessen the desirability of residential areas.” To imply in a government document that
“inharmonious” racial groups have a negative effect on housing values was detrimental to
the establishment of integrated residency patterns. As time went on, this implementation
created a self-fulfilling prophecy, where more immigrants/residents of color resulted in a
lower neighborhood grade. These lower grades were the backbone of redlining; without ac-
cess to mortgages these communities were unable to own property and build capital. These
discriminatory ideas and practices ultimately led to the racial segregation that is still present
today, and form the basis of the work conducted in this study.

2.2 Segregation Practices in Los Angeles County

Now that we have a stronger foundation on which to analyze racial segregation, we can
apply this to particular regions. Specifically, we will examine these effects on Los Angeles,
CA. A bustling city with boundless opportunities, LA has historically drawn citizens with
diverse interests and backgrounds. As of July 2021, the total population of LA County
reached 9,829,544 people: 49.1% Hispanic or Latino, 25.3% White alone (not Hispanic
or Latino), 15.6% Asian, 9.0% Black or African American, 1.5% American Indian and
Alaskan Native, and 0.4% Native Hawaiian and other Pacific Islander (with note that 3.3%



Los Angeles

Figure 1: Original redlining map of Los Angeles, CA, created by the HOLC [12]. Areas
colored red were graded “hazardous,” yellow “definitely declining,” blue “still desirable,”
and green “best.”

of those surveyed identify as two or more races) [21]. However, diversity does not equate
to integration; like most other major U.S. cities, there exists a high degree of residential
racial segregation [20] due to the practices mentioned in the previous section. As the HOLC
crafted the security map of Los Angeles in 1939, both class hierarchies and racial segregation
worked together to format the population distribution of this region of Southern California.
We can see the original redlining patterns created by the HOLC in Figure 1.

This was perpetuated in early years primarily through the implementation of zoning and
restrictive covenants (including racially restrictive covenants), and Contracts, Conveyances,
and Restrictions (CCRs). The 1924 Code of Ethics Article 34 implicitly defined the ideal
neighborhood as segregated by race and class: “A realtor should never be instrumental in
introducing into a neighborhood a character of property or occupancy, members of any race
or nationality, or any individuals whose presence will clearly be detrimental to property
values in the neighborhood” [14]. Ultimately, these practices promoted the prohibition of
certain racial or ethnic groups from either owning or occupying a property, until the Supreme
Court later deemed them unlawful [15]. This impacted integrated development throughout
the years, as the severe aforementioned restrictions on mortgages and loans took their toll on
the racial diversity/homogeneity of the city. This resulted in minority populations densely
concentrated in neighborhoods with histories of extreme disadvantage [4]. The effects of
redlining are still evident in current residential trends: consider the racial distribution of
LA County (as of 2020) seen in Figure 2, where the clustering patterns of racial minority
groups closely follow those of the original HOLC guidelines. One example (shown in Figure
3) is that the most prominent “hazardous” region, the downtown Los Angeles business
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Figure 2: Census tracts within Los Angeles County (decennial redistricting data, 2020 (PL
94-171)) by race, created with ArcGIS. Note that the Hispanic/Latino category is considered
by the U.S. Census to be an ethnicity rather than a race.

Figure 3: On the left: The Los Angeles business district, a subset of LA County deemed
by the HOLC to be dangerously hazardous. On the right: Approximately the present-
day configuration of the Los Angeles business district, a majority Black/African American
region. Coloring in the left and right panels aligns with those in Figure 1 and Figure 2,
respectively.

district, was located just east of present day Inglewood, a majority Black/African American
region.

3 Techniques for Quantitatively Measuring Segregation
Although several measures to evaluate segregation have been explored, there is no con-

sensus among experts on a single method to implement uniformly. Before we showcase these
measures in action, we will provide some helpful definitions and several clarifying examples.



Figure 4: Dual graph of a 12-unit example as a 3 x 4 triangular lattice.

Through a comprehensive overview conducted by Rodriguez and Vorsatz [16], it was
noted that the main mathematical devices developed to measure segregation are segregation
indices: Formally defined as some function S : N — [0,1] that maps a distribution N
into the unit interval (where the maximum value of segregation occurs when each unit
contains individuals from only a single group), standard indices output some value between
0 (minimal segregation) and 1 (maximum segregation) for a region of interest.

For a given region, a dual graph can be constructed by placing a node at each geographic
unit (such as a census block) with an edge between two nodes if the corresponding units are
adjacent. Additional information, such as population and demographics, can be added at
each vertex v of a given region. This allows us to evaluate the structure of a region through
the lens of graph theory.

