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ABSTRACT
In this paper, we consider the fair division of indivisible goods under
arguably the strongest envy-based fairness notion of envy-free up
to any item (EFX). Extending the long line of work on special cases
of additive valuations, we show existence of EFX for the following
two cases: (𝑖) instances where agents are very picky, i.e., each agent
likes at most four items positively. (𝑖𝑖) ternary instances where the
value of an agent for an item is 0, 𝑎, or 𝑏 for 0 < 𝑎 < 𝑏 ≤ 2𝑎. In both
cases, the existence is shown by designing an efficient algorithm to
find an EFX allocation.
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1 INTRODUCTION
Fair division of scarce resources [19] is a fundamental problem in
many disciplines, including computer science, economics, opera-
tions research, and social choice theory, with numerous contempo-
rary applications [3, 5, 10, 17, 20].1 This paper considers the discrete
fair division problem, where a set𝑀 of indivisible goods needs to be
allocated to a set 𝑁 of 𝑛 agents. Each agent 𝑖’s preference over bun-
dles of goods is represented by a valuation function 𝑣𝑖 : 2𝑀 → R≥0.
One of the most well-studied classes of valuation functions are
additive, i.e., for any subset 𝑆 ⊆ 𝑀 of goods, 𝑣𝑖 (𝑆) =

∑
𝑗∈𝑆 𝑣𝑖 ( 𝑗).

The goal is to find a fair allocation/partition 𝑋 = (𝑋1, . . . , 𝑋𝑛) of
the goods set𝑀 where agent 𝑖 receives bundle 𝑋𝑖 .

Envy-freeness (EF), is arguably one of the most sought-after fair-
ness notion which dictates that no agent should envy another
agent’s allocation over their own, i.e., for each agent 𝑖 , 𝑣𝑖 (𝑋𝑖 ) ≥
𝑣𝑖 (𝑋𝑖′ ),∀𝑖′ ∈ 𝑁 . It has been extensively studied when the items are
divisible like cake, land, and milk [2, 9]. However, it ceases to exist
when items are indivisible – if we want to allocate an iPhone among
two agents who both value it, then no allocation is EF. Therefore, the

1Such problems find very early historical mentions, for instance, in ancient Greek
mythology and the Bible.
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focus shifted to the relaxations of EF. Arguably, the strongest among
these is Envy-free up to any item (EFX) [6], where no agent envies
another agent’s bundle after removal of any (non-trivial) good from
it, i.e., for any agent 𝑖 , 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋𝑖′ \ { 𝑗}), ∀𝑖′ ∈ 𝑁,∀𝑗 ∈ 𝑋𝑖′

such that 𝑣𝑖 ( 𝑗) > 0.2 Despite extensive work in recent years, the
existence of EFX remains unknown and is considered one of the
most important questions of fair-division [18]. Towards this ques-
tion, we study the existence of EFX allocations when agents are
either picky, i.e., value fewer items, or non-differentiative, i.e., have
only a few different values for the items.

[6] introduced EFX as the closest analog of EF for handling
indivisible goods. [16] showed the existence of EFX for the cases
of (𝑖) two agents, and (𝑖𝑖) for 𝑛 agents with identical valuations.
In a breakthrough, [7] showed the existence of EFX with three
agents under additive valuations. However, for four or more agents,
the problem still remains open.3 [4] showed existence of EFX for
binary valuations where every 𝑣𝑖 ( 𝑗) ∈ {0, 1}. This was extended
to restricted-additive valuations by [13] where every agent values
good 𝑗 at 0 or 𝑣 𝑗 > 0, i.e., 𝑣𝑖 ( 𝑗) ∈ {0, 𝑣 𝑗 }, ∀𝑖 ∈ 𝑁 . Extending the case
of the identical valuations, [15] showed that EFX exists if all the
agents have one of two given valuation functions. [11] considered
the case where all but two agents have identical valuation functions.
Additionally, [14] showed that EFX exists for 𝑛 agents when there
are at most 𝑛 + 3 items. Recently, [8] considered instances called
graphical instances where every item is valued by at most two
agents. [12] showed that EFX exists when there are 2 types of
objects and all agents have the same value for objects of the same
type. This is incomparable to ternary instances because when there
are two types of objects, 𝑣𝑖 ( 𝑗) = 𝑣𝑖 ( 𝑗 ′) =⇒ 𝑣𝑖′ ( 𝑗) = 𝑣𝑖′ ( 𝑗 ′) which
need not be the case for ternary instances.
Our Results. Continuing this line of work, we ask the following:
Q1. What if every agent likes only a few goods? For example,

while comparing courses, students may have positive value
for only a few that align with their interests.

Q2. What if every agent has only a few different values for the
goods? For example, every agent gives items one of three
different ratings.

