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Abstract

Finding an approximate second-order stationary point (SOSP) is a well-studied and
fundamental problem in stochastic nonconvex optimization with many applications
in machine learning. However, this problem is poorly understood in the presence of
outliers, limiting the use of existing nonconvex algorithms in adversarial settings.
In this paper, we study the problem of finding SOSPs in the strong contamination
model, where a constant fraction of datapoints are arbitrarily corrupted. We
introduce a general framework for efficiently finding an approximate SOSP with
dimension-independent accuracy guarantees, using eO(D2/✏) samples where D is
the ambient dimension and ✏ is the fraction of corrupted datapoints.
As a concrete application of our framework, we apply it to the problem of low
rank matrix sensing, developing efficient and provably robust algorithms that can
tolerate corruptions in both the sensing matrices and the measurements. In addition,
we establish a Statistical Query lower bound providing evidence that the quadratic
dependence on D in the sample complexity is necessary for computationally
efficient algorithms.

1 Introduction

Learning in the presence of corrupted data is a significant challenge in machine learning (ML)
with many applications, including ML security [Bar+10; BNL12; SKL17; Dia+19] and exploratory
data analysis of real datasets, e.g., in biological settings [Ros+02; Pas+10; Li+08; Dia+17]. The
goal in such scenarios is to design efficient learning algorithms that can tolerate a small constant
fraction of outliers and achieve error guarantees independent of the dimensionality of the data. Early
work in robust statistics [Ham+86; HR09] gave sample-efficient robust estimators for various tasks
(e.g., the Tukey median [Tuk75] for robust mean estimation), alas with runtimes exponential in the
dimension. A recent line of work in computer science, starting with [Dia+16; LRV16], developed
the first computationally efficient robust algorithms for several fundamental high-dimensional tasks.
Since these early works, there has been significant progress in algorithmic aspects of robust high-
dimensional statistics (see [DK19] and [DK23] for a comprehensive overview).
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In this paper, we study the general problem of smooth (with Lipschitz gradient and Hessian) stochastic
nonconvex optimizationminx f̄(x) in the outlier-robust setting, where f̄(x) := EA⇠G f(x,A) and
G is a possibly unknown distribution of the random parameter A. We will focus on the following
standard adversarial contamination model (see, e.g., [Dia+16]).

Definition 1.1 (Strong Contamination Model). Given a parameter 0 < ✏ < 1/2 and an inlier
distribution G, an algorithm receives samples from G with ✏-contamination as follows: The algorithm
first specifies the number of samples n, and n samples are drawn independently from G. An adversary
is then allowed to inspect these samples, and replace an ✏-fraction of the samples with arbitrary points.
This modified set of n points is said to be ✏-corrupted, which is then given to the algorithm.

The stochastic optimization problem we consider is computationally intractable in full generality —
even without corruption — if the goal is to obtain globally optimal solutions. At a high level, an
achievable goal is to design sample and computationally efficient robust algorithms for finding locally
optimal solutions. Prior work [Pra+20; Dia+19] studied outlier-robust stochastic optimization and
obtained efficient algorithms for finding approximate first-order stationary points. While first-order
guarantees suffice for convex problems, it is known that in many tractable non-convex problems,
first-order stationary points may be bad solutions, but all second-order stationary points (SOSPs) are
globally optimal. This motivates us to study the following questions:

Can we develop a general framework for finding second-order stationary points in
outlier-robust stochastic optimization?
Can we obtain sample and computationally efficient algorithms for outlier-robust
versions of tractable nonconvex problems using this framework?

In this work, we answer both questions affirmatively. We introduce a framework for efficiently finding
an approximate SOSP when ✏-fraction of the functions are corrupted and then use our framework to
solve the problem of outlier-robust low rank matrix sensing.

In addition to the gradient being zero, a SOSP requires the Hessian matrix to not have negative
eigenvalues. The second-order optimality condition is important because it rules out suboptimal
solutions such as strict saddle points. It is known that all SOSPs are globally optimal in nonconvex
formulations of many important machine learning problems, such as matrix completion [GLM16],
matrix sensing [BNS16], phase retrieval [SQW16], phase synchronization [BBV16], dictionary
learning [SQW17], and tensor decomposition [Ge+15] (see also [WM22, Chapter 7]). However,
the properties of SOSPs are highly sensitive to perturbation in the input data. For example, it is
possible to create spurious SOSPs for nonconvex formulations of low rank matrix recovery problems,
even for a semi-random adversary that can add additional sensing matrices but cannot corrupt the
measurements in matrix sensing [GC23] or an adversary who can only reveal more entries of the
ground-truth matrix in matrix completion [CG18]. Those spurious SOSPs correspond to highly
suboptimal solutions.

