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Abstract. One reason mathematical modelling remains highly challenging for students is 
because it requires knowledge about both mathematics and the real-world. Recent work 
suggests promoting the learning of mathematical modelling as conceiving quantities and 
establishing relationships among quantities could help students overcome the challenges they 
experience. While promising, this approach may be oversimplistic in its claims. Through 
analyzing data collected via a teaching experiment methodology, we present one student’s 
(Szeth’s) work on two tasks to illustrate how Szeth’s reasoning with quantities was limited 
during his model construction process in the following ways: Szeth (i) used already 
constructed mathematical expressions to reason about how quantities vary, and (ii) did not 
construct a mathematically correct expression despite having reasoned with quantities.  

1 Introduction 

Scholars have advocated for the importance of including mathematical modelling (hereafter, 
modelling) into the mathematics curriculum because it motivates the use of mathematics in 
the world outside of the classroom (e.g., Blum & Niss, 1991; Zbiek & Connor, 2006). 
However, researchers in the field collectively agree that modelling is challenging for students 
(e.g., Stillman et al., 2010; Jankvist & Niss, 2020). Therefore, researchers have focused on 
finding ways to reduce, mitigate, or overcome challenges faced by students while they 
engage in modelling. For example, scholars have investigated the ways of improving the 
learning of modelling through supporting mathematical modelling competencies directly and 
developing the appropriate learning enviroments, through designing appropriate tasks and 
task sequences to deliver that support (e.g., Anhalt et al., 2018; Durandt & Lautenbach, 
2020). Despite progress in these areas, students’ modelling skills remains difficult to cultivate 
(Cevikbas, Kaiser, & Schukajlow, 2022). As a potential solution, Cevikbas et al. (2022) call 
for new theoretical work on the conceptualization of modeling competencies.  

Some studies have addressed this call by operationalizing modelling by using theories from 
quantitative reasoning (Thompson, 2011). Through characterizing students’ mathematical 
models through quantities and quantitative relationships, Larsen (2013) made the case that 
quantitative reasoning is a central mechanism in model development because products of one 
stage at model development become the objects at the next stage. Czocher & Hardison (2021) 
underwent methodological work to propose the indicators of students’ conceiving quantities 
and developed the notion of a modelling space as the set of mathematical relationships on 
conceived quantities. Other scholars have have investgated how students learn mathematical 



concepts through engaging in quantitative reasoning while modeling real-world contexts 
(e.g., Ellis, 2007). The collective work that marries quantititaive reasoning and modelling 
points towards the idea that reasoning with quantities affords students’ model construction 
process, supporting Thompson’s (2011) statement that “modelling is simply mathematics in 
the context of quantitative reasoning” (p. 52). As the field moves towards developing 
instructional materials that draw on theories from quantitative reasoning, an understanding of 
the ways in which reasoning with quantities is limited during students’ modelling activities is 
needed to give a satisfactory portrayal of both the strengths and the limitations of this 
approach. In this chapter, we address the question: In what ways is students’ reasoning with 
quantities limited during their model construction process?   

2 Theoretical Perspective 

Quantitative reasoning refers to the mental operations involved in conceiving a situation 
entailing quantities and relationships among quantities (Thompson, 1990). Quantities are 
conceptual entities that exist in the mind of an individual. They consist of three 
interdependent components: an object, a measurable attribute, and a quantification. 
Quantification involves conceiving a measurable attribute of an object and a unit of measure 
and forming a proportional relationship between the attribute’s measure and the unit of 
measure (Thompson, 2011). Quantitative operation “is the conception of two quantities being 
taken to produce a new quantity” (p.10). As a result of a quantitative operation a quantitative 
relationship is created: the quantities operated upon along with the quantitative operation are 
in relation to the result of operating (Thompson, 1994, p.14). Examples of quantitative 
operations include combining two quantities additively and comparing two quantities 
additively. For example, the amount by which the mass of cancerous cells grew during an 
hour is a quantity that may be constructed by additively comparing the masses of the 
cancerous cells at the beginning and end of that hour. Reasoning about quantities may also 
entail reasoning about how quantities’ values vary or not, in relation to each other, termed co-
variational reasoning (Thompson & Carlson, 2017). Examples of mental operations involved 
in covariational reasoning include gross coordination of values and coordination of values.  

