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Abstract
Machine learning has shown great promise in addressing
several critical hardware security problems. In particular, re-
searchers have developed novel graph neural network (GNN)-
based techniques for detecting intellectual property (IP)
piracy, detecting hardware Trojans (HTs), and reverse en-
gineering circuits, to name a few. These techniques have
demonstrated outstanding accuracy and have received much
attention in the community. However, since these techniques
are used for security applications, it is imperative to evalu-
ate them thoroughly and ensure they are robust and do not
compromise the security of integrated circuits.

In this work, we propose AttackGNN, the first red-team
attack on GNN-based techniques in hardware security. To this
end, we devise a novel reinforcement learning (RL) agent that
generates adversarial examples, i.e., circuits, against the GNN-
based techniques. We overcome three challenges related to
effectiveness, scalability, and generality to devise a potent
RL agent. We target five GNN-based techniques for four
crucial classes of problems in hardware security: IP piracy,
detecting/localizing HTs, reverse engineering, and hardware
obfuscation. Through our approach, we craft circuits that fool
all GNNs considered in this work. For instance, to evade
IP piracy detection, we generate adversarial pirated circuits
that fool the GNN-based defense into classifying our crafted
circuits as not pirated. For attacking HT localization GNN,
our attack generates HT-infested circuits that fool the defense
on all tested circuits. We obtain a similar 100% success rate
against GNNs for all classes of problems.

1 Introduction

1.1 Threats Due to Globalized IC Supply
Chain

Modern computing systems heavily rely on integrated circuits
(ICs), which serve as their foundation. To achieve high per-
formance and low power consumption in ICs, it is essential
to have access to smaller and faster transistors, which are the

basic components of ICs. The ongoing drive to continuously
shrink transistors necessitates using cutting-edge fabrication
facilities, commonly known as foundries. However, the cost
of employing such advanced foundries is exorbitant. For in-
stance, Samsung recently announced that it plans to invest
$228 billion in a new semiconductor complex in South Korea,
which will be the world’s largest [50]. To address the chal-
lenges of design costs and overcome the tight time-to-market
constraints, prominent IC design companies like NVIDIA
and Apple operate under a fabless model. They outsource IC
manufacturing to offshore third-party foundries, introducing
potential trust concerns. In the U.S. Department of Defense’s
strategy for safeguarding critical defense supply chains in
2022, it was disclosed that a substantial 88% of microelec-
tronic manufacturing takes place outside the U.S., thereby
presenting a notable security concern [63]. This distributed
supply chain arrangement has resulted in numerous secu-
rity issues, including intellectual property (IP) piracy [7, 46]
and the insertion of malicious logic called hardware Trojans
(HTs) [2, 33, 43, 68, 75, 80, 86].

1.2 Impact of Hardware Security Problems

Hardware security problems such as IP piracy, HTs, and re-
verse engineering profoundly impact various aspects of tech-
nology and security. For instance, in 2018, as the U.S. De-
partment of Justice reported, the global market for dynamic
random-access memory (DRAM) was valued at nearly $100
billion. Micron, a major player in the DRAM industry hold-
ing a 20-25% market share, incurred an estimated loss of
$8.75 billion due to IP piracy, underscoring the significant
economic impact of IP piracy [25]. HTs are another serious
threat to the security of ICs. HTs can cause denial-of-service,
privilege escalation, or leak confidential information. For in-
stance, researchers discovered a “backdoor” in a military-
grade chip [71]. Researchers have also demonstrated HTs
that can compromise the security of Intel’s Ivy Bridge proces-
sors [12] or cause privilege escalation using capacitor-based
HTs on fabricated chips [86]. The examples shown above
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underscore the pernicious consequences of IP piracy and HTs,
prompting research efforts by organizations like the Defense
Advanced Research Projects Agency (DARPA) to counteract
these threats using programs such as the Automatic Imple-
mentation of Secure Silicon program [1].

1.3 Graph Neural Networks in Hardware Se-
curity

As explained above, industry players, such as Intel, Qual-
comm, Synopsys, Cadence, etc., and government agencies,
such as DARPA, are investing a lot of effort into not only
the power, performance, and area aspects of computing sys-
tems but also the security of those systems [14, 73, 79]. To
aid this process of securing hardware, researchers have re-
cently utilized graph neural networks (GNNs) for several
hardware security-related tasks, showcasing state-of-the-art
performance in identifying IP piracy [88], detecting and locat-
ing HTs [52, 87], reverse engineering circuits [11], and break-
ing hardware obfuscation techniques [9, 10], among others.
However, there exists a crucial gap in using such GNN-based
techniques for hardware security: these techniques have not
been evaluated thoroughly. In particular, the threat of adversar-
ial attacks on ML-based systems is extremely pernicious and
must be understood and mitigated effectively. For instance, if
a GNN that has not been thoroughly evaluated for adversarial
robustness is used in detecting IP piracy, it can incorrectly
classify a pirated circuit as not pirated, which can lead to a
tremendous loss for the IP design house. Similarly, if a GNN
that has not been thoroughly evaluated for adversarial robust-
ness is used in detecting HTs, it can incorrectly classify an
HT-infested circuit as HT-free, which can lead to disastrous
consequences such as compromised encryption security.

1.4 Our Contributions
In this work, we address the above-mentioned research gap
using AttackGNN, which performs a thorough evaluation of
the GNN-based techniques in hardware security. To do so, we
devise adversarial examples, i.e., circuits, against GNNs in
hardware security for problems ranging from (i) detecting IP
Piracy, (ii) detecting/localizing HTs, (iii) reverse engineering
circuits, to (iv) breaking hardware obfuscation techniques for
protecting circuit functionality. However, the threat model of
devising adversarial examples places strict constraints (e.g.,
black-box access) on the attacker. The challenges for adver-
sarial example generation are further exacerbated due to our
field of application of GNNs, i.e., hardware security. Since we
work with circuits, which need to obey design rule constraints,
unlike arbitrary graphs, traditional perturbation-based adver-
sarial example techniques, such as adding/deleting edges, in-
jecting nodes, or modifying features, are not suitable in our
case. Additionally, typical circuits consist of several thou-
sands of gates, i.e., nodes, and even more wires, i.e., edges.
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Incorrect 
Classification

Correct 
Classification

Original 
Graph

GNN Same GNN

Figure 1: High-level overview of the proposed RL-based ad-
versarial example attack against GNNs in hardware security.

Such a large design space of circuits makes the problem even
more challenging. Simply brute-forcing all combinations of
perturbations is clearly impossible. For instance, if we just
restrict to perturbations that delete two edges in a graph with
1000 edges (a small circuit), the possible combinations are
1000C2 = 499,500. Another practical consideration required
when working with such large circuits is that performing op-
erations on them is expensive. For instance, synthesizing or
resynthesizing (i.e., compiling) large circuits can take several
minutes. Thus, to ensure a practical technique, a balance needs
to be struck in the trade-off between runtime and efficacy for
such circuits. Likewise, testing adversarially-perturbed large
circuits is also expensive since GNN-based tools require more
time to analyze them. An appropriate trade-off must also be
made in this regard (more details about this are provided in
Sec. 4.4). Moreover, different circuits have vastly different
structures. For instance, an encryption circuit will have very
different gates and connections between them (convoluted
operations for ensuring encryption security) compared to an
adder circuit. This means that perturbations that work for one
circuit may perform poorly for other circuits. These hurdles
(large design space exploration and difficulty in generalizing
to various circuits) make it challenging to devise successful
adversarial examples.