Finding SOSPs in stochastic nonconvex optimization problems in the presence of arbitrary outliers
was largely unaddressed prior to our work. Prior works [Pra+20; Dia+19] obtained efficient and robust
algorithms for finding first-order stationary points with dimension-independent accuracy guarantees.
These works relied on the following simple idea: Under certain smoothness assumptions, projected
gradient descent with an approximate gradient oracle efficiently converges to an approximate first-
order stationary point. Moreover, in the outlier-robust setting, approximating the gradient at a specific
point amounts to a robust mean estimation problem (for the underlying distribution of the gradients),
which can be solved by leveraging existing algorithms for robust mean estimation.

Our work is the first to find approximate SOSPs with dimension-independent errors in outlier-robust
settings. Note that in standard non-robust settings, approximate SOSPs can be computed using
first-order methods such as perturbed gradient descent [Jin+17; Jin+21]. This strategy might seem
extendable to outlier-robust settings through perturbed approximate gradient descent, utilizing robust
mean estimation algorithms to approximate gradients. The approach in [Yin+19] follows this idea,
but unfortunately their second-order guarantees scale polynomially with dimension, even under very
strong distributional assumptions (e.g., subgaussianity). Our lower bound result provides evidence
that approximating SOSPs with dimension-independent error is as hard as approximating full Hessian,
suggesting that solely approximating the gradients is not sufficient. On a different note, [IPL23]
recently employed robust estimators for both gradient and Hessian in solving certain convex stochastic
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optimization problems, which has a different focus than ours and does not provide SOSPs with the
guarantees that we achieve.

1.1 Our Results and Contributions

The notation we use in this section is defined in Section 2. To state our results, we first formally define
our generic nonconvex optimization problem. Suppose there is a true distribution over functions
f : RD ⇥ A ! R, where f(x,A) takes an argument x 2 RD and is parameterized by a random
variable A 2 A drawn from a distribution G. Our goal is to find an (✏g, ✏H)-approximate SOSP of
the function f̄(x) := EA⇠G f(x,A).
Definition 1.2 (✏-Corrupted Stochastic Optimization). The algorithm has access to n functions
(fi)ni=1 generated as follows. First n random variables (Ai)ni=1 are drawn independently from G.
Then an adversary arbitrarily corrupts an ✏ fraction of the Ai’s. Finally, the ✏-corrupted version of
fi(·) = f(·, Ai) is sent to the algorithm as input. The task is to find an approximate SOSP of the
ground-truth average function f̄(·) := EA⇠G f(·, A).
Definition 1.3 (Approximate SOSPs). A point x is an (✏g, ✏H)-approximate second-order stationary
point (SOSP) of f̄ if

��rf̄(x)
��  ✏g and �min

�
r2f̄(x)

�
� �✏H .

We make the following additional assumptions on f and G.
Assumption 1.4. There exists a bounded region B such that the following conditions hold:

(i) There exists a lower bound f⇤ > �1 such that for all x 2 B, f(x,A) � f⇤ with probability 1.

(ii) There exist parameters LDg
, LDH

, BDg
, and BDH

such that, with high probability over the
randomness in A ⇠ G, letting g(x) = f(x,A), we have that g(x) is LDg

-gradient Lipschitz and
LDH

-Hessian Lipschitz over B, and krg(x)k  BDg
and

��r2g(x)
��
F
 BDH

for all x 2 B.

(iii) There exist parameters �g,�H > 0 such that for all x 2 B,

kCovA⇠G(rf(x,A))kop  �2
g and

��CovA⇠G(vec(r2f(x,A)))
��
op

 �2
H .

Note that the radius of B and the parameters LDg
, LDH

, BDg
, BDH

are all allowed to depend
polynomially on D and ✏ (but not on x and A).

Our main algorithmic result for ✏-corrupted stochastic optimization is summarized in the following
theorem. A formal version of this theorem is stated as Theorem 3.1 in Section 3.
Theorem 1.5 (Finding an Outlier-Robust SOSP, informal). Suppose f satisfies Assumption 1.4 in a
region B with parameters �g and �H . Given an arbitrary initial point x0 2 B and an ✏-corrupted
set of n = e⌦

�
D2/✏

�
functions where D is the ambient dimension, there exists a polynomial-time

algorithm that with high probability outputs an (O(�g
p
✏) , O(�H

p
✏))-approximate SOSP of f̄ ,

provided that all iterates of the algorithm stay inside B.

Although the bounded iterate condition in Theorem 1.5 appears restrictive, this assumption holds if the
objective function satisfies a “dissipativity” property, which is a fairly general phenomenon [Hal10].
Moreover, adding an `2-regularization term enables any Lipschitz function to satisfy the dissipativity
property [RRT17, Section 4]. As an illustrating example, a simple problem-specific analysis shows
that this bounded iterate condition holds for outlier-robust matrix sensing by exploiting the fact that
the matrix sensing objective satisfies the dissipativity property.