We define operation on quantities to include Thompson’s quantitative operations, mental 
operations involved in (co)variational reasoning, and other operations on quantities that yield 
a new quantity (Kularajan & Czocher, 2022). We define relationship among quantities to 
include all mental relationships that were constructed as a result of operating on quantities. 
We define reasoning with quantities as the mental operations involved in conceiving a 
situation consisting of measurable attributes and relations among those measurable attributes 
AND the mental operations involved in reasoning about varying quantities.  

3 Methods 

3.1 Data Collection 



Data for the study was collected via 3 individual 10-hour teaching experiments (Steffe & 
Thompson, 2000) conducted with undergraduate STEM majors. The overall goal of the 
teaching experiment was to examine how modelers construct quantitative relationships and 
generalize (or not) the quantitative relationships to novel contexts. Students worked on 8-11 
modelling tasks from a variety of real-world contexts (e.g., bank account, predator-prey, 
disease transmission). The tasks were sequenced to encourage the students to use the models 
of past situations as models for present situations (Gravemeijer, 1999). The interviewer’s 
questioning during the teaching experiment often took the form of asking for clarification, 
probing, asking for explanation, suggesting alternative situations in which modelers’ 
particular lines of reasoning may or may not work, and providing modifications to the task 
that may (or not) have perturbed the modeler’s thinking. To simplify presentation of results, 
we illustrate our findings using one student’s (Szeth’s) work on two modelling tasks, 
described below. Szeth double majored in mathematics and physics at a public university in 
the USA. The cancerous mass task presented below is abridged; the full version included a 
table containing measurements of the mass at each hour during a 24-hour period. 
 
The Cancerous Mass Task (abridged version) 
Cancer cells can be grown in a lab, for study in their own right and also as a basis for 
further medical research. The HeLa cell line has a seemingly unique ability to continuously 
grow and divide in the laboratory. Samples of HeLa are measured as a mass and the 24-
hour propagation rate is anticipated to be 69% of its current mass. Create an expression that 
would model how quickly the sample is growing. 
 
The Disease Transmission Task 
Suppose a disease is spread by contact between sick and well members of the community. 
If members of the community move about freely among each other, develop a 
mathematical model that informs us about the dynamics of how the disease would spread 
through the population. 

3.2 Data Analysis 

Consistent with the teaching experiment methodology (Steffe & Thompson, 2000), the entire 
data corpus was analyzed in two phases. In the first phase, we produced narrative accounts of 
each modeler’s modelling activities including what the modeler did, how they accomplished 
it, and our accounts—informed by the modelers’ explanations—of why they did so. Next, we 
refined our accounts of the modelers’ mathematics by paying explicit attention to the 
modelers’ quantification (Czocher & Hardison, 2021), quantitative operations (Thompson, 
1990) and (co)variational reasoning (Thompson & Carlson, 2017). Finally, we sought 
connections and distinctions across modelers’ mental operations through comparing their 
mental operations over the course of the teaching experiment study (within modelers, across 
tasks). To do this, we paid attention to their consistencies or inconsistencies in reasoning, 
their conceptual development, the cognitive obstacles they experienced, and how they 
overcame these obstacles. In the second phase, we asked how reasoning with quantities 
manifested during modelers’ construction of models for real-world scenarios? To answer this 



question, we attended to how the mental operations involved in reasoning with quantities 
presented themselves in modelers’ modeling activities. Examples of these modelling 
activities include validating models, constructing expressions or graphs, and constructing 
measurable attributes of objects. We inferred the goals the modelers set, the mathematical 
concepts they used, and traced the evolution of their mathematical models. We triangulated 
our narrative accounts with the videos, generating a list of ways modelers reasoned with 
quantities during the tasks. Finally, we sorted instances where reasoning with quantities was 
limited in modelers’ model construction process. We operationalized modelers’ limited 
reasoning with quantities to mean any constraints that may be present in their reasoning with 
quantities or also to mean only so much of reasoning with quantities was present in modelers’ 
modelling activities. In the next section, we share descriptions of two such instances.   