We address these hurdles by modeling the adversarial exam-
ple generation problem as a Markov decision process (MDP)
and solving it using reinforcement learning (RL). RL has
shown great promise in large design-space exploration by nav-
igating unknown and uncertain problem spaces and finding
optimal or near-optimal solutions. However, a straightforward
application of RL is not sufficient to generate high-quality
adversarial examples. Hence, we investigate and optimize the
RL agent on three fronts: 1 designing effective and general-
izable actions, i.e, functionality preserving perturbations to
the circuits, 2 sparse rewards for faster training, i.e., ability
to scale to larger circuits, and 3 enabling multi-task learning
using contextual MDPs, i.e., a single RL agent to generate
successful adversarial examples against all GNNs. Incorpo-
rating all three optimizations results in an automated, generic,
and practical method that evaluates the susceptibility of GNN-
based techniques in hardware security to adversarial examples
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Table 1: AttackGNN against GNNs used in hardware security.

Technique Type Defense Attack

Security Problem Detecting HTs Localizing HTs Detecting IP Piracy Reverse Engineering Hardware Obfuscation

Technique GNN4TJ [87] TrojanSAINT [52] GNN4IP [88] GNN-RE [11] OMLA [9]

GNN Framework Attention-based
custom GCN

Graph attention network [78]
(w. GraphSAINT [90] for sampling)

Attention-based
custom GCN

Graph attention network [78]
(w. GraphSAINT [90] for sampling)

Graph isomorphism
network [83]

Claimed Efficacy 97% TPR 98% TPR, 96% TNR 94.61% Acc. 98.87% Acc. 89.55% Acc.

AttackGNN (This Work)’s
Adversarial Success Rate 100% 100% 100% 100% 100%

(details in Sec. 4). The primary contributions of this work are:

• We develop a first-of-its-kind RL-based adversarial exam-
ple generation technique, AttackGNN,1 for GNNs used in
hardware security. Figure 1 illustrates the high-level con-
cept of this work.

• AttackGNN is agnostic to the target GNN architecture and
training process. In other words, it only assumes black-box
access to the target GNN model.

• We develop custom optimizations to ensure the good per-
formance of the underlying RL agent (Secs. 4.3 and 4.4).

• Using a contextual Markov decision process formulation,
we perform multi-task learning, enabling a single RL agent
to successfully generate adversarial examples against GNNs
used for four different classes of hardware security prob-
lems (Sec. 4.5).

• Our results in Sec. 5 demonstrate that AttackGNN thwarts,
i.e., successfully generates adversarial examples for all cir-
cuits against, GNN-based techniques for four classes of
hardware security problems: IP piracy detection, detect-
ing/localizing HTs, reverse engineering circuits, and break-
ing hardware obfuscation techniques (see Table 1).

• We demonstrate the ramifications of AttackGNN-generated
adversarial examples through two practical, real-world at-
tacks: fooling IP piracy detector on the MIPS and IBEX pro-
cessors, and devising an HT that successfully leaks AES se-
cret key by fooling an HT localization technique (Sec. 5.7).

2 Background

2.1 Graph Neural Networks
Graph neural networks (GNNs) have emerged as a powerful
framework for analyzing and modeling structured data rep-
resented by graphs. Typically, GNNs used in classification
tasks learn representations of nodes in a graph by repeatedly
aggregating and transforming the information (i.e., features)
from their neighbor nodes. After a fixed number of aggrega-
tion iterations, the aggregated features are reduced by taking

1To enable future research on the practicality of GNNs in hardware
security, we will open-source our adversarial examples to the community
here.

their sums, averages, or maximums. The reduced outputs are
passed to a classifier (e.g., a two-layer fully-connected net-
work) for final classification. GNNs have proven successful in
protein folding [72], social networks [30], and combinatorial
optimization [16], among other fields.

2.2 GNNs’ Applications in Hardware Security

Researchers have developed several GNN-based techniques
for hardware security. Our selection of target GNN-based
techniques ranges from the earliest techniques with high popu-
larity, GNN4TJ [87] and GNN4IP [88], to the most recent one,
TrojanSAINT [52]. We also select other GNNs, OMLA [9]
and GNNRE [11], based on their high success rates and va-
riety of underlying GNN frameworks (see Table 1). Overall,
our selection represents a set of GNN-based techniques that
use different frameworks and have demonstrated good perfor-
mance for a variety of problems in hardware security.
GNN for Intellectual Property (IP) Piracy Detection. IP
Piracy refers to the theft of the design IP by an adversary to
develop competing devices without incurring research and
development costs. GNN4IP is a GNN-based IP piracy de-
tection technique that evaluates the similarity between two
circuits [88]. It converts the two circuits into a graph repre-
sentation and uses GCNs to obtain graph embeddings, which
are passed through a fully connected layer that outputs a sim-
ilarity score. If the similarity between the original and test
circuits is high, GNN4IP flags the test circuit as pirated.
GNN for Hardware Trojan (HT) Detection. HTs are mali-
cious modifications an adversary makes to disrupt the orig-
inal functionality. GNN4TJ is a GNN-based detection tech-
nique targeting HTs inserted in third-party IPs [87]. Similar to
GNN4IP, GNN4TJ converts a given circuit into a graph repre-
sentation, which is passed through a GCN, resulting in graph
embedding. A fully-connected layer decides if the circuit has
an HT or not using the embedding.
GNN for Localizing HTs. TrojanSAINT is a GNN-based HT
localization technique [52]. Similar to other techniques, given
a circuit, TrojanSAINT operates on its graph representation
and classifies each node as HT-free or HT-infested.
GNN for Reverse Engineering. Reverse engineering refers
to identifying different parts of a circuit with the intent of
duplicating them. Similar to previous techniques, GNN-RE
converts circuits into graphs and uses GCN layers followed
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by a fully connected network to classify gates into different
modules/classes such as adders, multipliers, control logic,
etc [11]. GNN-RE achieves an average accuracy of 98.82%
on benchmark circuits [11].
GNN for Hardware Obfuscation. Hardware obfuscation is
a design-for-trust scheme that promises protection throughout
the IC supply chain by obfuscating certain circuit regions
using key-controlled gates. OMLA is a GNN-based attack
on hardware obfuscation that uses the structural information
around the key-controlled gates to recover the correct key
bits, thus breaking the security offered by the obfuscation [9].
OMLA achieves a high key-prediction accuracy (as high as
>90%), outperforming prior works on all benchmarks [9].

The aforementioned techniques report very high success
rates and show great potential in addressing their respective
hardware security problem. However, they all lack in terms of
a crucial aspect: thorough evaluation of robustness to adver-
sarial examples. Evaluation of these GNN-based techniques,
and any machine learning technique in general, against ad-
versarial examples is absolutely essential because adversarial
examples can have drastic impacts. For instance, [29] devised
adversarial examples against image classification neural net-
works, resulting in misclassification of the “STOP” sign as a
speed limit sign, which can cause a disaster in self-driving ve-
hicles that use such image classifiers. The need for adversarial
evaluation is especially pressing in these GNNs that target
security applications. We develop AttackGNN as a framework
to red-team these GNNs.