In this paper, we consider the problem of outlier-robust symmetric low rank matrix sensing, which
we formally define below. We focus on the setting with Gaussian design.
Definition 1.6 (Outlier-Robust Matrix Sensing). There is an unknown rank-r ground-truth matrix
M⇤ 2 Rd⇥d that can be factored into U⇤U⇤> where U⇤ 2 Rd⇥r. The (clean) sensing matrices
{Ai}i2[n] have i.i.d. standard Gaussian entries. The (clean) measurements yi are obtained as yi =
hAi,M⇤i+ ⇣i, where the noise ⇣i ⇠ N (0,�2) is independent from all other randomness. We denote
the (clean) data generation process by (Ai, yi) ⇠ G�. When � = 0, we have ⇣i = 0 and we write
G := G0 for this noiseless (measurement) setting. In outlier robust matrix sensing, an adversary can
arbitrarily change any ✏-fraction of the sensing matrices and the corresponding measurements. This
corrupted set of (Ai, yi)’s is then given to the algorithm as input, where the goal is to recover M⇤.
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We highlight that in our setting, both the sensing matrices Ai 2 Rd⇥d and the measurements yi 2 R
can be corrupted, presenting a substantially more challenging problem compared to prior works
(e.g., [Li+20b; Li+20a]) that only allow corruption in yi.

Let �?
1 and �?

r denote the largest and the smallest nonzero singular value of M⇤ respectively. We
assume �?

r and the rank r are given to the algorithm, and we assume that the algorithm knows a
multiplicative upper bound � of �?

1 such that � � 36�?
1 (a standard assumption in matrix sensing

even for non-robust settings [GJZ17; Jin+17]). Let  = �/�?
r .

Our main algorithmic result for the low rank matrix sensing problem is summarized in the following
theorem. For a more detailed statement, see Theorems 3.2 and 3.3 in Section 3.
Theorem 1.7 (Our Algorithm for Outlier-Robust Matrix Sensing). Let M⇤ 2 Rd⇥d be the rank r
ground-truth matrix with smallest nonzero singular value �?

r . Let � � 36 kM⇤kop and let  = �/�?
r .

There exists an algorithm for outlier-robust matrix sensing, where an ✏ = O(1/(3r3)) fraction of
samples from G� as in Definition 1.6 gets arbitrarily corrupted, that can output a rank-r matrix cM
such that kcM �M⇤kF  ◆ with probability at least 1� ⇠, where ◆ > 0 is the error parameter:

1) If � � r�, then ◆ = O(�
p
✏);

2) If �  r�, then ◆ = O(�
p
✏);

3) If � = 0 (noiseless), then ◆ can be made arbitrarily small, achieving exact recovery.

The algorithm uses n = eO
⇣

d2r2+dr log(�/⇠)
✏

⌘
samples and runs in time poly(n,, log(�?

r/◆)).

Finally, we complement our algorithmic results for outlier-robust matrix sensing with a Statistical
Query (SQ) lower bound, which provides strong evidence that quadratic dependence on d in the
sample complexity is unavoidable for efficient algorithms. A detailed statement of this result is
provided in Section 4.

1.2 Our Techniques

Outlier-robust nonconvex optimization. To obtain our algorithmic result in the general nonconvex
setting, we leverage existing results on robust mean estimation [DKP20], which we use as a black
box to robustly estimate the gradient and the (vectorized) Hessian. We use these robust estimates as a
subroutine in a randomized nonconvex optimization algorithm (described in Appendix A.2), which
can tolerate inexactness in both the gradient and the Hessian. With high probability, this algorithm
outputs an (✏g, ✏H)-approximate SOSP, where ✏g and ✏H depend on the inexactness of the gradient
and Hessian oracles.

We remark that robust estimation of the Hessian is crucial to obtaining our dimension-independent
approximation error result and is what causes D2 dependence in the sample complexity (which is
unavoidable for SQ algorithms as discussed below). Notably, the only prior work on approximating
SOSPs in the outlier-robust setting [Yin+19] used robust mean estimation only on the gradients and
had sample complexity scaling linearly withD; however, they can only output an order (

p
✏, (✏D)1/5)-

SOSP, which is uninformative for many problems of interest, including the matrix sensing problem
considered in this paper, due to the dimensional dependence in the approximation error.

Application to low rank matrix sensing. Our main contribution on the algorithmic side is showing
that our outlier-robust nonconvex optimization framework can be applied to solve outlier-robust
matrix sensing with dimension-independent approximation error, even achieving exact recovery when
the measurements are noiseless. We obtain this result using the following geometric insights about
the problem: We show that the norm of the covariance of the gradient and the Hessian can both
be upper bounded by the sum of �2 and a function of the distance to the closest optimal solution.
We further prove that all iterates stay inside a nice region using a “dissipativity” property [Hal10]),
which says that the iterate aligns with the direction of the gradient when the iterate’s norm is large.
This allows us to invoke Theorem 1.5 to obtain an approximate SOSP of the ground-truth objective
function.

