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Abstract. In this chapter, we address the problem of why blockages occur during 
mathematization by introducing a method for studying mathematizing based in quantitative 
reasoning.  We report on interview data with six tertiary STEM majors as they developed 
models of the population dynamics of cats and birds in a backyard habitat. Our analysis 
focused on real-world relationships participants tried to express when using a given 
arithmetic operation in a predator-prey modelling task. Our results reveal the conceptions of 
 × participants used to justify their models when constructing an expression for the decrease 
in the bird population. We conclude by discussing the method’s utility for studying 
mathematization and with conjectures on how instructors might leverage participants’ 
justifications to scaffold their emergent models towards a conventionally correct model.   

1 Introduction 

Mathematizing (the process of transforming a real-world situation into a mathematical 
representation) receives a lot of attention in modelling literature because it is difficult for 
students (Brahmia, 2014; Galbraith & Stillman, 2006; Jankvist & Niss, 2020; Stillman & 
Brown, 2014).  Typically, when studies note students’ difficulty with mathematization, they 
describe the difficulty in terms of “blockages” that occur (Galbraith & Stillman, 2006; Klock 
& Siller, 2020; Maaß, 2005; Schaap et al., 2011). Some of these difficulties were: fail to 
define variables, fail to use appropriate methods to mathematise, fail to understand 
mathematical content, and fail to realize dependencies between variables (Klock and Stiller, 
2020). Describing the difficulties students encounter while mathematizing has been a critical 
step in fully conveying the complexity of mathematizing. The next step for the field is to 
understand the genesis of these difficulties with mathematizing. Recently, Cevikbas et al. 
(2022) conducted a systematic literature review on modelling competencies. They suggested 
conducting more theoretical research to find new ways to conceptualize modelling 
competencies. This chapter approaches studying mathematization through a lens that can 
reveal the root causes of the difficulties students encounter while positioning students’ work 
from an anti-deficit perspective (see Adireda, 2019).  

One blockage to mathematization reported in the literature is “representing elements 
mathematically so formulae can be applied”, and an example of this difficulty was 
“expressing total length in terms of edge distances along the field” (Stillman et al., 2010).  
We started building our lens by asking ourselves why might tertiary STEM students have 
difficulty “representing elements mathematically so formulae can be applied”? Interpreted 



differently, this question could be said as “why might students choose to represent real-world 
relationships (like the interactions between a predator and a prey population) with a given 
arithmetic symbol (like ×)”?  This led us to our research question: What conceptions of +, −, 
×, ÷ do STEM undergraduates use to justify their choices of arithmetic symbols while 
mathematizing during a predator-prey modelling task? To answer our research question, we 
started by creating a catalogue of the elements students put into a model and the conceptions 
of +,−,×,÷ students used when combining elements with these arithmetic symbols. We 
anticipate this work will support educators’ efforts to leverage students’ conceptions of +, −, 
×, ÷  and aid students in connecting their spontaneous models to a normatively correct 
model. For this chapter, we report on participants’ conceptions of the symbol × as they 
modeled the population dynamics in a predatory-prey scenario.  

2 Theoretical Perspective  

We use Lesh and Doerr (2003)’s definition of mathematical model: “Models are conceptual 
systems (consisting of elements, relations, operations, and rules governing interactions) that 
are expressed using external notation systems, and that are used to construct, describe, or 
explain the behaviors of other system(s) - perhaps so that the other system can be 
manipulated or predicted intelligently. A mathematical model focuses on structural 
characteristics of the relevant system” (Lesh & Doerr, 2003, p. 10). Our theoretical and 
methodological approach is to unpack this definition of mathematical modelling in terms of 
ideas from quantitative reasoning (QR) and covariational reasoning (CR), which will aid in 
describing the elements of a student’s model and her conception of +,−,×,÷ that allow her to 
combine the elements. We selected QR and CR as a theoretical/methodological lens because 
existing QR literature suggested that the operations students use on quantities reflect the 
quantitative relationships perceived by the student, that quantitative reasoning plays a key 
role in the refinement of the model (Larson, 2013), and that the models that students could 
potentially make during a modelling task depend on (and are constrained by) the quantities 
the student imposes onto the situation (Czocher & Hardison, 2021).   