4 Results 

In our data, we found two ways in which students’ reasoning with quantities was limited 
during their model construction process. In particular we found instances where Szeth (i) 
leveraged mathematical expressions to reason about how quantities vary with each other, and 
(ii) did not construct a mathematically correct expression compatible with the situation. In the 
first case, we show how Szeth’s reasoning with quantities was limited to the mathematical 
expression he constructed; in the second case we show how Szeth’s reasoning with quantities 
was limiting for producing an expression that is mathematically correct. We illustrate these 
instances below. 

4.1 Leveraging Mathematical Expressions to Reason about how Quantities 
Vary with Each Other  

In the first half of the The Cancerous Mass Task, Szeth was prompted to explore how the 
cancerous cells were growing during the 24-hour period. In particular, he was asked to 
evaluate the percent change in mass during a 3-hour, 2-hour, and 1-hour period. Szeth 
constructed expressions 1 and 2 for the rate at which the mass was changing with respect to 
time.  

 𝑚𝑚′ =  0.0293 ∙ 𝑚𝑚 (1)                   
 𝑚𝑚′ =  0.703 ∙ 𝑚𝑚 (2)                    
In expressions 1 and 2, Szeth defined 𝑚𝑚′ as the rate at which the mass of the cancerous cells 
was changing, 0.0293 as the hourly percent change in mass, 0.703 as the daily percent 
change in mass, and 𝑚𝑚 as the current mass. Szeth solved expression 1 and arrived at 
expression 3.  
 𝑚𝑚 =  𝑒𝑒0.0293∙𝑡𝑡   (3) 
We asked Szeth to produce graphs to explain how (i) the rate at which mass changes with 
respect to time varies with time, and (ii) the rate at which the mass changes with respect to 
time varies with the current mass. Szeth gave the explanation in the excerpt below.   
Szeth: So it looks like 𝑚𝑚′ should grow over time (𝑡𝑡), because over time the mass of the 

sample will be changing. And I guess this number [referring to 0.703 in 



expression 1] wouldn't really change our slope here. So, it should be fairly linear 
line [draws a straight line for 𝑚𝑚′ vs 𝑡𝑡 (See Fig. 1.1(a), A)]. So then mass versus 
rate. Mass is increasing; the rate should also increase. It's increasing constantly 
[referring to 𝑚𝑚′], the mass is not a constant increase. I want to say it's linear, too 
[draws a straight-line graph for 𝑚𝑚′vs 𝑚𝑚 Fig. 1.1(b), A]. Yeah, because at each 
interval of mass [gesturing over Fig 1.1(a), A] it will correspond to a 
proportionate rate [pointing to 0.0293 in expression 1]. 

Szeth drew both the graphs in Fig. 1.1, by referring to expressions 1 and 3. While Szeth was 
drawing Fig. 1.1 (a), when he said that “𝑚𝑚′ should grow over time, because over time the 
mass of the sample will be changing,” Szeth was grossly coordinating the values of 𝑚𝑚′ and 𝑡𝑡. 
This gross coordination of values was afforded through expressions 1 and 3. Using 
expression 1, Szeth grossly coordinated the values of  𝑚𝑚′ and 𝑚𝑚. Using expression 3, Szeth 
grossly coordinated the values of 𝑚𝑚 and 𝑡𝑡. However, he referred to 0.703 as a constant slope, 
and translated the gross coordination of values of 𝑚𝑚′ and 𝑡𝑡 to an increasing straight line as 
shown in Fig. 1.1(a), A. At the same time, Szeth used expression 1 to produce a linear graph 
for 𝑚𝑚′ varying with 𝑚𝑚, as shown in Fig. 1.1(b), A.  

