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tions. Here, the A;; are fixed semialgebraic functions.

In this paper, we consider the analogous problem for systems
of linear inequalities:
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> Aiy@)Fi(x) < filw)  (i=1,...,N).
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Our main result is a negative one, demonstrated by counterex-
ample: the existence of a C™ solution F' may not, in general,
be determined via an analogous finite set of partial differential
inequalities in f1,..., fn.
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1. Introduction

Fix m, M,n, N € N. Consider the system of linear equations given by

M
> Ai@)Fi(a) = filz)  (i=1,...,N), (1)
j=1

where the A;; and f; are given functions on R™, while Fi,..., Fyy € C™ (R™) are un-

known functions to be solved for fixed m.! Notice that we do not impose any regularity
conditions on A;; and f;; in fact, they may be discontinuous functions, e.g., indicator
functions on closed sets. While elementary linear algebra can be used to find the set of
solutions Fi(z),...,Fy(x) at any given € R™, analyzing the set of solutions which
vary smoothly in « (in particular, lie in C™) is much more difficult, with most progress
coming only recently [6,8-11,13].

We begin with a review of the literature on this subject before turning to the main
object: C™ solutions for systems of linear inequalities (4).

Regarding (1), the simplest question to be asked is the following:

Problem 1.1 (Brenner-Epstein-Hochster-Kolldr Problem). Given A;j, f; as in (1), deter-
mine if there exists a C™ solution F = (Fi,..., Fuy).

Problem 1.1 was solved by Fefferman and the first author in [7] (see also [6,9]), which
motivated a number of related works [2,9,13,14].

Next, one may try to analyze the set of f = (f1,..., fx) € C™ for which there exists
a C™ solution F'. For various reasons, it is helpful to consider particular cases of A;;,
namely semialgebraic functions: a function F' : R™ — R is semialgebraic if its graph
can be represented as the solution set to finitely many polynomial equations and/or
inequalities. For instance, rational functions and the indicator function on the circle are
semialgebraic while exponential functions are not. (See below for more discussion on the
choice of semialgebraic functions for this problem.)

Problem 1.2. Given semialgebraic A4;; as in (1), characterize the set of f € C*°(R", RY)
for which there exists a C'™ solution F.

To motivate the solution to Problem 1.2, let us review an example of Epstein and
Hochster [4]. Consider the single linear equation

:I:QFI +y2F2+$92’2F3 :f(x,y,z) (2)

L 0™ (R™) denotes the vector space of m-times continuously differentiable functions R™, with no growth
conditions assumed at infinity. Similarly, C™ (]R”7 RD) denotes the space of all such RP-valued functions
on R™.
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There exist continuous F, Fy, F3 satisfying (2) if and only if

f(l‘,y,Z): %(m,y,z): g_g(mvyaz) =0 fOI%ZyZO,ZER

and (3)

62 63 t = = :0
axgy (l’,y,Z):W‘Jaz(x,y,Z):O ab e 4 i

Note that while no differentiability requirements on the F; are made, derivatives still
show up in conditions on the f; in (3). This example illustrates the general form of the
solution to Problem 1.2 as proven by Fefferman and the first author in [8]:

Theorem 1.3. Fiz m > 0, and let (Aij (2)),o;cy1<j<p b€ a matriz of semialgebraic
functions on R™. Then there exist linear partial differential operators Ly, Lo, ..., L, .,
for which the following hold.

o Each L, acts on vectors f = (f1,...,fn) € C (R",RN), and has the form

L,f (.’L‘) = Z Z Avia (.’L‘) 0 fi (l‘) ’

i=1 |af<m

where the coefficients a;o, are semialgebraic. (Perhaps m > m.)
o Let f=(f1,....fn) € C® (R",RN). Then the system (1) admits a C™ (R",RM)
solution F = (Fy,...,Fy) if and only if L, f =0 on R™ for each v =1,..., Vmax-

We now turn to the case of inequalities:
S Ay (@) Fy (@) < fi(2) (i=1,...,N) on R™. (4)

Problem 1.4. Given A;;, f; as in (4), determine if there exists a C™ solution F' =
(F1,..., Fa).

