
Connecting Pre-trained Language Models and
Downstream Tasks via Properties of Representations

Chenwei Wu
Duke University

cwwu@cs.duke.edu

Holden Lee
Johns Hopkins University

hlee283@jhu.edu

Rong Ge
Duke University

rongge@cs.duke.edu

Abstract

Recently, researchers have found that representations learned by large-scale pre-
trained language models are useful in various downstream tasks. However, there
is little theoretical understanding of how pre-training performance is related to
downstream task performance. In this paper, we analyze how this performance
transfer depends on the properties of the downstream task and the structure of the
representations. We consider a log-linear model where a word can be predicted
from its context through a network having softmax as its last layer. We show that
even if the downstream task is highly structured and depends on a simple function
of the hidden representation, there are still cases when a low pre-training loss
cannot guarantee good performance on the downstream task. On the other hand,
we propose and empirically validate the existence of an “anchor vector” in the
representation space, and show that this assumption, together with properties of
the downstream task, guarantees performance transfer.

1 Introduction

Large-scale pre-trained language models have achieved strong performance in a wide range of down-
stream tasks, including natural language inference [Devlin et al., 2018] and reading comprehension
[Brown et al., 2020]. For many of these tasks, training a linear classifier on top of the hidden-layer
representations generated by the pre-trained models can already provide near state-of-the-art results
[Belinkov et al., 2017]. Despite many empirical investigations about the zero-shot applications of
these pre-trained models, there is little theoretical understanding of their empirical success. In this
paper, we aim to theoretically investigate this core question:

When can the representations from pre-trained models transfer to downstream
tasks that are very different from the pre-training task?

This is a fundamental question in understanding why good performance in pre-training leads to
good performance on downstream tasks. Unlike the notion of generalization in traditional learning
theory where the models are evaluated in the same task and the test data are sampled from the
same distribution as the training data, here the downstream tasks are usually very different from
pre-training. For instance, people can pre-train large language models using cross-entropy loss on a
language modeling task with webpage data, and evaluate the models using classification accuracy on
text classification in news articles. The differences between pre-training and downstream tasks make
it challenging to explain the success of these language models.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



To overcome this challenge, we need a way to model the relationship between the pre-training and
downstream tasks. Previous research has taken several approaches in this direction: Wei et al. [2021]
assumes a latent-variable generative model for the data and a downstream task depending on the latent
variables; Saunshi et al. [2021] formulates the downstream classification task as a language modeling
task which is similar to the pre-training task. These works either rely on strong explicit assumptions
about the structure of the data (i.e., assuming the data is generated from a simple generative model)
or treat the entire pre-trained model as a black box.

1.1 Our contributions

In this paper, we consider a very general model for the data and open the black box of the pre-trained
model at the last layer. Specifically, for an input sequence x = (x1, . . . , xL) where the entries comes
from a dictionary {1, . . . , n}, we assume the observation probability of xi satisfies a log-linear model

p∗(xi = j|x−i) ∝ exp(⟨v∗−i(x−i), v
∗
j ⟩),

where x−i is the sequence x without xi, v∗j is a vector only depending on word j, and v∗−i can be an
arbitrary function. This aligns with commonly used networks whose last layer is usually a softmax
layer. Moreover, since our model does not put any constraint on the function v∗−i, it can be arbitrarily
complicated, such as a huge transformer model such as BERT [Devlin et al., 2018] or GPT-3 [Brown
et al., 2020]. We also allow the distribution of the input to be different in pre-training and downstream
tasks. This makes our setting more general than previous latent models Wei et al. [2021], Arora et al.
[2016].

We assume the pre-training task is to predict a word from its context. During pre-training, for every
input sequence x, we want our model to predict the “label” xi from x−i. The model we use in
training (which we call the “student model”) has the same log-linear structure: p(xi = j|x−i) ∝
exp(⟨v−i(x−i), vj⟩).
For the downstream task, for simplicity we focus on binary sequence classification, e.g., sentiment
classification. To define downstream tasks, let the “logits” of the ground-truth model be defined as
z∗ := (⟨v∗−i(x−i), v

∗
j ⟩)nj=1 (these are just the outputs before the softmax computation), and assume

that the downstream task is specified by a function of the logits, f∗(z∗).

In reality, we do not have access to the ground-truth model v∗−i and v∗j . Instead, we only have access
to the student model v−i and vj that achieves low pre-training loss. We can define the student logits
as z := (⟨v−i(x−i), vj⟩)nj=1. In some sense, z is the representation learned by the pre-training step.
A natural idea for solving the downstream task would be to learn a function f(z). More details about
this model will be provided in Section 2.

Our goal is to understand the properties of the learned representation. In order to simplify the problem,
we assume that the student model can be optimized to achieve a small KL divergence with the true
word probabilities during training. Under this setting, the question we ask above becomes:

If the downstream task depends on a simple function of the logits f∗(z∗) and we
have access to a student model p such that Ex[DKL(p

∗(xi|x−i)||p(xi|x−i))] is
small, under what conditions is there a function f such that f(z) ≈ f∗(z∗)?

A priori, one might imagine if the function f∗ is very simple (e.g., a linear function), then it
should be easy to find a function f . However, we give two counter-examples that show there are
additional properties that f∗ needs to satisfy: (i) f∗ should not distinguish between words with
small probabilities and words with super-small probabilities, and (ii) the hidden representations
must have some structure that deals with the shift-invariance of the softmax function (that is, the
result of softmax does not change if all the logits are shifted by the same constant). We present the
counterexamples in Section 3.

To further investigate the structure of the hidden representations and see how we can deal with the
shift-invariance property of softmax, in Section 4, we propose and empirically verified the “anchor
vector hypothesis”: there exists an “anchor vector” in the representation space that can be used to
estimate the bulk partition function, which we define to be the sum of the exponential of all logits
except the largest few, i.e.,

∑
j:z∗

j not large e
z∗
j . We show how the anchor vector can be used to address

the shift-invariance of softmax.

2



Based on the observation that anchor vectors exist, in Section 5, we give sufficient conditions that
shows when a sparse one-hidden-layer ReLU network f∗ can be learned by our student model f .
Specifically, assuming that f∗ is a one-hidden-layer ReLU network depending on a small set of words
and the downstream task is binary classification depending on f∗(z∗), the existence of the anchor
vector enables us to upper bound the loss on the downstream task attained by the student model f(z),
in terms of its KL divergence in pre-training. In other words, a small pre-training loss is guaranteed
to transfer to a small downstream classification error.

1.2 Related works

Theoretical understanding why pre-training helps downstream tasks: Most of the relevant
existing works rely on latent variable models and show that pre-training could recover some form
of the latent variables. Arora et al. [2016] proposed the RAND-WALK latent model and explains
the empirical success of word embedding methods such as word2vec [Mikolov et al., 2013] and
GloVe [Pennington et al., 2014]. Arora et al. [2017] extended the previous model to justify sentence
embeddings, and Arora et al. [2018] explained sentence embedding via compressed sensing. Other
models are also used in this line of work, e.g., hidden Markov models [Wei et al., 2021] and graphical
models [Zhang and Hashimoto, 2021]. Lee et al. [2021] and Tosh et al. [2021] assume conditional
independence or multi-view structure in the pre-training data and prove that training an additional
linear layer on top of learned representations can perform well in downstream tasks.

The problem setting in our paper is similar to that of Saunshi et al. [2021], which also analyzes the
performance transfer of pre-trained language models to binary classification downstream tasks. They
treat the pre-trained model as a black box and assume that the downstream task can be formulated as a
sentence completion task, while we open the black box at the last layer and connect pre-training with
downstream tasks by the “anchor vector” and function f∗. Moreover, they focus on the prediction
probabilities of the pre-trained model while we instead focus on the representations.

Applications and analysis of hidden representations from large-scale language models: The
hidden representations produced by large language models such as BERT [Devlin et al., 2018] or
ELMo [Peters et al., 2018] have been very useful in various NLP tasks. A standard method is to
train a linear classifier on these representations, though there are other methods such as using the
normalized mean of concatenated word embeddings [Tanaka et al., 2020]. To understand why these
word embeddings are useful, people have empirically showed that BERT word embeddings contain
information about sentence-level context [Miaschi and Dell’Orletta, 2020], word sense [Wiedemann
et al., 2019], and syntactic phenomena [Tenney et al., 2019] including parse trees [Hewitt and
Manning, 2019, Kim et al., 2020]. Other empirical explanations include the flatness of local minima
achieved by pre-training [Hao et al., 2019], connection to deep metric learning [Tschannen et al.,
2019], and the attention patterns across different heads [Kovaleva et al., 2019].

Language modeling can also be considered as a way of using the hidden representations because the
next word probability is usually the softmax of the product of the representation and the dictionary
matrix. Therefore, any zero-shot application of pre-trained auto-regressive language models, e.g.,
GPT-3 [Brown et al., 2020] and T5 [Raffel et al., 2020], is a specific method of using the hidden
representations.

Some previous works have found that the word embeddings learned by language models can lie in a
narrow cone: Gao et al. [2019] empirically found this phenomena for the learned word embeddings
in LSTM and vanilla transformers. Ethayarajh [2019], Cai et al. [2020] found similar phenomena for
contextualized embeddings in BERT-like models.