We show that this approximate SOSP must be close to a global optimal solution. Additionally, we
establish a local regularity condition in a small region around globally optimal solutions (which is
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similar to strong convexity but holds only locally). This local regularity condition bounds below
a measure of stationarity, which allows us to prove that gradient descent-type updates contract the
distance to the closest global optimum under appropriate stepsize. We leverage this local regularity
condition to prove that the iterates of the algorithm stay near a global optimum, so that the regularity
condition continues to hold, and moreover, the distance between the current solution and the closest
global optimum contracts, as long as it is larger than a function of �. Consequently, the distance-
dependent component of the gradient and Hessian covariance bound contracts as well, which allows
us to obtain more accurate gradient and Hessian estimates. While such a statement may seem evident
to readers familiar with linear convergence arguments, we note that proving it is quite challenging,
due to the circular dependence between the distance from the current solution to global optima, the
inexactness in the gradient and Hessian estimates, and the progress made by our algorithm.

The described distance-contracting argument allows us to control the covariance of the gradient and
Hessian, which we utilize to recover M⇤ exactly when � = 0, and recover M⇤ with error roughly
O(�

p
✏) when 0 6= �  r�. We note that the �

p
✏ appears unavoidable in the � 6= 0 case, due to

known limits of robust mean estimation algorithms [DKS17].

SQ lower bound. We exhibit a hard instance of low rank matrix sensing problem to show that
quadratic dependence on the dimension in sample complexity is unavoidable for computationally
efficient algorithms. Our SQ lower bound proceeds by constructing a family of distributions, corre-
sponding to corruptions of low rank matrix sensing, that are nearly uncorrelated in a well-defined
technical sense [Fel+17]. To achieve this, we follow the framework of [DKS17] which considered
a family of distributions that are rotations of a carefully constructed one-dimensional distribution.
The proof builds on [DKS19; Dia+21], using a new univariate moment-matching construction which
yields a family of corrupted conditional distributions. These induce a family of joint distributions that
are SQ-hard to learn.

1.3 Roadmap

Section 2 defines the necessary notation and discusses relevant building blocks of our algorithm
and analysis. Section 3 introduces our framework for finding SOSPs in the outlier-robust setting.
Section 3.1 presents how to extend and apply our framework to solve outlier-robust low rank matrix
sensing. Section 4 proves that our sample complexity has optimal dimensional dependence for SQ
algorithms. Most proofs are deferred to the supplementary material due to space limitations.

2 Preliminaries

For an integer n, we use [n] to denote the ordered set {1, 2, . . . , n}. We use [ai]i2I to denote the
matrix whose columns are vectors ai, where I is an ordered set. We use E(x) to denote the indicator
function that is equal to 1 if x 2 E and 0 otherwise. For two functions f and g, we say f = eO(g) if
f = O(g logk(g)) for some constant k, and we similarly define e⌦.

For vectors x and y, we let hx, yi denote the inner product x>y and kxk denote the `2 norm of x.
For d 2 Z+, we use Id to denote the identity matrix of size d ⇥ d. For matrices A and B, we use
kAkop and kAkF to denote the spectral norm and Frobenius norm ofA respectively. We use �max(A)
and �min(A) to denote the maximum and minimum eigenvalue of A respectively. We use tr(A) to
denote the trace of a matrix A. We use hA,Bi = tr(A>B) to denote the entry-wise inner product of
two matrices of the same dimension. We use vec(A) = [a>1 , a

>
2 , . . . , a

>
d ]

> to denote the canonical
flattening of A into a vector, where a1, a2, . . . , ad are columns of A.
Definition 2.1 (Lipschitz Continuity). Let X and Y be normed vector spaces. A function h : X ! Y
is `-Lipschitz if kh(x1)� h(x2)kY  ` kx1 � x2kX , 8x1, x2.

In this paper, when Y is a space of matrices, we take k·kY to be the spectral norm k·kop. When X is
a space of matrices, we take k·kX to be the Frobenius norm k·kF ; this essentially views the function
h as operating on the vectorized matrices endowed with the usual `2 norm. When X or Y is the
Euclidean space, we take the corresponding norm to be the `2 norm.