Problem 1.4 is the analogue of Problem 1.1 for inequalities and was solved recently
by Jiang and the authors in [14].
The focus of this paper is the following analogue of Problem 1.2 for inequalities.

Problem 1.5. Fix m, M,n, N € N and let A;; : R®™ — R be semialgebraic. Characterize
the set of f = (f1,...,fn) € C°(R",R¥) for which there exists a C™ solution F' =
(F1,...,Fy) to (4).

It is well-known that, for fixed z, any linear, convex constraints may be put into the
form (4). For our phrasing of Problem 1.5, such equivalence does not hold. For instance, in
a linear programming problem, the equality constraint a-x = b is equivalent to requiring
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both inequalities a - < b and (—1) - & < —b. However, in the context of Problem 1.5,
replacing one constraint with two constraints leads to the presence of an additional f;
and a different problem. A much more general version of Problem 1.5 could be stated,
but this would be unnecessary for the purposes of providing a counterexample.

The recent solution [14] to Problem 1.1 for (4) by Jiang and the current authors
provides a key step to analyze Problem 1.5. Much like the solution to Problem 1.1 in [7],
it solved Problem 1.5 in terms of the “Glaeser refinement technique”, which is a higher-
dimensional generalization of the divided difference [1,5,12]. This work [14] provides a
solution to Problem 1.5 in principle, but in practice it is difficult to verify the conditions.

To motivate our expected result on a system of inequalities, let us consider an example.
For simplicity, we temporarily ignore the previous discussion and consider systems more
general than those described by (4). Suppose f € C*°(R) and consider the following
inequalities for x € R,

2150 F < f < aly>oF (5)
2ly<oF < f < a?Tp<oF

for unknown continuous I’ on R. One checks that a continuous solution F' exists if and
only if f satisfies

(6)

Note that the derivative of f enters into (6), even though we are merely looking for
continuous solutions F'.

This simple example helps us formulate a result similar to Theorem 1.3 for a system of
inequalities. At its simplest, it says that the existence of a C™ solution may be determined
by a finite set of linear partial differential inequalities in the f;.

Conjecture 1.6. Fiz m > 0 and let (A;;(x))1<i<n,1<j<m be a matriz of semialgebraic
functions on R™. Then, there exist linear partial differential operators

/! / /
lel’ Tt L])yl 7t 7LMmax;1’ et 7Lﬂmax7u,umax ) Ll, Ll 1/1 : LMI;;ax;17 o Lﬂmaxxl’

Hmax

for which the following hold:

1. Each L, acts on vectors f = (f1,...,fn) € C®(R",RY) and has the form

Ly f(x Z > Guia(@)0” fi(x),

i=1 |a|<m

or
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N
L,Iu,uf(x) = Z Z a;u/ioz(x)aafi(x)?

=1 [a|<m

where the coefficients aypia, ), are semialgebraic and m > m.

2. Let f = (f1,...,fn) € C®(R",RY). Then the system (4) admits a solution F =
(Fy,...,Fy) € C™(R™ RM) if and only if there exists 1 < i < fimax Such that
L,,f>0o0onR" for each 1 <v <, and L;Wf >0 on R"™ for each1 <v < I/:L.

It may appear natural to simply replace the condition L, f = 0 in Theorem 1.3 with
L,f >0, or perhaps L, f > 0, corresponding to the case pmax = 1 above. However, an
attempt to replicate the proof of Theorem 1.3 with inequalities in place of equations leads
naturally to a more general condition. Furthermore, one may interpret the conditions in
Conjecture 1.6 as a more general formalization of the idea of “determined by a finite set
of linear partial differential inequalities.”

The main result of this paper is that Conjecture 1.6 is false for n > 2. A counterex-
ample is given for the case of C°(R? R?). For n = 1, the conjecture remains open.