In order to properly understand the various mathematical measures of segregation we
consider, we will be demonstrating the outputs of these scores on the following clarifying
examples: Given that populations typically do not reside in a square grid, the dual graph
we consider for each example is a 3 x 4 triangular lattice (from 12 underlying geographic
units), shown in Figure 4, where the black lines denote the boundaries of the geographic
units and the red nodes and edges comprise the dual graph. For the sake of simplicity, we
will assume that there are 10 people living in each geographic unit. We will also assume
that there are only two populations groups in the region, red and blue, and will compute
all scores with x representing the jurisdiction-wide blue population. Visualizations of the
different example population distributions we consider can be seen in Figure 5.



(a) A segregated region, with
six connected units contain-
ing entirely blue residents and
six connected units contain-
ing no blue residents.

(b) A partially segregated re-
gion, with a gradual left-right
decline of blue residents

(¢) An integrated region (be-
tween units but not within
units): six alternating units
contain entirely blue residents
and the remaining units con-
tain no blue residents.

(e) A randomly selected re-
gion, determined by gener-
ating a random number be-
tween 0-10 to determine the
population of blue residents in

(d) A partially integrated
region, with six alternating
units containing eight blue
residents and remaining units

containing two blue residents. each unit.

Figure 5: Simple examples for evaluating different segregation indices. For two population
groups, blue numbers in each circle represent the unit-wide population of blue residents.

We believe that this set of examples provides a strong enough basis to evaluate the
output of each measure — there is a wide enough span of population distributions to see
several different examples of varying segregation/integration. Scores will be calculated using
the methods described from each respective measure.

The measures we explore in the following sections are just a subset of those that have
been studied throughout various fields of mathematics. For each measure we show the
necessary calculations for a different example from Figure 5 in order to demonstrate this
process and build intuition. We present all four segregation scores for all five examples, but
omit the remaining calculations.

Table 1 displays the notation used throughout the next sections in the calculation of
each measurement.



Variable | Definition

n Total number of nodes in the dual graph

|E| Total number of edges in the dual graph

i~ Node i is adjacent to node j

T Total count of x population

z; Within-unit count of x population

D Count of total population

i Within-unit count of total population

) Average fraction of z population across all nodes

Table 1: Notation used throughout Section 3 in the calculation of each score.

3.1 Moran’s I: P.A.P Moran (1950)

The first measure we will discuss is the standard spatial statistic used in geography lit-
erature: Moran’s I. Developed by P.A.P Moran in 1950 [13], given numerical values (such
as population) associated with the nodes of a dual graph, Moran’s I returns a real number
between —1 and 1 [6]. The interpretation is that values near 1 indicate extreme segrega-
tion (very clustered like-populations), values near zero indicate no significant pattern, and
negative values flag “anti-segregation” (where people are more likely to live next to those of
a different race). Moran’s I essentially examines where values are positive or negative and
analyzes any patterns in such areas.

While Moran’s I can be defined with a more general formula [6], the definition for the
rest of this analysis uses the within-unit count of z; population rather than the fraction, as
this approach has data for Los Angeles easily available. Let xg = % be the average presence
of = population over all nodes. For n as the number of nodes and |E| as the number of
edges, Moran’s I can be calculated as follows:

o on i@ — o) (x5 — x0)

|E| (@i — x0)?
where i ~ j if the two nodes are adjacent.

As written, the value of I could be anywhere between —1 and 1. Note that as each
measure in this section will output a score between 0 and 1, in order to evaluate all results
on an equal basis the remainder of this discussion scales Moran’s I as such: S; = I—gl

Researchers in the field of geography aimed to adapt these scores in order to account for
potentially critical spatial relationships. However, a major concern with using Moran’s I is
that changing the aggregation level has a drastic impact on the output (frequently referred
to as the Modifiable Areal Unit Problem). The result depends heavily on the choice of
geographical units — the output will differ based on how large or small the chosen units are.
This is a strong concern when attempting to relate scores of different regions that may be
separated into varying units, and it is extremely unreliable to have an output rely on how
a unit is defined.

1

3.1.1 Example Outputs of Moran’s I

We will consider example 5b to demonstrate Moran’s I: Here, the total population of
x residents is T = 60, and there are a total of 12 units in the region (with 23 total edges



between them). Therefore, the average presence of z residents across all nodes is xg = 5.
There are only x population groups of eight, six, four, and two residents, so we can simplify
the expression as follows:

o0 2@ —wo) (w5 — o)
£ >oi(@s — x0)?
12 5((8=5)(6—5)+(6—5)(4—5)+(4—-5)(2—5)+2((8=5)2+(6-5)2+(4—-5)2+(2-5)?)