A Randomized Algorithm with Inexact Gradients and Hessians. We now discuss how to solve
the unconstrained nonconvex optimization problem minx2RD f(x), where f(·) is a smooth function
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with Lipschitz gradients and Lipschitz Hessians. The goal of this section is to find an approximate
SOSP as defined in Definition 1.3.
Proposition 2.2 ([LW23]). Suppose a function f is bounded below by f⇤ > �1, has Lg-Lipschitz
gradient and LH -Lipschitz Hessian, and its inexact gradient and Hessian computations egt and eHt

satisfy kegt �rf(xt)k  1
3✏g and k eHt � r2f(xt)kop  2

9✏H . Then there exists an algorithm
(Algorithm A.1) with the following guarantees:

1. (Correctness) If Algorithm A.1 terminates and outputs xn, then xn is a ( 43✏g,
4
3✏H)-approximate

SOSP.

2. (Runtime) Algorithm A.1 terminates with probability 1. Let C✏ := min
⇣

✏2
g

6Lg

, 2✏3
H

9L2
H

⌘
. With

probability at least 1� �, Algorithm A.1 terminates after k iterations for

k = O
⇣f(x0)� f⇤

C✏
+

L2
HL2

g✏
2
g

✏6H
log

⇣1
�

⌘⌘
. (1)

The constants 1/3 and 2/9 are chosen for ease of presentation. For all constructions of Hessian
oracles in this paper, we take the straightforward relaxation k eHt�r2f(xt)kop  k eHt�r2f(xt)kF
and upper bound Hessian inexactness using Frobenius norm. Proof of a simplified version of
Proposition 2.2 with a weaker high probability bound that is sufficient for our purposes is provided in
Appendix A.2 for completeness.

Robust Mean Estimation. Recent algorithms in robust mean estimation give dimension-
independent error in the presence of outliers under strong contamination model.

We use the following results, see, e.g., [DKP20], where the upper bound � on the spectral norm of
covariance matrix is unknown to the algorithm.
Proposition 2.3 (Robust Mean Estimation). Fix any 0 < ⇠ < 1. Let S be a multiset of n =
O((k log k + log(1/⇠))/✏) i.i.d. samples from a distribution on Rk with mean µS and covariance
⌃. Let T ⇢ Rk be an ✏-corrupted version of S as in Definition 1.1. There exists an algorithm
(Algorithm A.2) such that, with probability at least 1� ⇠, on input ✏ and T (but not k⌃kop) returns a
vector bµ in polynomial time so that kµS � bµk = O(

q
k⌃kop ✏).

Algorithm A.2 is given in Appendix A.3. Proposition 2.3 states that for Algorithm A.2 to succeed
with high probability, eO(k/✏) i.i.d. samples need to be drawn from a k-dimensional distribution of
bounded covariance. State of the art algorithms for robust mean estimation can be implemented
in near-linear time, requiring only a logarithmic number of passes on the data, see, e.g, [Dia+22;
CDG19; DHL19]. Any of these faster algorithms could be used for our purposes.

With the above results, the remaining technical component for applying the robust estimation
subroutine (Algorithm A.2) in this paper is handling the dependence across iterations.

Because we will run RobustMeanEstimation in each iteration of our optimization algorithm, the
gradients {rfi(xt)}ni=1 and Hessians {r2fi(xt)}ni=1 can no longer be considered as independently
drawn from a distribution after the first iteration. Although they are i.i.d. for fixed x, the dependence
on previous iterations through x will break the independence assumption. Therefore, we will need
a union bound over all xt to handle dependence across different iterations t. We deal with this
technicality in Appendix B.

3 General Robust Nonconvex Optimization

In this section, we establish a general result that uses Algorithm A.1 to obtain approximate SOSPs in
the presence of outliers under strong contamination. The inexact gradient and inexact Hessian oracles
are constructed with the robust mean estimation subroutine (Algorithm A.2). We consider stochastic
optimization tasks in Definition 1.2 satisfying Assumption 1.4. We construct the inexact gradient and
Hessian oracle required by Algorithm A.1 as follows:

egt  RobustMeanEstimation({rfi(xt)}ni=1, 4✏)

eHt  RobustMeanEstimation({r2fi(xt)}ni=1, 4✏)

6



Then we have the following guarantee:
Theorem 3.1. Suppose we are given ✏-corrupted set of functions {fi}ni=1 for sample size n, generated
according to Definition 1.2. Suppose Assumption 1.4 holds in a bounded region B ⇢ RD of diameter
� with gradient and Hessian covariance bound �g and �H respectively, and we have an arbitrary
initialization x0 2 B. Algorithm A.1 initialized at x0 outputs an (✏g, ✏H)-approximate SOSP for a
sufficiently large sample with probability at least 1� ⇠ if the following conditions hold:

(I) All iterates xt in Algorithm A.1 stay inside the bounded region B.

(II) For an absolute constant c > 0, it holds that �g
p
✏  c✏g and �H

p
✏  c✏H .

The algorithm uses n = eO(D2/✏) samples, where eO(·) hides logarithmic dependence on
D, ✏, LDg

, LDH
, BDg

, BDH
, �/�H , �/�g, and 1/⇠. The algorithm runs in time polynomial in the

above parameters.