 
(a) 

 
(b) 

 
(c) 

Fig. 1.1(a) Szeth’s Graph for 𝑚𝑚′vs 𝑡𝑡, (b) Szeth’s Graph for 𝑚𝑚′vs 𝑚𝑚, and (c) Szeth 
Coordinates Numerical Values for 𝑚𝑚 and 𝑚𝑚’ 

Szeth gave further evidence he used expression 1 to grossly coordinate the values of 𝑚𝑚′ and 𝑡𝑡 
when the interviewer asked him to explain the graph in Fig. 1.1(a) for 𝑚𝑚′ vs 𝑡𝑡. He replied:  

Szeth: I was thinking of arbitrary points along the 𝑚𝑚’ growth, and then what a 
corresponding rate should be. And then I thought of our... the equation up here 
[referring to expression 1]. And so, I decided that it should grow linearly like this 
because of this equation [pointing to expression 1] – It was a similar thought 
process [the production of his graph for 𝑚𝑚′ vs 𝑡𝑡], using this equation [pointing to 
expression 1]. But rather than considering a mass to a rate, I thought of, how does 
the mass change over time [gesturing over expression 3] and that affect the rate? 
And so, I came to the conclusion that this number, 0.703, wouldn't be changing 
over time. That's a constant value. But the 𝑚𝑚 would be. So overall your rate would 
be increasing.  

To produce a graph for how 𝑚𝑚′ changes with 𝑡𝑡,  Szeth first coordinated the values of 𝑚𝑚 and 
𝑚𝑚′. However, Szeth used expression 1, as an aid to decide how the values of  𝑚𝑚 and 𝑚𝑚′ 
change in relation to each other. As a result, Szeth produced the graph in Fig. 1.1(b), A. Next 



Szeth engaged in the gross coordination of values of 𝑚𝑚 and 𝑡𝑡, using expression 3. Finally, 
Szeth engaged in the nested coordination of 𝑚𝑚 and 𝑡𝑡, and 𝑚𝑚’ and 𝑚𝑚 to grossly coordinate 𝑚𝑚’ 
and 𝑡𝑡. This was evident when he said, “I thought of how does the mass change over time and 
that affect the rate.” Szeth decided that since 0.703 would not be changing and 𝑚𝑚 would be 
increasing with time, then 𝑚𝑚’ would also be increasing with time. He translated this increase 
in 𝑚𝑚’ with time to a linear increase. For both the graphs in Fig. 1.1, Szeth leveraged 
expressions 1 and 3 to establish how 𝑚𝑚’ varies with 𝑚𝑚 and 𝑡𝑡.  

 We asked Szeth to explain how expression 1 informed him that 𝑚𝑚’ would increase 
linearly with time. Szeth indicated that he overlooked that 𝑚𝑚 is increasing exponentially with 
time. Szeth substituted for 𝑚𝑚 in expression 1 as below.  
   𝑚𝑚′ = 0.703 ∙ 𝑒𝑒0.0293𝑡𝑡 (4) 