23 3(8—5)2+3(6 —5)2+3(4 —5)2+3(2 - 5)2
12 65
23 60
13
-5

Recall that we need to scale the output as such:

I+1

St =——
13
B+
2

18

23

Outputs for Moran’s I for all examples are shown in Table 2.

Example (5) Output
Total Segregation (5a) 0.7826
Gradual Segregation (5b) | 0.7826
Total Checkerboard (5c¢) 0.2609
Partial Checkerboard (5d) | 0.2609
Random (5e) 0.5104

Table 2: Moran’s I outputs for the examples introduced in Figure 5.

Notice that the values are equal for Total Segregation and Gradual Segregation, as well
as for Total Checkerboard and Gradual Checkerboard. This is due to them simply being
differently scaled versions of each other, demonstrating the Modifiable Areal Unit Problem
discussed previously.

3.2 Dissimilarity Index: Duncan and Duncan (1955)

The next measure we will discuss is one of the most widely used segregation indices.
The Dissimilarity Index [7] measures how closely subarea demographic proportions match
the demographic proportions of the larger area — It measures “evenness,” or the consistency
of the levels of a sub-population over the units that make up a jurisdiction. This index was



developed shortly after Moran’s I, and is arguably a much simpler approach to interpreting
the problem at hand.

The idea of the Dissimilarity Index is, for each node, to look at how the node’s population
from one group (z;) differs from what you would expect at that node if the group was
evenly distributed across the region, which would be p; - (%) Adding the absolute values of
these differences for each unit, rearranging terms, and scaling such that the result is always
between 0 and 1 gives the following formula for the Dissimilarity Index:

1
D(z) = m 27: |zip — pi|.

But a severe problem with this method, as noted by Alvarez et.al [2], is that the Dis-
similarity Index is given by summing over the nodes without reference to adjacency, so it
does not take into account the spatial relationship between units. Thus this score equates
neighboring units to those on opposite sides of the region of interest, potentially omitting
crucial spatial information, as we will see in Section 3.2.1.

3.2.1 Example Outputs of the Dissimilarity Index

In order to showcase the Dissimilarity Index in action, consider example 5a: Here, the
total population of residents is p = 120, and the total population of x residents is £ = 60,
and p; will always be 10. The calculation can be completed as follows:

D(z) = Wl—m) Z P — pi|

1

= 3607020 60) Z |1202; — 10(60)

1
— 571202 — 600].
7200 Z;' v |

For a given node in this example, x; will always be either 10 or 0:

1
= —55g * 6(600) +6(600)

1
= ——-7200
7200

—[1]

Outputs for the Dissimilarity Index for all examples are shown in Table 3.

Note that the output for Total Segregation and Total Checkerboard is the same: this
is due to the fact that they both have the same population distribution, showcasing the
drawback of this score’s indifference to adjacency.
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Example (5) Output
Total Segregation (5a) 1
Gradual Segregation (5b) | 0.4
Total Checkerboard (5c¢) 1
Partial Checkerboard (5d) | 0.6
Random (5e) 0.5749

Table 3: Dissimilarity Index outputs for the examples introduced in Figure 5.

3.3 Clustering Propensity (CAPY): Alvarez et al. (2018)

The clustering propensity score, designed by Alvarez, Duchin, Meike, and Mueller [2],
measures the clustering level of one or more subgroups within a population. This score
focuses on how clustered a given region is, based on if people from a certain group tend to
live next to those of the same group or those of a different group. This is done by taking
the edges that connect x population to either x or y population and recording the share of
xx edges. The argument is that CAPY scores successfully discern qualitatively important
differences while providing a stabler baseline for interpretation than traditional segregation
scores.

To measure the extent to which people of one demographic tend to live next to each other
(rather than next to those of a different demographic), this measure considers an alternative
to the dual graph, called an ezploded graph (shown in Figure 6¢). In the exploded graph,
each node of the dual graph is replaced by a complete graph with a node for each individual.
The clustering propensity scores are calculated using these exploded graphs, which allows
for the analysis of both within-unit adjacencies and neighboring-unit adjacencies.

For distinct populations x and y, let z;,y; be the respective integer-valued populations
for each unit. We can thus define the following:

szyz + szyj + ;Y

invj

The term a;y; calculates how many edges there are (in the exploded graph) between
people from group x and group y within node ¢, while the term z;y; calculates how many
edges there are (in the exploded graph) between people from group x at node ¢ and people
from group y at adjacent node j (and vice versa for the term x;y;). In all, (x,y) calculates
the total number of edges (in the exploded graph) between people in group z and people
in group y. The number of edges between two people who are both in group z is given
by %(x,x): the edges between two different x-type vertices are over counted by a factor of
two in (x,x), which must be accounted for. Note this definition counts a vertex as being
adjacent to itself; that is, if there are z; nodes in the exploded complete graph for vertex
i, it assumes there are %2 adjacencies between z-type people within this node, rather than
the more typical but less convenient count of (9”2 = M

Using this notation, the CAPY Edge score looks at the edges incident to an z vertex (of
which there are 1(x,x) + (x,y)) and considers which fraction of them connect two z vertices
(of which there are 1(x,x) such edges). The same is done for the group of y residents, and
the results are averaged together. After simplifying, the CAPY Edge score can be written
as:
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(a) An example region to dis-
play an exploded graph, with
1 unit containing 4 blue resi-
dents and 1 unit containing 2
blue residents.

