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1. Introduction

Fix m, M, n, N ∈ N. Consider the system of linear equations given by

M∑

j=1
Aij(x)Fj(x) = fi(x) (i = 1, . . . , N), (1)

where the Aij and fi are given functions on Rn, while F1, . . . , FM ∈ Cm (Rn) are un-
known functions to be solved for fixed m.1 Notice that we do not impose any regularity 
conditions on Aij and fi; in fact, they may be discontinuous functions, e.g., indicator 
functions on closed sets. While elementary linear algebra can be used to find the set of 
solutions F1(x), . . . , FM (x) at any given x ∈ Rn, analyzing the set of solutions which 
vary smoothly in x (in particular, lie in Cm) is much more difficult, with most progress 
coming only recently [6,8–11,13].

We begin with a review of the literature on this subject before turning to the main 
object: Cm solutions for systems of linear inequalities (4).

Regarding (1), the simplest question to be asked is the following:

Problem 1.1 (Brenner-Epstein-Hochster-Kollár Problem). Given Aij , fi as in (1), deter-
mine if there exists a Cm solution F = (F1, . . . , FM ).

Problem 1.1 was solved by Fefferman and the first author in [7] (see also [6,9]), which 
motivated a number of related works [2,9,13,14].

Next, one may try to analyze the set of f = (f1, . . . , fN ) ∈ C∞ for which there exists 
a Cm solution F . For various reasons, it is helpful to consider particular cases of Aij, 
namely semialgebraic functions: a function F : Rn → R is semialgebraic if its graph 
can be represented as the solution set to finitely many polynomial equations and/or 
inequalities. For instance, rational functions and the indicator function on the circle are 
semialgebraic while exponential functions are not. (See below for more discussion on the 
choice of semialgebraic functions for this problem.)

Problem 1.2. Given semialgebraic Aij as in (1), characterize the set of f ∈ C∞(Rn, RN )
for which there exists a Cm solution F .

To motivate the solution to Problem 1.2, let us review an example of Epstein and 
Hochster [4]. Consider the single linear equation

x2F1 + y2F2 + xyz2F3 = f(x, y, z). (2)

1 Cm (Rn) denotes the vector space of m-times continuously differentiable functions Rn, with no growth 
conditions assumed at infinity. Similarly, Cm

(
Rn,RD

)
denotes the space of all such RD-valued functions 

on Rn.
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There exist continuous F1, F2, F3 satisfying (2) if and only if
⎡

⎢⎣
f (x, y, z) = ∂f

∂x (x, y, z) = ∂f
∂y (x, y, z) = 0

and
∂2f
∂x∂y (x, y, z) = ∂3f

∂x∂y∂z (x, y, z) = 0

for x = y = 0, z ∈ R

at x = y = z = 0.
(3)

Note that while no differentiability requirements on the Fj are made, derivatives still 
show up in conditions on the fi in (3). This example illustrates the general form of the 
solution to Problem 1.2 as proven by Fefferman and the first author in [8]:

Theorem 1.3. Fix m ≥ 0, and let (Aij (x))1≤i≤N,1≤j≤M be a matrix of semialgebraic 
functions on Rn. Then there exist linear partial differential operators L1, L2, . . . , Lνmax , 
for which the following hold.

• Each Lν acts on vectors f = (f1, . . . , fN ) ∈ C∞ (
Rn,RN

)
, and has the form

Lνf (x) =
N∑

i=1

∑

|α|≤m̄

aνiα (x) ∂αfi (x) ,

where the coefficients aνiα are semialgebraic. (Perhaps m̄ > m.)
• Let f = (f1, . . . , fN ) ∈ C∞ (

Rn,RN
)
. Then the system (1) admits a Cm

(
Rn,RM

)

solution F = (F1, . . . , FM ) if and only if Lνf = 0 on Rn for each ν = 1, . . . , νmax.

We now turn to the case of inequalities:

M∑

j=1
Aij (x)Fj (x) ≤ fi (x) (i = 1, . . . , N) on Rn. (4)

Problem 1.4. Given Aij , fi as in (4), determine if there exists a Cm solution F =
(F1, . . . , FM ).

Problem 1.4 is the analogue of Problem 1.1 for inequalities and was solved recently 
by Jiang and the authors in [14].

