Computing high-dimensional optimal transport by
flow neural networks

Chen Xu Xiuyuan Cheng Yao Xie
School of Industrial and Department of Mathematics School of Industrial and
Systems Engineering Duke University Systems Engineering
Georgia Tech Georgia Tech
Abstract

Flow-based models are widely used in generative tasks, including normalizing flow,
where a neural network transports from a data distribution P to a normal distribu-
tion. This work develops a flow-based model that transports from P to an arbitrary
() where both distributions are only accessible via finite samples. We propose to
learn the dynamic optimal transport between P and () by training a flow neural
network. The model is trained to find an invertible transport map between P and
@ optimally by minimizing the transport cost. The trained optimal transport flow
allows for performing many downstream tasks, including infinitesimal density ratio
estimation and distribution interpolation in the latent space for generative models.
The effectiveness of the proposed model on high-dimensional data is empirically
demonstrated in mutual information estimation, energy-based generative models,
and image-to-image translation.

1 Introduction

The problem of finding a transport map between two general distributions P and () in high dimension
is essential in statistics, optimization, and machine learning. When both distributions are only
accessible via finite samples, the transport map needs to be learned from data. In spite of the
modeling and computational challenges, this setting has applications in many fields. For example,
transfer learning in domain adaption aims to obtain a model on the target domain at a lower cost by
using an existing pre-trained model on the source domain (Courty et al., 2014, 2017), and this can be
achieved by transporting the source domain samples to the target domain using the transport map.
The transport map can also be used to provide intermediate interpolating distributions between P
and Q. In density ratio estimation (DRE), this bridging facilitates the so-called “telescopic” DRE
(Rhodes et al., 2020) which has been shown to be more accurate when P and () significantly differ.
Furthermore, learning such a transport map between two sets of images can facilitate solving problems
in computer vision, such as image restoration and image-to-image translation (Isola et al., 2017).

This work focuses on a continuous-time formulation of the problem where we are to find an invertible
transport map 7} : R? — R? continuously parametrized by time ¢ € [0, 1] and satisfying that Ty = Id
and (T1)xP = Q. Here we denote by T P the push-forward of distribution P by a mapping T,
such that (T P)(-) = P(T~1(-)). Suppose P and @) have densities p and ¢ respectively in R¢ (we
also use the push-forward notation 4 on densities), the transport map 7; defines

p(z,t) == (Tt)gp, st p(x,0)=p, p(z,1)=q.

We will adopt the neural Ordinary Differential Equation (ODE) approach Chen et al. (2018) where
we represent T; as the solution map of an ODE, which is further parametrized by a continuous-
time residual network. The resulting map 73 is invertible, and the inversion can be computed by
integrating the neural ODE reverse in time. Our model learns the flow from two sets of finite samples

Accepted to the Optimal Transport and Machine Learning Workshop at NeurIPS 2023.

from P and Q. The velocity field in the neural ODE will be optimized to minimize the transport
cost so as to approximate the optimal velocity in dynamic optimal transport (OT) formulation, i.e.
Benamou-Brenier equation.

The neural-ODE model has been intensively developed in Continuous Normalizing Flows (CNF)
Kobyzev et al. (2020). In CNF, the continuous-time flow model, usually parametrized by a neural
ODE, transports from a data distribution P (accessible via finite samples) to a terminal analytical
distribution which is typically the normal one N(0, I), per the name “normalizing”. The study
of normalizing flow dated back to non-deep models with statistical applications (Tabak & Vanden-
Eijnden, 2010), and deep CNFs have recently developed into a popular tool for generative models
and likelihood inference of high dimensional data. CNF models rely on the analytical expression of
the terminal distribution in training. Since our model is also a flow model that transports from data
distribution P to a general (unknown) data distribution (), both accessible via empirical samples, we
name our model “Q-flow” which is inspired by the CNF literature.

In summary, the contributions of the work include:

* We develop a flow-based model Q-flow net to learn a continuous invertible optimal transport
map between arbitrary pair of distributions P and @ in R from two sets of samples of the
distributions. We propose to train a neural ODE model to minimize the transport cost such
that the flow approximates the optimal transport in dynamic OT. The end-to-end training of
the model refines an initial flow that may not attain the optimal transport, e.g., obtained by
training two CNFs or other interpolating schemes.

* Leveraging the trained optimal transport Q-flow net, we propose a new DRE approach by
training a separate continuous-time neural network using classification losses along the time
grid. The proposed DRE method improves the performance in high dimension, demonstrated
by high-dimensional mutual information estimation and energy-based generative models.

* We show the effectiveness of the approach on simulated and real data. On the image-to-
image translation task, our Q-flow gradually transforms an input image to a target one that
resembles in style and achieves competitive quantitative metrics against the baselines.

1.1 Related works

Normalizing flows. When the target distribution @ is an isotropic Gaussian N (0,), normalizing
flow models have demonstrated vast empirical successes in building an invertible transport 7} between
P and N(0,I;) (Kobyzev et al., 2020). The transport is parametrized by deep neural networks,
whose parameters are trained via minimizing the KL-divergence between transported distribution
(T1)x P and N (0, I). Various continuous (Grathwohl et al., 2019; Finlay et al., 2020) and discrete
(Dinh et al., 2016; Behrmann et al., 2019) normalizing flow models have been developed, along with
proposed regularization techniques (Onken et al., 2021; Xu et al., 2022a,b) that facilitate the training
of such models in practice. Since our Q-flow is in essence a transport-regularized flow between P and
Q, we further review related works on building normalizing flow models with transport regularization.
(Finlay et al., 2020) trained the flow trajectory with regularization based on ¢5 transport cost and
Jacobian norm of the network-parametrized velocity field. (Onken et al., 2021) proposed to regularize
the flow trajectory by /5 transport cost and the deviation from the HIB equation. These regularization
have shown to effectively improve over un-regularized models at a reduced computational cost.
Regularized normalizing flow models have also been used to solve high dimensional Fokker-Planck
equations (Liu et al., 2022) and mean-field games (Huang et al., 2023).

Distribution interpolation by neural networks. Recently, there have been several works estab-
lishing a continuous-time interpolation between general high-dimensional distributions. (Albergo &
Vanden-Eijnden, 2023) proposed to use a stochastic interpolant map between two arbitrary distribu-
tions and train a neural network parametrized velocity field to transport the distribution along the
interpolated trajectory. (Neklyudov et al., 2023) proposed an action matching scheme that leverages
a pre-specified trajectory between P and @ to learn the OT map between two infinitesimally close
distributions along the trajectory. (Liu, 2022) proposed rectified flow which starts from an initial
coupling of P and () and iteratively rectifies it to converge to the optimal coupling. Same as in
(Albergo & Vanden-Eijnden, 2023; Neklyudov et al., 2023; Lipman et al., 2023), our neural-ODE
based approach also computes a deterministic probability transport map, in contrast to SDE-based
diffusion models (Song et al., 2021). Notably, the interpolant mapping used in these prior works

is generally not the optimal transport interpolation. In comparison, our proposed Q-flow optimizes
the interpolant mapping parametrized by a neural ODE and approximates the optimal velocity in
dynamic OT (see Section 2). Generally, the flow attaining optimal transport can lead to improved
model efficiency and generalization performance Huang et al. (2023). In this work, the proposed
method aims to solve the dynamic OT trajectory by a flow network, and we experimentally show that
the optimal transport flow benefits high-dimensional DRE and image-to-image translation.