(b) The corresponding dual
graph for the region shown in
Figure 6a

(¢) An example of an ex-
ploded graph on a region that
represents a subsection of the
partially segregated example
shown in 5b. Note that each
region transforms into a com-
plete graph, and the number
of edges significantly increases
once exploded.

1 (x,%) (y>y)

Bire() = 5 (G ol Tl Lot
The authors also provide a variation of the Edge score, which they call the HalfEdge
score. Rather than considering edges, the HalfEdge score considers node-edge incidences,
and asks the following: of all node-edge incidences involving a node of type z, what fraction
of the relevant edges connect to a node also of type x7 In the Edge score above, an edge
between two x vertices would only be considered once; now, it’s considered twice, because
it is incident on two x vertices. The total number of edge-node incidences for an z-type

vertex is given by (x,x) + (x,y), and consequently the half-edge score is:

(x,x) (y>y) )
+ .
(x,x) + (%,¥) (ysy) + (x%,)
This has the intuitively appealing interpretation of the first term being the probability that
a neighbor of an x person is another x person rather than a y person.

However, one drawback of the CAPY scores is that they ignore local adjacencies — By
replacing each node with a complete graph, all people within a geographic unit are treated
equally, as if they are all adjacent to each other. This means that individuals that live
within a unit but far apart are treated the same as individuals that live next to each other.
Areas that are disconnected in reality are now all related equally in the exploded graph,
resulting in slight inaccuracies.

1
Hal f Edge(x,y) = 3 (
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3.3.1 Example Outputs of CAPY

For this measure we will consider the Total Checkerboard Example (5¢) with respect to
the exploded dual graph. Consider the following equation:

(x,x) = Z x? + Z 22,x;.

invj
Intuitively, the first term is (double) counting the number of within-unit edges of the
same group, and the second term is counting the number of between-unit edges of the same
group. Due to the symmetry of this example, (x,x) = (y,y). We can thus evaluate the
following, noting there are six vertices each with z-population 10 and 3 edges that have
z-population 10 at both endpoints,

(x,x) = (y,y) = 6(10%) + 3(2- 10 - 10)
= 1200.

In consideration of (x,y), the intuition is again that the first term is evaluating the
number of within-unit edges of different groups, and the second term is the number of
between-unit edges of different groups. As such the first term is always zero, as there are
no within-unit edges between different groups in this example, and the second term reflects
the fact that there are 17 between-node edges in the dual graph consisting of vertices of
different groups. This example yields the following:

(x,y) = 0+ 17(10 - 10) = 1700.

Thus, the CAPY Edge and Halfedge scores are as such:

B 1 <X,X> <y,Y>
Edge(X,Y) - 9 <<X,X> + 2<x’y> <y,y> + 2<Xay>)

1 1200 N 1200
~ 2 1200 + 2(1700) ' 1200 + 2(1700)

1 (x,x) (y,y)

Half Edge(x,y) 5 ((X,x) ) + y,y) + <XaY>>
1( 1200 1200 )
2

1200 + 1700 * 1200 + 1700



Example (5) Edge Output | HalfEdge Output
Total Segregation 0.7059 0.8276
Gradual Segregation | 0.3942 0.5655
Total Checkerboard 0.2609 0.4138
Partial Checkerboard | 0.2264 0.3693
Random 0.3588 0.5217

Table 4: CAPY outputs for the examples introduced in Figure 5.

Outputs for CAPY scores for all examples are shown in Table 4.
Notice how we have no confirmation that the individuals residing in each unit are actually
all connected — we may have inaccurate conclusions on adjacency as a result.

3.4 Random Walk Measure: Sousa and Nicosia (2022)

The last measure we will evaluate closely follows that of Sousa and Nicosia in their work
on quantifying ethnic segregation in cities using random walks [19].

The method itself involves consideration of the dual graph for a region of interest. Each
node contains information about some variable of interest — in the case of this problem, z;
is a vector containing the population of each racial group at node i. Rather than previous
segregation measures which only consider two population subgroups, this method considers
significantly more racial groups, including mixed-race groups, which is a more accurate
reflection of our present-day world.