The focus of this paper is the following analogue of Problem 1.2 for inequalities.

Problem 1.5. Fix m, M, n, N ∈ N and let Aij : Rn → R be semialgebraic. Characterize 
the set of f = (f1, . . . , fN ) ∈ C∞(Rn, RN ) for which there exists a Cm solution F =
(F1, . . . , FM ) to (4).

It is well-known that, for fixed x, any linear, convex constraints may be put into the 
form (4). For our phrasing of Problem 1.5, such equivalence does not hold. For instance, in 
a linear programming problem, the equality constraint a ·x = b is equivalent to requiring 
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both inequalities a · x ≤ b and (−1) · x ≤ −b. However, in the context of Problem 1.5, 
replacing one constraint with two constraints leads to the presence of an additional fi
and a different problem. A much more general version of Problem 1.5 could be stated, 
but this would be unnecessary for the purposes of providing a counterexample.

The recent solution [14] to Problem 1.1 for (4) by Jiang and the current authors 
provides a key step to analyze Problem 1.5. Much like the solution to Problem 1.1 in [7], 
it solved Problem 1.5 in terms of the “Glaeser refinement technique”, which is a higher-
dimensional generalization of the divided difference [1,5,12]. This work [14] provides a 
solution to Problem 1.5 in principle, but in practice it is difficult to verify the conditions.

To motivate our expected result on a system of inequalities, let us consider an example. 
For simplicity, we temporarily ignore the previous discussion and consider systems more 
general than those described by (4). Suppose f ∈ C∞(R) and consider the following 
inequalities for x ∈ R,

{
x2Ix≥0F ≤ f ≤ xIx≥0F

xIx≤0F ≤ f ≤ x2Ix≤0F
(5)

for unknown continuous F on R. One checks that a continuous solution F exists if and 
only if f satisfies

[
f (0) = 0,
f ′(0) ≥ 0. (6)

Note that the derivative of f enters into (6), even though we are merely looking for 
continuous solutions F .

This simple example helps us formulate a result similar to Theorem 1.3 for a system of 
inequalities. At its simplest, it says that the existence of a Cm solution may be determined 
by a finite set of linear partial differential inequalities in the fi.

Conjecture 1.6. Fix m ≥ 0 and let (Aij(x))1≤i≤N,1≤j≤M be a matrix of semialgebraic 
functions on Rn. Then, there exist linear partial differential operators

L1,1, . . . , L1,ν1 , . . . , Lµmax,1, . . . , Lµmax,νµmax , L
′
1,1, . . . , L

′
1,ν′

1
, . . . , L′

µmax,1, . . . , L
′
µmax,ν′

µmax

for which the following hold:

1. Each Lµ,ν acts on vectors f = (f1, . . . , fN ) ∈ C∞(Rn, RN ) and has the form

Lµ,νf(x) =
N∑

i=1

∑

|α|≤m̄

aµνiα(x)∂αfi(x),

or
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L′
µ,νf(x) =

N∑

i=1

∑

|α|≤m̄

a′µνiα(x)∂αfi(x),

where the coefficients aµνiα, a′µνiα are semialgebraic and m̄ ≥ m.
2. Let f = (f1, . . . , fN ) ∈ C∞(Rn, RN ). Then the system (4) admits a solution F =

(F1, . . . , FM ) ∈ Cm(Rn, RM ) if and only if there exists 1 ≤ µ ≤ µmax such that 
Lµ,νf ≥ 0 on Rn for each 1 ≤ ν ≤ νµ and L′

µ,νf > 0 on Rn for each 1 ≤ ν ≤ ν′µ.

It may appear natural to simply replace the condition Lνf = 0 in Theorem 1.3 with 
Lνf ≥ 0, or perhaps Lνf > 0, corresponding to the case µmax = 1 above. However, an 
attempt to replicate the proof of Theorem 1.3 with inequalities in place of equations leads 
naturally to a more general condition. Furthermore, one may interpret the conditions in 
Conjecture 1.6 as a more general formalization of the idea of “determined by a finite set 
of linear partial differential inequalities.”

The main result of this paper is that Conjecture 1.6 is false for n ≥ 2. A counterex-
ample is given for the case of C0(R2, R2). For n = 1, the conjecture remains open.