Quantitative reasoning is the conceptualization of a situation into a network of quantities and 
quantitative relationships (Thompson, 2011). A quantity is not the same thing as a variable. It 
is a triple of an object, attribute, and quantification (Thompson, 2011). Quantification means 
to conceptualize an object with a measurable attribute so that the measure is proportional to 
its unit (Thompson, 2011). A quantity is made from an individual’s conceptions of objects 
within the situation. Two individuals may quantify an attribute differently, thus a quantity is 
idiosyncratic to the individual (Ellis, 2007). An example of a quantity in a predator-prey 
context is the number of prey animals at time 𝑡𝑡. The object is the prey population, the 
attribute is amount, and evidence of quantification could be a student explaining they could 
feasibly measure the number of prey animals on one day by counting them. A quantitative 
operation is a conceptual operation where an individual creates a new quantity in relation to 
one (or more) already created quantities (Ellis, 2007; Thompson, 2011). When a student 



envisions two quantities varying together and thinks about the ways they change in 
relationship to each other, and how they vary simultaneously, this reasoning is called this 
covariational reasoning (CR) (Carlson et al., 2002). 

We operationalize Lesh and Doerr (2003)’s definition in terms of QR/CR as follows: a 
mathematical model is a conceptual system that encompasses all of a student’s ideas and 
concepts regarding a relevant real-world system (for example, a relevant system could be a 
fish tank or an island habitat). The elements of the model are the quantities students impose 
onto the task scenario. The relationships between elements, operations, and rules governing 
interactions are determined by students’ QR/CR.    

From elementary and secondary research, repeated addition is one conception of × and 
creating parts from a whole is one conception of ÷ (Nunes & Bryant, 2021). According to 
Brahmia (2014) and Schwartz (1988) students need conceptions of × and ÷ that differ from 
repeated addition and creating parts from a whole to depict relationships involving 
ratios/rates, that are commonly needed for modeling dynamic situations with differential 
equations. For example, Schwartz (1988) pointed out that the notion of multiplication being 
repeated addition does not work for cases such as ((miles ÷ hours) ×  hours = miles) because 
iterating the relationship between miles and hours “number of hours times” cannot be done.  

3 Methods  

This study draws data from a larger study of facilitator scaffolding moves that foster 
undergraduates’ modelling competencies. Data were collected via individual cognitive task-
based interviews with 23 participants. Participants saw at least six tasks over ten 1-hour 
sessions. The tasks were designed to scaffold participants’ modelling activities by attending 
to quantitative reasoning and appealing to similarities in mathematical structure across real-
world contexts. In this chapter, we report on six participants’ (described below) work on the 
task called Cats and Birds. We chose the Cats and Birds task because predator-prey scenarios 
provide the opportunity for students to quantify and combine distinct types of quantities such 
as amounts of quantity, amounts of change, rates of change, and per-capita rates using 
various quantitative combinations and arithmetic symbols. The goal of this task was for 
participants to write a system of differential equations modelling the interdependent 
dynamics of a bird and cat population. The task is set up with 12 sub-questions to scaffold 
their quantitative reasoning about the task scenario, culminating in a version of the Lotka-
Volterra equations.  Here, we focus on the first 4 sub-questions that guided the participant in 
constructing a model for the decrease in magnitude of the bird population due only to cats 
during an arbitrary segment of time Δ𝑡𝑡. The first 4-sub-questions are in Table 1. We focus on 
this part of the task because sub-question #4 was pivotal in students’ reasoning for later 
subtasks; we wished to observe students’ use of × during the pivotal point in the task. 
Interview protocols included asking participants their meaning for symbols they write and 



why their choice of +,−,×,÷ is appropriate (e.g., “what does 𝛼𝛼 mean?”, “why did you decide 
to multiply 𝐵𝐵(𝑡𝑡) and 𝐶𝐶(𝑡𝑡)?”).  

Table 1 The first 4-subquestions of the Cats and Birds Task 

1 Consider a backyard habitat, where cats are the natural predators of birds. Let 𝐵𝐵(𝑡𝑡) be 
the number of birds and 𝐶𝐶(𝑡𝑡) be the number of cats at time 𝑡𝑡. How many cat-bird 
interactions would be possible at time 𝑡𝑡? [Call this model Eqn 1] 

2 Not every cat and every bird encounter each other. Only some percentage of potential 
catbird encounters are realized per unit time, 𝛼𝛼. How would you adapt your model 
above to incorporate that fact? [Call this model Eqn 2] 