Optimal transport between general distributions. The problem of OT dates back to the work by
Gaspard Monge (Monge, 1781), and since then many mathematical theories and computational tools
have been developed to tackle the question (Villani et al., 2009; Benamou & Brenier, 2000; Peyré
et al., 2019). Several works have attempted to make computational OT scalable to high dimensions,
including (Lavenant et al., 2018) which applied convex optimization using Riemannian structure
of the space of discrete probability distributions, and (Lee et al., 2021) by L' and L? versions of
the generalized unnormalized OT solved by Nesterov acceleration. Several deep approaches have
also been developed recently. (Coeurdoux et al., 2023) leveraged normalizing flow to learn an
approximate transport map between two distributions from finite samples, where the flow model has
a restricted architecture and the OT constraint is replaced with sliced-Wasserstein distance which may
not computationally scale to high dimensional data. Several works have also considered casting the
optimal transport problem into a minimax problem based on either the Kantorovich formulation of
(Xie et al., 2019; Korotin et al., 2023) or the Monge formulation (Fan et al., 2022). In comparison, our
approach computes the continuous-time dynamic OT mapping parametrized by the optimal velocity
field, which directly provides a continuous interpolation between two distributions and can be applied
to tasks like DRE.

2 Preliminaries

Neural ODE and CNF. Neural ODE Chen et al. (2018) parametrized an ODE in R? by a residual
network. Specifically, let 2(t) be the solution of

a(t) = f(z(t),1:0), 2(0) ~p. M
where f(z,t; 0) is a velocity field parametrized by the neural network. Since we impose a distribution

P on the initial value z(0), the value of x(t) at any ¢ also observes a distribution p(z, t) (though
x(t) is deterministic given :(0)). In other words, p(-,t) = (T};)«p, where T} is the solution map
of the ODE, namely T;(z) = x + fot f(z(s),s;0)ds, x(0) = x. In the context of CNF (Kobyzev
et al., 2020), the training of the flow network f(z,¢; #) is to minimize the KL divergence between
the terminal density p(x,T') at some 7" and a target density pz which is the normal distribution. The
computation of the objective relies on the expression of normal density and can be estimated on finite
samples of z(0) drawn from p.

Dynamic OT (Benamou-Brenier). The Benamou-Brenier equation below provides the dynamic
formulation of OT Villani et al. (2009); Benamou & Brenier (2000)
1
inf 7T := | Euyon. x(t),t)||%dt
nf | Barntn) [o(z(),)]l @
st. Op+V-(pv) =0, p(z,0)=p(z), pz,1)=q(z),

where v(z, t) is a velocity field and p(z, t) is the probability mass at time ¢ satisfying the continuity
equation with v. The action 7 is the transport cost. Under regularity conditions of p, ¢, the minimum
T in (2) equals the squared Wasserstein-2 distance between p and ¢, and the minimizer v(x, t) can
be interpreted as the optimal control of the transport problem.

3 Learning dynamic OT by Q-flow network

We introduce the formulation and training objective of the proposed OT Q-flow net in Section 3.1. The
training technique consists of the end-to-end training (Section 3.2) and the initial flow construction
(Section 3.3).

3.1 Formulation and training objective

Given two sets of samples X =
{X;}Y, and X = {X;}}L,, where

X; ~ PandX ~ @ i.i.d., we train
a neural ODE model f(z,t;0) () to
represent the transport map 7;. The
formulation is symmetric from P to)
and vice versa, and the loss will also
have symmetrically two parts. We call
P — @ the forward direction and
(@@ — P the reverse direction.

Our training objective is based on the
dynamic OT (2) on time [0, 1], where
we solve the velocity field v(zx, t) by
f(x,t;0). The terminal condition
p(-,1) = ¢ is relaxed by a KL di-
vergence (see, e.g., (Ruthotto et al.,

Refined flow, iter k

E

Dynamic OT by Q-flow
P =p(-0)

Q=pC.1)

Figure 1: Illustration of learning the dynamic OT using our
Q-flow (blue), which invertibly transports between P and ()
over the interval [0, 1] with the least transport cost. Taking
any initial flow (grey) between P and (), we iteratively refine
flow trajectories to obtain flows with smaller transport cost
(black), converging gradually to the dynamic OT between
these two distributions.

2020)). The training loss in forward

direction is written as

(3)
where Lk, represents the relaxed terminal condition and L is the Wasserstein-2 transport cost to be
specified below; v > 0 is a weight parameter, and with small ~ the terminal condition is enforced.

KL loss. Now we specify the first term in the loss (3) EPHQ We define the solution mapping of

(1) from s to ¢ as
/ f(z 4)

which is also parametrized by 6, and we may omit the dependence below. By the continuity
equation in (2), p(-,t) = (T%)4p. The terminal condition p(-,1) = ¢ is relaxed by minimizing
KL(p1|g) = Exnp, log(pi(x)/q(z)), p1:= (T3)4p. The expectation E,.,, is estimated by the
sample average over (X1); which observes density p; i.i.d., where (X1); := T3 (X;) is computed by
integrating the neural ODE from time O to 1.

T (z;0) = 2(s)), t';0)dt’,

It remains to have an estimator of log(p1 /¢) to compute KL(p1 ||¢), and we propose to train a logistic
classification network 1 (ac o,) with parameters ¢, for this. The inner-loop training of r; is by

M
1 ~
— —r1(Xj50r)
)+ ;:1 log(1 + e\ Raier)y,

min — Zlog (1 + e (To (Xis0)ier) 5)

Pr

The functional optimal 7} of the population version of loss (5) equals log(q/p1) by direct computation,
and as a result, KL(p1||q) = —Eg~p, 77 (z). Now take the trained classification network r; with
parameter ¢,., we can estimate the finite sample KL loss as

N RS .
L 00) = — 5 D (T (X 0):6), (©)

i=1
where ¢, is the computed minimizer of (5) solved by inner loops. In practice, when the density
p1 is close to ¢, the DRE by training classification net r; can be efficient and accurate. We will
apply the minimization (5) after the flow net is properly initialized which guarantees the closeness of
p1 = (T)xp and g to begin with.

W5 regularization. Now we specify the second term in the loss (3) that defines the Wasserstein-2
regularization. To compute the transport cost 7 in (2) with velocity field f(z,¢;6), we use a time
gridon [0,1] as 0 = tg < t; < ... < tx = 1. The choice of the time grid is algorithmic (since the
flow model is parametrized by 6 throughout time) and may vary over experiments, see more details in
Section 3.2. Define hy, =ty — t;_1, and X;(t;0) := TE(X;; 6), the W, regularization is written as

K N
g)zzhik (;;Xi(tk;ﬁ) Xi(th—1;)I)

k=1

Ly)

It can be viewed as a time discretization of 7. Meanwhile, since (omitting dependence on 6) X (¢)) —
Xi(tr—1) = T/* (X;(tx_1)), the population form of (7) Zkl,(:l Epmptr) ITE (230)]1? /I in

te—1 tr—1
minimization can be interpreted as the discrete-time summed (square) Wasserstein-2 distance (Xu
et al., 2022a) Zszl Wa(p(-stk—1), p(, tx))?/hi. The W regularization encourages a smooth flow
from P to () with small transport cost, which also guarantees the invertibility of the model in practice

when the trained neural network flow approximates the optimal flow in (2).