The starting point for the construction of our counterexample is that a semialgebraic
function may have an infinite number of directional limits at a single point. As a result,
computing the Glaeser refinement at that point amounts to taking the infinite intersec-
tion of polytopes, which may not itself be a polytope. (This problem is avoided in the
solution to Problem 1.2 found in [8] since the infinite intersection of affine spaces is itself
an affine space.) This motivates the design of the counterexample, which is stated fully
in Section 3.

It is natural to ask why, if semialgebraic functions can lead to such problems, one
does not simply use polynomials in place of semialgebraic functions in (4), in align-
ment with the versions stated in [3,4]. The reason is that the difference quotients used
in Glaeser refinements are semialgebraic functions, and in following the analysis of say,
[8], any attempt to begin with polynomial coefficients A;; leads to the use of semial-
gebraic functions anyway. While our counterexample requires the greater generality of
semialgebraic functions (versus polynomials) it shows that in order to prove a version
of Conjecture 1.6 for the polynomial case new techniques would have to be developed.
Furthermore, it would be reasonable for this case to simply require an analogous, yet
more complicated counterexample.

We begin with a review of our main computational tool, Glaeser refinement, and its
importance in Section 2. In Section 4, we compute the Glaeser refinement for our example
manually and determine explicit criteria for the existence of C° solutions. We use this
result to demonstrate the nonexistence of linear criteria in Section 5, officially disproving
Conjecture 1.6.
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2. Glaeser refinement

As our counterexample is in the case of continuous functions, we provide the following
definition of Glaeser refinement for this special case. (See [5] and [14] for more general
definitions of Glaeser refinement.)

Definition 2.1. If (K (2)).cr is a collection of subsets of RY, we define the C°-Glaeser
refinement of (K ())zep, denoted (K (z))zer by

K(z)={z€ K(z):¥Ye>0,36 >0s.t. y € Bs(z) = 32" € K(y),|z — 2| < €}.

Theorem 2.1. There exists I* = 1*(n,d) such that the following holds.

Let E C R™ be compact (K(x))zer be a collection of closed, convex sets in RY. Let
(K'(z))zer be the I*-th iterated Glaeser refinement of (K (2))zer. Then, (K(z))zecr has
a section if and only if K'(x) is nonempty for all x € E.

Theorem 2.1 follows somewhat easily from the Michael selection theorem (see [15]);
however, to spare the reader this work, we cite it as a mere special case of Theorem 1.5
in [14].

3. The counterexample
Let E = [0,1]? and write elements of F as x = (1, x2). For brevity, we will write 0

in place of (0,0) when usage is clear by context.
Consider the system of equations

L R) 4 e Ra(e) < i(e) @
S R) — s Pe) < ) ®)
i) e (o) < (o) )
- B + s Bl < (o) (10)
for (z1,72) € B\ {0} and
0< /@), i) fi@).  ~10°R() < fi(2) (1)

for z = 0.
We may summarize this system in the form

A(z)F(z) < (=), (12)
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where f = (fhfg, f37f4) and F' = (Fl,FQ).
For = # 0, define

4 4
i T

2
_ | (e7+23)? (x7+x3)2
B(SC) = Qf% B 33113 9
(¢3+a23)? (x3+23)?

so that (7), (8), (9), and (10) together may be rewritten in the form

p] < eoro < [ 18], 13

For later use, we note the trivial fact that for all = # 0,
[B(w1,29) | < 4. (14)
Define
Ho(x) = {y € R® : A(2)y < f(2)}

and Hy i1 (x) = Hy(z) for k > 0, where (H(z))zep is the CO-Glaeser refinement of the
bundle (H(x))zecp-

4. Nonlinear criteria for characterization

Lemma 4.1. Let xg € E. If zo = 0, then Hy(xzg) is nonempty.
Let xy € E\ {0}. Then Ho(xo) is nonempty if and only if

—fa(wo) < fi(z0), —fa(wo) < fa(z0)- (15)

Proof. By definition and (11), Ho(0) = {(y1,y2) : —10%; < f3(0)}. This is nonempty,
independent of the choice of f1,..., f1.
Let x9 € E\ {0}. Suppose (15) holds and choose z = (21, 22) such that

—f3(x0) < 21 < fi(wo), —fa(xo) < 22 < fa(wo).