Towards these questions, we show the existence of EFX under
the following two cases:

(1) Every agent likes at most 4 goods with strictly positive value.
(2) Every agent has a ternary valuation function with values

from {0, 𝑎, 𝑏} for 0 < 𝑎 < 𝑏 ≤ 2𝑎. This generalizes the binary
case and is incomparable to the restricted additive case.

2Many works consider a stronger version: for any agent 𝑖 , 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋𝑖′ \
{ 𝑗 }), ∀𝑖′ ∈ 𝑁, ∀ 𝑗 ∈ 𝑋𝑖′ . That is, the removed good may be trivial for agent 𝑖
in the sense that her value for it may be zero.
3Under general monotone valuations, the problem remains open for three or more
agents.
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Figure 1: (Left) Envy graph. (Right) EFX graph when object 𝑑 is being
assigned in Example 2.1.

For both cases, existence is derived by designing a polynomial-
time algorithm to find an EFX allocation. In terms of techniques, we
introduce the notion of the EFX graph with respect to a particular
good and use it in combination with repeated matching.

Finally, we note that [1] showed two results that relate to our
ternary result. Their first result, that EFX exists if all agents value
each object as either 𝑎 or 𝑏 for some 𝑎, 𝑏 ∈ R seems to cover our
ternary result. However, we provide a different algorithm. Their
algorithm relies on freezing agents for a number of rounds depen-
dent on the common 𝑎 and 𝑏, while ours could be extended to
the case where every agent 𝑖 values each object as 0, 𝑎𝑖 or 𝑏𝑖 for
0 ≤ 𝑎𝑖 ≤ 𝑏𝑖 ≤ 2𝑎𝑖 . Our algorithm is more similar to their second
result that EFX exists for instances where the values of an agent 𝑖
are in the interval [𝑥𝑖 , 2𝑥𝑖 ] for 𝑥𝑖 ∈ R>0 as we also use a variation
on a round robin, but account for the fact that the inclusion of 0 as
a value means that an agent could run out of valued objects in any
round, not just the last round.

2 TECHNICAL OVERVIEW
2.1 Picky Agents: Agents with limited liking
We discuss our algorithm to handle the case where every agent
likes a limited number of goods. Let us define an 𝑙-limited instance.

[𝑙-limited] We say that a valuation function 𝑣𝑖 is 𝑙-limited if
|{ 𝑗 ∈ 𝑀 | 𝑣𝑖 ( 𝑗) > 0}| ≤ 𝑙 . We say that instance (𝑁,𝑀,𝑉 ) is 𝑙-limited
if for every agent 𝑖 ∈ 𝑁 , 𝑣𝑖 is 𝑙-limited.

We next define the notion of 𝐸𝐹𝑋 with respect to partial alloca-
tions. In a partial allocation 𝑋 = (𝑋1, . . . 𝑋𝑛), an agent 𝑖 envies an
agent 𝑖′ if 𝑣𝑖 (𝑋𝑖 ) < 𝑣𝑖 (𝑋𝑖′ ). In a partial allocation 𝑋 = (𝑋1, . . . 𝑋𝑛),
an agent 𝑖 EFX-envies an agent 𝑖′ if 𝑣𝑖 (𝑋𝑖 ) < 𝑣𝑖 (𝑋𝑖′ \ { 𝑗}) for some
𝑗 ∈ 𝑋𝑖′ with 𝑣𝑖 ( 𝑗) > 0. A partial allocation 𝑋 = (𝑋1, . . . 𝑋𝑛) is EFX
if no agent 𝑖 EFX-envies another agent 𝑖′.

We then define two graph notions crucial for our algorithm: 𝑘th
value graph and the EFX graph. Fix a 4-limited instance (𝑁,𝑀,𝑉 ).
𝑘th Value Graph. Given a subset 𝑆 ⊆ 𝑁 of agents and 𝑇 ⊆ 𝑀 of
objects, the 𝑘th value graph denoted by 𝐺𝑘 (𝑆,𝑇 ) is defined as the
bipartite graph with vertices 𝑆 ∪𝑇 and an edge between 𝑖 ∈ 𝑆 and
𝑗 ∈ 𝑇 if and only if 𝑗 is the 𝑘th highest ranked object for agent 𝑖 .
EFX Graph. For good 𝑗 ∈ 𝑀 , set 𝑆 ⊆ 𝑁 of agents, and partial
allocation 𝑋 , define the EFX graph 𝐺efx ( 𝑗, 𝑆, 𝑋 ) as follows: it is a
directed graph with nodes for each 𝑖 ∈ 𝑆 with 𝑣𝑖 ( 𝑗) > 0, and an
edge from 𝑖 → 𝑖′ ⇐⇒ 𝑣𝑖 (𝑋𝑖 ) < 𝑣𝑖 ((𝑋𝑖′ ∪ { 𝑗}) \ { 𝑗 ′}) for some
𝑗 ′ ∈ (𝑋𝑖′ ∪ { 𝑗}) s.t. 𝑣𝑖 ( 𝑗 ′) > 0.