Flow in both directions. To improve the numerical accuracy, we will design a training scheme that
will take into account flow in both directions, TO1 and T°2; note that these transport maps are related
to each other through (4). The formulation in the reverse direction is similar, where we transport
@-samples X; from 1 to O using the same neural ODE integrated in reverse time. Specifically,
LOF = EI%?P + ’yﬁgqp, and L’%TP(G) = —ﬁ Zj\il Fo(TY(X;;0); $7), where ¢ is obtained
by inner-loop training of another classification net 7(x, p7) with parameters @5 via
| M - T
min ot Z log(1 + efo(Ty (Xj;9);s0f)) + v Z log(1 + e—m(Xi;ﬁw)); (®)

er j=1 i=1

Define X/ (t;) := T{(X;;0), the reverse-time W regularization can be obtained as E?HP(H) =
K M % o
S (B 2L 1% te136) — K01

3.2 End-to-end training algorithm

In the end-to-end training, we assume that the Q-flow net has already been initiated as an approximate
solution of the desired Q-flow, see more in Section 3.3. We then minimize £ =< and £¢7" in an
alternative fashion per “Iter”, and the procedure is given in Algorithm 1. Hyperparameter choices
and network architectures are further detailed in Appendix B.

Time integration of flow. Inthe Algorithm 1 OT Q-flow refinement
losses (6) and (7), one need to

compute the transported samples '
X;(t;0) and X;(t;0) on time grid ing dataKX ~ P and X ~ (@; hyperparameters:
points {t;}5_,. This calls for in- {7 {tr}r=y, Tot, B, Eo, Ein}.

tegrating the neural ODE on [0, 1], output Refined flow network f(z(t),t;6)

which we conduct on a fine time |: forlter=1,...,Totdo =
grid ty 5, 5 =0, ..., S, that divides % (If Iter = 1) Train 7y by minimizing (5) for Ey epochs.

input Pre-trained initial flow network f(x(¢),t;60); train-

each subinterval [t;_1,t;] into S 3: forepoch=,1,...,Edo {>P — @ .re.ﬁnemlgnt}
mini-intervals. We compute the % Update 0 of f(x(t), ¢; 6) by minimizing £ -e.
time integration of f(z, ¢;0) using 5 Update ry by minimizing (5) for Ej, epochs.
a fixed-grid four-stage Runge-Kutta ~ ¢ end for o L
method on each mini-interval. The /¢ {f Iter = 1) Train 7o by minimizing (8) for Ey epochs.
fine grid is used to ensure the nu- & for epoch=,1,...,Edo {r Q@ - P .re.ﬁnement}}j
merical accuracy of ODE integra- - Update 6 of f(x(t),;6) by minimizing Le=r.
tion and the numerical invertibil- 10 Update 7y by minimizing (8) for Ei, epochs.
ity of the Q-flow net, i.e., the error 11 end for

12: end for

of using reverse-time integration as
the inverse map (see inversion errors in Table A.1). It is also possible to first train the flow f(z,t;)
on a time grid to warm start the later training on a refined grid, so as to improve convergence. We
also find that the W5 regularization can be computed at a coarser grid ¢; (S is usually 3-5 in our
experiments) without losing the effectiveness of Wasserstein-2 regularization. Finally, one can adopt
an adaptive time grid, e.g., by enforcing equal W5 movement on each subinterval [t _1, tx] Xu et al.
(2022b), so that the representative points are more evenly distributed along the flow trajectory and the
learning of the flow model can be further improved.

Inner-loop training of r; and 7. Suppose the flow net has been successfully warm-started, the
transported distributions (73) 2 P ~ Q and (17)4Q =~ P. The two classification nets are first trained
for Fy epochs before the loops of training the flow model and then updated for Fj, inner-loop epochs
in each outer-loop iteration. We empirically find that the diligent updates of 71 and 7 in lines 5

and 10 of Algorithm 1 are crucial for successful end-to-end training of Q-flow net. As we update
the flow model f(z,t; 6), the push-forwarded distributions (7|}) P and (17) 4@ are consequently
changed, and then one will need to retrain r; and 7 timely to ensure an accurate estimate of the
log-density ratio and consequently the KL loss. Compared with training the flow parameter 6, the
computational cost of the two classification nets is light which allows potentially a large number of
inner-loop iterations if needed.

Computational complexity. We measure the computational complexity by the number of function
evaluations of f(z(t),t; #) and of the classification nets {r1, 7o }. Suppose the total number of epochs
in outer loop training is O(E), the dominating computational cost lies in the neural ODE integration,
which takes O(8K S - E(M + N)) function evaluations of f(x,t;6). We remark that the Wasserstein-
2 regularization (7) incurs no extra computation, since the samples X;(t;;6) and X;(ty;0) are
available when computing the forward and reverse time integration of f(x,t;). The training of the
two classification nets r; and 7 takes O(4(Ey + EEi,)(M + N)) additional evaluations of the two

network functions since the samples X;(1;) and X;(0; #) are already computed.

3.3 Flow initialization

We propose to initialize the Q-flow net by a flow model that approximately matches the transported
distributions with the target distributions in both directions (and may not necessarily minimize the
transport cost). Such an initialization will significantly accelerate the convergence of the end-to-end
training, which can be viewed as a refinement of the initial flow.

The initial flow f(x,t;0) may be specified using prior knowledge of the problem if available.

Generally, when only two data sets X, X are given, the initial flow can be obtained by adopting
existing methods in generative flows. In this work, we adopt two approaches: The first method is
to construct the initial flow as a concatenation of two CNF models, each of which flows invertibly
between P and Z and Z and Q for Z ~ N(0, I;). Any existing neural-ODE CNF models may be
adopted for this initialization (Grathwohl et al., 2019; Xu et al., 2022b). The second method adapts
distribution interpolant neural networks. Specifically, one can use the linear interpolant mapping in
(Rhodes et al., 2020; Choi et al., 2022; Albergo & Vanden-Eijnden, 2023) (see Appendix C), and train
the neural network velocity field f(z,¢; #) to match the interpolation (Albergo & Vanden-Eijnden,
2023). Note that any other initialization scheme is compatible with the proposed end-to-end training
of the Q-flow model to obtain the OT flow.

4 Experiments

In this section, we demonstrate the effectiveness of the proposed method on several downstream
tasks. The benefit of improving DRE between P and () are shown in Sections 4.2—4.4, and the
application to image-to-image translation is presented in Section 4.5. Additional ablation studies
regarding hyper-parameter sensitivity are performed in Appendix B.5.

4.1 Infinitesimal density ratio estimation (DRE)

For the DRE task, using the learned OT flow network between P and (), we propose to train a
separate continuous-time neural network, called the Q-flow-ratio net, by minimizing a classification
loss at time stamps along the flow trajectory. This differs from Choi et al. (2021) which used a ‘time
score matching’ objective, and we also adopt a different time discretization. Details of the method are
provided in Appendix A, see Algorithm A.2. In practice, we found our approach to train the density
ratio network can be more efficient in some cases. In the experimental results below, we denote our
method as “Ours”, and compare against three baselines of DRE in high dimensions. The baseline
methods are: 1 ratio (by training a single classification network using samples from P and (Q), TRE
(Rhodes et al., 2020), and DRE-oco (Choi et al., 2022). We denote P;, with density p(-,t) as the
pushforward distribution of P by the Q-flow transport over the interval [0, ¢]. The set of distributions
{P, }fork =1,..., L builds a bridge between P and Q.

4.2 Toy data in 2d

Gaussian mixtures. We simulate P and @ as two Gaussian mixture models with three and two
components, respectively, see additional details in Appendix B.1. We compute ratio estimates ()

= E =
(a) Trajectory from P to @)

:l H: : uf : l Ezg: = | i: T H:] m
= HBR WREE S RS S EEEE | ol e ek

(b) Estimated log-ratio between P, , and P;, by the trained Q-flow-ratio net.