3 Cats are very good hunters, but they aren’t perfect. Sometimes the bird gets away, and 
so only some percentage of actual encounters end with a cat killing a bird. How would 
you adapt your model above [Eqn 2] to incorporate that fact? [Call this model Eqn 3] 

4 Consider the decrease in magnitude of bird population due only to cat predation during 
a short interval of time, Δ𝑡𝑡. Write an expression modeling this decrease, in terms of the 
size of cat and bird populations present at time 𝑡𝑡. [Call this model Eqn 4] 

We recruited participants who stated they had some familiarity with mathematical concepts 
like instantaneous rate of change with respect to time to increase the likelihood that 
participants would be able to productively discuss their mathematical reasoning as well as 
have avenues for entry into engaging with the tasks. In this chapter, we report results from six 
STEM majors (2 physics, 3 electrical engineers, and 1 civil engineer) who already completed 
differential equations, and who self-reported their mathematics grades as between A’s and 
C’s. We report results from these six participants to showcase differing conceptions of ×.  

Data analysis started by identifying the quantities the participant imposed onto the task 
scenario by describing the object, attribute, and how the participant exhibited quantification 
for that attribute according to the quantification criteria developed by Czocher and Hardison 
(2021). We then noted instances where  × were used on the quantities. We then documented 
the participants’ conception (or inferred conception) of  ×. We took the participants’ use of 
an arithmetic symbol as evidence that they performed an arithmetic operation. This is 
reasonable because we worked with participants in advanced mathematics.  

4 Results 

Across the six participants, two distinct quantities tended to emerge from work on subtasks 
one through three. These two quantities were dead birds at time 𝑡𝑡 and dead birds per unit 
time. The mathematical representations of these two quantities look identical but represent 
two distinct attributes of the bird population. The results characterize the quantities 
participants imposed onto the task scenario and the conception for × participants employed 
when combining those quantities to yield the final quantity to uncover the conditions that lead 
to some participants creating one quantity over the other. As a direct consequence of 



examining participants’ reasoning, we report on the conceptions for × the participants 
employed, regardless of mathematical correctness. Because participants chose their own 
symbols to represent variables, we present a “standardized” version of the participants’ work. 

4.1 Dead Birds at Time 𝒕𝒕 

In standardized notation, our participants constructed the quantity dead birds at time t, 
typically depicted as:  

𝛿𝛿 × �𝛼𝛼 × �𝐵𝐵(𝑡𝑡) × 𝐶𝐶(𝑡𝑡)�� 

Participants combined number of birds at time 𝑡𝑡 (represented by 𝐵𝐵(𝑡𝑡)) and number of cats at 
time 𝑡𝑡 (represented by 𝐶𝐶(𝑡𝑡)) with × to create a new quantity: total possible encounters 
between cats and birds at time 𝑡𝑡. Neturo (physics) explained that he chose × because:  

Neutro:  One cat will interact with bird one, bird two, bird three, and bird four. That's the 
most bird interactions that bird, or that cat one can have. And then cat two and three, 
each are the same thing. Each bird or each cat has four interactions, one for each 
bird. That's why you have the number of cats times the number of birds because 
each bird interacts with each or each cat interacts with each bird one time in the 
maximum possible number of bird-cat encounters. 

The other participants gave similar explanations for choosing ×.  We infer the participants 
were iterating number of birds at time t, number of cats at time t many times, indicating the 
participants reasoning in this way conceptualized × as repeated addition.  

To account for the fact that not all birds encounter all cats, some participants created a 
quantity called percentage of encounters that are realized (represented by 𝛼𝛼). They combined 
total possible encounters between cats and birds at time t (represented by 𝐶𝐶(𝑡𝑡) × 𝐵𝐵(𝑡𝑡)) with 
percentage of encounters that are realized with × to create the new quantity number of 
actual encounters at time 𝑡𝑡. Pattern (civil engineering) explained that he chose × because: 

Pattern:  Okay. So now that we have a percentage, then you just do 𝐶𝐶(𝑡𝑡) times 𝐵𝐵(𝑡𝑡) times 𝛼𝛼 
equals encounters. Because you're going to take… So this (pointing to 𝐶𝐶(𝑡𝑡) × 𝐵𝐵(𝑡𝑡)) 
is the total possible encounters that could possibly happen if perfect conditions are 
met for each cat to meet each bird, and then you're going to take a percentage of that 
total, and that would be your total there.  