2.3 Reinforcement Learning
RL is a powerful framework in the field of artificial intel-
ligence that enables an agent to learn and make sequential
decisions in dynamic environments through interaction and
feedback. Rooted in the concept of learning from rewards, RL
employs an iterative process where an agent interacts with
an environment, receives feedback in the form of rewards,
and adjusts its behavior to maximize cumulative rewards over
time. By learning an optimal policy (a function that maps
state-action pairs to probabilities of selecting a particular ac-
tion in a given state), the RL agent aims to make informed
decisions in different states to maximize its long-term rewards.
This learning paradigm is particularly well-suited for solving
Markov decision processes (MDPs), which are mathemati-
cal models used to represent decision-making problems with
sequential interactions. RL has demonstrated remarkable suc-
cess in various domains, including robotics, game playing,
and resource management [56, 60, 61].

3 Threat Model

We consider a standard and widely-used threat model of ad-
versarial example generation [24, 49, 54, 62, 81, 92]. To that
end, we make the following assumptions about the attacker.

Attacker’s Capacity. The adversarial attack happens after the
model has been trained. The model is fixed and the adversary
cannot change the model parameters or structure. In particular,
the attacker cannot poison the model and inject backdoors in
the model.

Attacker’s Abilities. The attacker can introduce arbitrary
perturbations, albeit those perturbations cannot change the
functionality of the circuit, and he/she cannot violate circuit
design rules. These perturbations include, but are not limited
to, any combination of adding/deleting edges, injecting nodes,
etc. as long as the final perturbed circuit maintains the original
functionality and does not violate circuit design rules.

Attacker’s Knowledge. Attacker’s knowledge refers to the
amount of information known to the attacker about the model
he/she aims to attack. We assume a black-box setting. The
attacker does not have access to the model’s parameters or
training labels. He/she can only perform black-box queries
for output scores or labels.

Attacker’s Goal. The attacker aims to generate input samples
(i.e., circuits) that result in misclassification by the target GNN
model. For instance, when the target model is GNN4IP [88]
(GNN-based technique for detecting IP piracy between two
input circuits), given any original circuit, the attacker aims
to create a pirated version of the circuit (by perturbing the
original circuit) so that GNN4IP is fooled into classifying the
perturbed circuit as “not pirated”.

Note. The objective of this work is not to propose a new
technique for inserting/detecting hardware Trojans (HTs),
detecting/evading IP piracy or reverse engineering. In other
words, AttackGNN is not an attack or a defense on hardware
security techniques. Rather, as mentioned in Table 1, it is an
attack on GNNs used in hardware security, be they used for
performing malicious acts or for benevolent acts.

4 Methodology

We now demonstrate how prior works have generated adver-
sarial examples against general GNNs using perturbations
and how these techniques are not applicable in our case with
circuits (Sec. 4.1). Then, using GNN4IP [88] (a GNN-based
technique for detecting IP piracy) as a representative exam-
ple, we devise a novel approach to fool GNNs in hardware
security by formulating the problem of finding adversarial
examples as an RL problem (Sec. 4.2). However, this prelimi-
nary formulation suffers from generalization and performance
issues which we overcome in Secs. 4.3 and 4.4. Addition-
ally, for practicality and scalability, we devise a formulation
that allows a single RL agent to generate successful adversar-
ial examples against all GNNs (Sec. 4.5). Ultimately, we tie
everything together in Sec. 4.6.
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Figure 2: Illustration of why existing adversarial example
generation techniques are inappropriate for our case.

4.1 Limitations of Existing Adversarial Exam-
ple Generation Techniques

Adversarial examples in the context of GNNs refer to inputs
that are purposefully crafted to deceive the GNN’s predic-
tions. Typically, adversarial examples in GNNs are generated
by introducing perturbations to the input graph data. These
perturbations are carefully designed to exploit vulnerabili-
ties or limitations in the GNN model, causing it to make
incorrect predictions. Researchers have developed a variety
of perturbation techniques. These perturbation techniques use
one or more of the following four approaches: adding edges,
deleting edges, injecting nodes, and modifying features. How-
ever, such perturbations cannot be used for hardware security
problems that operate on Boolean circuits because (i) these
perturbations affect the functionality of the circuit, (ii) they
may also lead to violations of circuit design rules, and/or (iii)
they violate our threat model.
Example. Figure 2 uses a full adder circuit, its graph rep-
resentation, an example perturbation, and the corresponding
adversarial circuit to demonstrate why such perturbations can-
not be used to generate adversarial examples for Boolean
circuits. The perturbation adds an edge (shown in red) to the
graph. However, doing so (i) changes the functionality of the
circuit and (ii) has two drivers for a gate input, which violates
circuit design rules. Similarly, the perturbation techniques
that delete edges or inject nodes cannot be directly applied
to GNNs used in hardware security. Moreover, modifying
features is not applicable because although this perturbation
technique would neither change the functionality of the circuit
nor result in design rule violations, our threat model (Sec. 3)
prevents us from controlling the node features directly.

Since these widely used perturbation techniques against
GNNs are not applicable to our case, we devise a new way
to generate adversarial examples that satisfy the constraints
of not altering the circuit’s functionality, not violating design
rule constraints, and not violating our threat model. Our per-
turbation involves a series of modifications to the gates and
wires of the circuit, but for each modification, we ensure that
the circuit’s functionality remains unchanged and the design

rule constraints are not violated. Hence, after applying this
series of functionally equivalent modifications, we obtain the
final perturbed circuit that is functionally equivalent to the
original circuit but can still result in misclassification by the
target GNN.

4.2 Preliminary Formulation

As explained above, we must devise a series of perturbations
that do not change the circuit’s functionality but still result in
misclassification. To achieve these functionality-preserving
perturbations, we rely on primitive circuit transformations ap-
plied on circuits during the synthesis process, i.e., when a Ver-
ilog (or even a circuit) circuit description is translated (or re-
translated) into a circuit. Here, since we use the open-source
synthesis tool ABC [6],2 we use its primitive circuit transfor-
mations, such as refactor, refactor -z, resub, balance,
etc., to cause functionality-preserving perturbations. When
applied to a circuit, these transformations change the circuit’s
structure but not the function. However, the order of applica-
tion of these transformations affects the perturbed circuit and,
hence, the success of the perturbation. Moreover, different
circuits have different structures and thus require different
transformations in different orders. So, to find the optimal
sequence of transformations for a given circuit that results
in misclassification by GNN4IP, we design an RL agent that
finds the optimal policy for (i.e., solves) the MDP, denoted as
a tuple (S ,A ,P(st+1|at ,st),R(st ,at),γ), defined as follows:

• States S is the set of all possible values of the state vector.
The state vector, st , that characterizes the circuit at time t,
is defined as a list of pre-determined features in that circuit:
st = [# inputs, # outputs, # gates, # wires, # AND gates,
# OR gates, # NAND gates, # NOR gates, # INV gates, #
BUF gates, # XOR gates, # XNOR gates, # other gates],
where “other gates” refers to all gate types not explicitly
listed in the array, e.g., flip-flops. We select these features
since the resulting state vector captures information about
the structure of the circuit, and it is closely related to the
node features used in GNN4IP [88].