Figure 2: Q-flow trajectory between arbitrary 2D distributions and corresponding log-ratio estimation.
Top: intermediate distributions by Q-flow net. Bottom: corresponding log-ratio estimated by
Q-flow-ratio net. Bluer color indicates smaller estimates of the difference log(p(x, tx)/p(x, tk—1))
evaluated at the common support of the neighboring densities.

with the true value r(z), which can be computed using the analytic expressions of the densities. The
results are shown in Figure A.1. We see from the top panel that the mean absolute error (MAE) of
Ours is evidently smaller than those of the baseline methods, and Ours also incurs a smaller maximum
error | — r| on test samples.

Two-moon to and from checkerboard. We design two densities in R? where P represents the
shape of two moons and () represents a checkerboard, see additional details in Appendix B.1.
For this more challenging case, the linear interpolation scheme (17) creates a bridge between P
and @ as shown in Figure A.5. The flow visually differs from the one obtained by the trained
Q-flow net, as shown in Figure 2(a), and the latter is trained to minimize the transport cost. The
result of Q-flow-ratio net is shown in Figure 2(b). The corresponding density ratio estimates of
log p(x, ty) — log p(x, ti—1) visually reflect the actual differences in the two neighboring densities.

4.3 Mutual Information estimation for high-dimensional data

We evaluate different methods on estimating the mutual information (MI) between two correlated
random variables from given samples. In this example, we let P and () be two high-dimensional
Gaussian distributions following the setup in (Rhodes et al., 2020; Choi et al., 2022), where we vary
the data dimension d in the range of {40, 80, 160, 320}. Additional details can be found in Appendix
B.2. Figure A.2 shows the results by different methods, where the baselines are trained under their
proposed default settings. We find that the estimated MI by our method almost perfectly aligns with
the ground truth MI values, reaching nearly identical performance as DRE-oco does. Meanwhile, Ours
outperforms the other two baselines and the performance gaps increase as the dimension d increases.

4.4 Energy-based modeling of MNIST

We apply our approach in evaluating and improving an energy-base model (EBM) on the MNIST
dataset (LeCun & Cortes, 2005). We follow the prior setup in (Rhodes et al., 2020; Choi et al., 2022),
where P is the empirical distribution of MNIST images, and () is the generated image distributions
by three given pre-trained energy-based generative models Additional details are in Appendix B.3.
The performance of different DRE methods are measure by the (BPD) metric, which is a widely used
metric in evaluating the performance of generative models (Theis et al., 2015; Papamakarios et al.,
2017). The results show that Ours reaches the improved performance in Table 1 against baselines: it
consistently reaches smaller BPD than the baseline methods across all choices of (). Meanwhile, we
also note computational benefits in training: on one A100 GPU, Ours took approximately 8 hours to
converge while DRE-oo took approximately 33 hours. In addition, we show trajectory of improved

Table 1: DRE performance on the energy-based modeling task for MNIST, reported in BPD and
lower is better. Results for DRE-co are from (Choi et al., 2022) and results for 1 ratio and TRE are
from (Rhodes et al., 2020).

Choice of RQ-NSF Copula Gaussian
Method Ours DRE-co TRE lratio | Ours DRE-co TRE 1ratio | Ours DRE-co TRE 1 ratio
BPD (|) 1.05 1.09 1.09 1.09 1.14 1.21 1.24 1.33 1.31 1.33 1.39 1.96

v
i
LEV]

oy
74417
! 7 v
L L

AN AN
DN [
O N[
O N[
O [
O N[
O\ [
O N2 [
O N3 [
O N3 [
O\ |3 |
O N\~ |W
O N3 [
O N3 [
O N3 [
O\ | |W
O\ [W
O\ [[
O IN =X W
O\ | |W
O\ [W
O\ |=%

(a

£
s
N
—

T4
ISt
cen
1432

(b) Handbag — shoes

Figure 3: The trajectory of samples (in rows) from intermediate distributions of the Q-flow, as it
pushes forward the base distribution (leftmost column) to the target distribution (rightmost column).
Figure (a) shows the improvement of generated digits using the Q-flow. Figure (b) shows the
image-to-image translation from handbag to shoes.

samples from @ to Q for RQ-NSF using the trained Q-flow in Figure 3a. Figure A.3 in the appendix
shoes additional improved digits for all three specifications of Q.

4.5 Image-to-image translation

We use Q-flow to learn the continuous-time OT between distributions of RGB images of handbag
(Zhu et al., 2016) and shoes (Yu & Grauman, 2014), which we denote as P and () respectively. We
follow the setup in (Korotin et al., 2023), where the goal of the image-to-image translation task
is to conditionally generate shoe images by mapping test images of handbag through our trained
Q-flow model. We train Q-flow in the latent space of a pre-trained variational auto-encoder (VAE) on
P and @). Additional details are in Appendix B.4.

Figure 3b visualizes continuous trajectories from handbags to shoes generated by the Q-flow model.
We find that Q-flow can capture the style and color nuances of corresponding handbags in the
generated shoes as the flow model continuously transforms handbag images. Figure A.4 in the
appendix shows additional generated shoe images from handbags. Quantitatively, we reach a Frechet
Inception Distance ((Heusel et al., 2017), FID) of 15.95 between generated and true images of shoes.
The FID remains competitive against FIDs from previous baselines, which range from 22.42 by
DiscoGAN (Kim et al., 2017) to 13.77 by NeuralOT (Korotin et al., 2023). Meanwhile, since our
Q-flow model learns a continuous transport map from source to target domains, it directly provides
the gradual interpolation between the source and target samples along the dynamic OT trajectory as
depicted in Figure 3b.

5 Discussion

In this work, we develop Q-flow neural-ODE model that smoothly and invertibly transports between
a pair of arbitrary distributions P and Q). The flow network is trained to find the dynamic optimal
transport between the two distributions and is learned from finite samples from both distributions.
The proposed flow model shows strong empirical performance on simulated and real data for the tasks
of density ratio estimation and image-to-image translation. For future directions, first, the algorithm
of training the Q-flow net can be further enhanced. Because the computational complexity scales
with the number of time steps along the trajectory, more advanced time discretization schemes, like
adaptive time grids, can further improve the computational efficiency which would be important for
high dimensional problems. Second, there are many theoretical open questions, e.g., the theoretical
guarantee of learning the OT trajectory, which goes beyond the scope of the current work. For the
empirical results, extending to a broader class of applications and more real datasets will be useful.

References

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1i7qeBbCR1t.

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jorn-Henrik Jacobsen.
Invertible residual networks. In International Conference on Machine Learning, pp. 573-582.
PMLR, 2019.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pp. 531-540. PMLR, 2018.

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-
kantorovich mass transfer problem. Numerische Mathematik, 84(3):375-393, 2000.

Steffen Bickel, Michael Briickner, and Tobias Scheffer. Discriminative learning under covariate shift.
Journal of Machine Learning Research, 10(9), 2009.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Kristy Choi, Madeline Liao, and Stefano Ermon. Featurized density ratio estimation. In Uncertainty
in Artificial Intelligence, pp. 172-182. PMLR, 2021.

Kristy Choi, Chenlin Meng, Yang Song, and Stefano Ermon. Density ratio estimation via infinitesimal
classification. In International Conference on Artificial Intelligence and Statistics, pp. 2552-2573.
PMLR, 2022.

Florentin Coeurdoux, Nicolas Dobigeon, and Pierre Chainais. Learning optimal transport between two
empirical distributions with normalizing flows. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022,
Proceedings, Part V, pp. 275-290. Springer, 2023.