We are interested in the spatial distribution of z;, which will reveal to what extent
nodes being spatially close in the graph also have similar values encoded in their vectors.
By applying a random walk from any v; (where each “step” goes to a neighboring node of v;
with equal probability), information is gathered as the walk goes on. The specific method
proposed by Sousa and Nicosia measures the length of time ¢ (in steps of the walk) it takes
to reach all racial groups, which the authors refer to as classes. By “reaching a class” or
“seeing a class,” they mean visiting at least one node that has a non-zero population for
that class. The idea is that greater values of ¢ represent more segregated areas, and smaller
values of ¢ indicate more racial integration. The principal proposal of their paper is that
the level of segregation of an area can be represented by Class Coverage Time (CCT) of a
random walk on a corresponding dual graph G. CCT is defined as the expected number of
steps needed by the random walker, starting at a random node, to visit some fraction ¢ of
total classes in the system.

Note that the previous measures all output a score between 0-1, with 1 being total
segregation and 0 being total integration. In order to compare the random walk measure
to the other scores, we will additionally compute the following metric: If the random walk
ends after all classes have been seen, what fraction of nodes have been visited? Here a more
integrated area would require a lower fraction of total nodes to be visited. A segregated
region, or a region where all members of one particular class were clustered in a small corner
of the graph, would require a much higher fraction of nodes to be visited. While this struck
us as the most natural, intuitive way to convert Sousa and Nicosia’s method into a single
score that ranges between 0 and 1, it does suppress some information that the more general
CCT calculations provide.
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A drawback of this method is that it considers a racial group “seen” no matter how small
it is, which could be only a few residents. This can be aided by choosing a higher threshold
of class members needed to consider a class being seen, such as over 50%, etc. This method
also has no strong basis for comparison to other segregation metrics, deeming it necessary
to provide other metrics to contextualize what an output really means.

3.4.1 Example Outputs of Random Walks

Lastly, we will demonstrate how the Random Walk score was used to evaluate the Partial
Checkerboard shown in example 5d. In this instance, no matter where it starts, the walk will
always need only one step to see every class in the system: it sees both classes immediately.
Therefore, we have a random walk output of %

Exact values can easily be calculated in a similar way for the Gradual Segregation (%)7
Total Checkerboard (%)7 and Random (% +2- 1—22 = %) examples. For the Total Segrega-
tion examples, we ran 1000 trials and averaged the results. See Table 5 for the mean and

standard error of the values produced in these trials, rounded to four decimal places.

Example (5) Output Standard Error (1000 trials)
Total Segregation (5a) 0.3789 0.0044

Gradual Segregation (5b) | 1/12 ~0.0833 | —
Total Checkerboard (5c¢) 1/6 ~ 0.1667 | —
Partial Checkerboard (5d) | 1/12 ~ 0.0833 | —
Random (5e) 7/72~0.0972 | —

Table 5: Random Walk outputs for the examples introduced in Figure 5.

Notice how this method has the same output for certain regions depending on how the
classes are distributed, a lower bound of % shown in the Gradual Segregation and Partial
Checkerboard examples. This is most likely irrelevant when more classes are introduced into
the system, as is the case in real-world applications. A potential downfall of this method
is that outputs may differ across trials — this has little effect when the system is large and
multiple trials are run, but shows up more noticeably in the small systems used in these
examples.

3.5 Summary of Outputs and Basis for Chosen Method

In relation to previous mathematical measures of segregation, we believe that the ex-
planatory power of the Random Walk method is somewhat higher than the other indices:
It considers spatial relationships, changing aggregation levels, and within-unit adjacencies.
The measure was chosen to evaluate the racial disparity of LA County (conducted in the
next section) because it depends on the structural characteristic of the graph in question
and the distribution of node properties, which therefore preserves the overall structure of
the dual graph. This effectively allows researchers to compare the segregation of different
systems on equal grounds, as the focus on preserving structure acts as a normalization as-
pect to relate contrasting levels of disparity across regions to one another. These aspects
combine to let us analyze patterns in the structures of different regions, and objectively
compare the overall levels of segregation across systems. Additionally, outputting specific
lengths of time (rather than a single statistic) allows us to easily determine any glaring
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outliers in the system. We also believe that the random walk measure contains the simplest
method (fewest amount of calculations) to consider multiple racial groups instead of just
two. As such this method complements our increasingly evolving society; it is extremely
effective in adding and evaluating multiple racial groups.

However, we see many benefits to the other measures discussed, ultimately leading us to
conclude that an area’s racial segregation can be best understood by using multiple measures
at once, and using each measure’s strength to build a more comprehensive model. Table 6
displays the outputs for each score discussed, where considering the totality of the scores
for a given example is more informative than any single score is on its own.