• Actions A is the set of the following functionality-
preserving transformations in ABC: {refactor, rewrite,
resub, balance, refactor -z, rewrite -z, resub -z}.
We choose these transformations since they can produce
different resynthesized circuits while preserving function-
ality [6]. We also add the no-op (short for “no operation”)
action to this set to denote no action. Doing so allows the
agent to not perturb more if the current perturbed circuit is
sufficient to evade GNN4IP. An individual action, at , is the
transformation chosen by the agent at time t.

2ABC is a widely-used open-source synthesis tool developed at UC Berke-
ley.

5



• State transition P(st+1|at ,st) is the probability that ac-
tion at in state st leads to the state st+1. In our case, the
chosen transformation (i.e., the action at) is provided to
ABC, which applies the transformation to the current cir-
cuit (represented by state st), and results in the resynthe-
sized circuit (represented by state st+1). Note that since this
transformation is deterministic, the state transition is also
deterministic:

P(st+1|at ,st) =

{
1, if ABC(st ,at) = st+1

0, otherwise

• Reward function R(st ,at) = rt is equal to α (> 0) if the
next state is misclassified by GNN4IP as not pirated; it is 0
otherwise.

R(st ,at) = rt =

{
α, if GNN4IP(s1,st+1) = not pirated
0, otherwise

(1)
Here, s1 is the initial state, i.e., the original circuit we wish
to pirate, and GNN4IP(NA,NB) is the trained GNN-based
IP-piracy detector function that takes as input two circuits,
NA and NB, and returns “pirated” if it determines that circuit
NA is pirated from NB or vice versa (since the function
is symmetric) and returns “not pirated” otherwise. The
reward is designed so that the agent tries to successfully
evade detection by GNN4IP with the smallest number of
perturbations.

• Discount factor γ (0≤ γ≤ 1) indicates the importance of
future rewards relative to the current reward.

The initial state s1 is a randomly picked (from the set of all
circuits GNN4IP is trained with) original circuit that we wish
to pirate and fool GNN4IP with. At each step, t, the agent
in state st chooses an action at , arrives in the next state st+1
according to the state transition rules, and receives a reward rt .
This cycle of state, action, reward, and next state is repeated
T (a pre-determined finite number) times, constituting one
episode. At the end of each episode, the agent’s state reflects
the final perturbed circuit. We train our agent using the Proxi-
mal Policy Optimization algorithm with default parameters
unless specified otherwise [70].

Our experiments indicate that this preliminary agent per-
forms well for some circuits but not for most of the circuits on
which GNN4IP is trained. We analyzed the agent in greater de-
tail and discovered some challenges faced by this preliminary
formulation, which are explained and addressed next.

4.3 Effective and Generalizable Actions
Challenge: Ineffective and Specific Actions. The prelimi-
nary formulation relies only on the transformations available
in the ABC synthesis tool to perturb the circuit. Those trans-
formations (i.e., the actions defined above) have two issues.

Table 2: New actions based on allowed/prohibited standard
cells. ANDx indicates an x-input AND gate.  indicates al-
lowed standard cells, and # indicates standard cells that are
prohibited for that action.

Action
AND2,

OR2
NAND2,
NOR2

ANDx, ORx
(x≥3)

NANDx, NORx
(x≥3)

XOR,
XNOR

INV,
BUF

a1   # #   

a2       

a3 #  # # #  

a4 #  #  #  

a5 #  # #   

a6 #  #    

a7  # # #   

a8  #  #   

a9  # # # #  

a10  #  # #  
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Figure 3: Comparison of the evolution of GNN4IP similarity
scores with old and new actions as training progresses.

(i) They do not change the state significantly for several of
the circuits. Thus, GNN4IP easily detects the structural simi-
larity between the original and the pirated circuits. (ii) They
are specific to the ABC synthesis tool, resulting in virtually
zero compatibility with other open-source as well as indus-
trial standard commercial synthesis tools such as Synopsys
Design Compiler [74] and Cadence Genus [15].
Solution 1 : To address this challenge, we devise novel,
more effective (albeit still functionality-preserving) actions
for the agent that are extremely likely to change the state, i.e.,
the node features of the pirated circuit. These novel actions
are the 10 different gate type (also called “standard cell”)
selection strategies shown in Table 2. For instance, if action
a1 is chosen, the synthesis tool (i.e., ABC, Synopsys Design
Compiler, or Cadence Genus) is allowed to use the 2-input
AND (AND2 in the table), OR, NAND, and NOR standard
cells (i.e., gates), and XOR, XNOR, INV, and BUF standard
cells, but not allowed to use 3 or higher input AND, OR,
NAND, and NOR standard cells. So, if, in state st , action a1 is
chosen, st+1 will not contain 3-input AND, OR, NAND, and
NOR standard cells. Another advantage of these new actions
based on standard cell selection strategies is that they are
agnostic to the synthesis tool. All widely used synthesis tools,
both open-source and commercial, are compatible with these
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new actions, unlike the actions defined in the preliminary
formulation. This synthesis-tool-agnostic nature of the actions
is essential for generating adversarial examples against some
of the GNNs in hardware security, as explained later in Sec. 5.

Simply adding these 10 new actions to the previously men-
tioned 8 actions (refactor, rewrite, ..., etc.) would result
in an extremely large action space ((10×8)T , where T is the
number of steps in an episode) for the agent. Hence, to reduce
the action space, for each of the T steps in an episode, we only
let the agent choose one of the 10 standard cell strategies and
apply three fixed transformations (if using ABC): rewrite,
balance, refactor (in that order). In other words, at each
step, the action space of the agent is the set of 10 functionality-
preserving transformations shown in Table 2 (and the no-op
action for no change to the state; this allows the agent not to
perturb more when the current perturbed circuit is sufficient
to evade GNN4IP), and for each individual action from those,
we apply the fixed transformations (if using ABC) rewrite,
balance, and refactor in that order.

Figure 3 compares the GNN4IP similarity scores as a func-
tion of first≈ 1K training steps for 10 c432 benchmarks from
the GNN4IP repository [4]. Lower similarity score indicates
successful attack. The dashed red line is GNN4IP’s thresh-
old for classifying a circuit as pirated. The superiority of the
agent’s learning and performance is clearly visible: with the
new actions, the agent quickly learns to generate adversarial
circuits that fool GNN4IP (leading it to classify pirated cir-
cuits as not pirated), whereas with the old actions, the agent
is unable to generate successful adversarial examples.