Nicolas Courty, Rémi Flamary, and Devis Tuia. Domain adaptation with regularized optimal transport.
In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part I 14, pp. 274-289. Springer,
2014.

Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution
optimal transportation for domain adaptation. Advances in neural information processing systems,
30, 2017.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Conor Durkan, Artur Bekasov, [ain Murray, and George Papamakarios. Neural spline flows. Advances
in neural information processing systems, 32, 2019.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 12873-12883, 2021.

Jiaojiao Fan, Shu Liu, Shaojun Ma, Yongxin Chen, and Hao-Min Zhou. Scalable computation
of monge maps with general costs. In ICLR Workshop on Deep Generative Models for Highly
Structured Data, 2022. URL https://openreview.net/forum?id=rEnGR3VdDW5.

Chris Finlay, Jorn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your neural
ode: the world of jacobian and kinetic regularization. In International conference on machine
learning, pp. 3154-3164. PMLR, 2020.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Kristjanson Duve-
naud. Ffjord: Free-form continuous dynamics for scalable reversible generative models. ArXiv,
abs/1810.01367, 2019.

https://openreview.net/forum?id=li7qeBbCR1t
https://openreview.net/forum?id=rEnGR3VdDW5

Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt, and Bernhard
Scholkopf. Covariate shift by kernel mean matching. Dataset shift in machine learning, 3(4):5,
2009.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Han Huang, Jiajia Yu, Jie Chen, and Rongjie Lai. Bridging mean-field games and normalizing flows
with trajectory regularization. Journal of Computational Physics, pp. 112155, 2023.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 11251134, 2017.

Masahiro Kato and Takeshi Teshima. Non-negative bregman divergence minimization for deep
direct density ratio estimation. In International Conference on Machine Learning, pp. 5320-5333.
PMLR, 2021.

Yoshinobu Kawahara and Masashi Sugiyama. Change-point detection in time-series data by direct
density-ratio estimation. In Proceedings of the 2009 SIAM international conference on data mining,
pp- 389—400. SIAM, 2009.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. In International conference on
machine learning, pp. 1857-1865. PMLR, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43

(11):3964-3979, 2020.

Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural optimal transport. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=d8CBR1WNkqH.

Hugo Lavenant, Sebastian Claici, Edward Chien, and Justin Solomon. Dynamical optimal transport
on discrete surfaces. ACM Transactions on Graphics (TOG), 37(6):1-16, 2018.

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 2005. URL http:
//yann.lecun.com/exdb/mnist/.

Wonjun Lee, Rongjie Lai, Wuchen Li, and Stanley Osher. Generalized unnormalized optimal transport
and its fast algorithms. Journal of Computational Physics, 436:110041, 2021.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJTO9t.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Shu Liu, Wuchen Li, Hongyuan Zha, and Haomin Zhou. Neural parametric fokker—planck equation.
SIAM Journal on Numerical Analysis, 60(3):1385-1449, 2022.

Xiao-Li Meng and Wing Hung Wong. Simulating ratios of normalizing constants via a simple
identity: a theoretical exploration. Statistica Sinica, pp. 831-860, 1996.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale
Sci., pp. 666-704, 1781.

10

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=d8CBRlWNkqH
https://openreview.net/forum?id=d8CBRlWNkqH
http://yann. lecun. com/exdb/mnist/.
http://yann. lecun. com/exdb/mnist/.
https://openreview.net/forum?id=PqvMRDCJT9t

George V Moustakides and Kalliopi Basioti. Training neural networks for likelihood/density ratio
estimation. arXiv preprint arXiv:1911.00405, 2019.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125-139, 2001.

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: Learning
stochastic dynamics from samples. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
25858-25889. PMLR, 23-29 Jul 2023.

Derek Onken, S Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continuous
normalizing flows via optimal transport. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, 2021.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30, 2017.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

Jing Qin. Inferences for case-control and semiparametric two-sample density ratio models. Biometrika,
85(3):619-630, 1998.

Benjamin Rhodes, Kai Xu, and Michael U. Gutmann. Telescoping density-ratio estima-
tion. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 4905-4916. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
33d3b157ddc0896addfb22fa2a519097-Paper . pdf.

Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu Fung. A machine
learning framework for solving high-dimensional mean field game and mean field control problems.
Proceedings of the National Academy of Sciences, 117(17):9183-9193, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul Von Biinau, and Motoaki
Kawanabe. Direct importance estimation for covariate shift adaptation. Annals of the Institute of
Statistical Mathematics, 60:699-746, 2008.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine
learning. Cambridge University Press, 2012.

Esteban G Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):217-233, 2010.

Lucas Theis, Adron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, and Hongyuan Zha. On scalable and efficient
computation of large scale optimal transport. In International Conference on Machine Learning,
pp. 6882-6892. PMLR, 2019.

Chen Xu, Xiuyuan Cheng, and Yao Xie. Invertible neural networks for graph prediction. IEEE Journal
on Selected Areas in Information Theory, 3(3):454-467,2022a. doi: 10.1109/JSAIT.2022.3221864.

Chen Xu, Xiuyuan Cheng, and Yao Xie. Invertible normalizing flow neural networks by jko scheme.
arXiv preprint arXiv:2212.14424, 2022b.

Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 192-199, 2014.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/33d3b157ddc0896addfb22fa2a519097-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/33d3b157ddc0896addfb22fa2a519097-Paper.pdf

Jun-Yan Zhu, Philipp Kréihenbiihl, Eli Shechtman, and Alexei A Efros. Generative visual manipulation
on the natural image manifold. In Computer Vision—-ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14, pp. 597-613. Springer,
2016.

12

A Infinitesimal density ratio estimation

We first introduce related works and preliminaries of DRE. We then propose training infinitesimal
DRE by logistic classification in Section A.1. We present the complete algorithm in Section A.2.

DRE literature. Density ratio estimation between distributions P and () is a fundamental problem
in statistics and machine learning (Meng & Wong, 1996; Sugiyama et al., 2012; Choi et al., 2021).
It has direct applications in important fields such as importance sampling (Neal, 2001), change-
point detection (Kawahara & Sugiyama, 2009), outlier detection (Kato & Teshima, 2021), mutual
information estimation (Belghazi et al., 2018), etc. Various techniques have been developed, including
probabilistic classification (Qin, 1998; Bickel et al., 2009), moment matching (Gretton et al., 2009),
density matching (Sugiyama et al., 2008), etc. Deep NN models have been leveraged in classification
approach Moustakides & Basioti (2019) due to their expressive power. However, as has been pointed
out in (Rhodes et al., 2020), the estimation accuracy by a single classification may degrade when P
and @ differ significantly.

To overcome this issue, (Rhodes et al., 2020) introduced a telescopic DRE approach by constructing
intermediate distributions to bridge between P and (). (Choi et al., 2022) further proposed to train
an infinitesimal, continuous-time ratio net via the so-called time score matching. Despite their
improvement over the prior classification methods, both approaches rely on construction of the inter-
mediate distributions between P and () that is not optimal. In contrast, our proposed Q-flow network
leverages the expressiveness of deep networks to construct the intermediate distributions by the
continuous-time flow transport, and the flow trajectory is regularized to minimize the transport cost
in dynamic OT. The model empirically improves the DRE accuracy (see Section 4). In computation,
(Choi et al., 2022) applies score matching to compute the infinitesimal change of log-density. The
proposed Q-flow-ratio net is based on classification loss training using a fixed time grid which avoids
score matching and is computationally lighter (Section A.2).