2 Problem setup

Notations. We use [n] to denote the set {1, 2, . . . , n}. For an input sequence x = (x1, . . . , xL),
we use x−i to denote the input sequence without the i-th entry where i ∈ [L], i.e., x−i :=
(x1, . . . , xi−1, xi+1, . . . , xL). We let DKL(p||q) be the KL-divergence between distributions p
and q and define H(p) to be the entropy of distribution p.

3



Ground-truth model. We consider the following model: There is a set of words [n], each with
a fixed corresponding vector v∗j ∈ Rd (j ∈ [n]). We refer to each v∗j as an atom and the matrix
[v∗1 , · · · , v∗n] ∈ Rd×n as the dictionary. At each position i, let xi be the value of the word at that
position; then xi ∈ [n]. Assume that the probability of xi given x−i follows a log-linear model, i.e.,

p∗(xi = j|x−i) ∝ exp(⟨v∗−i(x−i), v
∗
j ⟩), (1)

where v∗−i(·) is a function that encodes the remaining sequence x−i into a vector in Rd.

We also use z∗j (x, i) := ⟨v∗−i(x−i), v
∗
j ⟩ to denote the j-th logit and Z∗(x, i) :=

∑n
j=1 exp(z

∗
j (x, i))

to denote the partition function, i.e., the normalization factor of equation (1). In other words,

∀j ∈ [n], p∗(xi = j|x−i) =
exp(z∗j (x, i))

Z∗(x, i)
=

exp(⟨v∗−i(x−i), v
∗
j ⟩)

Z∗(x, i)
. (2)

Student model. We use a black-box neural network model whose penultimate layer outputs a
d′-dimensional vector v−i(x−i) ∈ Rd′

and the last layer is a fully-connected layer with weight matrix
[v1, v2, · · · , vn] ∈ Rd′×n followed by the softmax function. In other words, the model output is

p(xi = j|x−i) ∝ exp(⟨v−i(x−i), vj⟩). (3)

Similar to the ground-truth model, we use zj(x, i) := ⟨v−i(x−i), vj⟩ to denote the j-th logit and
Z(x, i) :=

∑n
j=1 exp(zj(x, i)) to denote the partition function of equation (3), so

∀j ∈ [n], p(xi = j|x−i) =
exp(⟨v−i(x−i), vj⟩)

Z(x, i)
. (4)

Pre-training. For self-supervised pre-training, we are given (data, “label”) pairs (x−i, xi), and
want our model to predict the “label” xi given x−i. The pre-training loss we use here is cross-entropy
loss:

ℓ(v−i) = Ex[−p∗(xi|x−i) log p(xi|x−i)] = Ex[DKL(p
∗(xi|x−i)||p(xi|x−i))]+Ex[H(p∗(xi|x−i))].

Note that Ex[H(p∗(xi|x−i))] is a constant, and we assume that our student model achieves a small
loss value so that the KL-divergence term Ex[DKL(p

∗(xi|x−i)||p(xi|x−i))] ≤ ϵKL for some ϵKL.

Downstream task. The downstream task we are considering is binary sequence classification, e.g.,
sentiment classification. For instance, given a sentence, we (probably after adding some prompts)
use our pre-trained model to predict the missing word xi from the given input x−i. We assume that
there is a perfect classifier f∗(x, i) only depending on v∗−i that can distinguish between positive and
negative samples. In other words, for all x ∈ POS, f∗(x, i) > 0 and for all x ∈ NEG, f∗(x, i) < 0.
Here POS and NEG are the set of positive and negative input sequences, respectively. We choose
to focus on binary classification for theoretical analysis for simplicity, but most of the ideas can be
extended to a multi-class classification setting.

A simple downstream task is one whose classifier is linear in v∗−i, that is, f∗(x, i) := ⟨v∗−i(x−i), u
∗⟩

for some u∗ ∈ Rd. One might also expect more structures in the vectors u∗ and v∗−i. For u∗, the
downstream task usually depends on only a small set of the words which are related to this task. For
example, for sentiment classification, the sentiment of a sentence depends mostly on words similar to
“positive” or “negative”. This can be formalized as the following assumption:
Assumption 1 (u∗ is a k-sparse combination of {v∗j }nj=1). Assume u∗ is a sparse combination of at
most k vectors in {v∗j }nj=1 and without loss of generality assume these k vectors are {v1, . . . , vk},
i.e., there exist coefficients {c∗j}kj=1 ∈ Rk such that u∗ =

∑k
j=1 c

∗
jv

∗
j .

Note that the fixed representations {v1, . . . , vk} correspond to the weights of the last layer in
large language models instead of the token representations v∗−i(x−i). In other words, the token
representations can still be different depending on their context.

There are usually differences between input distributions of pre-training and downstream tasks. The
difference may be due to different data sources. For example, the samples in the downstream task

4



may only contain movie reviews while the pre-training dataset can include all kinds of texts on the
Internet. It can also result from prompting, which has become the dominant way of using large
language models for downstream tasks [Brown et al., 2020, Radford et al., 2019]. For instance, for
movie review classification, appending “This movie was” to the original input could improve the
classification accuracy. Similar to the assumption made in Saunshi et al. [2021], we use µ ∈ (0, 1] to
capture this difference. A smaller µ indicates a larger difference between the two distributions, and
µ = 1 if and only if these two distributions are the same. In most tasks, the two distributions are not
too different and we would expect a reasonable value of µ.
Assumption 2 (Difference between pre-training and downstream distribution). Let ppre and pDS be
the probability density functions of the pre-training and downstream task, respectively. We assume
that there exists µ ∈ (0, 1] such that

∀i, ∀x ∈ POS ∪NEG, ppre(x−i) ≥ µ · pDS(x−i).

If the ground truth classifier f∗ can be too close to 0, it would not be robust to small perturbations.
We use the standard margin assumption to avoid such cases:
Assumption 3 (Margin for downstream task). There exists a margin γ ∈ R+ such that at any position
i, if x ∈ POS, then f∗(x, i) ≥ γ, and if x ∈ NEG, then f∗(x, i) ≤ −γ, where POS and NEG are
the sets of positive and negative samples, respectively.

Ideally, we want to show that such simple downstream tasks can also be solved well with the
representations learned by our student model, i.e., v−i and {vj}kj=1. However, as we will see in
Section 3, our current model with this margin assumption still doesn’t guarantee good downstream
task performances. More structures in the model and the downstream task is necessary to make sure
that the pre-trained representations are useful for the downstream task.

3 Cases when learned representations are insufficient for downstream tasks

The problem setting in Section 2 seems reasonable at first sight, but in the following subsections, we
will show that this model is not enough to guarantee good pre-training performance to generalize to
downstream tasks. In other words, there are ways for the student model to approximate the ground-
truth probabilities very well in terms of KL divergence but perform very badly at the downstream task.
Therefore, we need to put further constraints on the ground-truth model and the downstream task.

3.1 Downstream tasks sensitive to words with super-small probability

Intuitively, KL divergence is a weighted log probability difference between two distributions where the
weight is the ground-truth probability. Therefore, for the entries with small ground-truth probabilities,
a large log probability difference will not result in a large KL divergence. However, the log probability
difference is proportional to the difference in the value of f∗(x, i). This makes it possible for the
student model to flip the sign of f∗(x, i) without incurring a large KL divergence, as presented in
Theorem 1 whose proof is given in Appendix A.
Theorem 1. Suppose the downstream task performance depends only on a function f∗(x, i) =

⟨v∗−i(x−i), u
∗⟩ =

∑k
t=1 c

∗
t ⟨v∗−i(x−i), v

∗
t ⟩. For t− ∈ [k], define p− := p∗(xi = t−|x−i),

and assume p− ≤ 1
2 . Then for all s ∈ R+, there exist functions v−i and {vt}kt=1 such that

DKL(p
∗(xi|x−i)||p(xi|x−i)) ≤ 2sp− and f(x, i) :=

∑k
t=1 c

∗
t ⟨v−i(x−i), vt⟩ ≤ f∗(x, i)− s · c∗t− .

Theorem 1 shows that if there is some word of interest t− that has a small probability p−, then it is
possible to have a model with small KL divergence in pre-training but bad downstream performance.
This is because changing the KL divergence by only 2p− · f∗(x,i)

c∗
t−

is enough to change the label of
the downstream prediction. In other words, as long as the KL divergence is higher than the threshold
2p− · f∗(x,i)

c∗
t−

, we cannot distinguish between the case where the student model makes an already
small probability even smaller (which can hurt the downstream task performance) and the case where
random approximation errors are spread across the entries. In this case, a small KL divergence does
not necessarily imply good downstream performance.