4.4 Sparse Rewards for Faster Training

Challenge: Unnecessary Reward Computations Another
challenge faced by the preliminary formulation is that it in-
volves reward computation at each step. Reward computation
requires querying the trained GNN4IP model with the up-
dated state, st+1, to determine if it is classified as pirated or
not. Since this involves loading the trained model, parsing the
original and current circuits, and performing a forward pass of
the GNN, it consumes at least a few seconds. Since RL agents
typically need several thousands, if not tens of thousands of
steps, to learn, this time-intensive reward computation slows
the RL training process dramatically.
Solution 2 : To reduce training time, we employ the strategy
of computing rewards only at the end of the episode instead
of at each step of the episode. Doing so reduces the frequency
of reward computation, leading to less time per episode dur-
ing training. Note that computing rewards at the end of the
episode instead of at each step can affect the performance
of the agent, i.e., it may lead to sub-optimal convergence.
However, our results show that our agent still converges to
an effective policy, i.e., it learns to generate successful ad-
versarial examples. Table 3 shows the two ways to provide
rewards (at each step and at the end of each episode) and their

Table 3: Comparison of training rates for the reward methods:
at each step vs. at end of episode.

Method % of successful
episodes

Rate

(steps/min) (eps./min)

Reward at each step 77 18.13 3.46
Reward at end of episode 89 67.73 13.33

Improvement 1.15× 3.73× 3.85×

impacts on the training rates and the percentage of successful
episodes against GNN4IP. It is evident that the sparse reward
computation increases the rate dramatically while actually
improving the percentage of successful episodes. Hence, we
use sparse rewards (i.e., at the end of each episode) to train
our RL agent.

4.5 Multi-Task Learning
Challenge: MDP Specific to one GNN. So far, we formu-
lated an MDP, that when solved by an RL agent, yields ad-
versarial examples against GNN4IP. However, this MDP is
specific to GNN4IP. If we wish to target other GNN tech-
niques, we would need to devise separate MDPs, each with
their separate RL agents. In other words, we would have differ-
ent RL agents to learn different tasks, i.e, generate adversarial
examples against different GNNs. However, training separate
RL agents for different tasks is not ideal because each RL
agent would be independent and would require training from
scratch instead of learning knowledge common among dif-
ferent tasks. This would result in a large runtime to generate
adversarial examples against all the GNNs, limiting the scala-
bility of our technique. To overcome this challenge, we need
to devise a single RL agent that learns different tasks, i.e.,
generates successful adversarial examples against all GNNs.
Solution 3 : We devise a contextual Markov decision pro-
cess (CMDP) formulation that can enable multi-task learn-
ing by a single RL agent. A CMDP is denoted as a tu-
ple (C ,S ,A ,M (c)), where C is called the context space,
S is the state space, A is the action space, and M is a
function mapping any context c ∈ C to an MDP M (c) =
(S ,A ,Pc(st+1|at ,st),Rc(st ,at),γ

c). In other words, given a
context c ∈ C , the CMDP reduces to a regular MDP specific
to that context. A key feature required to formulate a CMDP
is that the state and action spaces of all the constituent MDPs
need to be the same. Since our state and action formulations
from Sec. 4.3 are agnostic to the underlying GNN, we can
formulate the CMDP against all GNNs by designing differ-
ent appropriate reward functions for the different GNNs. In
other words, we can construct a CMDP that encompasses
MDPs against all GNNs and then train a single RL agent that
finds the optimal policy for the CMDP, and hence for all its
constituent MDPs. Next, we formulate this CMDP.

• The context space C is the set of one-hot encoded bi-
nary strings, one for each GNN we target. Since we tar-
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Figure 4: Final AttackGNN architecture.

get four GNNs (GNN4IP, TrojanSAINT, GNN-RE, and
OMLA), C = {1000,0100,0010,0001}, with 1000 reduc-
ing the CMDP to the MDP for GNN4IP, and so on.

• States S of the CMDP are as defined in Sec. 4.2.

• Actions A of the CMDP are as defined in Table 2.

• State transitions Pc(st+1|at ,st) of the CMDP are the as
defined in Sec. 4.2 for all c ∈ C .

• Reward functions Rc(st ,at) for the constituent MDPs of
the CMDP are defined separately as follows:

TrojanSAINT is a GNN-based hardware Trojan (HT) lo-
calization technique. Given a set of nodes (i.e., gates in a
circuit), it classifies each node as HT-free or HT-infested,
which helps determine the location of an HT in the circuit.
To generate adversarial examples against TrojanSAINT, we
design the end-of-episode reward function (hence subscript
T ) as:

R(sT ,aT ) = rT = 1−αT S(sT+1) (2)

Here, αT S(N) is the performance of TrojanSAINT on the
input HT-infested circuit, N, measured according to [52] as
the average of true positive and true negative rates.

GNN-RE classifies gates in a circuit into different modules
(adders, subtractors, comparators, multipliers, and control
logic). To generate adversarial examples against GNN-RE,
we design the reward function as:

R(sT ,aT ) = rT = 1−αRE(sT+1) (3)

Here, αRE(N) is the accuracy of the trained GNN-RE clas-
sifier that takes as input a circuit, N, and returns the labels
(“adder”, “subtractor”, “comparator”, “multiplier”, or “con-
trol logic”) for the nodes in N.

Since OMLA uses GNNs to predict the key bits used to
obfuscate the circuit, the adversarial examples are designed
to result in poor classification accuracy. To this end, we
design the reward function as:

R(sT ,aT ) = rT = e−5|0.5−αOMLA(sT+1)| (4)

Here, αOMLA(N) is the key prediction accuracy of the
trained OMLA GNN that takes as input an obfuscated cir-
cuit, N, and returns the predicted key bits (0 or 1 for the

key gates (i.e., the obfuscation gates that take key bits as
inputs) in N. The reward is designed to provide marginally
increasing returns as OMLA’s accuracy drops closer to 0.5,
i.e., it performs no better than a random guess.

In summary, the reward functions for MDPs are designed
to generate adversarial examples so that the corresponding
GNN yields low accuracy or a high misclassification rate.
Finally, the reward function for the CMDP is a congregation
of the individual MDPs’ rewards:

Rc(st ,at) =


Eq.(1), if c=1000
Eq.(2), if c=0100
Eq.(3), if c=0010
Eq.(4), if c=0001

• Discount factors γc for the CMDP are as defined in Sec. 4.2
for all c ∈ C .

We solve this CMDP using a single RL agent, thus performing
multi-task learning. Next, we unify all three solutions we de-
veloped and describe the final RL formulation that generates
adversarial examples using 1 effective and generalizable
actions, 2 sparse rewards for achieving faster training, and
3 CMDP for multi-task learning.

4.6 Final Formulation
Figure 4 illustrates the final architecture of our RL agent
against GNNs in hardware security. For each episode, the
agent starts with a randomly picked circuit for a randomly
picked target GNN (GNN4IP in the figure) and takes an
action according to the policy parameterized by a neural
network.3 Based on the action, a synthesis recipe is cre-
ated, which is compiled using the appropriate synthesis tool
(ABC/Synopsys Design Compiler/Cadence Genus) to gen-
erate the next state of the agent. More specifically, we use
the open-source ABC tool [6] when working with GNN4IP
and OMLA and the industry-standard Synopsys Design Com-
piler [74] when working with TrojanSAINT and GNN-RE
since the latter GNNs require gate names to be preserved
after synthesis for correct labeling, which is not supported

3In addition to the policy neural network, the agent also contains a value
neural network that predicts the expected reward for a given state-action pair,
which is used to train the RL agent.
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Figure 5: Number of successful AttackGNN-generated adversarial circuits against GNN4IP (higher values: better attack).
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Figure 6: Distribution of GNN4IP similarity scores for AttackGNN-generated adversarial circuits (lower values: better attack).

in ABC.4 Then, the agent chooses another action, and so on.
This cycle is repeated T times, which constitutes an episode.
At the end of the episode, the final state is evaluated using
the chosen GNN for that episode to produce a reward for the
agent. After a fixed-size batch of episodes, the Proximal Pol-
icy Optimization (PPO) algorithm translates the rewards into
losses, which are used by the Adam optimizer [51] to update
the parameters of the neural networks that make up the agent.
After several such batches of updates to the parameters, the
rewards saturate, and the neural networks converge, resulting
in the agent learning an optimal or a near-optimal policy to
generate successful adversarial examples against all target
GNNs. Next, we demonstrate the efficacy of this multi-task
RL agent in generating adversarial examples.

