
A Complementary Pivot Algorithm for Competitive Allocation
of a Mixed Manna
Bhaskar Ray Chaudhury,a Jugal Garg,a,* Peter McGlaughlin,a Ruta Mehtaa

aUniversity of Illinois at Urbana-Champaign, Urbana, Illinois 61801
*Corresponding author
Contact: braycha@illinois.edu (BRC); jugal@illinois.edu, https://orcid.org/0000-0001-6439-7308 (JG); mcglghl2@illinois.edu (PM);
rutameht@illinois.edu (RM)

Received: April 5, 2021
Revised: May 19, 2022
Accepted: July 31, 2022
Published Online in Articles in Advance:
September 26, 2022

MSC2020 Subject Classification: Primary:
91B50; 90C33; 68Q25

https://doi.org/10.1287/moor.2022.1315

Copyright: © 2022 INFORMS

Abstract. We study the fair division problem of allocating a mixed manna under addi-
tively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods
that everyone likes and bads (chores) that everyone dislikes as well as items that some like
and others dislike. The seminal work of Bogomolnaia et al. argues why allocating a mixed
manna is genuinely more complicated than a good or a bad manna and why competitive
equilibrium is the best mechanism. It also provides the existence of equilibrium and estab-
lishes its distinctive properties (e.g., nonconvex and disconnected set of equilibria even
under linear utilities) but leaves the problem of computing an equilibrium open. Our main
results are a linear complementarity problem formulation that captures all competitive
equilibria of a mixed manna under SPLC utilities (a strict generalization of linear) and a
complementary pivot algorithm based on Lemke’s scheme for finding one. Experimental
results on randomly generated instances suggest that our algorithm is fast in practice.
Given the PPAD-hardness of the problem, designing such an algorithm is the only
non–brute force (nonenumerative) option known; for example, the classic Lemke–Howson
algorithm for computing a Nash equilibrium in a two-player game is still one of the most
widely used algorithms in practice. Our algorithm also yields several new structural prop-
erties as simple corollaries. We obtain a (constructive) proof of existence for a far more gen-
eral setting, membership of the problem in PPAD, a rational-valued solution, and an odd
number of solutions property. The last property also settles the conjecture of Bogomolnaia
et al. in the affirmative. Furthermore, we show that, if the number of either agents or items
is a constant, then the number of pivots in our algorithm is strongly polynomial when the
mixed manna contains all bads.

Funding: Financial support from the Division of Computing and Communication Foundations,
National Science Foundation (NSF) [Grants 1942321, 1750436] is gratefully acknowledged.

Keywords: fair division • mixed manna • competitive equilibrium • LCP formulation • complementary pivot algorithm

1. Introduction
Fair division is the problem of allocating a set of items among a set of agents in a fair and efficient way. This age-
old problem, mentioned even in the Bible, arises naturally in a wide range of real-life settings, such as division of
family inheritance (Pratt and Zeckhauser [43]), partnership dissolutions, divorce settlements (Brams and Taylor
[6]), spectrum allocation (Etkin et al. [25]), airport traffic management (Vossen [56]), office space between cow-
orkers, seats in courses (Budish and Cantillon [8], Sönmez and Unver [47]), computing resources in peer-to-peer
platforms (Ghodsi et al. [32]), and sharing of earth observation satellites (Bataille et al. [2]). The formal study of
this problem dates back to the seminal work of Steinhaus [49] in which he introduced the cake-cutting problem
for more than two agents. Since then, it has been an active research area in many disciplines.

The vast majority of work focuses on the case of disposable goods, that is, items that agents enjoy or at least can
throw away at no cost. However, many situations contain mixed manna in which some items are positive goods,
whereas others are undesirable bads (chores). Potentially, agents might disagree on whether a specific item is a
good or a bad. Examples include dividing tasks among various team members, deciding teaching assignments
between faculty, or splitting assets and liabilities when dissolving a partnership.