Note that this sensitivity of the downstream task to very small logits is not natural. For the downstream
tasks in practice, after conditioning on the context, whether a word has a probability of 10−5 or

5



10−10 should not influence the label of the sequence. Thus, we need to impose additional structure
on our model. We make the downstream task ignore super-small entries by setting a threshold for the
logits and ignoring the logits smaller than that threshold. In this case, making the logits smaller when
they are already small will have no influence on the downstream task performance. Concretely, the
enhanced model will be (σ(x) := max{x, 0} is the ReLU function):

f∗(x, i) =
k∑

j=1

a∗jσ(z
∗
j (x, i)− b∗j ) =

k∑
j=1

a∗jσ(⟨v∗−i(x−i), v
∗
j ⟩ − b∗j ). (5)

3.2 Representations are not shift-invariant

The softmax function is invariant under shift, i.e., the output stays the same if we add the same value
to every coordinate of the input. In the current model, we have no control over the shift of student
model logits on unseen data. Consequently, even if we get a student model that performs well on the
training data for the downstream task, we cannot guarantee the performance of this model on new
data. This can be formalized in the following theorem.
Theorem 2. Assume z∗(x, i) is bounded. For any function f∗(x, i) =

∑n
j=1 ajσ(z

∗
j (x, i) − bj),

there exist functions {ẑj(x, i)}nj=1 such that for all x and i, we have p̂(xi|x−i) = p∗(xi|x−i) and
f̂(x, i) :=

∑n
j=1 a

∗
jσ(ẑj(x, i)− b∗j ) is always equal to 0. In other words, the pre-training loss of the

model {ẑj(x, i)}nj=1 is the same as {zj(x, i)}nj=1, but its logits are useless for the downstream task.

Proof. We choose τ ∈ R such that ∀x, i, τ < minj∈[n] b
∗
j −maxj∈[n] z

∗
j (x, i), and ∀x, i, ∀j ∈ [n],

we set ẑj(x, i) := z∗j (x, i) + τ , then

∀j ∈ [n], ẑj(x, i)− b∗j < z∗j (x, i) + min
j∈[n]

b∗j −max
j∈[n]

z∗j (x, i)− b∗j ≤ 0, (6)

which implies that σ(ẑj(x, i)− b∗j ) = 0. Therefore, ∀x, i, we have f̂(x, i) = 0.

Theorem 2 indicates that without any structure in the representations, the student model is able to
shift the logits for any sample and keep the pre-training loss unchanged. In the worst case, it can
shift the logits for unseen data drastically, resulting in a bad downstream performance. Therefore, a
theoretical guarantee for downstream performance requires structure in the representations learned
by the pre-trained model.

4 “Anchor vector” hypothesis and empirical verifications

In Section 3.2, we showed that the shift-invariance of the softmax function can potentially make the
student logits useless for the downstream task. Therefore, to understand why the downstream tasks
benefit from representations from the pre-trained model, we need to understand the structure of these
representations, and this structure must be able to handle the shift-invariance problem.

4.1 “Anchor vector” hypothesis

There are different ways to prevent the shift-invariance of softmax from influencing the performance
of the downstream tasks. One way of doing this is to keep the partition function stable. Recall
that in (4), the probability of a word is the exponential of the corresponding logit divided by the
partition function. If the partition function is constant for different samples, the logits can be uniquely
determined by the probabilities, which solves the shift-invariance problem. Arora et al. [2016]
showed that when both the word embeddings and the latent representation are uniformly distributed
on a sphere, the partition function is close to a constant with high probability. They also empirically
verified this uniformity of word embeddings trained using GloVe [Pennington et al., 2014] and
word2vec [Mikolov et al., 2013] on English Wikipedia. However, as we will see in later experiments
in Sections 4.2 and F, this is not true for recent large-scale pre-trained language models.

Instead of uniformity of word embeddings, in large pre-trained models such as GPT-2 [Radford et al.,
2019], we observe that if we remove several most frequent words from the computation of the log
partition function, the remaining part can be well approximated by the inner product between the

6



hidden representation v−i(x) and a fixed vector. This motivates us to have the following “anchor
vector” hypothesis:

Definition 1. For a sample x and position i, we could select a set of bulk words B(x, i) ⊂ [n],
and we define the bulk partition functions as Z∗

bulk(x, i) :=
∑

j∈B(x,i) exp(⟨v∗−i(x−i), v
∗
j ⟩) and

Zbulk(x, i) :=
∑

j∈B(x,i) exp(⟨v−i(x−i), vj⟩).

The selection of bulk words B(x, i) can usually be selected manually or by a simple algorithm. For
instance, we can construct B(x, i) by taking out the words corresponding to the largest entries in
p(xi|x−i). We can also manually select all the words that are irrelevant to the downstream task.

Hypothesis 1 (“Anchor vector” hypothesis). There exists v0 ∈ Rd such that

⟨v−i(x−i), v0⟩ ≈ logZbulk(x, i).

If our hypothesis holds, we can use v0 as an anchor for the logits because it can be used to estimate
the partition function, and this does not change the form of the downstream task by much. In the next
subsection, we will show that Hypothesis 1 holds for most popular language models and provide
some discussions. More details about these models are provided in Appendix E.

4.2 Empirical verification of “anchor vector” hypothesis

Figure 1a plots the mean squared approximation error of the log bulk partition function. We use
different versions of pre-trained GPT-2 [Radford et al., 2019] and OPT [Zhang et al., 2022], and use
the first 1/4 of WikiText-2 [Merity et al., 2016] as the input text. The hidden representations we use
in this experiment are the last hidden states of these models, i.e., the output of the penultimate layer.
The dimension of the hidden representations ranges from 768 to 2048, and the number of tokens is
about 70k. We choose the bulk words to be all the words except those having top-k probabilities and
compute the optimal anchor vector using the closed-form least-squares solution. In our experiments,
we use the mean squared error (MSE) to measure the approximation quality. Formally, the MSE is
defined as

ϵMSE = min
v0

Ex,i[(⟨v−i(x−i), v0⟩ − logZbulk(x, i))
2].

The values of the bulk partition functions are around 10 (with comparable standard deviation), and
we can see from Figure 1a that the MSE is usually several orders of magnitude smaller. Therefore,
the inner product between the hidden representation and the optimal anchor vector can usually
approximate the log bulk partition function well, and the approximation improves as k increases, i.e.,
when we ignore more top words. This validates our “anchor vector” hypothesis.

(a) Mean squared error of log bulk partition function
with different k in different models. Bulk partition
function includes all logits except top-k ones.

(b) Singular values of dic-
tionary matrices (up: GPT-
2 XL, down: OPT-1.3B)

(c) Histogram of log origi-
nal/bulk partition functions
(GPT-2 XL/OPT-1.3B)

Figure 1: Empirical verifications of “anchor vector” hypothesis

The existence of anchor vector is quite surprising. Although there are some settings where the partition
function can become easy to predict, e.g., when the word embeddings are uniformly distributed on
a sphere, we have empirically shown that the large-scale language models considered in this paper

7



do not fall under these settings. Figure 1b shows that the word embeddings are far from uniformly
distributed on a sphere, and Figure 1c indicates that the values of log partition functions and log bulk
partition functions vary greatly for different samples. More experiments and discussions are provided
in Section F.

5 Anchor vector guarantees performance transfer from pre-training to
downstream tasks

Based on the counterexamples in Section 3 and the observations in Section 4, we now give sufficient
conditions on the downstream tasks so that the downstream classification accuracy provably benefits
from pre-trained representations.

5.1 Model and assumptions

For huge language models, the anchor vector hypothesis states that there exists a vector v∗0 such that
its inner product with the hidden state v∗−i(x−i) well approximates the logarithm of the bulk partition
function. Therefore, we can use v∗0 as an anchor to handle the shift invariance problem of the softmax
function, i.e., we want to subtract ⟨v∗−i(x−i), v

∗
0⟩ from ⟨v∗−i(x−i), v

∗
j ⟩. As a result, we modify our

model for the downstream task to be

f∗(x, i) :=
k∑

j=1

a∗jσ(⟨v∗−i(x−i), v
∗
j − v∗0⟩ − b∗j ). (7)

The student model is also modified accordingly:

f(x, i) :=

k∑
j=1

ajσ(⟨v−i(x), vj − v0⟩ − bj). (8)

Note that in the above model we have already adapted Assumption 1 which was originally stated for
the linear model. Therefore, we also update the assumption and restate it below:

Assumption 4 (At most k words of interest). Assume there are at most k vectors in {v∗j }nj=1
whose logits are relevant to the downstream task and WLOG assume these k vectors are
{v∗1 , . . . , v∗k}. In other words, we assume there exist coefficients {a∗j}kj=1 ∈ Rk such that
f∗(x, i) :=

∑k
j=1 a

∗
jσ(⟨v∗−i(x−i), v

∗
j − v∗0⟩ − b∗j ).

We are still assuming the teacher-student setting and the log-linear word production model for the
word probabilities, as restated below:

p∗(xi = j|x−i) =
exp(⟨v∗−i(x), v

∗
j ⟩)

Z∗ , p(xi = j|x−i) =
exp(⟨v−i(x), vj⟩)

Z
. (9)

Under the modified model defined above, we will make some additional assumptions. As noticed
in the experiments, the log bulk partition function (as defined in Definition 1) can be linearly
approximated by the hidden state. Normally, the bulk only contains words that are not related to the
downstream task, and every single word usually has a small probability, but the total probability of
the bulk words is not negligible, as reflected in the following two assumptions. Note that the set of
bulk words can be strictly contained in the complement of the set of words of interest. This is useful
especially when we are not certain about which words are important for the downstream task.

Assumption 5 (Bulk contains no words of interest). For all x and i, B(x, i) ∩ {1, . . . , k} = ∅.

Assumption 6 (Lower bound of bulk probability). For all x and i,

Z∗
bulk(x, i)

Z∗(x, i)
≥ pb.

The “anchor” vector v∗0(i) is used to handle the instability of the partition function, and we formalize
our anchor vector hypothesis as the following assumption:

8



Assumption 7 (Linear approximation of log bulk partition function). There exist v0, v∗0 ∈ Rd, εb ∈
R+, s.t.,

∀x,max{|⟨v∗−i(x), v
∗
0⟩ − logZ∗

bulk(x, i)|, |⟨v−i(x), v0⟩ − logZbulk(x, i)|} ≤ εb.