Based on expression 4, he explained: since 𝑚𝑚 is growing exponentially with time, then 
𝑚𝑚′also should grow exponentially with time. Subsequently, Szeth changed his 𝑚𝑚’ vs 𝑡𝑡 graph 
to be an exponential curve (Fig. 1.1(a), B). However, he then decided that the graph for 𝑚𝑚’ vs 
𝑚𝑚 should also be an exponentially increasing curve (Fig. 1.1(b), B). When we asked him why 
he changed his 𝑚𝑚′ vs 𝑚𝑚 graph, Szeth explained “so now that I'm thinking of it [𝑚𝑚] as 
exponentially growing, the rate [𝑚𝑚′] should also be growing exponentially with the mass.” 
Szeth deduced that 𝑚𝑚′ grows exponentially with 𝑚𝑚 because the 𝑚𝑚 grows exponentially with 
𝑡𝑡. To validate his graph for 𝑚𝑚′ vs 𝑚𝑚, (Fig. 1.1, B), Szeth coordinated the values of 𝑚𝑚’ and 𝑚𝑚, 
once again using expression 1. His work is shown in Fig. 1.1(c). After computing the values 
for 𝑚𝑚’ as shown in Fig. 1.1(c), Szeth said that the 𝑚𝑚’ vs  𝑚𝑚 graph should be linear. Szeth 
reasoned that “Yeah, because it's growing by that much [pointing at 0.703] each interval” it 
should be a linearly increasing graph. He crossed off his exponential curve in Fig. 1.1(b), B 
and marked a check sign against his linear graph in Fig. 1.1(b), A.  
This vignette shows how Szeth leveraged the mathematical expressions he had already 
constructed to support reasoning with quantities for both constructing and validating a graph. 
He used expression 1 to construct a graph representing the covariation of the rate of change 
of mass with respect to time and time. He used expression 2 to validate a graph representing 
how rate of change of mass with respect to time varies with mass. Here, Szeth’s reasoning 
with quantities was limited to the expressions he constructed.  

4.2 Reasoning with Quantities Does Not Always Lead to the Construction of 
Mathematically Correct Expressions 

Prior to working on The Disease Transmission Task, Szeth had worked on The Cats and 
Birds Task (predator-prey context), where he was introduced to the concept that the number 
of interactions between two species can be constructed through multiplicatively combining 
the amount of each specie. In The Disease Transmission Task, Szeth constructed expression 5 
for the rate at which the disease spreads, assuming that not all healthy persons, 𝐻𝐻(𝑡𝑡), who 
come in contact with a sick person, 𝑆𝑆(𝑡𝑡), fall sick.  
  𝑆𝑆’(𝑡𝑡) = 𝛼𝛼 ∙ 𝑆𝑆(𝑡𝑡) ∙ 𝐻𝐻(𝑡𝑡) (5) 

Szeth defined 𝛼𝛼 as the “percentage of interactions that lead to people getting sick.” We asked 
Szeth to construct an expression for 𝐻𝐻′(𝑡𝑡). Szeth nominalized 𝐻𝐻′(𝑡𝑡) as “how quickly people 



would get healthy or recover from being sick.” He explained that for sick people to become 
healthy “they just need to take time.” Szeth mathematized this reasoning as below.  
 𝐻𝐻′(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) ∙ 𝑟𝑟 (6)  
He defined 𝑟𝑟 as the number of days it would take to “rest and recover.” According to 
expression 6, for Szeth, the change in healthy people is equal to the number of sick people 
who “rest and recover” from the disease. The following conversation was exchanged:  
Interviewer: Okay, so what if I do get sick though and I'm not recovered? 
Szeth: Oh, okay. It's like you just never recover, I guess? 
Interviewer: Or maybe not never recover but I'm just... for right now, I'm a sick person. 
Szeth: Okay. 
Interviewer: How would that be in your model? Or should it be in your model? 
Szeth: Right. That's what I'm debating in my head because in a way it sounds like 

the same as if you're just healthy, you're not contributing to an increase or 
decrease. So I'm wondering if you're just sick, it's the same feel or if you're 
just sick, would that maybe then somehow lead to a decrease in like how 
quickly people get healthy again? So, in which case I'm thinking what if you 
just like subtract 𝑆𝑆(𝑡𝑡) maybe. That seems kind of weird to do because saying 
this is just sick people just like, "This is just sick people," but then these 
people also then recovering, right? I guess these don't [referring to 𝑆𝑆(𝑡𝑡)] 
which is what we're saying. 