Clearly, bads are nondisposable and must be allocated. At first glance, it seems that the tools and techniques
developed for the case of good manna (i.e., no bads) might apply, but the mixed manna case turns out to be

1630

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 48, No. 3, August 2023, pp. 1630–1656

ISSN 0364-765X (print), ISSN 1526-5471 (online)https://pubsonline.informs.org/journal/moor

mailto:braycha@illinois.edu
mailto:jugal@illinois.edu
https://orcid.org/0000-0001-6439-7308
mailto:mcglghl2@illinois.edu
mailto:rutameht@illinois.edu
https://orcid.org/0000-0001-6439-7308
https://pubsonline.informs.org/journal/moor

significantly more complex. The seminal work of Bogomolnaia et al. [3] initiated the study of mixed manna, in
which they argue why allocating a mixed manna is genuinely more complicated than a good or a bad manna
and why an allocation based on competitive equilibrium with equal incomes (CEEI) is the best mechanism. For
example, competitive allocation not only achieves the standard notions of fairness called envy-freeness and propor-
tionality, but it is also (Pareto) efficient and core stable. They show the existence of equilibrium and investigate
some of its distinctive properties. Namely, they establish that even the simplest case of linear utility functions
generally admits multiple equilibria, and the set of equilibria is nonconvex and disconnected.1 In sharp contrast,
in the same setting with good manna, an equilibrium is captured by a convex program. Designing fast algo-
rithms for mixed manna, even for linear utilities, is an important open question; the abstract of Bogomolnaia et al.
[3, p. 1847] mentions,2 “… the implementation of competitive fairness under linear preferences in interactive
platforms like SPLIDDIT will be more difficult when the manna contains bads that overwhelm the goods.”

Recently, Branzei and Sandomirskiy [7] and Garg and McGlaughlin [27] have made progress on this problem
by designing polynomial-time algorithms for computing competitive allocation under linear utilities when the
number of either agents or items is a constant. These algorithms are based on clever enumeration-based exhaus-
tive search, which may not be fast in practice in the general case.

1.1. Our Contributions
In this paper, we design a simplex-like algorithm for computing a competitive allocation of a mixed manna
when agents’ utility functions have a fairly general form: separable piecewise linear concave (SPLC), a strict gen-
eralization of linear; see Section 3 for a formal definition. In economics, it is customary to assume that utility
functions of goods are concave because they capture the important condition of decreasing marginal utilities.
Likewise, this assumption is also natural for bads to capture increasing marginal disutility, for example, consid-
ering the chore of reducing pollution from a plant at which driving emissions toward zero likely comes at a ris-
ing cost. The SPLC functions are also important for the fair division problems to capture natural situations when
there are limitations on the maximum amount of an item that can be assigned to an agent because of rationing
and other restrictions.

Experimental results on randomly generated instances suggest that our algorithm is fast in practice, answering
the question raised by Bogomolnaia et al. [3]. Our algorithm follows a systematic path rather than a brute force
enumeration of every configuration; see Section 5. The equilibrium computation problem is known to be
PPAD-hard (Chen and Teng [11], Chen et al. [13], Vazirani and Yannakakis [53]) even when all items are goods.
As a result, a polynomial time algorithm is not possible unless PPAD � P. We note that SPLC utilities are exten-
sively studied in the case of good manna; see, for example, Chen and Teng [11], Chen et al. [13], Garg et al. [31],
and Vazirani and Yannakakis [53]. To the best of our knowledge, they have not been studied before for a bad (or
mixed) manna. We also note that Bogomolnaia et al. [3, 4] mention reducing the bads under linear utilities into
goods under SPLC utilities; however, this may not always work; see Appendix A.

Our approach is based on Lemke’s [38] complementary pivoting on a polyhedron, which is similar in spirit to
a simplex algorithm for linear programming (Dantzig [16]) and the classic Lemke–Howson algorithm for com-
puting a Nash equilibrium of a two-player game (Lemke and Howson [39]). A common phenomenon in these
algorithms is that they perform well in practice even though their worst case behavior is exponential; the latter is
exhibited via intricately doctored up instances that are designed to make the algorithm perform poorly; for
example, see Klee and Minty [36] and Savani and von Stengel [46] for simplex and Lemke–Howson, respectively.
Given the PPAD-completeness of our problem, such a pivoting-based algorithm is the only non–brute force (non-
enumerative) option known.

The most striking feature of this approach is that it not only gives a fast algorithm, but also provides several
new structural results as simple corollaries. First, it yields the first (constructive) proof of the existence of a com-
petitive allocation of a mixed manna under SPLC utilities. Second, it shows that a rational-valued equilibrium
exists if all input parameters are rational. Third, together with the result of Todd [51], it gives a proof of member-
ship of this problem in PPAD. Fourth, this shows that the number of equilibria is odd in a nondegenerate
instance. We note that none of these results were known even for linear utilities. The last property also settles the
conjecture of Bogomolnaia et al. [3] in the affirmative, which shows the odd property for two agents (or two
items) under linear utilities and conjectures the same for any number of agents and items.