5 Results

5.1 Experimental Setup

We implemented AttackGNN using PyTorch 1.12 and stable-
baselines3 and trained it using 16 cores in a Linux machine
with a Dual AMD EPYC 7443 processor with a 256GB RAM.
We implemented custom parsers and glue scripts in Python3.
We used the Proximal Policy Optimization algorithm [70] for

4Note that AttackGNN is compatible with all synthesis tools.

training the RL agent. We used a two-layered, 64×64 fully-
connected neural network with Tanh activation function for
our policy and value networks. We selected the reward param-
eter, α for GNN4IP in Eq. (1), as 1 to have it on the same scale
as the other rewards (Eqs. (2), (3), and (4)). Our MDP for-
mulation for identifying perturbations follows the state (s)→
action (a)→ next state→ reward (r) flow. For GNN4IP and
OMLA, we set T , the episode length, as 5, so there is a five-
step evolution of state: s0→ a0→ s1 . . .→ s5→ r. Whereas
for TrojanSAINT and GNN-RE, we set T as 1, so there is
a one-step evolution of state: s0 → a0 → s1 → r, meaning
that there are two states in the flow. This is not supervised
learning because T must be 0 for supervised learning, i.e., no
state evolution. Moreover, we observed that setting T as 1 for
TrojanSAINT and GNN-RE reduced the runtime and was still
sufficient to generate successful adversarial examples using
Synopsys Design Compiler.

5.2 Success Against GNN4IP [88]

We obtained the GNN4IP code and a dataset of 31 different
circuits from the GNN4IP repository [4]. Using our RL agent,
we generated adversarial examples for each of these 31 cir-
cuits. Since GNN4IP detects IP piracy between two circuits,
a successful adversarial example should fool GNN4IP into
classifying a pirated circuit as not pirated, i.e., assign it a sim-
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Figure 7: Top: Number of successful AttackGNN-generated adversarial circuits against TrojanSAINT (higher values: better
attack). Bottom: Distribution of TrojanSAINT’s scores for those adversarial circuits (lower values: better attack).

ilarity score < 0. Another important thing to note is that we
generate adversarial examples by perturbing circuits from the
training set itself, i.e., circuits that GNN4IP has seen during
training. This is a more difficult setting for our attack than the
typical setting where one perturbs a circuit from the testing
set, i.e., circuits that GNN4IP has not seen before. We follow
this difficult setting to showcase the exceptional capability of
AttackGNN in generating successful adversarial examples.

Figure 5 shows the number of successful adversarial cir-
cuits found by our RL agent for each of the 31 circuits from
GNN4IP’s training set. As the results show, AttackGNN eas-
ily generates many successful adversarial circuits against
GNN4IP. Figure 6 presents further analysis of our adversarial
circuits vis-a-vis the distribution of the GNN4IP similarity
scores for those circuits. The figure demonstrates that for most
successful adversarial circuits, GNN4IP’s similarity score is
significantly less than 0 even though all those adversarial
circuits are actually pirated from the original circuits.

5.3 Success Against TrojanSAINT [52]

We obtained the TrojanSAINT code from the TrojanSAINT
repository [76]. Moreover, following TrojanSAINT [52], we
used 16 HT-infested circuits from the TrustHub suite [77]. The
TrustHub suite is a repository of many real-world circuits with
various HTs that cause denial-of-service, degradation in per-
formance, leak secret keys, etc. For each of the 16 circuits, we
train a separate GNN as is done in TrojanSAINT [52]. Then,
we use the single AttackGNN agent to generate adversarial
circuits against all 17 trained GNNs. Since TrojanSAINT per-
forms binary classification, we define an adversarial circuit,
i.e., a perturbed HT-infested circuit, as successful if Trojan-
SAINT’s score (average of true positive rate and true negative
rate) is below 0.5, i.e., 50%.

Figure 7 shows the number of successful AttackGNN-
generated adversarial circuits (top) and the TrojanSAINT
score distribution (bottom) for them. We observe that even
though AttackGNN is not trained separately for each of the
17 different TrojanSAINT GNNs, it easily generates plenty

of successful adversarial circuits against TrojanSAINT. More-
over, like GNN4IP, all successful adversarial circuits result
in poor TrojanSAINT performance.

5.4 Success Against GNN-RE [11]

We tested AttackGNN against GNN-RE using a dataset of 37
circuits containing combinations of adders, subtractors, com-
parators, multipliers, and control logic with bit widths from
{4,8,16,32} [32]. In total, the dataset contains 24 circuits.
We follow the training procedure described in [11] to train
GNN-RE. Given a circuit, GNN-RE classifies the gates in
the circuit into one of the five classes (adders, subtractors,
comparators, multipliers, and control logic). Hence, our At-
tackGNN tool generates adversarial circuits by perturbing the
given circuit with the objective of decreasing the classifica-
tion accuracy of GNN-RE in a black-box setting. We define
an adversarial circuit as successful if it results in GNN-RE’s
classification accuracy of ≤ 25%. An important note here is
that we consider the more stringent scenario where we gen-
erate adversarial examples for the circuits that GNN-RE has
seen during training, as opposed to generating adversarial
examples for circuits not seen by GNN-RE.

Figure 8 shows the number of successful adversarial ex-
amples generated by AttackGNN against GNN-RE (top) and
GNN-RE’s accuracy distribution for those adversarial circuits
(bottom). The nomenclature for the circuit labels is explained
in Table 4. Even though a single AttackGNN RL agent per-
turbs the circuits seen by GNN-RE during training, it success-
fully fools GNN-RE and results in GNN-RE’s accuracy to
drop to <<< 000...222555, i.e., <<< 222555%.

5.5 Success Against OMLA [9]

To assess AttackGNN against OMLA, we use the the pub-
licly available circuits from the OMLA repository [64]. This
dataset comprises a sum of 3996 distinct obfuscated circuits
distributed across four specific circuit sets (c1355, c1908,
c2670, and c3540) derived from the ISCAS benchmark suite.
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Table 4: Name encoding for the circuits in GNN-RE repository [32].  and # indicate the presence and absence of that substring
in the name of the circuit benchmark, respectively. For instance, B7 corresponds to the “add_mul_combine_16_bit.v” circuit
from the GNN-RE repository [32].