Note that we are able to obtain dimension-independent errors ✏g and ✏H , provided that �g and �H are
dimension-independent.

3.1 Low Rank Matrix Sensing Problems

In this section, we study the problem of outlier-robust low rank matrix sensing as formally defined in
Definition 1.6. We first apply the above framework to obtain an approximate SOSP in Section 3.1.2.
Then we make use of the approximate SOSP to obtain a solution that is close to the ground-truth
matrix M⇤ in Section 3.1.3; this demonstrates the usefulness of approximate SOSPs.

3.1.1 Main results for Robust Low Rank Matrix Sensing

The following are the main results that we obtain in this section:
Theorem 3.2 (Main Theorem Under Noiseless Measurements). Consider the noiseless setting as in
Theorem 1.7 with � = 0. For some sample size n = eO((d2r2 + dr log(�/⇠))/✏) and with probability
at least 1�⇠, there exists an algorithm that outputs a solution that is ◆-close toM⇤ in Frobenius norm
in O(r23 log(1/⇠) +  log(�?

r/◆)) calls to the robust mean estimation subroutine (Algorithm A.2).

This result achieves exact recovery ofM⇤, despite the strong contamination of samples. Each iteration
involves a subroutine call to robust mean estimation. Algorithm A.2 presented here is one simple
example of robust mean estimation; there are refinements [Dia+22; DHL19] that run in nearly linear
time, so the total computation utilizing those more efficient algorithms indeed requires eO

�
r23

�

passes of data (computed gradients and Hessians).
Theorem 3.3 (Main Theorem Under Noisy Measurements). Consider the same setting as in Theo-
rem 1.7 with � 6= 0. There exists a sample size n = eO((d2r2 + dr log(�/⇠))/✏) such that

• if �  r�, then with probability at least 1� ⇠, there exists an algorithm that outputs a solution cM
in eO(r23) calls to robust mean estimation routine A.2, with error kcM �M⇤kF = O(�

p
✏);

• if � � r�, then with probability at least 1� ⇠, there exists a (different) algorithm that outputs a
solution cM in one call to robust mean estimation routine A.2, with error kcM �M⇤kF = O(�

p
✏).

We prove Theorem 3.3 in Appendix C.4, and instead focus on the noiseless measurements with � = 0
when we develop our algorithms in this section; the two share many common techniques. In the
remaining part of Section 3.1, we use G0 in Definition 1.6 for the data generation process.

We now describe how we obtain the solution via nonconvex optimization. Consider the following
objective function for (uncorrupted) matrix sensing:

min
M2Rd⇥d

rank(M)=r

1

2
E

(Ai,yi)⇠G0

(hM,Aii � yi)
2. (2)

We can writeM = UU> for some U 2 Rd⇥r to reparameterize the objective function. Let

fi(U) :=
1

2

�
hUU>, Aii � yi

�2
. (3)
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We can compute

f̄(U) := E
(Ai,yi)⇠G0

fi(U) =
1

2
VarhUU> �M⇤, Aii =

1

2

��UU> �M⇤��2
F
. (4)

We seek to solve the following optimization problem under the corruption model in Definition 1.2:

min
U2Rd⇥r

f̄(U). (5)

The gradient Lipschitz constant and Hessian Lipschitz constant of f̄ are given by the following result.
Fact 3.4 ([Jin+17], Lemma 6). For any � > �?

1 , f̄(U) has gradient Lipschitz constant Lg = 16�

and Hessian Lipschitz constant LH = 24�
1
2 inside the region {U : kUk2op < �}.

3.1.2 Global Convergence to an Approximate SOSP

In this section, we apply our framework Theorem 3.1 to obtain global convergence from an arbitrary
initialization to an approximate SOSP, by providing problem-specific analysis to guarantee that both
Assumption 1.4 and algorithmic assumptions (I) and (II) required by Theorem 3.1 are satisfied.
Theorem 3.5 (Global Convergence to a SOSP). Consider the noiseless setting as in Theorem 1.7 with
� = 0 and ✏ = O(1/(3r3)). Assume we have an arbitrary initializationU0 inside {U : kUk2op  �}.
There exists a sample size n = eO

�
(d2r2 + dr log(�/⇠))/✏

�
such that with probability at least

1 � ⇠, Algorithm A.1 initialized at U0 outputs a ( 1
24�

?
r
3/2, 1

3�
?
r )-approximate SOSP using at most

O
�
r23 log(1/⇠)

�
calls to robust mean estimation subroutine (Algorithm A.2).