The starting point for the construction of our counterexample is that a semialgebraic 
function may have an infinite number of directional limits at a single point. As a result, 
computing the Glaeser refinement at that point amounts to taking the infinite intersec-
tion of polytopes, which may not itself be a polytope. (This problem is avoided in the 
solution to Problem 1.2 found in [8] since the infinite intersection of affine spaces is itself 
an affine space.) This motivates the design of the counterexample, which is stated fully 
in Section 3.

It is natural to ask why, if semialgebraic functions can lead to such problems, one 
does not simply use polynomials in place of semialgebraic functions in (4), in align-
ment with the versions stated in [3,4]. The reason is that the difference quotients used 
in Glaeser refinements are semialgebraic functions, and in following the analysis of say, 
[8], any attempt to begin with polynomial coefficients Aij leads to the use of semial-
gebraic functions anyway. While our counterexample requires the greater generality of 
semialgebraic functions (versus polynomials) it shows that in order to prove a version 
of Conjecture 1.6 for the polynomial case new techniques would have to be developed. 
Furthermore, it would be reasonable for this case to simply require an analogous, yet 
more complicated counterexample.

We begin with a review of our main computational tool, Glaeser refinement, and its 
importance in Section 2. In Section 4, we compute the Glaeser refinement for our example 
manually and determine explicit criteria for the existence of C0 solutions. We use this 
result to demonstrate the nonexistence of linear criteria in Section 5, officially disproving 
Conjecture 1.6.
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2. Glaeser refinement

As our counterexample is in the case of continuous functions, we provide the following 
definition of Glaeser refinement for this special case. (See [5] and [14] for more general 
definitions of Glaeser refinement.)

Definition 2.1. If (K(x))x∈E is a collection of subsets of Rd, we define the C0-Glaeser 
refinement of (K(x))x∈E , denoted (K̃(x))x∈E by

K̃(x) = {z ∈ K(x) : ∀ϵ > 0,∃δ > 0 s.t. y ∈ Bδ(x) ⇒ ∃z′ ∈ K(y), |z − z′| < ϵ}.

Theorem 2.1. There exists l∗ = l∗(n, d) such that the following holds.
Let E ⊂ Rn be compact (K(x))x∈E be a collection of closed, convex sets in Rd. Let 

(K ′(x))x∈E be the l∗-th iterated Glaeser refinement of (K(x))x∈E. Then, (K(x))x∈E has 
a section if and only if K ′(x) is nonempty for all x ∈ E.

Theorem 2.1 follows somewhat easily from the Michael selection theorem (see [15]); 
however, to spare the reader this work, we cite it as a mere special case of Theorem 1.5 
in [14].

3. The counterexample

Let E = [0, 1]2 and write elements of E as x = (x1, x2). For brevity, we will write 0
in place of (0, 0) when usage is clear by context.

Consider the system of equations

x4
1

(x2
1 + x2

2)2
F1(x) + x4

2
(x2

1 + x2
2)2

F2(x) ≤ f1(x) (7)

x4
2

(x2
1 + x2

2)2
F1(x) − x4

1
(x2

1 + x2
2)2

F2(x) ≤ f2(x) (8)

− x4
1

(x2
1 + x2

2)2
F1(x) − x4

2
(x2

1 + x2
2)2

F2(x) ≤ f3(x) (9)

− x4
2

(x2
1 + x2

2)2
F1(x) + x4

1
(x2

1 + x2
2)2

F2(x) ≤ f4(x) (10)

for (x1, x2) ∈ E \ {0} and

0 ≤ f1(x), f2(x), f4(x), −106F1(x) ≤ f3(x) (11)

for x = 0.
We may summarize this system in the form

A(x)F (x) ≤ f(x), (12)
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where f = (f1, f2, f3, f4) and F = (F1, F2).
For x ̸= 0, define

B(x) =

⎡

⎣
x4
1

(x2
1+x2

2)2
x4
2

(x2
1+x2

2)2
x4
2

(x2
1+x2

2)2
− x4

1
(x2

1+x2
2)2

⎤

⎦ ,

so that (7), (8), (9), and (10) together may be rewritten in the form
[
−f3(x)
−f4(x)

]
≤ B(x)F (x) ≤

[
f1(x)
f2(x)

]
. (13)

For later use, we note the trivial fact that for all x ̸= 0,

∥B(x1, x2)−1∥ ≤ 4. (14)

Define

H0(x) = {y ∈ R2 : A(x)y ≤ f(x)}

and Hk+1(x) = H̃k(x) for k ≥ 0, where (H̃(x))x∈E is the C0-Glaeser refinement of the 
bundle (H(x))x∈E .