Telescopic and infinitesimal DRE preliminaries. To circumvent the problem of DRE distinctly
different p and g, the telescopic DRE (Rhodes et al., 2020) proposes to “bridge” the two densities by
a sequence of intermediate densities pg, k = 0, - - , L, where pg = p and p;, = q. The consecutive
pairs of (pg, pr+1) are chosen to be close so that the DRE can be computed more accurately, and
then by

L—-1
log(q(x)/p(x)) =logpr(x) —logpo(x) = > log prs1(x) — log pi(x),)
k=0

the log-density ratio between ¢ and p can be computed with improved accuracy than a one-step DRE.
The infinitesmal DRE (Choi et al., 2022) considers a time continuity version of (9). Specifically,
suppose the time-parametrized density p(z, t) is differentiable on ¢ € [0, 1] with p(z,0) = p and
p(z,1) = g, then

log(q(x)/p(x)) = logp(z,1) —log p(x,0) = /0 Orlog p(w, t)dt. (10)

The quantity 0; log p(z,t) was called the “time score” and can be parametrized by a neural network.

We use a trained Q-flow network f(x, t; 6) for infinitesmal DRE as a focused application.

A.1 Training by logistic classification

Let p(x,t) = (T3)%p and T; is the transport induced by the trained Q-flow net in Section 3. Us-
ing (10), we propose to parametrize the time score 0; log p(z,t) by a neural network r(x,t;6,.)
with parameter 0,., called the Q-flow-ratio net. The training is by logistic classification applied
to transported data distributions on consecutive time grid points: Given a deterministic time grid
0=ty <t; <...<tr =1 (which again is an algorithmic choice, see Section A.2), we expect that
the integral

tr tk
Ry (x;6;) 5=/ r(x, t; 6,)dt %/ d¢logp(z,t)dt = log(p(z,tx)/p(x, tk-1)). (11)
te—1

te—1

13

Algorithm A.2 Infinitesimal DRE training

input Training samples X ~ P and X ~ Q; pre-trained Q-flow net f(x(t), ¢; 6); hyperparameters:
{{tx}E_,, Tot_iter}
output Trained network r(x,t;0,).
1. fork=1,...,L —1do
2: Obtain {X;(tx) Y0, {X;(tk) ;Vil by transporting all training samples { X, X } using the
given Q-flow net f(x,t;6)

3: end for

4: for Iter=1,...,Tot_iter do

5. Draw mini-batches of samples from {X;(tx)}Y |, {X; (tk)}JNil
6: Train 6,. upon minimizing (13).

7: end for

By that logistic classification recovers the log density ratio as has been used in Section 3.1, this
suggests the loss on interval [t_1, ;] as follows, where X;(t) := T}(X;) and T{ is computed by
integrating the trained Q-flow net,

N N
1 1
L7790,) = ¥ > log(1 4 M Xitr-0)ifr)y o ¥ > log(1 4 e~ ity (12

i=1 i=1

When k = L, the distribution of X; (¢,) may slightly differ from that of @) due to the error in matching
the terminal densities in Q-flow net. Thus by replacing the 2nd term in (12) with an empirical average
over the Q-samples X; may be beneficial. In the reverse direction, define X;(t) := T7(X;), we

similarly have L ™" (0,) = & 3207 log(1+e/(Xs(te-0)i0n)) 4 L S2H Jog(1e~ R (X5 (t)60)),

and when k£ = 1, we replace the 1st term with an empirical average over the P-samples X;. The
training of the Q-flow-ratio net is by

L
: P—Q Q—P
min kgil Ly, 7%(0:) + L7 (6,). (13)

T

When trained successfully, the integral of r(z,t;6,) over t € [0,1] yields the desired log den-
sity ratio log(q/p) by (10), and furtherly the integral fstr(x,t/ ;0,.)dt’ provides an estimate of
log(p(z,t)/p(x,s)) for any s < ¢ on [0, 1].

A.2 Algorithm and computational complexity

The details of minimizing (13) is given in Algorithm A.2. We use an evenly spaced time grid ¢, = k/L
in all experiments. In practice, one can also progressively refine the time grid in training, starting from
a coarse grid to train a Q-flow-ratio net r(z, ¢; 8,) and use it as a warmstart for training the network
parameter 6, on a refined grid. When the time grid is fixed, it allows us to compute the transported
samples { X (tx)}1-1, { X, (tx)})L, on all ; once before the training loops of Q-flow-ratio net (line
1-3). This part takes O(8K.S(M + N)) function evaluations of the pre-trained Q-flow net f(x,¢;0).
Suppose the training loops of line 4-6 conducts E epochs in total. Assume each time integral in Ry
(11) is computed by a fixed-grid four-stage Runge-Kutta method, then O(4LE(M + N)) function
evaluations of r(x,¢; 6,.) is needed to compute the overall loss (13).

B Additional experimental details

When training all networks, we use the Adam optimizer (Kingma & Ba, 2015) with an initial learning
rate of 1e-3.

14

(a) Samples (b) MAE, Ours:2.38 (c) DRE-cc: 3.22 (d) TRE: 3.05 (e) 1 ratio: 8.20
(f) Left to right: True ratio 7(z), 7(z) by Ours, DRE-co, TRE, and 1 ratio.

Figure A.1: Estimated log density ratio between 2D Gaussian mixture distributions P (three com-

ponents) and @) (two components). Top: (a) training samples from P and Q. (b)-(d) histograms

of errors log(|r(z) — #(x)|) computed at 10K test samples shown in log-scale. The MAE (14) are

shown in the captions. Bottom: true and estimated log(¢q/p) from different models shown under
shared colorbars.

B.1 Toy data in 2d

Gaussian mixtures. Serup: We design the Gaussian mixtures P and () as follows:

p- % (/\/([‘22] L0.75L) + N ([‘fﬂ 10.2515) + N [_ﬂ ,0.7512))

Q= % (N([91755} ,0.515) + N ([:g] ,0.55)) .

Then, 60K training samples and 10K test samples are randomly drawn from P and). We intentionally
designed the Gaussian mixtures so that their supports barely overlap. The goal is to estimate the
log-density ratio r(z) = log ¢(z) — log p(x) on test samples.

Given a trained ratio estimator 7(x), we measure its performance based on the MAE

1 I .
DIULORKCOIEE D ECOELC O} (14)
i=1 j=1

where we use N’ and M’ test samples from P and @, and r(x) denotes the true density between P
and Q.

QO-flow : To initialize the two JKO-iFlow models that consists of the initial Q-flow , we specify the
JKO-iFlow as:

* The flow network f(x(t),¢;0p) and f(z(t),t; 6g) consists of fully-connected layers
3—128—128—2. The Softplus activation with 5 = 20 is used. We concatenate ¢ along x
to form an augmented input into the network.

* We train the initial flow with a batch size of 2000 for 100 epochs along the grid
[0,0.25),[0.25,0.625), [0.625, 1).

To refine the Q-flow , we concatenate the trained f(x(t),t;0p) and f(x(t),t; 6), where the former
flows in [0, 1) to transport P to Z and the latter flows in [1, 0) to transport Z to Q). We then use the

Table A.1: Inversion error E, . p || T(T () — 213 + Eyol|Tg (T1 (y)) — yl|3 of Q-flow computed
via sample average on the test split of the data set.