Furthermore, we assume εb ≤ γ
4kmaxj∈[k] |a∗

j |
.

For notational simplicity, we will use all the notations (including f∗, f , v∗0 , and v0) without i when
the selection of i is clear from the context.

5.2 Main theorem and interpretations

In our model, the ground-truth function f∗ contains k terms with coefficients {a∗j}kj=1 and we define
the margin γ as the margin for f∗. If we scale {a∗j}kj=1 or increase k by adding duplicated terms
to f∗, we can scale γ arbitrarily without changing the pre-training performance or the downstream
prediction of the student model. To construct a quantity that better indicates the difficulty of the
downstream task, we introduce the following definition of the normalized margin that is invariant to
the scaling of k and {a∗j}kj=1:

Definition 2. The normalized margin is defined as Γ := γ
kmaxj∈[k] |a∗

j |
.

Then we are ready to state our main result. The proof and further discussions for this theorem will be
provided in Section B.

Theorem 3. Let ϵKL := Ex∼Dpre
[DKL(p

∗(x)||p(x))] be the pre-training loss, and ϵCLS :=
Prx∼DDS

[f(x) · f∗(x) < 0] be the downstream classification error rate, where Dpre and DDS

are the input distributions of pre-training and downstream data. Under Assumptions 2-7, fur-
ther assuming minj∈[k] b

∗
j ≥ ϵb − log(4k) and 8ϵb < Γ < 6, there exists a set of parameters

(aj)
n
j=1, (bj)

n
j=1 such that

ϵCLS ≤ ϵKL · 288

µ · p2b · Γ2
. (10)

This theorem shows that when an “anchor vector” exists, we can upper bound the downstream
classification error by the KL divergence of the student model during pre-training. This upper bound
becomes smaller when the distribution of downstream input is close to that of pre-training, the bulk
probability is non-negligible, and the normalized margin of the ground-truth classifier is large. Here
we discuss these ways to decrease the upper bound and their corresponding intuitions.
Large µ. µ is larger when the data distributions of pre-training and the downstream task are closer,
which helps with the performance transfer.
Large pb. The bulk probability Z∗

bulk

Z∗ is usually at least a constant in practice. When the bulk
probability becomes larger, the anchor vector plays a more important role in the partition function
and the downstream task.
Large Γ. A larger normalized margin makes it harder for the student model to make mistakes in
downstream prediction.

Remark 1. For ease of presentation, we are making additional assumptions in Theorem 3, e.g.,
minj∈[k] b

∗
j ≥ ϵb − log(4k) and 8ϵb < Γ < 3. More general cases are covered in Lemma 1. We also

discuss potential ways to improve the bound in Section B.1.

6 Conclusions, limitations and future work

In this paper, we analyzed when and how the representations generated by pre-trained large-scale
language models can be used in downstream classification tasks. We found two necessary conditions
for guaranteeing the usefulness of these representations: the insensitivity of the downstream task to
super-small probability words, and the underlying structure in the representations to handle the shift-
invariance of softmax. We also provide a sufficient condition, i.e., the existence of an anchor vector,
that can guarantee the representations from pre-trained language model to help with downstream
tasks. We verify this existence empirically in various large language models and believe that this is
an important reason why recent large-scale language models can adapt to different downstream tasks.

9



We made some assumptions to provide theoretical understanding on how representations can be
helpful for downstream applications, and these assumptions may not always hold in practice. For
instance, some downstream tasks require multiple rounds of reasoning and do not rely on a small set
of words, and the “anchor vector” hypothesis can be weaker for some models such as OPT-350M and
GPT-2 Medium. Relaxing these assumptions is a meaningful future direction.

While our work showed the existence of the anchor vector, it remains unclear why this vector exists in
most large language models. It might be related to the initialization, optimization, and structure of the
neural networks, especially transformers, and it could also be related to the underlying structure of
the training data. Digging deeper into this may reveal more fundamental properties of these models.
Our analysis of downstream tasks focuses on classification tasks. Since these large networks perform
well in various types of downstream tasks, another future direction would be to analyze other kinds
of downstream tasks.

We only consider using the last layer representation without fine-tuning the whole model, which is
usually weaker in performance. Furthermore, we model the network before the softmax function as a
black box, ignoring its inner structure. Further opening up this black box and consider fine-tuning the
whole model are important for deeper understanding of the structures in the learned representations
from pre-training.

Acknowledgements

This work is supported by NSF Award DMS-2031849, CCF-1845171 (CAREER) and a Sloan
Research Fellowship.

References
S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski. A latent variable model approach to pmi-based

word embeddings. Transactions of the Association for Computational Linguistics, 4:385–399,
2016.

S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence embeddings. In
International conference on learning representations, 2017.

S. Arora, M. Khodak, N. Saunshi, and K. Vodrahalli. A compressed sensing view of unsupervised text
embeddings, bag-of-n-grams, and lstms. In International Conference on Learning Representations,
2018.

Y. Belinkov, N. Durrani, F. Dalvi, H. Sajjad, and J. Glass. What do neural machine translation models
learn about morphology? arXiv preprint arXiv:1704.03471, 2017.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

X. Cai, J. Huang, Y. Bian, and K. Church. Isotropy in the contextual embedding space: Clusters and
manifolds. In International Conference on Learning Representations, 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

K. Ethayarajh. How contextual are contextualized word representations? comparing the geometry of
bert, elmo, and gpt-2 embeddings. arXiv preprint arXiv:1909.00512, 2019.

J. Gao, D. He, X. Tan, T. Qin, L. Wang, and T.-Y. Liu. Representation degeneration problem in
training natural language generation models. arXiv preprint arXiv:1907.12009, 2019.

Y. Hao, L. Dong, F. Wei, and K. Xu. Visualizing and understanding the effectiveness of bert. arXiv
preprint arXiv:1908.05620, 2019.

10



J. Hewitt and C. D. Manning. A structural probe for finding syntax in word representations. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4129–4138, 2019.

T. Kim, J. Choi, D. Edmiston, and S.-g. Lee. Are pre-trained language models aware of phrases?
simple but strong baselines for grammar induction. arXiv preprint arXiv:2002.00737, 2020.

O. Kovaleva, A. Romanov, A. Rogers, and A. Rumshisky. Revealing the dark secrets of bert. arXiv
preprint arXiv:1908.08593, 2019.

J. D. Lee, Q. Lei, N. Saunshi, and J. Zhuo. Predicting what you already know helps: Provable
self-supervised learning. Advances in Neural Information Processing Systems, 34:309–323, 2021.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models, 2016.

A. Miaschi and F. Dell’Orletta. Contextual and non-contextual word embeddings: an in-depth
linguistic investigation. In Proceedings of the 5th Workshop on Representation Learning for NLP,
pages 110–119, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.repl4nlp-1.15. URL https://aclanthology.org/2020.repl4nlp-1.15.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pages 1532–1543, 2014.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep
contextualized word representations. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N18-1202. URL https://aclanthology.org/N18-1202.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of
Machine Learning Research, 21(1):5485–5551, 2020.

N. Saunshi, S. Malladi, and S. Arora. A mathematical exploration of why language models help
solve downstream tasks. In International Conference on Learning Representations, 2021.

H. Tanaka, H. Shinnou, R. Cao, J. Bai, and W. Ma. Document classification by word embeddings
of bert. In Computational Linguistics: 16th International Conference of the Pacific Association
for Computational Linguistics, PACLING 2019, Hanoi, Vietnam, October 11–13, 2019, Revised
Selected Papers 16, pages 145–154. Springer, 2020.

I. Tenney, P. Xia, B. Chen, A. Wang, A. Poliak, R. T. McCoy, N. Kim, B. Van Durme, S. R. Bowman,
D. Das, et al. What do you learn from context? probing for sentence structure in contextualized
word representations. arXiv preprint arXiv:1905.06316, 2019.

C. Tosh, A. Krishnamurthy, and D. Hsu. Contrastive learning, multi-view redundancy, and linear
models. In Algorithmic Learning Theory, pages 1179–1206. PMLR, 2021.

M. Tschannen, J. Djolonga, P. K. Rubenstein, S. Gelly, and M. Lucic. On mutual information
maximization for representation learning. arXiv preprint arXiv:1907.13625, 2019.

C. Wei, S. M. Xie, and T. Ma. Why do pretrained language models help in downstream tasks? an
analysis of head and prompt tuning. Advances in Neural Information Processing Systems, 34:
16158–16170, 2021.

11

https://aclanthology.org/2020.repl4nlp-1.15
https://aclanthology.org/N18-1202


G. Wiedemann, S. Remus, A. Chawla, and C. Biemann. Does bert make any sense? interpretable
word sense disambiguation with contextualized embeddings. arXiv preprint arXiv:1909.10430,
2019.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin,
et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.

T. Zhang and T. Hashimoto. On the inductive bias of masked language modeling: From statistical to
syntactic dependencies. arXiv preprint arXiv:2104.05694, 2021.