4. Nonlinear criteria for characterization

Lemma 4.1. Let x0 ∈ E. If x0 = 0, then H0(x0) is nonempty.
Let x0 ∈ E \ {0}. Then H0(x0) is nonempty if and only if

−f3(x0) ≤ f1(x0), −f4(x0) ≤ f2(x0). (15)

Proof. By definition and (11), H0(0) = {(y1, y2) : −106y1 ≤ f3(0)}. This is nonempty, 
independent of the choice of f1, . . . , f4.

Let x0 ∈ E \ {0}. Suppose (15) holds and choose z = (z1, z2) such that

−f3(x0) ≤ z1 ≤ f1(x0), −f4(x0) ≤ z2 ≤ f2(x0).

Then, by (13), B−1(x0)z ∈ H0(x0), so H0(x0) is nonempty. If (15) fails, then clearly 
there is no solution to (13) with x = x0 and H0(x0) is empty. !

Lemma 4.2. Suppose H0(x) is nonempty for all x ∈ E \ {0}. Then, Hk(x) = H0(x) for 
all x ∈ E \ {0} and k ≥ 0 and Hk(0) = H1(0) for l l k ≥ 1.

Proof. Fix x ∈ E \ {0} and let y = (y1, y2) ∈ H0(x). Fix ϵ > 0 Then,
[
−f3(x)
−f4(x)

]
≤ B(x)

[
y1
y2

]
:=

[
z1
z2

]
≤

[
f1(x)
f2(x)

]
.
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Choose δ > 0 such that x′ ∈ E ∩Bδ(x) implies |fi(x′) − fi(x)| < ϵ/10 for all i and

∥B(x′)−1 −B(x)−1∥ < ϵ/10 × min{1, 1/(∥z∥ + 1)}, (16)

where z = (z1, z2).
Thus, for such x′,

−f3(x′) − ϵ/10 ≤ z1 ≤ f1(x′) + ϵ/10 (17)

and

−f4(x′) − ϵ/10 ≤ z2 ≤ f2(x′) + ϵ/10. (18)

Since H0(x′) is nonempty (by assumption), −f3(x′) ≤ f1(x′). Furthermore, by (17), 
there exists

−f3(x′) ≤ z′1 ≤ f1(x′)

satisfying

|z′1 − z1| ≤ ϵ/10. (19)

Similarly, by (18) there exists −f4(x′) ≤ z′2 ≤ f2(x′) satisfying

|z′2 − z2| ≤ ϵ/10. (20)

Let z′ = (z′1, z′2) and y′ = B(x′)−1(z′) ∈ H0(x′). Thus, by (14), (16), (19), and (20),

|y′ − y| = |B(x′)−1(z′) −B(x)−1(z)|
≤ |B(x′)−1(z′) −B(x′)−1(z)| + |B(x′)−1(z) −B(x)−1(z)|
= |B(x′)−1(z′ − z)| + |((B(x′)−1 −B(x)−1)(z)|
≤ ∥B(x′)−1∥(ϵ/5) + ϵ/10 min{1, 1/(∥z∥ + 1)}∥z∥
≤ 4ϵ/5 + ϵ/10 < ϵ.

We conclude that y ∈ H1(x) since x′ ∈ E ∩ Bδ(x) was arbitrary and y′ ∈ H0(x′)
was as desired. Thus, H1(x) = H0(x) for all x ∈ E \ {0} and H1(x) is nonempty for all 
x ∈ E \ {0}. One may prove Hk+1(x) = Hk(x) for x ∈ E \ {0} similarly, from which one 
may conclude Hk(x) = H0(x) for x ∈ E \ {0} and k ≥ 0.