Furthermore, we show that, if either the number of agents or the number items is a constant, then the number
of pivots in our algorithm is polynomial when the mixed manna contains only bads. All our results also extend
to a more general setting of exchange; see Section 2 for a definition. To the best of our knowledge, the exchange
setting was not studied before despite its natural applications, for example, exchange of tasks among agents in
which a group of university students is teaching subjects or sports to each other or some landlords providing

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1631

shelter to apartment seekers in their houses in exchange for help in household chores; see, for example,
www.mitwohnen.org.

1.2. Techniques
Our approach requires two steps. First, we need to derive a linear complementarity program (LCP) formulation
for the problem whose solutions capture competitive equilibria. Second, we must show that the algorithm
always terminates at a competitive equilibrium; this is usually shown by proving no secondary rays (a special
kind of unbounded edges) in the LCP polyhedron; see Section 2.3 for details.

This approach is extensively utilized for computing equilibria in markets (with only goods) and in games; see,
for example, Eaves [22], Garg and Vazirani [28], Garg et al. [30, 31], Koller et al. [37], Hansen and Lund [34], and
Sørensen [48]. Each of them first obtains an LCP formulation that exactly captures equilibria and then shows that
there are no secondary rays. Despite significant efforts, no such LCP was found for competitive allocation of
mixed manna. Our LCP formulation has “nonequilibrium” solutions, and furthermore, it has secondary rays.

We first note that both the preceding steps must work simultaneously. In fact, it is not difficult to come up with
an LCP formulation for only bads by extending the LCP for only goods (Eaves [22], Garg et al. [31]). However, it
does not yield an algorithm. Hence, we first come up with a different LCP for only bads. The case of mixed
manna turns out to be even more challenging as simply merging the two LCPs does not work. This is due to the
single utility maximization over all items for each agent, and it is a priori not clear how much an agent wants to
spend on only goods (or bads). Using new ideas, we derive an LCP formulation that captures competitive alloca-
tion of a mixed manna, but it also captures some nonequilibrium solutions that we deal with in the second step.

The second step presents the most significant challenge. The major issue with Lemke’s scheme is that, in gen-
eral, it is not guaranteed to find a solution. This happens when the path followed by the algorithm leads to a sec-
ondary ray.

As mentioned before, the standard way to show convergence of a complementary pivot algorithm to a solution
is by proving that there are no secondary rays in the LCP polyhedron. However, our LCP formulation has secon-
dary rays. Therefore, we must show that the algorithm never reaches a secondary ray to guarantee its termina-
tion to a competitive equilibrium. In addition, we must show that the final output of the algorithm is an
equilibrium rather than a nonequilibrium solution to the LCP. This makes the analysis of our algorithm more
challenging than the previous works.

1.3. Further Related Work
The fair division literature is too vast to survey here, so we refer to the excellent books Brams and Taylor [6],
Moulin [40], and Robertson and Webb [44] and restrict attention to previous work that appears most relevant.

Most of the work in fair division is focused on allocating a good manna with a few exceptions of bad manna
(Azrieli and Shmaya [1], Brams and Taylor [6], Robertson and Webb [44], Su [50]). The seminal paper of Bogo-
molnaia et al. [3] is the first to study the case of mixed manna. Whereas linear is the most studied utility function
to model agents’ preferences (Bogomolnaia et al. [3]), SPLC is its natural extension to capture important general-
izations. For these models, competitive allocation of a good manna is very well-understood.

The two most ideal economic models to study competitive allocations are Fisher and Exchange. Fisher is a
well-studied special case of the exchange model. In the Fisher setting, the celebrated Eisenberg–Gale convex pro-
gram captures equilibrium when utility functions are homothetic, concave, and monotone, which includes linear
(Eisenberg [23], Eisenberg and Gale [24]). The program maximizes the product of the agents’ utilities (i.e., the
Nash welfare) on all feasible utility profiles and implies existence, convexity, uniqueness (of utility profile), and
polynomial time computation; there are faster algorithms for some special cases (Devanur et al. [19], Orlin [42],
Végh [54, 55]). For exchange, polynomial time algorithms are known for subclasses of homothetic functions,
including linear (Duan and Mehlhorn [20], Duan et al. [21], Garg and Végh [29], Jain [35], Ye [58]). Although the
SPLC case is known to be PPAD-complete even in the Fisher setting (Chen and Teng [11], Chen and Teng [12]),
the complementary pivot algorithm (Garg et al. [31]) works well in practice and is the only non–brute force
option known.