Example Moran’s I | Dissimilarity | Edge | HalfEdge 5&; rlll(;l om
Total Segregation 0.7826 1 0.7059 | 0.8276 0.3
Gradual Segregation | 0.7826 0.4 0.3942 | 0.5655 0.083
Total Checkerboard 0.2609 1 0.2609 | 0.4138 0.091667
Partial Checkerboard | 0.2609 0.6 0.2264 | 0.3693 0.083
Random 0.5104 0.5749 0.3588 | 0.5217 0.1

Table 6: A table of outputs for each measure based on the examples introduced in Figure 5.

4 Applying Metrics to Los Angeles, CA

In this section we consider what the various segregation scores from the previous section
tell us about Los Angeles. Rather than recomputing them, we note that in their paper
on Clustering Propensity [2], Alvarez et al. provided Moran’s I, Dissimilarity Index, and
CAPY outputs for Los Angeles across three decades (whether it is Los Angeles County or
the City of Los Angeles is not specified). We include them here in Table 7.

Year | Moran’s I | Dissimilarity | Edge | HalfEdge
2010 | 0.546 0.523 0.473 | 0.633
2000 | 0.531 0.546 0.491 | 0.65

1990 | 0.604 0.55 0.497 | 0.663

Table 7: Outputs for various methods applied to Los Angeles over the span of three decades,
as computed by Alvarez et al.[2].

We see that across all methods, the score variation across the three census years is at
most +0.05, implying that there has been minimal change in the overall racial population
distribution of Los Angeles in the past few decades. In the next subsections we provide
our methods for computing the random walk score for 2020 data for Los Angeles County,
and find it to be 0.6166 (due to computation and runtime limitations we were only able to
consider data from one year, and chose to use the most recently available populations rather
than older data).

The remainder of this section will focus on the methods, results, and interpretation of
applying the Random Walk measure to LA County. In addition to the single random walk
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score, we also provide a full CCT analysis and accompanying plots.

4.1 Data and Code

All data used in this analysis was originally collected from the U.S. Census database.
Clean versions of the county-level data for the random walk analysis were provided by
authors Sousa and Nicosia in their GitHub repository [17]. This data consisted of a list of
class population information for each Census tract, and an edge-list describing which census
tracts were geographically adjacent. Our results are built from a total of 3,923 Census tracts
with 64 racial classes each.

The code used to analyze this problem was adapted from the authors [17]. Upon input
(class population information for each census tract and an edge-list describing census tract
adjacencies) the code records the total number of classes it has seen at each step and conducts
a random walk until it has reached 100% of the total classes in the region. The resulting
output is a vector of length 100: the first entry is the number of steps until the walker has
seen 1% of the total classes in the system, the second entry the number of steps until the
walker has seen 2% of the total classes in the system, ..., the nth entry is the number of
steps until the walker has seen n% of the total classes in the system, until the final entry
outputs the total number of steps needed to see every class in the system.

In what we refer to as one trial, this random walk process is done 3,923 times, once from
each possible starting node. Each of these 3,923 random walks produced a length-100 vector,
and we averaged these vectors entry-wise across all 3,923 walks. That is, the i*" entry in
the averaged vector is the average number of classes seen after ¢ steps across all possible
starting nodes. For our results, we conducted 10 trials in order to provide a more accurate
sense of scale for the possible spread of CCTs, due to the randomness in the random walks.

One key modification was implemented into the original code: updates were made such
that the walk counts the classes seen in the starting node as being visited, rather than only
recording after the first step; the code of Sousa and Nicosia did not count classes seen at the
starting node. An earlier run[5] was calculated using the same method as Sousa and Nicosia,
which produced slightly different results implying a higher level of racial segregation in LA
County. We believe that the adaptation we make in this work is more representative of the
goals of this method and therefore sustained this approach throughout our analysis (such
that all results are internally consistent).

A complete documentation of the code and data used in this specific paper is available
on GitHub[22].

4.2 Adapted Measure: Null Model

In order to have a basis from which to analyze the resulting output of Los Angeles
County data, it was deemed necessary to implement a null model. Due to complications in
recreating Sousa and Nicosia’s null model, we ultimately created our own design that served
the purposes needed in this analysis. We crafted a comprehensive null model as follows:
original class-population data from each LA County Census tract was randomly permuted
(across all 3,923 tracts) ten separate times. For each of these ten permutations, one trial
(as described above) was performed, producing a length-100 vector of the average CCTs
across all possible starting states. These vectors were then averaged entry-wise to give us
the single, primary null model for CCTs used in our analysis.
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By swapping the racial population counts randomly between nodes, we believe that
this effectively eradicates any existing biases in the structure of LA County. This method
of randomization provides us with a sufficiently arbitrary structure of comparison for LA
County, and will help us determine how well Sousa and Nicosia’s method effectively captures
the geography of segregation in Los Angeles County.