12



A Proof of Theorem 1

Theorem 1. Suppose the downstream task performance depends only on a function f∗(x, i) =

⟨v∗−i(x−i), u
∗⟩ =

∑k
t=1 c

∗
t ⟨v∗−i(x−i), v

∗
t ⟩. For t− ∈ [k], define p− := p∗(xi = t−|x−i),

and assume p− ≤ 1
2 . Then for all s ∈ R+, there exist functions v−i and {vt}kt=1 such that

DKL(p
∗(xi|x−i)||p(xi|x−i)) ≤ 2sp− and f(x, i) :=

∑k
t=1 c

∗
t ⟨v−i(x−i), vt⟩ ≤ f∗(x, i)− s · c∗t− .

Proof. We choose functions v−i and {vkt
}rt=1 such that ∀x, i, ∀t ∈ [n] \ {t−}, ⟨v−i(x−i), vt⟩ =

⟨v∗−i(x−i), v
∗
t ⟩. Besides, ∀x, i, ⟨v−i(x−i), vt−⟩ = ⟨v∗−i(x−i), v

∗
t−⟩ − s.

From the definition of p− and t− we know that

p− = p∗(xi = t−|x−i) =
exp(⟨v∗−i, v

∗
t−⟩)

Z∗(x, i)
. (11)

Following our construction of the student model, its partition function satisfies

Z(x, i) =
n∑

j=1

exp(⟨v−i, vj⟩) >
∑
j ̸=t−

exp(⟨v∗−i, v
∗
j ⟩) (12)

= Z∗(x, i)− exp(⟨v∗−i, v
∗
t−⟩) = (1− p−)Z∗(x, i). (13)

Besides,

Z(x, i) =
n∑

j=1

exp(⟨v−i, vj⟩) <
n∑

j=1

exp(⟨v∗−i, v
∗
j ⟩) = Z∗(x, i). (14)

Therefore,

∀j ̸= t−,
p∗(xi = j|x−i)

p(xi = j|x−i)
=

exp(⟨v∗
−i,v

∗
j ⟩)

Z∗(x,i)

exp(⟨v∗
−i,v

∗
j ⟩)

Z(x,i)

=
Z(x, i)

Z∗(x, i)
. (15)

p∗(xi = t−|x−i)

p(xi = t−|x−i)
=

exp(⟨v∗
−i,v

∗
j ⟩)

Z∗(x,i)

exp(⟨v∗
−i,v

∗
j ⟩−r)

Z(x,i)

=
Z(x, i)

Z∗(x, i)
· es. (16)

Thus,

DKL(p
∗(xi|x−i)||p(xi|x−i)) =

n∑
j=1

p∗(xi = j|x−i) log
p∗(xi = j|x−i)

p(xi = j|x−i)
(17)

=
∑
j ̸=t−

p∗(xi = j|x−i) log
Z(x, i)

Z∗(x, i)
+ p− · s log Z(x, i)

Z∗(x, i)
(18)

< sp− log
1

1− p−
< 2sp− (19)

and

f(x, i) =
k∑

t=1

c∗t ⟨v−i(x−i), vt⟩ =
k∑

t=1

c∗t ⟨v∗−i(x−i), v
∗
t ⟩ − c∗t · s = f∗(x, i)− s · c∗t− . (20)

B Proof and discussions for main theorem

Here we provide a proof sketch of Theorem 3.

Theorem 3. Let ϵKL := Ex∼Dpre [DKL(p
∗(x)||p(x))] be the pre-training loss, and ϵCLS :=

Prx∼DDS
[f(x) · f∗(x) < 0] be the downstream classification error rate, where Dpre and DDS

13



are the input distributions of pre-training and downstream data. Under Assumptions 2-7, fur-
ther assuming minj∈[k] b

∗
j ≥ ϵb − log(4k) and 8ϵb < Γ < 6, there exists a set of parameters

(aj)
n
j=1, (bj)

n
j=1 such that

ϵCLS ≤ ϵKL · 288

µ · p2b · Γ2
. (10)

Proof. We have the following lemma providing a lower bound of the TV distance between p∗(xi|x−i)
and p(xi|x−i), which will be proved in Section C.

Lemma 1. There exists a choice of (aj)kj=1, (bj)
k
j=1 such that if Assumptions 2-7 hold and there

exists x ∈ POS ∪NEG and i such that f(x, i) · f∗(x, i) < 0, then we must have

TV(p∗(xi|x−i), p(xi|x−i)) ≥ pb min
εp≥0

{
(1− e−εp) + k · min

j∈[k]
eb

∗
j−εb−εp ·

(
eσ(

Γ
2 −2εb−εp) − 1

)}
.

(21)

From Lemma 1and Pinsker’s inequality we can lower bound the KL divergence at any incorrectly
classified sample: For all x ∈ POS ∪NEG,

KL(p∗(xi|x−i)||p(xi|x−i)) (22)

≥ 2(TV(p∗(xi|x−i), p(xi|x−i)))
2 (23)

≥ 2p2b min
εp≥0

{
(1− e−εp) + k · min

j∈[k]
eb

∗
j−εb−εp ·

(
eσ(

Γ
2 −2εb−εp) − 1

)}2

(24)

Since the pre-training loss is the expected KL divergence for pre-training data, it is lower bounded
by the KL divergence on the incorrectly classified samples, which is related to the downstream
classification error rate:

ϵKL = Ex∼Dpre
[KL(p∗(xi|x−i)||p(xi|x−i))] (25)

≥ Pr
x−i∼Dpre

[f(x, i) · f∗(x, i) < 0] · min
x−i:f(x,i)·f∗(x,i)<0

KL(p∗(xi|x−i)||p(xi|x−i)) (26)

≥ µ · Pr
x−i∼DDS

[f(x, i) · f∗(x, i) < 0] · min
x−i:f(x,i)·f∗(x,i)<0

KL(p∗(xi|x−i)||p(xi|x−i)) (27)

≥ ϵCLS · 2µ · p2b min
εp≥0

{
(1− e−εp) + k · min

j∈A(i)
eb

∗
j−εb−εp ·

(
eσ(

Γ
2 −2εb−εp) − 1

)}2

. (28)

Here Dpre and DDS are the data distributions of pre-training and downstream task, and the second
inequality comes from Assumption 2.

Now we have established the relationship between ϵKL and ϵCLS , and the only step left is to bound
the minimum over εp. For notation simplicity, we define Λ := Γ

2 − 2ϵb.

If εp ≤ Λ
3 , we have (1− e−εp) ≥ (1− e−

Λ
3 ).

If εp > Λ
3 , we know that

eb
∗
j−εb−εp ·

(
e

γ
2k maxj∈A(i) |a∗

j
|−2εb−εp − 1

)
> eb

∗
j−εb−Λ

3 ·
(
e

2Λ
3 − 1

)
= eb

∗
j−εb · sinh

(
Λ

3

)
.

Thus,

min
εp≥0

{
(1− e−εp) + k · min

j∈A(i)
eb

∗
j−εb−εp ·

(
eσ(

Γ
2 −2εb−εp) − 1

)}
(29)

≥ min

{
1− e−

Λ
3 , 2k · min

j∈A(i)
eb

∗
j−εb · sinh

(
Λ

3

)}
(30)

Plugging this into (28) gives us

ϵKL ≥ ϵCLS · 2µ · p2b min

{
(1− e−

Λ
3 )2, 4k2 · min

j∈[k]
e2b

∗
j−2εb · sinh2(Λ

3
)

}
. (31)

14



Since Γ > 8ϵb, we know that Γ
4 < Λ < 3, so (1− e−

Λ
3 )2 >

(
Λ
6

)2
> Γ2

576 .

Besides, minj∈[k] b
∗
j ≥ ϵb− log(4k) implies 4k2 ·minj∈[k] e

2b∗j−2εb ≥ 1
4 . We also have sinh2(Λ3 ) >(

Λ
3

)2
> Γ2

144 .

Thus, min
{
(1− e−

Λ
3 )2, 4k2 ·minj∈[k] e

2b∗j−2εb · sinh2(Λ3 )
}

> Γ2

576 . Plugging this into (31) fin-
ishes the proof of Theorem 3.

B.1 Further discussions of Theorem 3

Potentially improving the upper bound by better thresholding. We are taking the minimum
over two terms in the proof of Theorem 3. These two terms come from two parts of the difference
between the ground-truth probability and our learned probability: the bulk part and the top part. Both
parts are functions of ϵp, which measures the approximation error for the bulk probability. A large ϵp
will incur a large error in the bulk part while a smaller ϵp will make the top part larger. We are setting
Λ
3 as the threshold for the current bound in Theorem 3. The bound could be improved by choosing
other thresholds if we know more about the values of {b∗j}kj=1 and the normalized margin Γ.

More general cases for thresholds {b∗j}kj=1 and normalized margin Γ. The thresholds {b∗j}kj=1
can be considered as the model’s sensitivity to the logits. A smaller threshold indicates a higher
sensitivity. In the proof of Theorem 3, we are assuming that the thresholds are not very small. In
general cases where the thresholds can be small, an important observation is that: For the same set of
samples, decreasing the thresholds by some number s will increase the normalized margin by s as
well. Since both the thresholds and the normalized margin are in the exponent in our bound (sinh
function is close to exponential when Γ is large), these two effects can cancel out to a large degree
and don’t influence the bound by much.

Prompt engineering can help with downstream performance. Prompt engineering can help with
the downstream task performance in multiple ways. One direct way is to make the data distribution
closer to that of the pre-training stage to increase µ. Furthermore, it can also indirectly help improve
the bound by decreasing the number of activated neurons, increasing the margin, etc.