Example 2.1. Consider an instance with agents 𝐴, 𝐵,𝐶 and ob-
jects𝑎, 𝑏, 𝑐, 𝑑 with valuation functions 𝑣𝐴 (𝑎) = 2, 𝑣𝐴 (𝑏) = 1, 𝑣𝐴 (𝑐) =
3, and 𝑣𝐴 (𝑑) = 1; 𝑣𝐵 (𝑎) = 1, 𝑣𝐵 (𝑏) = 3, 𝑣𝐵 (𝑐) = 2, and 𝑣𝐵 (𝑑) = 4;
𝑣𝐶 (𝑎) = 1, 𝑣𝐶 (𝑏) = 2, 𝑣𝐶 (𝑐) = 3, and 𝑣𝐶 (𝑑) = 4. Let the partial
allocation be 𝐴 ↦→ 𝑎, 𝐵 ↦→ 𝑏, and 𝐶 ↦→ 𝑐 . Figure 1 shows the envy
graph and the EFX Graph for assigning object 𝑑 . □

Algorithm for 4-limited instances.

We initialize remaining agents 𝑁 𝑟 = 𝑁 , remaining objects𝑀𝑟 =

𝑀 , and the current partial allocation 𝑋 to be such that no object is
assigned yet. The algorithm runs in phases. In phase I, we define a
subset of agents, 𝐴, that strongly prefer their highest ranked object,
i.e. value their highest ranked object more than their second and
third highest ranked objects combined.We assign a 1st choice object
to as many agents in 𝐴 as possible using a maximum matching in
the 1st value graph on𝐴 and all objects, namely𝐺1 (𝐴,𝑀𝑟 ). Remove
𝐴 from 𝑁 𝑟 and the assigned objects from𝑀𝑟 .

In phase II, we assign at most one object to every agent that
doesn’t have an object, in the best way possible. We run the maxi-
mum matching algorithm 4 times in sequence. For 𝑘 = 1, 2, 3, 4, find
a maximum matching 𝑀𝑘 in graph 𝐺𝑘 (𝑁 𝑟 , 𝑀𝑟 ). For (𝑖, 𝑗) ∈ 𝑀𝑘 ,
assign object 𝑗 to agent 𝑖 , and remove the agents and objects in
the matching from 𝑁 𝑟 and 𝑀𝑟 . Let 𝑁𝑘 denote agents with their
𝑘th ranked object. Agents in 𝑁 𝑟 received nothing, while the others
received exactly one item. Thus this partial allocation is EFX.

In phase III, we look at agents, starting with those that have low-
ranked objects. Note that all the objects valued by an 𝑖 ∈ 𝑁4 ∪ 𝑁 𝑟

have been assigned, and therefore 𝑖 is taken care of in the sense
that 𝑖 will not EFX-envy any agent no matter how the allocation
is extended. We then assign a 4th choice object to as many of the
agents in 𝑁3 as possible. To assign a second object to as many of
the agents in 𝑁2 as possible, we first assign a 3rd choice object
to as many agents in 𝑁2 as possible and then assign a 4th choice
object to as many of the agents in 𝑁2 who have only one object,
as possible. We call the set of agents in 𝑁2 with their 3rd choice,
𝑁 𝑟
2 . Now, the only agents that may have valued objects not yet

assigned are in 𝑁1 and 𝑁 𝑟
2 . At this stage, we are able to prove that

for every unassigned object 𝑗 valued by someone, there will be a
source in the EFX graph𝐺efx ( 𝑗, 𝑁1 ∪𝑁 𝑟

2 , 𝑋 ) where 𝑋 is the current
partial allocation. Assigning 𝑗 to that source ensures that the partial
allocation stays EFX. Finally, we assign remaining objects, which
must be valued zero by all agents, to an arbitrary agent.

2.2 Agents with ternary valuations
We discuss our algorithm to handle the case where every agent
likes a limited number of goods. Let us define a ternary instance.

We say that instance (𝑁,𝑀,𝑉 ) is ternary for {𝑎, 𝑏}, 𝑎, 𝑏 ∈ R such
that 0 < 𝑎 < 𝑏, if ∀𝑣𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝑀, 𝑣𝑖 ( 𝑗) ∈ {0, 𝑎, 𝑏}.
Algorithm for ternary instances for {𝑎, 𝑏} where 0 ≤ 𝑎 ≤ 𝑏 ≤
2𝑎. Our algorithm consists of 3 steps repeated until all goods have
been assigned. In the first step, it modifies the current allocation to
remove all cycles from the envy graph. The resulting envy graph
(called 𝐺 in the algorithm) is acyclic, and therefore its vertices can
be ordered topologically. In the second step, it finds a topological
ordering, 𝐿, of the vertices of envy graph 𝐺 . This ensures that in
each iteration, an agent 𝑖 is always processed before all agents it
envies. Then, in the third step, it goes through 𝐿 and assigns the
best possible object to each agent in 𝐿.
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