4.3 Results of Random Walk Measure applied to Los Angeles County
4.3.1 Class Coverage Time Plots

Our output consists of a length-100 vector of average CCT for Los Angeles County, and
a length-100 vector of average CCT for our null model, the n** entry corresponding to the
average number of classess seen after n steps. These are both shown in Figure 7, though
the difference between them is difficult to see given the scale. We note that it takes around
3,580 more steps to reach 100% of the total classes in the null model vs. in LA County.

Because of the large range of values, and to assist in seeing the steepness of this curve, the
natural log of the CCT is shown in Figure 8. The fact that this log plot is somewhat linear
for most of its expanse suggests the original plot has approximately exponential growth.
This also makes visible that it tends to take LA County a higher number of steps to reach
the same percent of classes as the null model, for most of the range of percents considered.
It is at around 80-90% of classes seen where their difference increases significantly.

We observe that the difference between the two models varies according to the percentage
of classes seen, with a higher percentage corresponding to a larger difference and vice versa.
We note that this is likely an effect of having the total fraction of classes being equal to 1,
as the overall coverage time will increase when the system contains rare classes — as is the
case in LA County, which has 64 different racial classes where multiple racial groups contain
only a few citizens each.

4.3.2 Random Walk Score

Recall that we introduced a metric to more easily compare the random walk score to the
other measures discussed, analyzing what fraction of the total number of nodes have been
visited after seeing each class in the system. In this analysis, data from the LA County walk
visited 61.7% of all nodes in order to encounter all racial classes, and the null model visited
61.3% on average across sub-null models.

We can see that as these percentages are extremely similar, it suggests that the random
walk score does not effectively capture the spatiality of segregation: randomly permuting
the populations of nodes (and their racial compositions) has an extremely small effect on
this random walk score. Additionally, though it may be useful in contextualizing different
scores with respect to one another, we assert that attempting to summarize segregation
in a single score can be ineffective when wanting a more comprehensive picture of racial
segregation.

4.3.3 Spread of Class Coverage Time

Because the null model is comprised of the average of 10 sub-null models, we consider
the spread across these 10 models and compare it to the values seen in LA County to
more deeply assess the differences between the null model and LA county. For the sake
of concreteness we focus on the class coverage times near 50% of classes seen, but saw a
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Figure 7: Complete output of CCT for LA County and the null model

similar picture throughout the range where LA county had longer coverage times than the
null model. See Figure 9, which visualizes the spread of the class coverage times across the
10 sub-null models considered.

The minimum value seen across all ten sub-null models is 10.6 steps for 50% and 12.4
steps for 51%, while the maximum is 10.8 steps for 50% and 12.7 steps for 51%. With respect
to the averages, the primary null model is 10.8 steps at 50% and 12.6 steps at 51%, compared
to LA County’s 14.2 steps and 16.4 steps, respectively. Notice that the deviation between
sub-null models and the primary null model here is at most +0.2 = +2% (compared to
the 34-37% deviation between LA County and the null model). This indicates that there
are minimal levels of variation across early sub-null model runs, which also implies that LA
is consistently at higher values than all the null models across the range of trials, and not
solely the average.

Notice how Figure 9 exhibits step function-like growth. This is because, despite there
being 64 racial classes, this work considers integer percentages: For instance when 31 out of
64 classes have been seen this is 48.4% of classes, and when 32 out of 64 classes have been
seen, this is 50% of classes. It is in the same moment that 49% of classes have been seen
that 50% of classes have also been seen when defining percentages this way. However, this
step-function like growth is only visible in extremely zoomed-in figures, and has minimal
affects on the overall high-level trends seen.
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Figure 8: Natural log of the CCT for LA County and the null model
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Figure 9: CCT for LA County and the null model, where the shaded bands indicate the
min/max ranges across the sub-null model runs. Note that the range of sub-null models has
only a slight deviation from the primary null model, which is their average.
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4.3.4 Spatial Heterogeneity

In their analysis, Sousa and Nicosia introduced the concept of spatial heterogeneity
(Ap): The notation p(c) is used to denote the average number of steps required to see a ¢
fraction of classes. Ay is then the average deviation between a given region (u(c)) and its
corresponding null model (u""!(c)), as follows:

A= [ lnfe) =) e

That is, Ap integrates to find the total area between the CCT curves for a given region and
its null model.