Then, by (13), B~(z0)z € Ho(zo), so Ho(xo) is nonempty. If (15) fails, then clearly
there is no solution to (13) with z = z¢ and Hy(zo) is empty. O

Lemma 4.2. Suppose Hy(x) is nonempty for all x € E\ {0}. Then, Hy(z) = Ho(x) for
all z € E\ {0} and k > 0 and H(0) = H1(0) for 1l k > 1.

Proof. Fix x € E'\ {0} and let y = (y1,y2) € Ho(x). Fix € > 0 Then,

ha] <mw[n] = 2] <[2E]
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Choose § > 0 such that 2’ € EN Bs(z) implies | f;(z') — fi(z)] < €/10 for all ¢ and
1B(x")~" = B(2) ™'l < ¢/10 x min{1, 1/([|2]| + 1)}, (16)

where z = (21, 22).
Thus, for such z/,

—fa(z') —€/10 < 21 < fi(a') 4 €/10 (17)
and
—fa(z") — €/10 < 22 < fo(a') + €/10. (18)

Since Hy(x') is nonempty (by assumption), —f3(z’) < fi(a’). Furthermore, by (17),
there exists

—f3(a') < 21 < fi(@)
satisfying
|21 — 21| < €/10. (19)
Similarly, by (18) there exists —f4(z') < 25 < fo(a’) satisfying
124 — 2] < €/10. (20)

Let 2/ = (21, 24) and 3 = B(2')~Y(2') € Ho(a'). Thus, by (14), (16), (19), and (20),

< 4e/5+€/10 < e.

We conclude that y € H;(z) since ' € E N Bs(x) was arbitrary and ¢y € Ho(z')
was as desired. Thus, Hy(z) = Ho(z) for all x € E'\ {0} and H;(z) is nonempty for all
x € E\ {0}. One may prove Hy11(x) = Hy(x) for x € E'\ {0} similarly, from which one
may conclude Hy(x) = Hy(z) for z € E '\ {0} and k& > 0.

An element y € Hy(0) lies in Hy41(0) if and only if it satisfies a certain condition
depending on Hy(z) for z in an arbitrarily small neighborhood of the origin. By hypoth-
esis, all such Hy(z) are the same, so further applications of Glaeser refinement make no
difference. 0O
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Corollary 4.3. Let I* be as in Theorem 2.1. Then, Hj«(x) is nonempty for all x € E if
and only if Hy(z) is nonempty for all x € E\ {0} and H1(0) is nonempty.

By Lemma 4.1, we may use (15) to categorize when Hy(x) is nonempty. We now move
to the case of Hy(0).

Let y = (y1,y2) € Hp(0). We would like to determine if y € Hy(0).

Write z € E '\ {0} in polar coordinates as x = rf. Noting that B(rf) depends solely
on #, we introduce the notation

cos*d  sin*d
B(6) = L,in4 0 —cos? 0} ’

so B(0) = B(z) for z = 6.
Thus, y € Ho(r0) if and only if

SR <o [1] < [469) ey

Lemma 4.4. Suppose Hy(z) is nonempty for all x € E. Then,

H(0) = {y cR2: [:ﬁggﬂ < B(0) Bﬂ < H;gg” for all 6 € [0,71'/2]} A Ho(0).