C Proof of Lemma 1

Here we provide a proof of Lemma 1, with the proofs of the necessary technical lemmas postponed
to Appendix D.

Lemma 1. There exists a choice of (aj)kj=1, (bj)
k
j=1 such that if Assumptions 2-7 hold and there

exists x ∈ POS ∪NEG and i such that f(x, i) · f∗(x, i) < 0, then we must have

TV(p∗(xi|x−i), p(xi|x−i)) ≥ pb min
εp≥0

{
(1− e−εp) + k · min

j∈[k]
eb

∗
j−εb−εp ·

(
eσ(

Γ
2 −2εb−εp) − 1

)}
.

(21)

Proof. For all j ∈ [n], we set aj = a∗j and bj = b∗j . Since i is fixed in the proof, we will omit i when
the selection of i is clear from context.

WLOG, assume x ∈ POS because otherwise we can flip the sign of all a∗j ’s. In this case, from
Assumption 3 we know that f∗(x, i) ≥ γ. Therefore, f(x, i) · f∗(x, i) < 0 implies f(x, i) < 0, so
f∗(x, i)− f(x, i) > γ.

There are two possible ways to make f(x, i) smaller than f∗(x, i): Making the neurons with positive
coefficients smaller or making those with negative coefficients larger. The total difference must be at
least γ, so there must exist one sign whose change in value is at least γ

2 . Formally, we decompose the

15



difference f∗(x, i)− f(x, i) into two terms:

f∗(x, i)− f(x, i) =
∑

j:a∗
j>0

a∗j
(
σ(⟨v∗−i(x), v

∗
j − v∗0⟩ − b∗j )− σ(⟨v−i(x), vj − v0⟩ − b∗j )

)
(32)

+
∑

j:a∗
j<0

|a∗j |
(
σ(⟨v−i(x), vj − v0⟩ − b∗j )− σ(⟨v∗−i(x), v

∗
j − v∗0⟩ − b∗j )

)
. (33)

Note that at least one of the two terms on the right-hand side must be at
least γ

2 because their sum is at least γ. We first consider the first case, i.e.,∑
j:a∗

j>0 a
∗
j

(
σ(⟨v∗−i(x), v

∗
j − v∗0⟩ − b∗j )− σ(⟨v−i(x), vj − v0⟩ − b∗j )

)
≥ γ

2 . The analysis of
the second term is almost the same as the first one.

For notational simplicity, we define

∆j := (⟨v∗−i(x), v
∗
j − v∗0⟩ − b∗j )− σ(⟨v−i(x), vj − v0⟩ − b∗j ), (34)

(n.b. σ only appears in the second term) which implicitly depends on x, and and define the set

S(x) := {j : a∗j > 0,∆j > 0}. (35)

If ∆j > 0, we must have ⟨v∗−i(x), v
∗
j − v∗0⟩ − b∗j > 0 because ReLU is non-negative. This means

that the neurons corresponding to the words in S(x) must be activated.

Intuitively, S(x) is the set of words whose corresponding neuron in our student model has a smaller
value than the ground-truth model, and ∆j for a word j ∈ S(x) is the difference between these two
neurons. In other words, if we want to make a mistake in classifying a sample x, ∆j is the obstacle
for the neuron to overcome, and the sum of all these obstacles must be at least the margin γ. Formally,
we have the following lemma for S(x) and lower bound for ∆j :

Lemma 2. S(x) ̸= ∅.

Lemma 3.
∑

j∈S(x) ∆j ≥ γ
2maxj∈S(x) a

∗
j

.

Considering the TV distance, we get
n∑

j=1

|p∗(xi = j|x−i)− p(xi = j|x−i)| (36)

≥
∑

j∈B(x,i)

|p∗(xi = j|x−i)− p(xi = j|x−i)|+
∑

j∈S(x)

|p∗(xi = j|x−i)− p(xi = j|x−i)| (37)

≥

∣∣∣∣∣ ∑
j∈B(x,i)

p∗(xi = j|x−i)−
∑

j∈B(x,i)

p(xi = j|x−i)

∣∣∣∣∣+ ∑
j∈S(x)

|p∗(xi = j|x−i)− p(xi = j|x−i)|

(38)

=

∣∣∣∣Z∗
bulk(x, i)

Z∗(x, i)
− Zbulk(x, i)

Z(x, i)

∣∣∣∣+ ∑
j∈S(x)

|p∗(xi = j|x−i)− p(xi = j|x−i)|, (39)

where the first inequality comes from Assumption 5, i.e., S(x) ⊆ [k] ⊆ [n] \B(x, i).

We define εp :=
∣∣∣ log Z∗

bulk(x,i)
Z∗(x,i) − log Zbulk(x,i)

Z(x,i)

∣∣∣, which is the approximation error of the log bulk
probability and an important quantity to trade off the two terms in the TV distance. There are two
terms in (39). The first term corresponds to the bulk probability and the second term corresponds
to the activated neurons. When εp is large, the bulk probability has a large approximation error,
resulting in a large TV distance. We lower bound this term in the following lemma:

Lemma 4. ∣∣∣∣Z∗
bulk(x, i)

Z∗(x, i)
− Zbulk(x, i)

Z(x, i)

∣∣∣∣ ≥ pb(1− e−εp). (40)

16



The right-hand side of the above lemma is an increasing function of εp, and this lower bound becomes
large when the approximation error of the bulk probability is large.

In the other regime when εp is small, the bulk partition function must be approximated accurately,
i.e., Z∗

bulk(x,i)
Z∗(x,i) ≈ Zbulk(x,i)

Z(x,i) . Thus,

|p∗(xi = j|x−i)− p(xi = j|x−i)| =
∣∣∣∣exp(⟨v∗−i(x), v

∗
j ⟩)

Z∗(x, i)
− exp(⟨v−i(x), vj⟩)

Z(x, i)

∣∣∣∣ (41)

≈ Z∗
bulk(x, i)

Z∗(x, i)

∣∣∣∣exp(⟨v∗−i(x), v
∗
j ⟩)

Z∗
bulk(x, i)

− exp(⟨v−i(x), vj⟩)
Zbulk(x, i)

∣∣∣∣. (42)

From Assumption 7 we know that the bulk partition functions can be accurately approximated using
the vectors v∗0 and v0. Thus,

exp(⟨v∗
−i(x),v

∗
j ⟩)

Z∗
bulk(x,i)

≈ exp(⟨v∗−i(x), v
∗
j − v∗0⟩). Therefore, this difference is

approximately | exp(⟨v∗−i(x), v
∗
j−v∗0⟩)−exp(⟨v−i(x), vj−v0⟩)| ≈ exp(⟨v−i(x), vj−v0⟩)(e∆j−1).

As εp becomes smaller, the aforementioned approximations become more accurate, making the TV
distance suffer from a term that is roughly proportional to (e∆j − 1). This is formalized in the
following lemma:

Lemma 5. For all j ∈ S(x),

|p∗(xi = j|x−i)− p(xi = j|x−i)| ≥ eb
∗
j−εb−εp · pb ·

(
eσ(∆j−2εb−εp) − 1

)
. (43)

Plugging Lemma 4 and 5 into (39) gives us

TV(p∗(xi|x−i), p(xi|x−i)) (44)

≥
∣∣∣∣Z∗

bulk(x, i)

Z∗(x, i)
− Zbulk(x, i)

Z(x, i)

∣∣∣∣+ ∑
j∈S(x)

∣∣∣∣exp(⟨v∗−i(x), v
∗
j ⟩)

Z∗(x, i)
− exp(⟨v−i(x), vj⟩)

Z(x, i)

∣∣∣∣ (45)

≥ pb(1− e−εp) +
∑

j∈S(x)

eb
∗
j−εb−εp · pb ·

(
eσ(∆j−2εb−εp) − 1

)
(46)

≥ pb(1− e−εp) + pb min
j∈S(x)

eb
∗
j−εb−εp ·

∑
j∈S(x)

(
eσ(∆j−2εb−εp) − 1

)
(47)

≥ pb(1− e−εp) + pb min
j∈S(x)

eb
∗
j−εb−εp · |S(x)| ·

(
e
∑

j∈S(x) σ(∆j−2εb−εp)/|S(x)| − 1
)
, (48)

where the last inequality comes from Jensen’s inequality.

Let g(u, v) := u · (e v
u − 1) for u, v > 0, then ∂g

∂u = e
v
u

(
1− v

u − e−
v
u

)
≤ 0, so from |S(x)| ≤ k

we know that

|S(x)| ·
(
e
∑

j∈S(x) σ(∆j−2εb−εp)/|S(x)| − 1
)
≥ k ·

(
e
∑

j∈S(x) σ(∆j−2εb−εp)/k − 1
)
.