The intent behind the interviewer querying how Szeth would account for a person who does 
get sick but does not recover was to encourage Szeth to consider how the number of sick 
people impacts the change in healthy people. Szeth said that he would subtract the sick 
people from 𝑆𝑆(𝑡𝑡) ∙ 𝑟𝑟 to indicate the decrease in the amount of healthy people, writing 
expression 7. Szeth was grossly coordinating the values of 𝑆𝑆(𝑡𝑡) and 𝐻𝐻′(𝑡𝑡).   
 𝐻𝐻′(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) ∙ 𝑟𝑟 − 𝑆𝑆(𝑡𝑡) (7)  
In expression 7, when the interviewer asked him if he was taking away the number of sick 
people from the number of healthy people,  Szeth said that he viewed 𝑆𝑆(𝑡𝑡) ∙ 𝑟𝑟  as “the number 
of people who would be recovered over time” and not the people who already recovered.  

Szeth accounted for the rate of change of healthy people with respect to time by 
considering how the number of healthy people (an amount) would increase in amount by a 
sick person taking time to recover from the disease and become healthy (or decrease in 
amount by a sick person never recovering from the disease). Szeth was mathematizing his 
quantitative reasonings using arithmetic operations that are normatively used to indicate an 
increase and decrease, even though the result of those operations produced a quantity 
different from what was asked from Szeth. Szeth’s approach was to replace each quantitative 
relation with an arithmetic operation. In this approach, he did not attend to the quantitative 
meaning of the outcome of the arithmetic operations. Although Szeth showed evidence of 
conceiving quantities and reasoning about quantities, he produced a mathematical expression 
for 𝐻𝐻′(𝑡𝑡) that is mathematically incorrect.  

5 Discussion 



Previous research on quantitative reasoning posits that students’ construction of robust 
quantitative relationships can be supportive of creating mathematical representations (such as 
formulas and graphs) that are mathematically correct and compatible with the real-world 
situation (e.g., Moore & Carlson, 2012). At the same time, our analysis found that students’ 
quantitative reasoning may be limited during their model construction process in two ways.  
First, students may use already constructed mathematical expressions to reason about how 
quantities vary. To illustrate this, we showed how Szeth used expressions 1 and 3 to construct 
graphs for how 𝑚𝑚′ varies with 𝑚𝑚 and 𝑡𝑡, as in section 4.1. In this case, Szeth’s reasoning with 
quantities was limited to the mathematical expressions he had already constructed. This 
finding demonstrates that modelers’ reasoning with quantities can be governed by the 
mathematical expressions they construct within a given scenario. Second, reasoning with 
quantities does not always lead to the construction of mathematically correct expressions. To 
illustrate this, we showed how Szeth did not produce a normatively correct mathematical 
expression for the rate of change of healthy people with respect to time, despite having 
reasoned how the number of sick people, and the number of people who recover from the 
disease, impact the number of healthy people. In the second case, Szeth’s reasoning with 
quantities was limiting for producing an expression that is mathematically correct. This 
finding demonstrates that productive quantitative reasoning could occur without resulting in 
effective modelling; simply replacing the mental operations involved in reasoning with 
quantities with arithmetic operations is not sufficient for producing a valid mathematical 
model. The fact that Szeth’s mental operations for reasoning with quantities does not coincide 
with the mathematical expressions he produced raises questions about how to guide students 
towards successful mathematization in the event that the students’ constructed mathematical 
expressions, through reasoning with quantities, diverge from the desired learning outcome we 
have for the students. 

While one goal of incorporating modelling in mathematics classrooms is for students to 
obtain normatively correct expressions, students’ learning is optimized when they construct 
mathematical expressions that align with their reasoning of and about quantities. Extensive 
research has supported the stance that incorporating reasoning with quantities into learning 
environments to teach mathematical concepts bears productive learning outcomes. While we 
agree with and stand by this stance, through this chapter we document borderline instances 
that may not contribute to this narrative in hopes to inform the field about the intricacies that 
need to be taken into consideration for curricula development. In order to move forward with 
the theoretical stance of promoting the learning of mathematical modelling as conceiving 
quantities and establishing relationships among quantities, future research should investigate 
the characteristics of the modelling tasks and nature of the scaffolding moves, that enable the 
learning of modelling in this way, and modelers’ response to such interventions.  
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