Proof. First suppose y € Hy(0) and

o] < s [1] < (4] oranoc o )

Fix € > 0. Choose ¢ > 0 such that x € E N Bs(0) implies
|fi(x) — fi(0)] < €/10 for all 3. (23)
Let 0y € [0,7/2] and 0 < r < § (that is, x € E N Bs(0)). By (22),
i) =2 [5] - [3] = (46
Since 0 < r < §, we use (23) to obtain
—f3(rbo) — €/10 < z1 < fi(rbo) + €/10
and

—f4(’/‘90) — 6/10 <29 < fg(’l“ao) + 6/10.
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Since Hy(r6p) is nonempty (by assumption), —f3(rfy) < f1(rfy). Furthermore, by
(23), there exists

—f3(ro) < 21 < fi(roo)
satisfying
|21 = 21| < ¢/10. (24)
Similarly, there exists —f4(r0y) < 2z < fa(rfy) satisfying
|25 — 22| < €/10. (25)
Let v/ = B(rfy) (21, 25) € Ho(rfp). Thus, by (14), (24), and (25),

' =yl = [B(0o) " (21, 25) — B(60) " (21, 22)|
< |IB(0o) M| - I(21, 25) — (21, 22)
< 4(e/5) < e.

Therefore, by definition, y € H;(0).
Now suppose that y € H1(0). Then, y € Hy(0) so we need only check (22).
By definition, for all € > 0, there exists dy > 0 such that (21) has a solution z = (z1, 22)
satisfying |z — y| < € whenever 0 < r < dy and 6 € [0, 7/2]. Here, z € Hy(rb).
Let 6y € [0,7/2] and € > 0. Choose dy as above and 0 < § < g such that x € ENB;(0)
implies
|fi(x) — fi(0)] < e for all 4.
Let 0 < r < §. As a particular case of (21) and the fact |y — 2| < €,
cos* Oy; + sin? Oy, < cos® 021 + sin? Oz, + 2¢ < f1(0) + 3e.
Since € > 0 was arbitrary,
cos* Oy1 + sin Oy, < f1 (0).

By similar arguments involving f, f3, and f4 one at a time, we obtain (22). O

Considering the conclusion of Lemma 4.4 and the fact that H;(0) C H(0) trivially,
the main question at hand is which (y1,y2) satisfy (22), that is,
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cos® Oy; + sin? Oy < f1(0)
sin® 0y, — cos? By < f2(0)
—cos? By; — sin Byo < f3(0)
—sin Oy; + cos® Oyy < £4(0)

for all 6 € [0,7/2].
First consider the set

Ry = {y € R?: cos™ Oy, + sin* Oyo < f1(0) for all 6 € [0,7/2]}.
Plugging in # = 0 and § = 7/2, we have y; < f1(0) and yo < f1(0) as defining

constraints for Ry. Since f1(0) > 0 by (11) and sin?@ + cos*@ < 1 for all 6, these two
inequalities imply all the rest and

Ri={(y1,92) : 1 < f1(0),92 < f1(0)} (26)
Similarly,
Ry : = {y € R? : sin® Oy, — cos® Oy < f5(0) for all § € [0, 7/2]} (27)
={(W1,92) 1 y1 < f2(0), 2 > —f2(0)} (28)
and

Ry:={y € R?: —sin* Oy, + cos* Oyo < f4(0) for all 6 € [0,7/2]} (29)
={(y1,92) 1 y1 = —f1(0),y2 < f4(0)} (30)

The region

Rs :={y € R?: —cos? Oy, — sin® Oy, < f3(0) for all § € [0, 7/2]}

will not be described so easily since the value of f3(0) is allowed to be negative, that is,
R3 is not determined by — cos* fy; — sin? 0y, < f3(0) for just two choices of 6.

So suppose here that f3(0) < 0.

Substituting M = —f3(0) > 0 and a = sin” §, we have

Ry ={y € R?: (1 —a)?y; + a*yo > M for all a € [0,1]}

M —(1—a)?

{yeR?:yy > 2 for all a € (0,1],y1 > M}

a2

U {1, 92) ry2 > M-(-ay for all a € (0,1]}.