2d Gaussian mixture ‘ moon-to-checkerboard ‘ High-dimenisonal Gaussians (d = 320) ‘ MNIST (Q by RQ-NSF)
5.45¢-7 | 7.24e7 | 3.44e-5 | 5.23¢-5

15

807 ——- ground truth

Qurs
DRE-=
TRE

1 ratio

60

te4

40

Estimated M|

20 A

T T T T T
50 100 150 200 250 300
Number of dimensions

Figure A.2: Estimated MI between two correlated high-dimensional Gaussian random variables.

time grid [0,0.25),[0.25,0.625),[0.625, 1), [1,0.625), [0.625,0.25), [0.25,0) to train f(x(t),t;6)
with 6 = {6p, 0 }; we note that the above time grid can be re-scaled to obtain the time grid {¢; }5_,
over [0, 1]. The hyperparameters for Algorithm 1 are: Tot=2, Eq = 300, E = 50, E;,, = 4,7 = 0.5.
The classification networks {ry, 7o} consists of fully-connected layers 2—312—312—312—1 with
the Softplus activation with 8 = 20, and it is trained with a batch of 200.

Infinitesiml DRE: The network consists of fully-connected layers 3—256—256—256—1 with the
Softplus activation with 5 = 20. The input dimension is 3 because we concatenate time ¢ along
the input € R? to form an augmented input. Using the trained Q-flow model, we then produce
a bridge of 6 intermediate distributions using the pre-scaled grid [0,0.25), [0.25,0.625), [0.625, 1),
[1,0.625),[0.625,0.25),[0.25,0) for the Q-flow . We then train the network r(z,t;6,) for 100
epochs with a batch size of 1000, corresponding to Tot_iter=6K in Algorithm A.2.

Two-moon to and from checkerboard. Serup: We generate 2D samples whose marginal distribu-
tion has the shape of two moons and a checkerboard (see Figure 2(a), leftmost and rightmost scatter
plots). We randomly sample 100K samples from P and () to train the Q-flow and the infinitesimal
DRE.

QO-flow : To initialize the two JKO-iFlow models that consists of the initial Q-flow , we specify the
JKO-iFlow as:

* The flow network f(x(t),¢;0p) and f(z(t),t; 6g) consists of fully-connected layers

3—256—256—2. The Softplus activation with 5 = 20 is used. We concatenate ¢ along x
to form an augmented input into the network.

* We train the initial flow with a batch size of 2000 for 100 epochs along the grid
[0,0.25),[0.25,0.5),]0.5,0.75), [0.75,1).

To refine the Q-flow , we concatenate the trained f(x(t),t;0p) and f(z(t),t; 6g), where the former
flows in [0, 1] to transport P to Z and the latter flows in [1, 0] to transport Z to). We then use
the grid [0, 0.25), [0.25,0.5), [0.5,0.75),[0.75, 1), [1,0.75), [0.75,0.5), [0.5, 0.25), [0.25, 0) (which
can be re-scaled to form the time grid over [0,1)) to train f(x(t),t;0) with 0 = {6p,0¢}. The
hyperparameters for Algorithm 1 are: Tot=2, Ey = 300, £ = 50, Ej, = 4,7 = 0.5. The
classification networks {ry, 7o} consists of fully-connected layers 2—312—312—312—1 with the
Softplus activation with 5 = 20, and it is trained with a batch of 200.

Infinitesiml DRE: The network consists of fully-connected layers 3—256—256—256—1 with
the Softplus activation with § = 20. The input dimension is 3 because we concatenate time
t along the input * € R2 to form an augmented input. Using the trained Q-flow model,
we then produce a bridge of 8 intermediate distributions using the pre-scaled grid interval
[0,0.25),[0.25,0.5),[0.5,0.75),[0.75,1), [1,0.75), [0.75,0.5), [0.5, 0.25), [0.25, 0) for the Q-flow .
We then train the network r(z,t;6,.) for 500 epochs with a batch size of 500, corresponding to
Tot_iter=100K in Algorithm A.2.

16

C';/‘

(e) Gaussian: raw samples from @ (f) Gaussian: improved samples from Q

Figure A.3: Improvement in generated samples from (), where () is given by RQ-NSF, Copula, or
Gaussian. Each of the three choices of () is defined by a pre-trained invertible model F' that yields
Q = FuN(0,1y).

B.2 Mutual Information estimation for high-dimensional data

Setup: The task is to estimate the log-density ratio between two high-dimensional Gaussian distribu-
tions of dimension d, where this task can be viewed as an MI estimation problem. We follow the same
setup as in (Rhodes et al., 2020; Choi et al., 2022). The first Gaussian distribution P = A (0, %),
where X is a block-diagonal covariance matrix with 2 x 2 small blocks having 1 on the diagonal and
0.8 on the off-diagnal. The second Gaussian distribution @ = A (0, 1) is the isotropic Gaussian in
R?. We randomly draw 100K samples for each choice of d, which varies from 40 to 320.

To be more precise, we hereby draw the connection of the DRE task with mutual information (MI)
estimation, following (Rhodes et al., 2020). We first recall the definition of MI between two correlated
random variables U and V:

p(U,V) }
I(U;V)=E log A7) | (15)
03V = By o s
Now, given X = (z1,...,24) ~ P = N(0,X), we define U = (x1,23,...,24—1) and V =
(x2,4,...,24). By the construction of X, we thus have p(U)p(V) = Q(X)forQ N(,14). As
Q=

a result, the MI in (15) between U and V is equivalent to E x . p[—r(X)], where r(x) = lo P(mg
the objective of interest in DRE.

QO-flow : We specify the following when training the Q-flow :

* The flow network f(xz(t), ;) consists of fully-connected layers with dimensions
(d+1) —min(4d,1024) —»min(4d,1024) —d. The Softplus activation with § = 20 is
used. We concatenate ¢ along x to form an augmented input into each network layer.

* We train the flow network for 100 epochs with a batch size of 500, in both the flow
initialization phase and the end-to-end refinement phase. The flow network is trained along
the evenly-spaced time grid [tx_1,tg) for k = 1,..., L4, and we let ty = k/Lg. Lq
increases as the dimension d increases. We specify the choices as
(La,d) € {(4,40), (6,80), (7,160), (8,320)}.

The hyperparameters for Algorithm 1 are: Tot=2, £y = 500, E = 100, Ej, = 2,7 = 0.5.
The classification networks {r1,7} consists of fully-connected layers d — min(4d, 1024) —
min(4d, 1024)— min(4d, 1024) — 1 with the Softplus activation with 8 = 20, and it is trained with
a batch of 200.

Infinitesiml DRE: The network consists of fully-connected layers with dimensions

(d+1) —»min(4d,1024) —min(4d,1024) —min(4d, 1024) —1, using the Softplus activation with
8 = 20. The input dimension is d + 1 because we concatenate time ¢ along the input x € R to form

17

an augmented input. Using the trained Q-flow model, we then produce a bridge of L, intermediate
distributions using the grid [tx_1, tx) specified above for the Q-flow . We then train the network
r(z,t;6,) for 1000 epochs with a batch size of 512, corresponding to Tot _iter=195K in Algorithm
A2.

B.3 Energy-based modeling of MNIST

Setup: We follow the prior setup in (Rhodes et al., 2020; Choi et al., 2022), where P is the empirical
distribution of MNIST images, and @) is the generated image distributions by three given pre-trained
energy-based generative models: a Gaussian noise model, a Gaussian copula model, and a Rational
Quadratic Neural Spline Flow model (RQ-NSF) (Durkan et al., 2019). Specifically, the images are
in dimension d = 282 = 784, and each of the pre-trained models provides an invertible mapping
F:RY — R? where Q = FxN (0, 1;). We train a Q-flow net between (F~1) 4P and (F~1)4Q,
the latter by construction equals N(0, I;). Using the trained Q-flow net, we go back to the input
space and train the Q-flow-ratio net using the intermediate distributions between P and). The
trained Q-flow-ratio r(z, s; 6,) provides an estimate of the data density p(z) by p(z) defined as
log p(z) = logq(x) — fol r(x, s;0,.)ds, where log q(z) is given by the change-of-variable formula
using the pre-trained model F' and the analytic expression of N'(0, I4). As a by-product, since our
Q-flow net provides an invertible mapping 7}, we can use it to obtain an improved generative model
on top of F'. Specifically, the improved distribution @ := (F o T7) 4N (0, 1), that is, we first use
Q-flow to transport (0, I;) and then apply F'. The performance of the improved generative model
can be measured using the “bits per dimension” (BPD) metric,

NI
1 R
BPD = — 3 [~ logp(X;)/(dlog2)], (16)
i=1
where X; are N’=10K test images drawn from P. which is a widely used metric in evaluating the
performance of generative models (Theis et al., 2015; Papamakarios et al., 2017). In our setting, the
BPD can also be used to compare the performance of the DRE.