Pattern, and some other participants, were not iterating one quantity by the magnitude of the 
other. Instead, participants with this way of reasoning were taking number of total possible 
encounters between cats and birds at time t and finding a subset of those encounters. That 
subset represented the number of actual encounters at time t. This conception of × is similar 
to what Thompson (1990) called “comparing quantities multiplicatively”, in which he gave 



the example “This is (multiplicatively) what part of that?” (p.10). However, our participants 
depicted this quantitative relationship using × instead of ÷ . 

 To account for the fact that not all encounters result in a bird’s death, some participants 
constructed another quantity, similar to the one represented by 𝛼𝛼, called percentage of actual 
encounters that resulted in a birds’ death (represented by 𝛿𝛿). Participants combined 
percentage of actual encounters that resulted in a bird’s death (represented by 𝛿𝛿) with the 
quantity called number of actual encounters at time t (𝛼𝛼 × �𝐶𝐶(𝑡𝑡) × 𝐵𝐵(𝑡𝑡)�) with × to create 
the new quantity number of encounters that result in a bird’s death at time 𝑡𝑡. Participants 
were taking number of actual encounters at time t and finding a subset of those encounters. 
The resulting subset represented the number of encounters that result in a bird’s death at time 
𝑡𝑡. Participants then re-interpreted the meaning of this quantity so that the object was the bird 
population rather than the set of encounters between birds and cats. In doing so, the 
participants constructed the quantity dead birds at time 𝑡𝑡, where the object is the bird 
population, and the attribute is amount of dead birds. We note that this re-interpretation was 
not trivial, and some participants needed assistance from the facilitator.  

4.2 Dead Birds per unit time 

In this section, we describe how our participants constructed the quantity dead birds per 
standardized time unit, typically depicted as  

𝛿𝛿 × �𝛼𝛼 × �𝐵𝐵(𝑡𝑡) × 𝐶𝐶(𝑡𝑡)�� 

There were multiple combinations of quantities and different explanations for the 
participants’ use of × that resulted in the quantity dead birds per unit time. To contrast this 
quantity with the one described in the previous section, we characterize how participants used 
× to combine two quantities to result in a new quantity whose attribute is a frequency. 

Some participants combined number of birds at time 𝑡𝑡 (represented by 𝐵𝐵(𝑡𝑡)) and number of 
cats at time 𝑡𝑡 (represented by 𝐶𝐶(𝑡𝑡)) with × to create a new quantity called frequency of total 
possible encounters between cats and birds per unit time. Peet (electrical engineering) 
explained that he chose × because:  

Peet:  𝐵𝐵(𝑡𝑡) is counting the number of birds at time t. So at whatever time we decide, and 
𝐶𝐶(𝑡𝑡) is counting the number of cats.  

Int: So then what is 𝐵𝐵(𝑡𝑡) times 𝐶𝐶(𝑡𝑡) counting?  
Peet:  The number of cat and bird interactions over time.  
Int:  You had said something about the units being the encounters, the interactions over 

time. What did you mean by over time, as the units?  
Peet:  Because in the 𝐵𝐵(𝑡𝑡) and 𝐶𝐶(𝑡𝑡) compares the number of birds to number of cats at 

time 𝑡𝑡, so I guess I would change this time to delta time, so in whichever span of 



time that you decide you want to observe the relationship with these cats and birds, 
then you'll see the interactions that happen in that time.  

Peet was not iterating number of birds at time t, number of cats at time t many times. We 
infer Peet was attending to the notion that both quantities number of birds at time t and 
number of cats at time t varied with time. Because both quantities covaried with time, 
combining them with × created a frequency for Peet. Said differently, Peet combined two 
quantities corresponding to amount attributes with ×, producing a quantity whose attribute, 
for him, was a frequency. 

Alternatively, some participants created a quantity called percentage of encounters that are 
realized per unit time (represented by 𝛼𝛼). Participants combined percentage of encounters 
that are realized per unit time (represented by 𝛼𝛼) with number of total possible encounters 
between cats and birds at time t (represented by 𝐶𝐶(𝑡𝑡) × 𝐵𝐵(𝑡𝑡)) with × to create a new quantity 
actual encounters per unit time. Khriss (physics) explained that he chose × because: 