2
a
y1>M
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Given y1, we find the largest value of %}a)zm ranging over all a € (0, 1]; call this

value W(yy). It follows from the above that

R3 = UM{(yl,yQ) ty2 > Wi(yn)}

={yeR’:y1 > M,y > W(y)}
To compute W (y;), we define

M—-(1—-a)’yy M y 2
Vigppa)=—— 53— =g -t ~u

and find its maximum in a. By elementary calculus,

oV . —2M 2y1 2y1

Oa a3 a3 a?

and

82V - 6M 6y1 4y1

(0a)2  a* at a3

Solving %—Z =0 for a givesa =1— yM1 By simple computation, (8827‘)/2 <Oata=1-— %
so this is indeed a local maximum. As the only critical point, it is the global maximum.
(In order for @ = 0 or @ = 1 to compete, there would need to be a local minimum between
a=1-— y—]\/f and a = 0 or a = 1, but we have already found all the critical points.)

We find

W(y) =V (yl, 1- %>

U1
M2
M- (11— 22y,
_ M2
(1- 1)
M M?
_ My |
y1— M n—M

We conclude that

2

y— M

Ry={yc R?:y1 > M,ys > M + 1. (31)
In words, R3 is the region contained in the upper-right quadrant of the plane with
boundary given by the upper-right component of a hyperbola with asymptotes y; = M
and Y2 = M.
Thus, we have established the following:
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Lemma 4.5. Suppose Hy(x) is nonempty for all x € E\ {0} and f3(0) < 0. Then,
H(0) = {y:y1 > —10"%f3(0)} N (Ry N R3) N (R2 N Ry), (32)
where Ry, Ra, Rs, Ry are explicitly described in (26), (28), (31), and (30), respectively.
Putting together Lemmas 4.1 and 4.5, Corollary 4.3, and Theorem 2.1 we have:

Proposition 4.6. Let f1, fa, f3, f1 € C°(R% R) such that f3(0) < 0. Then, (12) has a C°
solution if and only if

—[f3(z) < fi(z) and — fo(z) < fo(z) for allz € B\ {0}; (33)
and H1(0), as specified in (32), is nonempty.
We now restrict to the case where all the f; are constant. Define
K = {f € C®R*R"Y) : f1, fa, f3, f1 are constant}.
Furthermore, define
Ko ={f € K :(12) has a solution, f3 < —.1}.

By Proposition 4.6,

KO = {fe K: f17f27f4 Z O>f3 S _0'1af1+f3 Z 07f2+f4 Z 0}

N{feK : {y:y1>—-10fIN(RiINR3)N(RaNRy)}#D (34)
The above can be made sense of through the fact that the R; depend on f in their
definitions.

Viewing K as a four-dimensional Hilbert space, we claim K| is not a polytope. To see
this, restrict further to the affine subspace where f3(0) = —1 and f;(0) = 2. Thus,

Ry ={(y1,92) 1 y1 <2,y2 <2}

and
9 1
Ry={y €R iy > Lyp 2 1+ ——}
| —

One may readily see that {y :y; > —107%f3(0)} = {y : 1 > 1076} contains R; N R3
so this restriction is superfluous and we need only consider whether N; R; is nonempty.
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Since

Ry MRy = {(y1,92) : —f1(0) < 91 < f2(0), —f2(0) < 92 < f4(0)}

and f5(0), f4(0) > 0, the question becomes whether the upper right corner (f2(0), f1(0))
meets R; N Rs. In the range of 1 < f5(0), f4(0) < 2, this is a nonlinear problem since
Ry N R3 has a curved boundary given by yo > 1 + m+1 Thus, Ky may not be defined
by a finite number of linear inequalities.

Lemma 4.7. The set K of f € K such that (12) has a C° solution may not be defined by
finitely many linear inequalities.

Proof. Suppose K may be defined by finitely many linear inequalities. Then K N {f:
f3 < —0.1} may be defined by finitely many linear inequalities. However, Ko = K N {f :
f3 < —0.1}, contradicting our above reasoning. O

5. Disproof of conjecture

So far, we have found nonlinear criteria on f for the existence of a C° solution F
to the system (12). However, this does not automatically show that there do not exist
linear criteria.