Proof of Theorem 3.5. To apply Theorem 3.1, we verify Assumption 1.4 first. To verify (i), for all
U and Ai, fi(U) = 1

2

�
hUU>, Aii � yi

�2 � 0 , so f⇤ = 0 is a uniform lower bound. We verify (ii)
in Appendix C.2: conceptually, by Fact 3.4, f̄ is gradient and Hessian Lipschitz; both gradient and
Hessian of fi are sub-exponential and concentrate around those of f̄ . To check (iii), we calculate
the gradients and Hessians of fi in Appendix C.1.1 and bound their covariances from above in
Appendix C.1.2 and C.1.3. The result is summarized in the following lemma. Note that the domain of
the target function in Algorithm A.1 and Theorem 3.1 is the Euclidean space RD, so we vectorize U
and let D = dr. The gradient becomes a vector in Rdr and the Hessian becomes a matrix in Rdr⇥dr.

Lemma 3.6 (Gradient and Hessian Covariance Bounds). For all U 2 Rd⇥r with kUk2op  � and fi
defined in Equation (3), it holds

kCov(vec(rfi(U)))kop  8
��UU> �M⇤��2

F
kUk2op  32r2�3 (6)

kCov(vec(Hi))kop  16r
��UU> �M⇤��2

F
+ 128 kUk4op  192r3�2 (7)

We proceed to verify the algorithmic assumptions in Theorem 3.1. For the assumption (I), we prove
the following Lemma in Appendix C.2 to show that all iterates stay inside the bounded region in
which we compute the covariance bounds.

Lemma 3.7. All iterates of Algorithm A.1 stay inside the region {U : kUk2op  �}.

To verify Theorem 3.1 (II), we let ✏g = 1
32�

?
r
3/2, ✏H = 1

4�
?
r and �g = 8r�1.5,�H = 16r1.5�. So if

we assume ✏ = O(1/(3r3)), then for the absolute constant c in Theorem 3.1 it holds that

�g
p
✏  c✏g �H

p
✏  c✏H .

Hence, Theorem 3.1 applies and Algorithm A.1 outputs an (✏g, ✏H)-approximate SOSP with high
probability in polynomial time. To bound the runtime, since f̄(U0) = 1/2

��U0U>
0 �M⇤

��2
F

=

O(r2�2) for an arbitrary initialization U0 with kU0k2op < �, the initial distance can be bounded by
O(r2�2). Setting Lg = 16�, LH = 24�1/2, f̄(U0) = O(r2�2), f⇤ = 0 and thus C✏ = O(�?

r
3/�),

Proposition 2.2 implies that Algorithm A.1 outputs a ( 1
24�

?
r
3/2, 1

3�
?
r )-approximate second order

stationary point USOSP in O(r23 log(1/⇠)) steps with high probability.
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3.1.3 Local Linear Convergence

In this section, we describe a local search algorithm that takes a ( 1
24�

?
r
3/2, 1

3�
?
r )-approximate second-

order stationary point as its initialization and achieves exact recovery even in the presence of outliers.

Algorithm 3.1: Local Inexact Gradient Descent
Data: The initialization USOSP is a ( 1

24�
?
r
3/2, 1

3�
?
r )-approximate SOSP, corruption fraction is ✏,

corrupted samples are {(Ai, yi)}ni=1, target distance to optima is ◆
Result: U that is ◆-close in Frobenius norm to some global minimum

1 ⌘ = 1/�, U0 = USOSP

2 for t = 0, 1, . . . do
3 egt := RobustMeanEstimation({rfi(Ut)}ni=1, 4✏)
4 Ut+1  Ut � ⌘egt

Theorem 3.8 (Local Linear Convergence). Consider the same noiseless setting as in Theorem 1.7.
Assume we already found a ( 1

24�
?
r
3/2, 1

3�
?
r )-approximate SOSP USOSP of f̄ . Then there exists a

sample size n = eO (dr log(1/⇠)/✏) such that with probability at least 1� ⇠, Algorithm 3.1 initialized
at USOSP outputs a solution that is ◆-close to some global minimum in Frobenius norm after
O( log(�?

r/◆)) calls to robust mean estimation subroutine (Algorithm A.2). Moreover, all iterates
Ut are 1

3�
?
r
1/2-close to some global minimum in Frobenius norm.

Proof Sketch. First we use known properties of f̄ = E(Ai,yi)⇠G0
fi from the literature [Jin+17] to

show approximate SOSPs of f̄ — in particular our initialization USOSP — are in a small neighbor-
hood of the global minima of f̄ . In that neighborhood, it was also known that f̄ satisfies some local
regularity conditions that enable gradient descent’s linear convergence.

However, the algorithm only has access to the inexact gradient from the robust mean estimation
subroutine (line 3 in Algorithm 3.1) and, therefore, we need to establish linear convergence of inexact
gradient descent. We achieve this with the following iterative argument: As the iterate gets closer to
global optima, the covariance bound of sample gradient in Equation (6) gets closer to 0. Because the
accuracy of the robust mean estimation scales with the covariance bound (see Proposition 2.3), a more
accurate estimate of population gradient rf̄ can be obtained via the robust estimation subroutine
(Algorithm A.2). This, in turn, allows for an improved inexact gradient descent step, driving the
algorithm towards an iterate that is even closer to global optima.

