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Three coloring via triangle counting
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Abstract

In the first partial result toward Steinberg’s now-disproved three coloring
conjecture, Abbott and Zhou used a counting argument to show that
every planar graph without cycles of lengths 4 through 11 is 3-colorable.
Implicit in their proof is a fact about plane graphs: in any plane graph of
minimum degree 3, if no two triangles share an edge, then triangles make
up strictly fewer than 2/3 of the faces. We show how this result, combined
with Kostochka and Yancey’s resolution of Ore’s conjecture for k = 4,
implies that every planar graph without cycles of lengths 4 through 8 is
3-colorable.

In a 1975 letter, Steinberg asked if a planar graph without 4- or 5-cycles is nec-
essarily 3-colorable [10, Problem 9.1]. There was little to no progress on Steinberg’s
conjecture until 1990. Surely some of this lack of progress was because Steinberg’s
conjecture is actually false, as established in 2017:

Theorem 1 (Cohen-Addad, Hebdige, Král’, Li, and Salgado [6]). There exists a

planar graph without cycles of length 4 or 5 that is not 3-colorable.

In 1990, Erdős asked [10, Problem 9.2] if there is an integer k such every planar
graph without cycles of lengths 4 through k is 3-colorable. The first answer to Erdős’s
conjecture appeared only a year after he posed it.

Theorem 2 (Abbott and Zhou [1]). Every planar graph without cycles of lengths 4
through 11 is 3-colorable.

Abbott and Zhou’s proof was at its heart a counting argument. A series of
improvements to Theorem 2 have been achieved, all using discharging rather than
counting arguments. First, Borodin [3] proved that it suffices to forbid cycles of
lengths 4 through 10. Then, Borodin [2] and Sanders and Zhao [9] proved indepen-
dently that it suffices to forbid cycles of lengths 4 through 9. The current state of
the art is the following.
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Theorem 3 (Borodin, Glebov, Raspaud, and Salavatipour [4]). Every planar graph

without cycles of lengths 4 through 7 is 3-colorable.

Given that Theorem 1 shows that forbidding cycles of lengths 4 and 5 does not
ensure a 3-coloring, this leaves an open problem.

Open Problem 4. If a planar graph does not have cycles of lengths 4, 5, or 6, is it
necessarily 3-colorable?

Our goal in this note is to revisit Abbott and Zhou’s proof of Theorem 2 and
show how combining their approach with a recent theorem of Kostochka and Yancey
yields a result nearly as good as Theorem 3 with very little effort. We begin by
making explicit a result about plane graphs that is hidden in Abbott and Zhou’s
proof of Theorem 2:

Theorem 5. If G is a connected plane graph of minimum degree 3 in which no two

triangles share an edge, then triangles make up strictly fewer than 2/3 of its faces.

Proof. Let G be a connected plane graph with n vertices, e edges, and f faces.
Further let n3 denote the number of degree 3 vertices in G, let f3 denote the number
of triangular faces of G, and let e3 denote the number of edges that lie on some
triangular face. Note that since no two triangles share an edge, f3 = e3/3. By
double counting edges, since the minimum degree of G is 3, we have

2e =
∑

v∈V (G)

deg v ≥ 3n3 + 4(n− n3) = 4n− n3,

so n3 ≥ 4n− 2e.

Now let v be a vertex of degree 3 in G. Since no edge is contained in two
triangles, at least one of the edges incident to v must not be part of a triangle, and
so contributes to e− e3. As this edge might be incident to two vertices of degree 3,
the most we can claim is that e − e3 ≥ n3/2, or after rearranging, e3 ≤ e − n3/2.
Combining this with our inequality on n3, we have

f3 =
e3
3

≤
e− n3/2

3
≤

2e− 2n

3
=

2f − 4

3
,

where the final equality follows by Euler’s formula, f + n = e + 2. This proves the
result.

Theorem 5 quickly leads to a proof of Theorem 2:

Proof of Theorem 2. Let G be a plane graph with n vertices, e edges, and f faces,
and without cycles of lengths 4 through 11. We prove the result by induction on n,
the base case n = 0 holding trivially. If G has a vertex v of degree at most 2, then
G − v is 3-colorable by induction, and we may extend such a coloring to 3-color G.
Thus we may assume that the minimum degree of G is 3. Similarly, we may assume
that G is connected.
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Let f3 denote the number of triangles in G. No two triangles of G may share an
edge because G does not contain any 4-cycles, so f3 < 2f/3 by Theorem 5. As every
edge lies on two faces and every non-triangular face of G has at least 12 edges, the
number of non-triangular faces of G satisfies f − f3 ≤ (2e− 3f3)/12. Thus we have

f ≤ f3 +
2e− 3f3

12
=

e

6
+

3f3
4

<
e

6
+

f

2
, (1)

so f < e/3. By Euler’s formula we have e = n+ f − 2, so

e = n+ f − 2 < n+
e

3
− 2, (2)

and thus e < 3n/2 − 3. This proves that G has average degree less than 3, but
that contradicts our assumption that the minimum degree of G is 3, finishing the
proof.

If cycles of length 11 are allowed, then the inequality in (1) must be changed to

f ≤ f3 +
2e− 3f3

11
=

2e

11
+

8f3
11

<
2e

11
+

16f

33
.

This implies that f < 6e/17, so (2) becomes

e = n + f − 2 < n +
6e

17
− 2,

and thus, e < 17n/11 − 34/11. This is not enough to guarantee a vertex of degree
at most 2, and so the argument used by Abbott and Zhou cannot be used to prove
a result stronger than Theorem 2.

There is, however, a different way to use Theorem 5 to prove a result about 3-
coloring planar graphs without certain cycles. A graph is k-critical if it has chromatic
number k, but all of its induced subgraphs have chromatic number strictly less than k.
Kostochka and Yancey [8] recently nearly resolved Ore’s conjecture on the minimum
number of edges in a k-critical graph. They also gave [7] a short and self-contained
proof in the case k = 4, where the result reduces to the following.

Theorem 6 (Kostochka and Yancey [7, 8]). If G is a 4-critical graph with n vertices

and e edges, then

e ≥
5n− 2

3
.

Kostochka and Yancey [7] showed how Theorem 6 leads to a very short proof
of Grötsch’s celebrated three color theorem (every triangle-free planar graph is 3-
colorable). Borodin, Kostochka, Lidický, and Yancey [5] later showed how Theorem 6
can also be used to give a short proof of Grünbaum’s three color theorem (every
planar graph with at most three triangles is 3-colorable). Below, we use Theorem 6
together with the bound on triangles given by Theorem 5 to derive a result nearly
as good as Theorem 3.
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Theorem 7. Every planar graph without cycles of lengths 4 through 8 is 3-colorable.

Proof. Suppose that the result is not true and take G to be a plane graph of minimal
order, say n, that is not 3-colorable despite having no cycles of lengths 4 through
8. Let e denote the number of edges of G and f denote the number of faces. As it
is a minimal counterexample, G must be 4-critical, so we have e ≥ 5n/3 − 2/3 by
Theorem 6. Let f3 denote the number of triangles in G; again we have f3 < 2f/3 by
Theorem 5. As the shortest non-triangular faces of G have length 9, the inequality
(1) in our proof of Theorem 2 becomes

f ≤ f3 +
2e− 3f3

9
=

2e

9
+

2f3
3

<
2e

9
+

4f

9
.

This implies that f < 2e/5, so by applying Euler’s formula, the inequality (2) be-
comes

e = n + f − 2 < n+
2e

5
− 2.

However, this shows that e < 5n/3 − 10/3, which contradicts the fact that e ≥

5n/3− 2/3.
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