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24

Add                         

Mul                         

Sub # # # # # # # # # # # #     # # # #     

Cmb # # # #     # # # # # # # # # # # # # # #

Cmp # # # # # # # #         # # # # # # # #

Mix # # # # # # # # # # # # # # # #     # # # #

#Bits 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
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Figure 9: Top: Number of successful adversarial circuits
against OMLA (higher values: better attack). Bottom:
OMLA’s accuracy for them (values near 0.5: better attack).

We selected these circuits due to OMLA’s notable high key
prediction accuracy (as high as 95%). Similar to Trojan-
SAINT, OMLA also trains separate GNNs for each of the four
circuits, so we follow the same training process [9]. Then, we
use a single AttackGNN agent to generate adversarial circuits
against all four GNNs from OMLA. Since OMLA predicts
the values of the key bits to unobfuscate the circuit, we use
the key prediction accuracy (KPA) to measure the success of
OMLA. A KPA of 100% means OMLA has recovered all key
bits correctly, and a KPA of 50% means OMLA is no better

than a random guess. So, we define an adversarial circuit as
successful if OMLA’s KPA is between 50% and 55%.

Figure 9 shows the number of our successful adversarial
circuits against OMLA for all four circuit sets, c1355, c1908,
c2670, c3540, (top) and distribution of OMLA’s KPA for
those adversarial circuits (bottom). Both figures clearly illus-
trate the success of AttackGNN in perturbing obfuscated
circuits that render OMLA no better than a random guess.

5.6 Success Against GNN4TJ [87]

Here, we analyze the efficacy of GNN4TJ, a GNN-based
HT detection technique. Given a circuit, GNN4TJ classi-
fies whether that circuit contains an HT or not. To ensure
proper evaluation in our experiments, we used the pre-trained
GNN4TJ model as well as the benchmark circuits released by
the authors at [4]. Additionally, we also included five other
HT-free circuits from the OpenCores [66] in the evaluation
process. Testing a total of 15 HT-free and 19 HT-infested
circuits, GNN4TJ reported an accuracy of 55.88%. However,
a closer look at the confusion matrix in Figure 10 reveals
an interesting insight. The false positive rate of GNN4TJ is

15
15+0 = 100%. In other words, GNN4TJ classifies all circuits
as HT-infested. Note that of the 15 circuits that GNN4TJ in-
correctly classifies as HT-infested, 9 are circuits that GNN4TJ
has seen during training. This indicates that GNN4TJ has a
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Figure 11: Left: Number of successful adversarial circuits
(higher values: better attack). Right: Distribution of GNN4IP
similarity scores for MIPS adversarial circuits with IBEX and
vice-versa (higher values: better attack).

high bias towards classifying any circuit as HT-infested, mak-
ing the technique impractical as a HT-detection tool. Since
GNN4TJ is highly biased, we do not evaluate it using adver-
sarial examples because no matter what adversarial example
(i.e., an HT-infested circuit designed to fool GNN4TJ) is gen-
erated, the adversarial example will likely never be classified
as HT-free by GNN4TJ making the evaluation moot.

5.7 Ramifications of Adversarial Examples in
Hardware Security

IP Piracy. So far, we evaluated the efficacy of AttackGNN
against GNNs mainly on the benchmarks released for the
respective GNNs. Next, we demonstrate the practicality
of AttackGNN by showcasing a case study on two large-scale
circuits, the Stanford MIPS [65] and the Google IBEX [45]
processors.5 In particular, we demonstrate the ability of our
technique to fool GNN4IP for these large-scale circuits. To
that end, we (i) use AttackGNN to generate a variety of
perturbed circuits for the MIPS processor and then query
GNN4IP to detect piracy between those perturbed circuits
and the IBEX processor; and (ii) we generate a variety of
perturbed circuits for the IBEX processor and then query
GNN4IP to detect piracy between those perturbed circuits
and the MIPS processor. We perform this cross-evaluation to
determine the false positive rates of GNN4IP on real-world
circuits. Figure 11 shows that AttackGNN generates > 100

5To ensure compatibility with GNN4IP, we assume full-scan access for
these processors.

successful adversarial circuits for both the cases in just one
hour of training. Even though MIPS and IBEX are completely
different circuits, AttackGNN easily fools GNN4IP into
classifying them as pirated. Moreover, the distribution of
the similarity scores given by GNN4IP to our adversarial
circuits of these vastly different processors is also shown in
Figure 11.6 It is evident that not only is GNN4IP susceptible
to false positives, the magnitude of incorrect classification (as
measured by the incorrect high similarity scores) is alarming.
This case-study demonstrates the importance of adversarial
evaluation in hardware security. Failing to do so can result in
a classifier that is highly inaccurate and can lead to circuits
being incorrectly flagged as pirated with high confidence.

HT Localization. Next, we demonstrate the ramifications
of adversarial examples for the case of HT localization by
showcasing an attack on an AES encryption circuit. AES is a
widely-used encryption algorithm (i.e., cipher) and is the first
and only publicly accessible cipher approved by the U.S. Na-
tional Security Agency NSA for top secret information [22].
For this case study, we design and insert an HT that leaks
the secret key when 2128 encryptions are done. Then, we
use AttackGNN to generate adversarial examples for this HT-
infested AES and evaluate TrojanSAINT’s efficacy in locating
the HT. AttackGNN successfully generates 10 unique adver-
sarial circuits, each of which results in a 50% or lower score
from TrojanSAINT.7 Again, this case study reinforces the
need for a thorough evaluation of GNN-based techniques in
hardware security, as failing to do so can have disastrous
consequences.

Results Summary. All our results validate the efficacy
and generality of our technique. A single AttackGNN
RL agent successfully generates adversarial examples
against all considered GNNs in just 12 hours of training.

6 Related Work and Discussion

In this section, we first discuss other works that generate
adversarial examples or use reinforcement learning (RL) for
security problems and how AttackGNN is different from them.
Then, we provide a detailed description of another related
work that targets the GNNs in hardware security and outline
the key points that differentiate our work from it. Finally, we
discuss potential countermeasures against AttackGNN.

6Note that, unlike Figure 6 in Sec. 5.2, since the objective of this ex-
periment is to determine the false positive rate of GNN4IP, a successful
adversarial circuit is one that fools GNN4IP to classify as pirated, i.e., its
similarity score should be higher than 0.

7“Score” here refers to the average of true positive and true negative rates,
i.e., the metric used in TrojanSAINT [52].
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6.1 Adversarial Examples and RL in Security

There has been a plethora of work on attacking systems by
generating adversarial examples [3, 18–20, 24, 27, 28, 39, 40,
44, 48, 53–55, 57, 58, 62, 67, 81, 85, 89, 91, 92]. Just over the
past couple of years, researchers have designed adversarial
attacks against perceptual hashing [67], automatic speech
recognition systems [18, 19, 27, 40, 81, 89], speaker identifica-
tion [3], malware detection [39, 44, 53–55], image captioning
systems [20, 85, 91], image detection [48, 57], and even an au-
tomatic reviewer assignment system used in a top security con-
ference [28]. All these attacks perturb certain features in the
input space to fool a detection/recognition/classification sys-
tem into producing incorrect outputs. Researchers have also
proposed adversarial attacks against GNNs in general [24,62],
albeit not in hardware security. Since these techniques do not
target hardware circuits, they employ existing graph perturba-
tion techniques and work with graphs with a couple thousand
nodes. In contrast, our work (i) designs new kinds of pertur-
bations suitable for hardware circuits, (ii) works with circuits
that contain up to 258K gates (i.e., nodes), and (iii) to the
best of our knowledge, is the first work that generates success-
ful adversarial examples against GNN-based classification
systems used in hardware security.