Though we constructed a different null model than in their analysis, we applied the same
approach to quantify the difference between our primary null model and LA County. Given
the nature of the equation, both regions when y(c) is larger than u(c)™* and regions when
the opposite is true contribute equally to this score. Approaching this measurement without
the use of absolute values is a possible subject for future analysis.

We computed the average deviation as a discrete summation over the length-100 output
vectors describing our CCT:

100
1 k k
Ay = _,null )
a kz::l 100 " <1oo> . (100) ‘

For the deviation between LA County and its null model, we calculated a spatial hetero-
geneity score of Ay = 45.8971. However, because our null model was created differently, we
are unable to compare this value to those in Sousa and Nicosia’s analysis in any meaningful
way. Instead, we hope to supply additional context by providing spatial heterogeneity scores
between the 10 sub-null models that went into the eventual primary null model.

In order to analyze each difference pairwise, we calculated across the (120) = 45 different
scores. For 1 < i < j <10, let p;(c) and p;(c) be the average number of steps required to
see a c fraction of classes in sub-null models ¢ and j, respectively. We calculated the spatial
heterogeneity scores for each pair of sub-null models as above:

(EN_ (R
Fi\100) ~H\100) |

The average across these scores was then calculated:

100

1
Aﬂij = Z ﬁ
k=1

1
ANmull - E Z A,U"Lj

1<i<j<10

resulting in a spatial heterogeneity value of Ay, = 80.92, which is almost twice the size of
LA County’s spatial heterogeneity score, suggesting that LA County falls within the range
of possibilities spanned by the sub-null models.

However, we suspect the main contributors to this score come from the large values of
c close to 1, and thus this single score is not the most representative way to describe the
relationships between different models. Visualization of differences is shown in Figure 10 as
the natural log of the difference values (u(c) — u™*(c)) along with the natural log of the
average difference across all sub-null models. The visualization shows that the difference

21



between LA County and the null model tends to be larger than the average difference
between each of the sub-null models. The results of this section indicate a higher level
of racial segregation in LA County than in the null model at most instances of the walk,
suggesting the model meaningfully captures an important feature of LA county for this
range.

However, the average difference between sub-null models is higher than the difference
between LA County and the null model between 82-100% of total classes seen; when these
differences are averaged not on a log scale (as the spatial heterogeneity score does), they
make a much larger contribution to the score and are thus likely the reason the spatial
heterogeneity score between the null models is so much higher than between LA County
and the null model. The high spatial heterogeneity score between sub-null models could
also possibly be due to the adaptation of starting states mentioned previously: our sub-null
models now contain a higher spread given that we removed an element of randomness to
the procedure. Previous outputs (see [5]) had a tighter concentration around the mean,
resulting in a smaller spatial heterogeneity score across sub-null models.

—e— Difference between LA County and null model
751 —— Average difference between sub-null models
5.0 1
2.5
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E OO T
g
= —2.5 1
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00000000
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Percent of Classes seen

Figure 10: Natural log of the difference between LA County and the null model and the
average difference between sub-null models.
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5 Conclusion

The work and results from this study provide a sufficient basis for concluding that using
a single score to measure segregation is insufficient, and that using multiple assessments is
preferred to more accurately evaluate this issue and avoid erasing critical information. More
research is needed to create a sufficiently representative way of quantitatively contextualizing
racial segregation — This includes the development of additional scores that can complement
those presented here in order to give a more complete picture.

In evaluating the different measures, we found many benefits and drawbacks to each:
Moran’s T accounts for spatial relationships between units, but changes based on how the
units are defined. It focuses on adjacencies between units and ignores those within units —
given the age of this score, problems with it are well-known across researchers in the field.
The Dissimilarity Index does not account for these crucial spatial relationships, but it does
offer a strong basis of comparison. This score is relatively simple compared to the others,
which is helpful in terms of accessibility of information. The Clustering Propensity score is
much less influenced by how units are defined and considers adjacencies within units, but
ignores/fabricates local adjacencies. Assuming each resident in a unit is adjacent to every
other resident in the unit is unrealistic. Lastly, the Random Walk score relies heavily on
local adjacencies, but does not easily standardize to the [0,1] range as do the other scores.
It is extremely efficient in evaluating multiple racial groups, but only considers whether a
racial group is present in each unit rather than size of the group within that unit. It also
takes more work to create a proper basis of comparison.

The work done here is just a fraction of the possibilities available towards creating a
more just and equitable society, and readers are encouraged to continue their knowledge
of intersectional issues spanning race, political structures, and quantitative analysis. Being
able to objectively provide evidence that there is inequality present in a system in a crucial
step towards eradicating it, and this cannot be done without acute levels of awareness across
fields and a desire to enact change.
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