See Appendix C.3 for the complete proof.

4 Statistical Query Lower Bound for Low Rank Matrix Sensing

Our general algorithm (Theorem 3.1) leads to an efficient algorithm for robust low rank matrix sensing
with sample complexity O(d2r2/✏) (Theorem 3.3). Interestingly, the sample complexity of the
underlying robust estimation problem — ignoring computational considerations — is ⇥(dr/✏). The
information-theoretic upper bound of O(dr/✏) can be achieved by an exponential (in the dimension)
time algorithm (generalizing the Tukey median to our regression setting); see, e.g., Theorem 3.5
in [Gao20].

Given this discrepancy, it is natural to ask whether the sample complexity achieved by our algorithm
can be improved via a different computationally efficient method. In this section, we provide evidence
that this may not be possible. In more detail, we establish a near-optimal information-computation
tradeoff for the problem, within the class of Statistical Query (SQ) algorithms. To formally state our
lower bound, we require basic background on SQ algorithms.

Basics on SQ Model. SQ algorithms are a class of algorithms that, instead of access to samples
from some distribution P , are allowed to query expectations of bounded functions over P .

Definition 4.1 (SQ Algorithms and STAT Oracle [Kea98]). Let P be a distribution on Rd2+1. A
Statistical Query (SQ) is a bounded function q : Rd2+1 ! [�1, 1]. For ⌧ > 0, the STAT(⌧) oracle
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responds to the query q with a value v such that |v � EX⇠P [q(X)]|  ⌧ . An SQ algorithm is an
algorithm whose objective is to learn some information about an unknown distribution P by making
adaptive calls to the corresponding STAT(⌧) oracle.

In this section, we consider P as the unknown corrupted distribution where (Ai, yi) are drawn. The
SQ algorithm tries to learn the ground truth matrixM⇤ from this corrupted distribution; the goal of
the lower bound result is to show that this is hard.

The SQ model has the capability to implement a diverse set of algorithmic techniques in machine
learning such as spectral techniques, moment and tensor methods, local search (e.g., Expectation
Maximization), and several others [Fel+17]. A lower bound on the SQ complexity of a problem
provides evidence of hardness for the problem. [Bre+21] established that (under certain assumptions)
an SQ lower bound also implies a qualitatively similar lower bound in the low-degree polynomial
testing model. This connection can be used to show a similar lower bound for low-degree polynomials.

Our main result here is a near-optimal SQ lower bound for robust low rank matrix sensing that applies
even for rank r = 1, i.e., when the ground truth matrix isM⇤ = uu> for some u 2 Rd. The choice of
rank r = 1 yields the strongest possible lower bound in our setting because it is the easiest parameter
regime: Recall that the sample complexity of our algorithm is eO(d2r2) as in Theorems 3.2 and 3.3,
and the main message of our SQ lower bound is to provide evidence that the d2 factor is necessary
for computationally efficient algorithms even if r = 1.
Theorem 4.2 (SQ Lower Bound for Robust Rank-One Matrix Sensing). Let ✏ 2 (0, 1/2) be the
fraction of corruptions and let c 2 (0, 1/2). Assume the dimension d 2 N is sufficiently large.
Consider the ✏-corrupted rank-one matrix sensing problem with ground-truth matrix M⇤ = uu>

and noise �2 = O(1). Any SQ algorithm that outputs bu with kbu� uk = O(✏1/4) either requires
2⌦(dc)/d2�4c queries or makes at least one query to STAT

⇣
eO(1/

p
✏)/O

�
d1�2c

� ⌘
.

In other words, we show that, when provided with SQ access to an ✏-corrupted distribution, ap-
proximating u is impossible unless employing a statistical query of higher precision than what can
be achieved with a strictly sub-quadratic number (e.g., d1.99) of samples. Note that the SQ oracle
STAT(eO(1/

p
✏)/O(d1�2c)) can be simulated with O(d2�4c)/eO(1/✏) samples, and this bound is

tight in general. Informally speaking, this theorem implies that improving the sample complexity
from d2 to d2�4c requires exponentially many queries. This result can be viewed as a near-optimal
information-computation tradeoff for the problem, within the class of SQ algorithms.

The proof follows a similar analysis as in [DKS19; Dia+21], using one-dimensional moment matching
to construct a family of corrupted conditional distributions, which induce a family of corrupted joint
distributions that are SQ-hard to learn. We provide the details of the proof in Appendix D. Apart
from the formal proof, in Appendix E we also informally discuss the intuition for why some simple
algorithms that require O(d) samples do not provide dimension-independent error guarantees.
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