Using the fact that
∑

i σ(yi) =
∑

i max{yi, 0} ≥ max {
∑

i yi, 0} = σ (
∑

i yi),∑
j∈S(x)

σ (∆j − 2εb − εp) ≥ σ

 ∑
j∈S(x)

(∆j − 2εb − εp)

 ≥ σ

(
γ

2maxt∈S(x) a
∗
t

− 2k · εb − kεp

)
,

(49)

where the last inequality follows from Lemma 3. Therefore,

TV(p∗(xi|x−i), p(xi|x−i)) (50)

≥pb(1− e−εp) + pb · k min
j∈S(x)

eb
∗
j−εb−εp ·

(
e
σ

(
γ

2k maxt∈S(x) a∗
t
−2·εb−εp

)
− 1

)
. (51)

Since we do not have any assumption for εp, we take the minimum over all possible values of εp and
get the following bound:

17



TV(p∗(xi|x−i), p(xi|x−i)) (52)

≥pb min
εp≥0

{
(1− e−εp) + k · min

j∈S(x)
eb

∗
j−εb−εp ·

(
e
σ

(
γ

2k maxt∈S(x) a∗
t
−2·εb−εp

)
− 1

)}
. (53)

Above we have derived a lower bound for the TV distance between p∗ and p when the first term of
(33) is at least γ

2 . When the second term of (33) is at least γ
2 , the proof is symmetric to that of the

first term and we only need to exchange the role of parameters from the teacher model and student
model and the related definitions. Therefore, with the second term being at least γ

2 , we have

TV(p∗(xi|x−i), p(xi|x−i)) (54)

≥pb min
εp≥0

{
(1− e−εp) + k · min

j∈S′(x)
eb

∗
j−εb−εp ·

(
e
σ

(
γ

2k max
t∈S′(x)

|a∗
t |−2·εb−εp

)
− 1

)}
, (55)

where S′(x) := {j : a∗j < 0,∆′
j > 0} and ∆′

j := (⟨v−i(x), vj−v0⟩−b∗j )−σ(⟨v∗−i(x), v
∗
j−v∗0⟩−b∗j ).

Since S(x) ∪ S′(x) ⊆ [k], merging (53) and (55) finishes the proof of Lemma 1.

D Detailed proofs of auxilliary lemmas

Lemma 2. S(x) ̸= ∅.

Proof. Assume by way of contradiction that S(x) = ∅. Then by the definition of S(x), we know that
for all j such that a∗j > 0,

σ(⟨v∗−i(x), v
∗
j − v∗0⟩ − b∗j )− σ(⟨v−i(x), vj − v0⟩ − bj) (56)

≤(⟨v∗−i(x), v
∗
j − v∗0⟩ − b∗j )− σ(⟨v−i(x), vj − v0⟩ − bj) = ∆j ≤ 0. (57)

Therefore, ∑
j:a∗

j>0

a∗j
(
σ(⟨v∗−i(x), v

∗
j − v∗0⟩ − b∗j )− σ(⟨v−i(x), vj − v0⟩ − bj)

)
≤ 0 <

γ

2
,

which is a contradiction. Thus, S(x) ̸= ∅.

Lemma 3.
∑

j∈S(x) ∆j ≥ γ
2maxj∈S(x) a

∗
j

.

Proof. Note that for all j ∈ S(x), ⟨v∗−i(x), v
∗
j − v∗0⟩ − b∗j > σ(⟨v−i(x), vj − v0⟩ − b∗j ) ≥ 0, so

σ(⟨v∗−i(x), v
∗
j − v∗0⟩ − b∗j ) = ⟨v∗−i(x), v

∗
j − v∗0⟩ − b∗j . Therefore,∑

j∈S(x)

a∗j∆j =
∑

j∈S(x)

a∗j
(
(⟨v∗−i(x), v

∗
j − v∗0⟩ − b∗j )− σ((⟨v−i(x), vj − v0⟩ − b∗j ))

)
(58)

=
∑

j∈S(x)

a∗j
(
σ(⟨v∗−i(x), v

∗
j − v∗0⟩ − b∗j )− σ(⟨v−i(x), vj − v0⟩ − b∗j )

)
(59)

≥ γ

2
, (60)

which implies∑
j∈S(x)

∆j =

∑
j∈S(x) maxt∈S(x) a

∗
t∆j

maxt∈S(x) a
∗
t

≥
∑

j∈S(x) a
∗
j∆j

maxt∈S(x) a
∗
t

≥ γ

2maxt∈S(x) a
∗
t

. (61)

18



Lemma 4. ∣∣∣∣Z∗
bulk(x, i)

Z∗(x, i)
− Zbulk(x, i)

Z(x, i)

∣∣∣∣ ≥ pb(1− e−εp). (40)

Proof. If εp = 0, both sides of the inequality equal 0, and the inequality holds. When εp > 0,∣∣∣∣Z∗
bulk(x, i)

Z∗(x, i)
− Zbulk(x, i)

Z(x, i)

∣∣∣∣ (62)

=
Z∗
bulk(x, i)

Z∗(x, i)
·
∣∣∣∣1− Zbulk(x, i)

Z(x, i)
· Z∗(x, i)

Z∗
bulk(x, i)

∣∣∣∣ (63)

=
Z∗
bulk(x, i)

Z∗(x, i)
·
∣∣∣∣1− exp

(
log

Zbulk(x, i)

Z(x, i)
− log

Z∗
bulk(x, i)

Z∗(x, i)

) ∣∣∣∣ (64)

≥ Z∗
bulk(x, i)

Z∗(x, i)
·
∣∣∣∣1− exp

(
−
∣∣∣ log Zbulk(x, i)

Z(x, i)
− log

Z∗
bulk(x, i)

Z∗(x, i)

∣∣∣) ∣∣∣∣ (65)

≥ pb(1− e−εp). (66)

Lemma 5. For all j ∈ S(x),

|p∗(xi = j|x−i)− p(xi = j|x−i)| ≥ eb
∗
j−εb−εp · pb ·

(
eσ(∆j−2εb−εp) − 1

)
. (43)

Proof. We know that the word probabilities come from a log-linear model, so

|p∗(xi = j|x−i)− p(xi = j|x−i)| =
∣∣∣∣exp(⟨v∗−i(x), v

∗
j ⟩)

Z∗(x, i)
− exp(⟨v−i(x), vj⟩)

Z(x, i)

∣∣∣∣.
If the probability p(xi = j|x−i) is reasonably large, i.e., its corresponding neuron is activated, then
we can use that with ∆j to bound this difference. In other words, when ⟨v−i(x), vj − v0⟩ ≥ b∗j , we
know that

(
⟨v∗−i(x), v

∗
j ⟩ − logZ∗)− (⟨v−i(x), vj⟩ − logZ) (67)

=
(
⟨v∗−i(x), v

∗
j ⟩ − logZ∗

bulk

)
− (⟨v−i(x), vj⟩ − logZbulk) +

(
log

Z∗
bulk

Z∗ − log
Zbulk

Z

)
(68)

≥
(
⟨v∗−i(x), v

∗
j ⟩ − logZ∗

bulk

)
− (⟨v−i(x), vj⟩ − logZbulk)− εp (69)

=⟨v∗−i(x), v
∗
j − v∗0⟩ − ⟨v−i(x), vj − v0⟩+ (⟨v∗−i(x), v

∗
0⟩ − logZ∗

bulk) (70)

− (⟨v−i(x), v0⟩ − logZbulk)− εp (71)
≥∆j − 2εb − εp. (72)

Note that the last inequality (72) comes from Assumption 7 and the following property of ∆j :

⟨v∗−i(x), v
∗
j − v∗0⟩ − ⟨v−i(x), vj − v0⟩ = ⟨v∗−i(x), v

∗
j − v∗0⟩ − b∗j − (⟨v−i(x), vj − v0⟩ − b∗j )

(73)
≥ ⟨v∗−i(x), v

∗
j − v∗0⟩ − b∗j − σ(⟨v−i(x), vj − v0⟩ − b∗j )

(74)
= ∆j . (75)

Then we bound the difference in probabilities: for all j ∈ S(x),∣∣∣∣exp(⟨v∗−i(x), v
∗
j ⟩)

Z∗ − exp(⟨v−i(x), vj⟩)
Z

∣∣∣∣ (76)

=
exp(⟨v−i(x), vj⟩)

Z
·
∣∣∣∣exp(⟨v∗−i(x), v

∗
j ⟩)

Z∗ · Z

exp(⟨v−i(x), vj⟩)
− 1

∣∣∣∣ (77)

=
exp(⟨v−i(x), vj⟩)

Z
·
∣∣∣ exp ((⟨v∗−i(x), v

∗
j ⟩ − logZ∗)− (⟨v−i(x), vj⟩ − logZ)

)
− 1
∣∣∣. (78)

19



Note that

log
exp(⟨v−i(x), vj⟩)

Z
= ⟨v−i(x), vj⟩ − logZ (79)

= ⟨v−i(x), vj − v0⟩+ ⟨v−i(x), v0⟩ − logZbulk + log
Zbulk

Z
(80)

≥ b∗j − εb + log
Z∗
bulk

Z∗ +

(
log

Zbulk

Z
− log

Z∗
bulk

Z∗

)
(81)

≥ b∗j − εb + log pb − εp. (82)

Moreover, when ∆j − 2εb − εp > 0, we have by (72) that∣∣∣ exp ((⟨v∗−i(x), v
∗
j ⟩ − logZ∗)− (⟨v−i(x), vj⟩ − logZ)

)
− 1
∣∣∣ (83)

≥ exp (∆j − 2εb − εp)− 1. (84)

When ∆j − 2εb − εp ≤ 0, we have∣∣∣ exp ((⟨v∗−i(x), v
∗
j ⟩ − logZ∗)− (⟨v−i(x), vj⟩ − logZ)

)
− 1
∣∣∣ ≥ 0 = e0 − 1. (85)

Thus,∣∣∣ exp ((⟨v∗−i(x), v
∗
j ⟩ − logZ∗)− (⟨v−i(x), vj⟩ − logZ)

)
− 1
∣∣∣ ≥ eσ(∆j−2εb−εp) − 1. (86)

Therefore, when ⟨v−i(x), vj − v0⟩ ≥ b∗j , we must have

|p∗(xi = j|x−i)− p(xi = j|x−i)| ≥ eb
∗
j−εb−εp · pb ·

(
eσ(∆j−2εb−εp) − 1

)
. (87)

In the second case where ⟨v−i(x), vj − v0⟩ < b∗j , we have ⟨v−i(x), vj⟩ < ⟨v−i(x), v0⟩ + b∗j . The
proof for the second case is very similar to that of the first case, with the main difference being we
replace ⟨v−i(x), vj⟩ in the first case by ⟨v−i(x), v0⟩+ b∗j in the second case.