An element y ∈ Hk(0) lies in Hk+1(0) if and only if it satisfies a certain condition 
depending on Hk(x) for x in an arbitrarily small neighborhood of the origin. By hypoth-
esis, all such Hk(x) are the same, so further applications of Glaeser refinement make no 
difference. !
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Corollary 4.3. Let l∗ be as in Theorem 2.1. Then, Hl∗(x) is nonempty for all x ∈ E if 
and only if H0(x) is nonempty for all x ∈ E \ {0} and H1(0) is nonempty.

By Lemma 4.1, we may use (15) to categorize when H0(x) is nonempty. We now move 
to the case of H1(0).

Let y = (y1, y2) ∈ H0(0). We would like to determine if y ∈ H1(0).
Write x ∈ E \ {0} in polar coordinates as x = rθ. Noting that B(rθ) depends solely 

on θ, we introduce the notation

B(θ) =
[
cos4 θ sin4 θ
sin4 θ − cos4 θ

]
,

so B(θ) = B(x) for x = rθ.
Thus, y ∈ H0(rθ) if and only if

[
−f3(rθ)
−f4(rθ)

]
≤ B(θ)

[
y1
y2

]
≤

[
f1(rθ)
f2(rθ)

]
. (21)

Lemma 4.4. Suppose H0(x) is nonempty for all x ∈ E. Then,

H1(0) =
{
y ∈ R2 :

[
−f3(0)
−f4(0)

]
≤ B(θ)

[
y1
y2

]
≤

[
f1(0)
f2(0)

]
for all θ ∈ [0,π/2]

}
∩H0(0).

Proof. First suppose y ∈ H0(0) and
[
−f3(0)
−f4(0)

]
≤ B(θ)

[
y1
y2

]
≤

[
f1(0)
f2(0)

]
for all θ ∈ [0,π/2]. (22)

Fix ϵ > 0. Choose δ > 0 such that x ∈ E ∩Bδ(0) implies

|fi(x) − fi(0)| < ϵ/10 for all i. (23)

Let θ0 ∈ [0, π/2] and 0 < r < δ (that is, x ∈ E ∩Bδ(0)). By (22),
[
−f3(0)
−f4(0)

]
≤ B(θ0)

[
y1
y2

]
:=

[
z1
z2

]
≤

[
f1(0)
f2(0)

]

Since 0 < r < δ, we use (23) to obtain

−f3(rθ0) − ϵ/10 ≤ z1 ≤ f1(rθ0) + ϵ/10

and

−f4(rθ0) − ϵ/10 ≤ z2 ≤ f2(rθ0) + ϵ/10.



10 G.K. Luli, K. O’Neill / Advances in Mathematics 422 (2023) 109025

Since H0(rθ0) is nonempty (by assumption), −f3(rθ0) ≤ f1(rθ0). Furthermore, by 
(23), there exists

−f3(rθ0) ≤ z′1 ≤ f1(rθ0)

satisfying

|z′1 − z1| ≤ ϵ/10. (24)

Similarly, there exists −f4(rθ0) ≤ z′2 ≤ f2(rθ0) satisfying

|z′2 − z2| ≤ ϵ/10. (25)

Let y′ = B(rθ0)−1(z′1, z′2) ∈ H0(rθ0). Thus, by (14), (24), and (25),

|y′ − y| = |B(θ0)−1(z′1, z′2) −B(θ0)−1(z1, z2)|

≤ ∥B(θ0)−1∥ · ∥(z′1, z′2) − (z1, z2)||

≤ 4(ϵ/5) < ϵ.

Therefore, by definition, y ∈ H1(0).
Now suppose that y ∈ H1(0). Then, y ∈ H0(0) so we need only check (22).
By definition, for all ϵ > 0, there exists δ0 > 0 such that (21) has a solution z = (z1, z2)

satisfying |z − y| < ϵ whenever 0 < r < δ0 and θ ∈ [0, π/2]. Here, z ∈ H0(rθ).
Let θ0 ∈ [0, π/2] and ϵ > 0. Choose δ0 as above and 0 < δ < δ0 such that x ∈ E∩Bδ(0)

implies

|fi(x) − fi(0)| < ϵ for all i.

Let 0 < r < δ. As a particular case of (21) and the fact |y − z| < ϵ,

cos4 θy1 + sin4 θy2 ≤ cos4 θz1 + sin4 θz2 + 2ϵ ≤ f1(0) + 3ϵ.