Suppose, for the sake of contradiction, that Conjecture 1.6 holds. That is, there exist
linear partial differential operators

/ / / li
Lty Liyse i Lptso s L Ly Ly L L

Pmax;Vpmax ) Hmax;17 " Hmasx,V),

Hmax

for which the following hold:

1. Each L, , acts on vectors f = (f1,..., fn) € C°(R",RY) and has the form

u,uf Z Z ap,moe aafz( )

i=1 [a|<m

or

Z )10 (2)0° fi(),

m

where the coefficients a,pia, a;wia are semialgebraic and m > m.

2. Let f = (f1,...,fn) € C®°(R",RY). Then the system (4) admits a solution F =
(Fi,...,Fy) € C™(R™,RM) if and only if there exists 1 < g < fimax such that
L,,f>0onR"foreach 1 <v <y, and L:U,f > 0 on R"™ for each 1 <v < Z/I/L.
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We refer to the above as the “Supposed Criteria.”
For f = (f1,...,f4) € K, there is a solution to our system if and only if there exists
1 < < pmax such that

N
Zauui(x)fi 2 0 (35)
i=1

forallz € Fand 1 <v <y, and
N
> al,(z)fi >0 (36)
i=1

/ —

/ _ X /
forallz € Fand 1 <v < Vs where a,,; = a0 and Apvi = Apupio-

For x € E,| let
R, ={f € K:31 < p < timax such that (35) and (36) hold}.

By definition,

K =KnN(NgecrRs)). (37)

The immediate concern here is that while each R, may be defined by a finite number
of linear inequalities, the infinite intersection found in (37) may give rise to a set which
may not be defined by a finite number of linear inequalities. However, the following
lemma demonstrates some redundancy in the inequalities defined in (35) and (36).

Lemma 5.1. For z € E\ {0},

R, D{feK:fi+f3>0,fo+ f1>0}

In other words, the Supposed Criteria applied away from the origin may be no stricter
on the set of constant functions than Proposition 4.6.

Proof. Let z € E'\ {0} and suppose for the sake of contradiction that there exists f € K
satisfying f1 + f3 > 0, fo + f4 > 0 yet not lying in R,.

Choose 0 < r < |z| and 0 € C°(R*R) such that § > 0, 0 = 1 on B, 5(x), and
the support of # is contained in B,(x). The zero function (f; = ... = f4 = 0) is
trivially a solution to (12). By Proposition 4.6, 6(f1, f2, f3, f1) is a C? solution to (12),
as multiplication by nonnegative scalars preserves (33) and the computation of H;(0) is
the same as for the zero function due to the truncated support of 6.

However, 0(f1, f2, f3, f4) does not satisfy the Supposed Criteria, at least at the point
x. This is a contradiction. O
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Corollary 5.2.
K=Kn{feK:fi+fs>0,fa+ fs>0}NRy.

Proof. By the Proven Criteria,

Kc{feK:fi+f3s>0,fo+ f1>0},

so by (37),
K=Kn{feK:fi+fs>0 fa+f1>0}N(NeerRa)).
Thus, by Lemma 5.1,
K=Kn{feK:fi+f3>0fo+fs>0}NRy. O

By Corollary 5.2, K may be defined via finitely many linear inequalities. However,
by Lemma 4.7 this is a contradiction. Therefore, we must reject the assumption that
the Supposed Criteria exist and conclude that the set of C° solutions to our system of
equations may not be characterized by a finite set of partial differential inequalities. This
concludes the proof of our counterexample to Conjecture 1.6.

The extension to the case n > 2 is trivial as one may consider fi(xl,...,xn) =
fi(x1,22) in place of f;(w1,22) in the example and repeat the above analysis. Any C°
solution F(x1, z2) from the fully analyzed case extends naturally to a solution C° solution

F(z1,...,2,) = F(x1,22). Similarly, any C° solution to the n > 2 case of the form
F(xy,...,2,) automatically restricts to a C° solution F(zy,xs) = F(x1,22,0,...,0).
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