In the second case, by the definition of ∆j we know that ∆j = (⟨v∗−i(x), v
∗
j − v∗0⟩ − b∗j ).

Similar to the first case, we can get(
⟨v∗−i(x), v

∗
j ⟩ − logZ∗)− (⟨v−i(x), v0⟩+ b∗j − logZ

)
(88)

=
(
⟨v∗−i(x), v

∗
j ⟩ − logZ∗

bulk

)
−
(
⟨v−i(x), v0⟩+ b∗j − logZbulk

)
+

(
log

Z∗
bulk

Z∗ − log
Zbulk

Z

)
(89)

≥
(
⟨v∗−i(x), v

∗
j ⟩ − logZ∗

bulk

)
−
(
⟨v−i(x), v0⟩+ b∗j − logZbulk

)
− εp (90)

≥ ⟨v∗−i(x), v
∗
j − v∗0⟩ − b∗j + (⟨v∗−i(x), v

∗
0⟩ − logZ∗

bulk)− (⟨v−i(x), v0⟩ − logZbulk)− εp (91)

≥ ∆j − 2εb − εp. (92)

Therefore, for the difference in probabilities, if ∆j − 2εb − εp > 0, we have(
⟨v∗−i(x), v

∗
j ⟩ − logZ∗) > (⟨v−i(x), v0⟩+ b∗j − logZ

)
, so

|p∗(xi = j|x−i)− p(xi = j|x−i)| (93)

=

∣∣∣∣exp(⟨v∗−i(x), v
∗
j ⟩)

Z∗ − exp(⟨v−i(x), vj⟩)
Z

∣∣∣∣ (94)

≥
exp(⟨v∗−i(x), v

∗
j ⟩)

Z∗ −
exp(⟨v−i(x), v0⟩+ b∗j )

Z
(95)

=
exp(⟨v−i(x), v0⟩+ b∗j )

Z
·
(
exp

((
⟨v∗−i(x), v

∗
j ⟩ − logZ∗)− (⟨v−i(x), v0⟩+ b∗j − logZ

))
− 1
)

(96)

≥
exp(⟨v−i(x), v0⟩+ b∗j )

Z
·
(
e∆j−2εb−εp − 1

)
. (97)

20



If ∆j − 2εb − εp ≤ 0, the absolute value of probability difference can be trivially bounded below by
0. Thus,

|p∗(xi = j|x−i)− p(xi = j|x−i)| ≥
exp(⟨v−i(x), v0⟩+ b∗j )

Z
·
(
eσ(∆j−2εb−εp) − 1

)
. (98)

Since

log
exp(⟨v−i(x), v0⟩+ b∗j )

Z
= b∗j + ⟨v−i(x), v0⟩ − logZbulk + log

Zbulk

Z
(99)

≥ b∗j − εb + log
Z∗
bulk

Z∗ +

(
log

Zbulk

Z
− log

Z∗
bulk

Z∗

)
(100)

≥ b∗j − εb + log pb − εp, (101)

we finally get the same bound as the first case:

|p∗(xi = j|x−i)− p(xi = j|x−i)| ≥ eb
∗
j−εb−εp · pb ·

(
eσ(∆j−2εb−εp) − 1

)
. (102)

Merging the two cases, we know that for all j ∈ S(x),

|p∗(xi = j|x−i)− p(xi = j|x−i)| ≥ eb
∗
j−εb−εp · pb ·

(
eσ(∆j−2εb−εp) − 1

)
. (103)

This finishes the proof of Lemma 5.

E Experiment details

Language models. We use various versions of GPT-2 Radford et al. [2019] and OPT Zhang et al.
[2022] with number of parameters ranging from 125M to 1.5B. We use the base, medium, large, xl
version of GPT-2 which have #parameters 124M / 355M / 774M / 1.5B and hidden dimension 768
/ 1024 / 1280 / 1600. For OPT, we use three versions, with #parameters 125M / 350M / 1.3B and
hidden dimension 768 / 1024 / 2048. For all these models, the word probability is the softmax of
the product of the penultimate layer representation and the dictionary. This is consistent with our
theoretical model introduced in Section 2. The parameter settings and performances of these models
are shown in Table 1.

Table 1: Parameters and performances of languge models
Model #Param Hidden dim Perp
GPT-2 124M 768 25.92
GPT-2 Medium 355M 1024 19.19
GPT-2 Large 774M 1280 17.13
GPT-2 XL 1.5B 1600 15.34
OPT-125M 125M 768 25.01
OPT-350M 350M 1024 19.69
OPT-1.3B 1.3B 2048 13.16

Dataset. We use WikiText-2 Merity et al. [2016] as the text corpus. WikiText-2 has about 280k
tokens, and we only use the first 1/4 of it for computational efficiency. The perplexities of the
language models on this corpus are shown in Table 1.

F Existence of anchor vector is not trivial

In this section, we will empirically verify that the existence of the anchor vector in large-scale
language models does not arise from the trivial reasons that we could think of.

Linear approximation is not accurate for original partition function. Table 2 shows the mean
squared approximation error of the log bulk partition function for different models and different
k. For the models whose log bulk partition functions can be well approximated linearly, their log
original partition function cannot. This confirms the necessity of removing the words of interest in
the partition function.

21



Table 2: Mean squared approximation error of log bulk partition function for different models and
different k.

Model\k 0 10 100 1000 10000
GPT-2 625.8 651.4 665.2 685.5 727.4
GPT-2 M 0.7647 0.3444 0.3005 0.2683 0.2396
GPT-2 L 0.7296 0.1288 0.0740 0.0317 0.0022
GPT-2 XL 0.7716 0.1219 0.0648 0.0279 0.0019
OPT-125M 0.6688 0.1010 0.0443 0.0117 0.0006
OPT-350M 2.2449 0.9393 0.7587 0.6182 0.4275
OPT-1.3B 0.5234 0.0984 0.0402 0.0117 0.0006

Word embeddings are not uniformly distributed on a sphere. Figure 2 shows the singular values
of dictionary matrices from different models. For the four selected models, their word embeddings
are close to being low-rank. Therefore, the word embeddings in these models are far from uniformly
distributed on a sphere.

(a) GPT-2 Large (b) GPT-2 XL (c) OPT-125M (d) OPT-1.3B

Figure 2: Singular values of dictionary matrices.

Dictionary atoms are not uniformly distributed on sphere. Figure 3 shows the histogram of the
ℓ2-norm of the dictionary atoms from different language models, and Figure 4 shows the distribution
of the Cosine similarity between two random atoms . The norms of these atoms are somewhat
bounded, but their cosine similarity is strongly biased towards the positive part, and the dictionary
matrices are close to low rank, indicating that these vectors are far from uniformly distributed on a
sphere. Instead, they may concentrate around a cone-shaped region.

(a) GPT-2 (b) GPT-2 Medium (c) GPT-2 Large (d) GPT-2 XL

(e) OPT-125M (f) OPT-350M (g) OPT-1.3B

Figure 3: ℓ2-norms of atoms

(Bulk) partition functions have large variations. Figure 5 shows the histogram of log partition
function and log bulk partition function for the language models, where the bulk words are defined as
all the words except the top 100, in terms of logit values. We can see from the figures that both the
partition function and the bulk partition function vary a lot depending on the samples. Therefore, in
recent large-scale language models, the partition functions are not stable across samples.

22



(a) GPT-2 (b) GPT-2 Medium (c) GPT-2 Large (d) GPT-2 XL

(e) OPT 125M (f) OPT 350M (g) OPT 1.3B

Figure 4: Cosine similarity between two random atoms

(a) GPT-2 Large (b) GPT-2 XL (c) OPT-125M (d) OPT-1.3B

Figure 5: Histogram of log original and bulk partition functions

23


	Introduction
	Our contributions
	Related works

	Problem setup
	Cases when learned representations are insufficient for downstream tasks
	Downstream tasks sensitive to words with super-small probability
	Representations are not shift-invariant

	``Anchor vector'' hypothesis and empirical verifications
	``Anchor vector'' hypothesis
	Empirical verification of ``anchor vector'' hypothesis

	Anchor vector guarantees performance transfer from pre-training to downstream tasks
	Model and assumptions
	Main theorem and interpretations

	Conclusions, limitations and future work
	Proof of Theorem 1
	Proof and discussions for main theorem
	Further discussions of Theorem 3

	Proof of Lemma 1
	Detailed proofs of auxilliary lemmas
	Experiment details
	Existence of anchor vector is not trivial