Since ϵ > 0 was arbitrary,

cos4 θy1 + sin4 θy2 ≤ f1(0).

By similar arguments involving f2, f3, and f4 one at a time, we obtain (22). !

Considering the conclusion of Lemma 4.4 and the fact that H1(0) ⊂ H0(0) trivially, 
the main question at hand is which (y1, y2) satisfy (22), that is,
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cos4 θy1 + sin4 θy2 ≤ f1(0)
sin4 θy1 − cos4 θy2 ≤ f2(0)

− cos4 θy1 − sin4 θy2 ≤ f3(0)
− sin4 θy1 + cos4 θy2 ≤ f4(0)

for all θ ∈ [0, π/2].
First consider the set

R1 := {y ∈ R2 : cos4 θy1 + sin4 θy2 ≤ f1(0) for all θ ∈ [0,π/2]}.

Plugging in θ = 0 and θ = π/2, we have y1 ≤ f1(0) and y2 ≤ f1(0) as defining 
constraints for R1. Since f1(0) ≥ 0 by (11) and sin4 θ + cos4 θ ≤ 1 for all θ, these two 
inequalities imply all the rest and

R1 = {(y1, y2) : y1 ≤ f1(0), y2 ≤ f1(0)} (26)

Similarly,

R2 : = {y ∈ R2 : sin4 θy1 − cos4 θy2 ≤ f2(0) for all θ ∈ [0,π/2]} (27)
= {(y1, y2) : y1 ≤ f2(0), y2 ≥ −f2(0)} (28)

and

R4 : = {y ∈ R2 : − sin4 θy1 + cos4 θy2 ≤ f4(0) for all θ ∈ [0,π/2]} (29)
= {(y1, y2) : y1 ≥ −f4(0), y2 ≤ f4(0)} (30)

The region

R3 := {y ∈ R2 : − cos4 θy1 − sin4 θy2 ≤ f3(0) for all θ ∈ [0,π/2]}

will not be described so easily since the value of f3(0) is allowed to be negative, that is, 
R3 is not determined by − cos4 θy1 − sin4 θy2 ≤ f3(0) for just two choices of θ.

So suppose here that f3(0) < 0.
Substituting M = −f3(0) > 0 and a = sin2 θ, we have

R3 = {y ∈ R2 : (1 − a)2y1 + a2y2 ≥ M for all a ∈ [0, 1]}

= {y ∈ R2 : y2 ≥ M − (1 − a)2y1
a2 for all a ∈ (0, 1], y1 ≥ M}

=
⋃

y1>M

{(y1, y2) : y2 ≥ M − (1 − a)2y1
a2 for all a ∈ (0, 1]}.



12 G.K. Luli, K. O’Neill / Advances in Mathematics 422 (2023) 109025

Given y1, we find the largest value of M−(1−a)2y1
a2 ranging over all a ∈ (0, 1]; call this 

value W (y1). It follows from the above that

R3 =
⋃

y1>M

{(y1, y2) : y2 ≥ W (y1)}

= {y ∈ R2 : y1 > M, y2 ≥ W (y1)}.

To compute W (y1), we define

V (y1, a) = M − (1 − a)2y1
a2 = M

a2 − y1
a2 + 2y1

a
− y1

and find its maximum in a. By elementary calculus,

∂V

∂a
= −2M

a3 + 2y1
a3 − 2y1

a2

and

∂2V

(∂a)2 = 6M
a4 − 6y1

a4 + 4y1
a3 .

Solving ∂V∂a = 0 for a gives a = 1 − M
y1

. By simple computation, ∂2V
(∂a)2 < 0 at a = 1 − M

y1
so this is indeed a local maximum. As the only critical point, it is the global maximum. 
(In order for a = 0 or a = 1 to compete, there would need to be a local minimum between 
a = 1 − M

y1
and a = 0 or a = 1, but we have already found all the critical points.)

We find

W (y1) = V

(
y1, 1 − M

y1

)

=
M − (1 − 1 − M

y1
)2y1

(1 − M
y1

)2

= My1
y1 −M

= M + M2

y1 −M
.