In another direction, researchers have also used RL to de-
vise new attacks and defenses in hardware security [21,23,26,
33–36, 41, 42, 59, 69]. However, these works are orthogonal
to ours: they target specific problems in hardware security
(e.g., HTs, fault injection, cache-timing attacks), whereas our
work generates adversarial examples against GNNs used in
hardware security. Researchers have also explored the po-
tential of using generative adversarial networks (GANs) to
generate adversarial examples [5, 82]. However, such works
mainly focus on attacking traditional deep neural networks,
so the potential of GANs for generating adversarial examples
against GNNs, and specifically GNNs for hardware security,
is yet to be explored.

6.2 Attacking GNNs in Hardware Security

Different from this work, PoisonedGNN, which targets some
of the GNNs in hardware security, assumes a threat model
of a backdoor attack, where the attacker has access to the
training data, the training process, and the trained model’s
parameters [8]. This enables it to insert backdoors into the
target model, reducing its accuracy during inference.

Unlike PoisonedGNN, AttackGNN is an adversarial
example-based attack technique that (i) does not require ac-
cess to the training procedure, (ii) works under the constraints
of not being allowed to change the model parameters or struc-
ture, (iii) works with black-box access to the model under
attack, and (iv) does not devise specific techniques (i.e., back-
doors) dependent on the target GNNs; rather, AttackGNN gen-
erates adversarial examples in an agnostic manner, using only

black-box access to the target GNNs, resulting in thwarting
GNNs used in four different hardware security problems.

6.3 Potential Countermeasures
There are several options to protect GNNs against adversarial
attacks. (i) Adversarial training involves injecting adversarial
examples into the training set such that the trained model
can correctly classify the future adversarial examples [37].
However, research has also shown its limitations in general
machine learning settings [17] as well as for GNNs [31, 38].
(ii) Researchers have also devised adversarial perturbation
detection techniques as a countermeasure against adversarial
attacks [47, 84]. However, these techniques are not applica-
ble to AttackGNN since our work does not use the typical
node/edge perturbation techniques. (iii) Different from the
previous heuristic-based approaches, certifiable robustness
techniques provide guaranteed defense against adversarial at-
tacks under some assumptions [13]. However, such techniques
focus on typical node/edge perturbations, different from our
perturbations that potentially change the entire graph. More
future work is needed to devise such certifiable robustness
techniques for our case.

7 Conclusion

Graph neural networks (GNNs) have shown great have shown
great potential in addressing several critical hardware secu-
rity problems. However, we observe that these state-of-the-art
GNN-based techniques have lacked thorough evaluation, par-
ticularly against the threat of adversarial examples.

Using reinforcement learning (RL), we devised a first-of-
its-kind automated technique, AttackGNN, that generates ad-
versarial examples against GNNs used in hardware security.
To do so, we couldn’t rely on existing perturbation-based
adversarial example generation methods since working with
hardware circuits poses unique constraints (maintaining cir-
cuit functionality and obeying circuit design rules) and chal-
lenges (scaling to large circuits). We overcame these con-
straints by developing circuit functionality-preserving per-
turbations. Moreover, we developed custom optimizations
improving the effectiveness and efficiency of our RL agent,
allowing it to scale to practical circuits. We also devised a
contextual Markov decision process formulation enabling a
single RL agent to generate successful adversarial examples
against GNNs for four classes of hardware security problems.
AttackGNN is agnostic to the target GNN architecture and
only requires black-box access to the GNNs.

Experimental results confirm that AttackGNN-generated
adversarial examples fool all GNNs considered in this work.
We also showcase the power of AttackGNN in (i) fooling an
IP piracy detector for the MIPS and IBEX processors and (ii)
creating a circuit compromised with an HT that can leak an
AES secret key while evading an HT localization technique.
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8 Appendix

8.1 Pseudocode

Algorithm 1: AttackGNN pseudocode
Input: List of GNNs and their corresponding circuits
Parameter: Number of steps in rollout, J = 32
Output: Trained AttackGNN policy πθ

1 while not converged do
2 j← 0 // rollout step counter

3 T ← φ // for storing rollout trajectories

4 while j < J do // J-step rollout

5 GNN, T ← Pick a random target GNN
6 s0← cGNN|random circuit for GNN
7 for t = 0,1,2, . . . ,T −1 do
8 at ← πθ(st)
9 st+1← Pc(st ,at)

10 rt ← R(st ,at)
11 Store trajectories in T
12 j← j+1

13 πθ← PPO(T ) // update policy using PPO

Algorithm 1 details the pseudocode for AttackGNN, which
runs an iterative process until convergence. In each iteration,
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Figure 13: AttackGNN’s performance with increasing number
of black-box queries

(i) the while loop in line 4 rolls out and collects trajecto-
ries in T according to the current policy, πθ, and (ii) the PPO
algorithm updates the current policy using the collected trajec-
tories T (line 13). During the rollout phase, at the beginning
of each episode, a random GNN is selected (which also deter-
mines the length of that episode, T ). Then, a random circuit
(from the target circuits) is selected for that GNN, which,
along with the context of the target GNN, cGNN, constitutes
the initial state, s0. Then, the episode is run following the
current policy’s actions, and the generated trajectory is stored
in T , which is then used by the PPO algorithm to update the
current policy until convergence. Note that assessing Attack-
GNN’s theoretical computational complexity is non-trivial
because it involves RL training and closed-source circuit syn-
thesis algorithms, whose complexities are unknown and dif-
ficult to derive. However, the practical runtime required for
generating successful adversarial examples against all circuits
for all GNNs is less than 12 hours, making AttackGNN ex-
tremely efficient.

Also note that AttackGNN generates successful adversarial
examples during the training process itself. This follows the
assumptions for adversarial attacks where, for instance, an
adversary attempting IP piracy has access to the circuit they
wish to pirate as well as to the target GNN they wish to fool
so they can query the GNN with the desired circuit as we do
during RL training. Moreover, this approach of generating
new attacks/defenses during the training process has also been
used in recent related works on RL for hardware security, such
as [33, 59].

8.2 Convergence and Performance
Here, we provide results demonstrating the convergence
and the performance of AttackGNN. Figure 12 shows the
training reward curve: it is evident that the agent converges to
a high reward within 10000 time steps. Figure 13 illustrates
AttackGNN’s performance in terms of the number of
(non-unique) successful adversarial circuits as a function of
the number of black-box queries. As expected, AttackGNN’s
performance increases with an increasing number of queries.

Note. This work does not intend to highlight the limitations
of any specific technique(s). Instead, it is a reflective endeavor
to illustrate how the application of machine learning advance-
ments to address hardware security challenges can potentially
introduce new vulnerabilities. Moreover, it emphasizes the
importance of comprehensive evaluation and how, as a com-
munity, we can approach to mitigate these vulnerabilities.
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