Khriss: Just taking a percentage of the total possibility.  
Int:  OK. Is that 𝛼𝛼? What is 𝛼𝛼 meaning? Like, what does that represent?  
Khriss: Just rate.  
Int: Rate of, like, what kind of units might you give it?  
Khriss:  I'd say encounters per time interval.  
We infer Khriss, and other participants who reasoned this way, were taking number of total 
possible encounters between cats and birds at time t and finding a subset of those encounters 
and transforming that subset so that it represents the rate of encounters per unit time. This is 
similar to what Thompson (1990) called “instantiating a rate”, which he gave the example 
“Travel 5 hours per mile for 6 miles” (p.10). However, we infer our participants were finding 
a subset and instantiating a rate simultaneously. We now unpack this conception of × using 
dimensional units. The dimensional units of percentage of encounters that are realized per 
unit time (represented by 𝛼𝛼) were “actual encounters per total encounters per unit time” and 
the dimensional units of number of total possible encounters between cats and birds at time t 
were “total encounters”. Combining percentage of encounters that are realized per unit time 
and number of total possible encounters between cats and birds at time t with × resulted in 
dimensional units of “actual encounters per unit time.”  Similarly, some participants then 
constructed another quantity called percentage of encounters that resulted in a bird’s death 
(represented by 𝛿𝛿). Percentage of encounters that resulted in a bird’s death was combined 
with other quantities with × to create the quantity encounters that resulted in a bird’s death 
per unit time. We infer participants held the same conception of × to create encounters that 
resulted in a bird’s death per unit time that was subsequently used to create dead birds per 
unit time. We note here that the two quantities we have reported on are quantitatively distinct 
from each other even though they appear to result from the same calculation.  

5 Discussion 



We have reported four conceptions of × participants used when combining quantities with 
arithmetic symbols in a predator-prey task. Two of those conception of the symbol × , 
repeated addition and instantiating a rate, were present in other studies (e.g., Nunes & 
Bryant, 2021; Thompson, 2011). The other two conceptions of the symbol ×, creation of a 
frequency and subsetting, have not been previously reported in literature. We postulate that 
these newly observed conceptions of  ×  were observable because our participants worked on 
a modeling task focused on a predator-prey relationship. This conjecture is based on findings 
that the models participants make depend on (and are constrained by), the quantities the 
participant imposes onto the situation (Czocher & Hardison, 2019), which inherently impacts 
the types of relationships the participants were able to express using arithmetic symbols. We 
speculate additional conceptions of arithmetic symbols could be observed in other task 
scenarios that call for advanced mathematics. For example, Sherin (2001) found several 
different meanings for arithmetic symbols physics students used to understand kinematic 
equations such as −  indicating either opposition in influence (i.e., inflow-outflow) or taking 
some part of a whole. Further research is needed to document additional conceptions of × as 
well as +,−,÷ that arise from modeling other real-world scenarios. 

Research has shown that focusing on quantitative reasoning can improve students’ ability to 
apply their mathematical knowledge to biology tasks (Hester et al. 2014). We expand on this 
in one way, framing mathematization through a quantitative reasoning lens helped us uncover 
the real-world relationships participants were trying to express when they used a given 
arithmetic operation in a predator-prey modelling task. In particular, the symbols 
𝛿𝛿 × �𝛼𝛼 × �𝐵𝐵(𝑡𝑡) × 𝐶𝐶(𝑡𝑡)�� represented both dead birds at time 𝑡𝑡 (an amount) and dead birds 
per unit time (a frequency).  This ties to our overarching objective to study mathematization 
from the quantitative reasoning lens to reveal root causes of the difficulties students face 
during mathematization. We noticed that participants who constructed the quantity dead birds 
per unit time more easily transitioned from subtask three to subtask four. We conjecture the 
reason was because participants could use a well-known formula like “rate times time equals 
amount”. Said differently, “representing elements mathematically so formulae can be 
applied” was not a blockage for participants who created the quantity dead birds per unit time 
while it was a blockage for participants who created the quantity dead birds at time t. The 
participants’ difficulties in subtask four arose from a discrepancy between their conception of 
× and the real-world relationship they were trying to represent. Specifically, it did not make 
sense to them to combine an amount quantity like dead birds at time 𝑡𝑡 with an elapsed time 
quantity like duration of time with × to create a quantity called dead birds during 𝛥𝛥𝛥𝛥.  

We hypothesize that one way an instructor could leverage students’ conceptions of +, −, ×, ÷ 
to help students’ connect their spontaneous models to a normatively correct model might look 
like guiding them to re-quantify a quantity in a way that compatible with the student’s in-the-
moment conception of +, −,  ×,  ÷. The first step would be to uncover the student’s in-the-
moment conceptions. 
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