We conclude that

R3 = {y ∈ R2 : y1 > M, y2 ≥ M + M2

y1 −M
}. (31)

In words, R3 is the region contained in the upper-right quadrant of the plane with 
boundary given by the upper-right component of a hyperbola with asymptotes y1 = M

and y2 = M .
Thus, we have established the following:
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Lemma 4.5. Suppose H0(x) is nonempty for all x ∈ E \ {0} and f3(0) < 0. Then,

H1(0) = {y : y1 ≥ −10−6f3(0)} ∩ (R1 ∩R3) ∩ (R2 ∩R4), (32)

where R1, R2, R3, R4 are explicitly described in (26), (28), (31), and (30), respectively.

Putting together Lemmas 4.1 and 4.5, Corollary 4.3, and Theorem 2.1 we have:

Proposition 4.6. Let f1, f2, f3, f4 ∈ C∞(R2, R) such that f3(0) < 0. Then, (12) has a C0

solution if and only if

−f3(x) ≤ f1(x) and − f4(x) ≤ f2(x) for all x ∈ E \ {0}; (33)

and H1(0), as specified in (32), is nonempty.

We now restrict to the case where all the fi are constant. Define

K = {f ∈ C∞(R2;R4) : f1, f2, f3, f4 are constant}.

Furthermore, define

K0 = {f ∈ K : (12) has a solution, f3 ≤ −.1}.

By Proposition 4.6,

K0 = {f ∈ K : f1, f2, f4 ≥ 0, f3 ≤ −0.1, f1 + f3 ≥ 0, f2 + f4 ≥ 0}

∩ {f ∈ K : {y : y1 ≥ −10−6f3} ∩ (R1 ∩R3) ∩ (R2 ∩R4)} ̸= ∅ (34)

The above can be made sense of through the fact that the Ri depend on f in their 
definitions.

Viewing K as a four-dimensional Hilbert space, we claim K0 is not a polytope. To see 
this, restrict further to the affine subspace where f3(0) = −1 and f1(0) = 2. Thus,

R1 = {(y1, y2) : y1 ≤ 2, y2 ≤ 2}

and

R3 = {y ∈ R2 : y1 > 1, y2 ≥ 1 + 1
y1 − 1}.

One may readily see that {y : y1 ≥ −10−6f3(0)} = {y : y1 ≥ 10−6} contains R1 ∩R3
so this restriction is superfluous and we need only consider whether ∩iRi is nonempty.
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Since

R2 ∩R4 = {(y1, y2) : −f4(0) ≤ y1 ≤ f2(0),−f2(0) ≤ y2 ≤ f4(0)}

and f2(0), f4(0) ≥ 0, the question becomes whether the upper right corner (f2(0), f4(0))
meets R1 ∩ R3. In the range of 1 ≤ f2(0), f4(0) ≤ 2, this is a nonlinear problem since 
R1 ∩ R3 has a curved boundary given by y2 ≥ 1 + 1

y1−1 . Thus, K0 may not be defined 
by a finite number of linear inequalities.

Lemma 4.7. The set K̃ of f ∈ K such that (12) has a C0 solution may not be defined by 
finitely many linear inequalities.

Proof. Suppose K̃ may be defined by finitely many linear inequalities. Then K̃ ∩ {f :
f3 ≤ −0.1} may be defined by finitely many linear inequalities. However, K0 = K̃ ∩ {f :
f3 ≤ −0.1}, contradicting our above reasoning. !

5. Disproof of conjecture

So far, we have found nonlinear criteria on f for the existence of a C0 solution F
to the system (12). However, this does not automatically show that there do not exist 
linear criteria.

Suppose, for the sake of contradiction, that Conjecture 1.6 holds. That is, there exist 
linear partial differential operators

L1,1, . . . , L1,ν1 , . . . , Lµmax,1, . . . , Lµmax,νµmax , L
′
1,1, . . . , L

′
1,ν′

1
, . . . , L′

µmax,1, . . . , L
′
µmax,ν′

µmax

for which the following hold:

1. Each Lµ,ν acts on vectors f = (f1, . . . , fN ) ∈ C∞(Rn, RN ) and has the form

Lµ,νf(x) =
N∑

i=1

∑

|α|≤m̄

aµνiα(x)∂αfi(x),

or

L′
µ,νf(x) =

N∑

i=1

∑

|α|≤m̄

a′µνiα(x)∂αfi(x),

where the coefficients aµνiα, a′µνiα are semialgebraic and m̄ ≥ m.
2. Let f = (f1, . . . , fN ) ∈ C∞(Rn, RN ). Then the system (4) admits a solution F =