O-flow : We specify the following when training the Q-flow :

* The flow network f(xz(t), t;) consists of fully-connected layers with dimensions
(d+1) -1024—1024—1024—d. The Softplus activation with 8 = 20 is used. We con-
catenate ¢ along x to form an augmented input into the network.

* In a block-wise fashion, we train the network with a batch size of 1000 for 100 epochs along
the grid [tp_1,tx_1 + hy) fork =1,...,5. Welet hy = 0.5 - 1.1%71,

Lo
§

B

‘i & 4\
thbktam

.
:

133

T
8\

#
a2
@
S

BEPEEE

k&&k&b

Figure A.4: Additional test images of handbag (top row) and corresponding generated shoe images by
Q-flow model (bottom 5 rows). To generate different shoes for a given handbag, we sample random
latent codes given by the VAE, map them through trained Q-flow model, and decode back through
the VAE decoder to visualize different generated shoes in the pixel space.

18

Figure A.5: Bridge construction between P (leftmost) and @ (rightmost) via the linear interpolation
scheme (17). Specifically, we choose oy, = k/9 for k =0,...,9.

The hyperparameters for Algorithm 1 are: Tot=2, Ey = 100, £ = 500, E;,, = 2,v = 0.5. The
classification networks {71, 7} consists of fully-connected layers 784 — 1024 — 1024— 1024 —1
with the Softplus activation with 8 = 20, and it is trained with a batch of 200.

Infinitesiml DRE: We use the same convolutional U-Net as described in (Choi et al., 2022, Table
2), which consists of an encoding block and a decoding block comprised of convolutional layers
with varying filter sizes. Using the trained Q-flow model, we then produce a bridge of 5 intermediate
distributions using the intervals [tx_1,tx—1 + h) specified above for the Q-flow . We then train the
network 7(z, t; 8,.) for 300 epochs with a batch size of 128, corresponding to Tot_iter=117K in
Algorithm A.2.

B.4 Image-to-image translation

The dataset of handbags P has 137K images and the dataset of shoes) has 50K images, which are
(3,64,64) RGB images. Following (Korotin et al., 2023), we reserve 10% of data from P and @ as
test set and compute the FID between generated shoe images (from the test handbag images) and true
shoe images from the test set.

We first train a single deep VAE on both P and). We train the deep VAE in an adversarial manner
following (Esser et al., 2021). Specifically, given a raw image input X, the encoder £ of the VAE
maps X to (u(X), X(X)) parametrizing a multivariate Gaussian of dimension d. Then, the VAE is
trained so that for a random latent code Xy, ~ N (p(X), 3(X)), the decoded image D(Xep) = X.
In our case, each latent code X, has shape (12,8, 8), so that d = 768.

The training data for Q-flow are thus sets of random latent codes X, (obtained from X ~ P) and
Yenc (obtained from Y ~ P), where Q-flow finds the dynamic OT between the marginal distributions
of Xene and Ye,,.. We then obtain the trajectory between P and () by mapping the OT trajectory in
latent space by the decoder D

The flow architecture f(x(t),t;6) consists of convolutional layers of dimensions 12-64-256-512-
512-1024, followed by convolutional transpose layers whose filters mirror the convolutional layers.
The kernel sizes are 3-3-3-3-3-3-3-4-3-3 with strides 1-1-2-1-1-1-1-2-1-1. We use the softplus
activation with § = 20. The initializaation of the flow is done by the method of Interflow Albergo &
Vanden-Eijnden (2023), where at each step, we draw random batches of 128 X and 128 Y and then
obtain 128 random latent codes X, and 128 Y,,.. We trained the initialized flow for 26K steps.
To apply Algorithm 1, we let v = 0.05, ¢, = k/10 for k = 0,. .., 10, and Tot=2. Architecture of
the classifier networks r; and 7 is based on (Choi et al., 2022), where the encoding layers of the
classifier are convolutional filters of sizes 12-256-512-512-1024-1024 with kernel size equal to 3 and
strides equal to 1-1-3-1-1. The decoding layers of the classifier resemble the encoding layers, and the
final classification is made by passing the deep decoded feature through a fully-connected network
with size 768-768-768-1. These classifiers are initially trained for 4000 batches with batch size 512.
We train flow parameters 6 for 5000 batches in every iteration with a batch size of 256, and we update
the training of r; and 7y every 10 batches of training 6 to train them for 20 batches.

B.5 Hyper-parameter sensitivity

Overall, we did not purposely tune the hyperparameters in Section 4, and found that the Algorithm 1
and A.2 are not sensitive to hyper-parameter selections. We conduct additional ablation studies by
varying the combination of 7 in Algorithm 1 and the time grid {¢;} in Algorithm A.2. We tested
all combinations on the MNIST example in Section 4.4 with RQ-NSF target). Table A.2 below
presents our method’s performance, with the highest BPD (1.062) remaining lower than those by
other DRE baselines in Table 1 (the lowest of which is 1.09). Small variations in the table can be

19

Table A.2: BPD on MNIST with RQ-NSF target () over combinations of - in Algorithm 1 and time
grid {t;} in Algorithm A.2.

v &t} | te=k/L | tx=(k/L)? | tn = /F/L

0.5 1.046 1.044 1.047
1 1.042 1.041 1.044
5 1.057 1.055 1.062

attributed to the learned OT trajectory influenced by the choice of . Specifically, smaller v may lead
to less smooth trajectories between P and (), while larger v may result in a higher KL-divergence
between the pushed and target distributions due to insufficient amount of distribution transportation
by the refined flow, both potentially impacting DRE accuracy.

C Linear stochastic interpolation used in Rhodes et al. (2020)

The interpolation scheme used in (Rhodes et al., 2020, Eq (5)) states that given a pair of random
samples X (0) ~ P and X (1) ~ @, the interpolated sample X (¢)) is defined as

X(tr) = /1 — a2X(0) + ar X (1), (17)

where «y, forms an increasing sequence from 0 to 1. An illustration of { X (¢x)} is given in Figure
AS.

20

	Introduction
	Related works

	Preliminaries
	Learning dynamic OT by Q-flow network
	Formulation and training objective
	End-to-end training algorithm
	Flow initialization

	Experiments
	Infinitesimal density ratio estimation (DRE)
	Toy data in 2d
	Mutual Information estimation for high-dimensional data
	Energy-based modeling of MNIST
	Image-to-image translation

	Discussion
	Infinitesimal density ratio estimation
	Training by logistic classification
	Algorithm and computational complexity

	Additional experimental details
	Toy data in 2d
	Mutual Information estimation for high-dimensional data
	Energy-based modeling of MNIST
	Image-to-image translation
	Hyper-parameter sensitivity

	Linear stochastic interpolation used in rhodes2020telescoping