(F1, . . . , FM ) ∈ Cm(Rn, RM ) if and only if there exists 1 ≤ µ ≤ µmax such that 
Lµ,νf ≥ 0 on Rn for each 1 ≤ ν ≤ νµ and L′

µ,νf > 0 on Rn for each 1 ≤ ν ≤ ν′µ.
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We refer to the above as the “Supposed Criteria.”
For f = (f1, . . . , f4) ∈ K, there is a solution to our system if and only if there exists 

1 ≤ µ ≤ µmax such that

N∑

i=1
aµνi(x)fi ≥ 0 (35)

for all x ∈ E and 1 ≤ ν ≤ νµ and

N∑

i=1
a′µνi(x)fi > 0 (36)

for all x ∈ E and 1 ≤ ν ≤ ν′µ, where aµνi = aµνi0 and a′µνi = a′µνi0.
For x ∈ E, let

Rx = {f ∈ K : ∃1 ≤ µ ≤ µmax such that (35) and (36) hold}.

By definition,

K̃ = K ∩ (∩x∈ERx)). (37)

The immediate concern here is that while each Rx may be defined by a finite number 
of linear inequalities, the infinite intersection found in (37) may give rise to a set which 
may not be defined by a finite number of linear inequalities. However, the following 
lemma demonstrates some redundancy in the inequalities defined in (35) and (36).

Lemma 5.1. For x ∈ E \ {0},

Rx ⊃ {f ∈ K : f1 + f3 ≥ 0, f2 + f4 ≥ 0}.

In other words, the Supposed Criteria applied away from the origin may be no stricter 
on the set of constant functions than Proposition 4.6.

Proof. Let x ∈ E \{0} and suppose for the sake of contradiction that there exists f ∈ K

satisfying f1 + f3 ≥ 0, f2 + f4 ≥ 0 yet not lying in Rx.
Choose 0 < r < |x| and θ ∈ C∞

0 (R2; R) such that θ ≥ 0, θ ≡ 1 on Br/2(x), and 
the support of θ is contained in Br(x). The zero function (f1 ≡ . . . ≡ f4 ≡ 0) is 
trivially a solution to (12). By Proposition 4.6, θ(f1, f2, f3, f4) is a C0 solution to (12), 
as multiplication by nonnegative scalars preserves (33) and the computation of H1(0) is 
the same as for the zero function due to the truncated support of θ.

However, θ(f1, f2, f3, f4) does not satisfy the Supposed Criteria, at least at the point 
x. This is a contradiction. !
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Corollary 5.2.

K̃ = K ∩ {f ∈ K : f1 + f3 ≥ 0, f2 + f4 ≥ 0} ∩R0.

Proof. By the Proven Criteria,

K̃ ⊂ {f ∈ K : f1 + f3 ≥ 0, f2 + f4 ≥ 0},

so by (37),

K̃ = K ∩ {f ∈ K : f1 + f3 ≥ 0, f2 + f4 ≥ 0} ∩ (∩x∈ERx)).

Thus, by Lemma 5.1,

K̃ = K ∩ {f ∈ K : f1 + f3 ≥ 0, f2 + f4 ≥ 0} ∩R0. !

By Corollary 5.2, K̃ may be defined via finitely many linear inequalities. However, 
by Lemma 4.7 this is a contradiction. Therefore, we must reject the assumption that 
the Supposed Criteria exist and conclude that the set of C0 solutions to our system of 
equations may not be characterized by a finite set of partial differential inequalities. This 
concludes the proof of our counterexample to Conjecture 1.6.

The extension to the case n > 2 is trivial as one may consider f̃i(x1, . . . , xn) =
fi(x1, x2) in place of fi(x1, x2) in the example and repeat the above analysis. Any C0

solution F (x1, x2) from the fully analyzed case extends naturally to a solution C0 solution 
F̃ (x1, . . . , xn) = F (x1, x2). Similarly, any C0 solution to the n > 2 case of the form 
F̃ (x1, . . . , xn) automatically restricts to a C0 solution F (x1, x2) = F̃ (x1, x2, 0, . . . , 0).
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