As in Bogomolnaia et al. [3], we assume that agents’ disutility values for bads (chores) are finite in this paper;
see Section 2.1. We note that the complexity of computing equilibrium in our model under linear utilities is not
settled yet. On the other hand, Chaudhury et al. [9] consider a slight variant of the problem in which an agent’s
disutility value for a bad can be infinity. For this model in the exchange setting, they show that computing a com-
petitive allocation of a bad manna under linear utilities is already PPAD-hard. This result, together with the non-
convex and disconnected set of solutions, suggests that our algorithm in this paper is likely to be the best one can
hope for this problem even under linear utilities.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1632 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

A preliminary version of our work appeared in Chaudhury et al. [10].
The rest of the paper is organized as follows. We introduce notation and preliminaries in Section 2. In Section 3,

we derive an LCP formulation that captures all competitive equilibria of a mixed manna under SPLC utilities. Our
algorithm and its analysis appear in Section 4. A precise description of all the results is presented in Section 4.2. In
Section 5, we show a strongly polynomial bound of the algorithm for only bad manna when the number of agents
(or items) is a constant. Section 6 summarizes our numerical experiments on randomly generated instances. Appen-
dix A presents a counterexample showing that bads cannot be reduced into goods, Appendix B illustrates that
Lemke’s scheme fails if we try a naive adaption of the LCP of Eaves [22] and Garg et al. [31], which is specialized to
goodmanna. Finally, Appendix C shows the convergence of the algorithm for the special case of badmanna.

2. Preliminaries
LetM be the set of m divisible items that needs to be divided among the set N of n agents. An item can be a good
or a bad (chore) for an agent as discussed earlier. Each agent i has a utility function ui : Rm

+ → R over bundles of
items. Let xi � (xij)j∈M denote agent i’s assigned bundle containing xij amount of item j. The standard notions of
fairness and efficiency are envy-freeness and Pareto optimality, defined as follows:
• (Weighted) envy-freeness: An allocationX � (x1, : : : ,xn) is said to have no envy if each agent weakly prefers the

agent’s allocation over any other agent’s allocation, that is, ui(xi) ≥ ui(xj), ∀i, j ∈N.
When agents have different weights (unequal rights/responsibilities), say ηi is the weight of agent i, then we say

that an allocationX has no envy if ui(xi)ηi
≥ ui(xj)

ηj
, ∀i, j ∈N.

• Pareto optimality: An allocation X′ � (x′1, : : : ,x′n) Pareto dominates another allocation X � (x1, : : : ,xn) if ui(x′i) ≥
ui(xi) for all i ∈N and uk(x′k) > uk(xk) for some k ∈N. An allocationX is Pareto optimal if no allocationX′ dominatesX.

2.1. Utility Functions
In this paper, we consider additively SPLC utility functions, which are strict generalizations of linear.

In the case of linear utilities, ui(xi) :�∑
jUijxij, whereUij is the utility of agent i for a unit amount of item j. Clearly,

Uij ≥ 0 if item j is a good for I, andUij < 0 if it is a bad. For bads, we also useDij :� |Uij |> 0 to denote the disutility of
agent i for a unit amount of bad j.

In the case of SPLC utilities, ui(xi) �∑
j∈Muij(xij), where, for each agent i and each item j, the function uij : R+ → R

is monotone piecewise linear and concave. The function is either nonnegative and increasing representing a good
or it is nonpositive and decreasing representing a bad (chore). We call each linear piece of uij a segment. Let |uij | be
the number of segments of uij, and let the triple (i, j, k) denote the kth segment. The slope of a segment gives the util-
ity received per each additional unit of the item. Let (i, j, k) be a segment with domain [a,b] ⊆ R+ and slope c. Define
Uijk :� c, and Lijk :� b− a. Note that the length of the last segment is infinite. However, because there is unit amount
of each item, we can assume without loss of generality that the length of the last segment is one plus some small
constant. Note that linear is a special case of SPLC in which each uij has exactly one segment with infinite length.
We assume that allUijks are finite.

Our assumptions on the function uij imply the following. If agent i receives positive utility from item j, then
Uijk >Uijk′ ≥ 0 for all k < k′, capturing the standard economic assumption of decreasing marginal returns on
goods. Otherwise, 0 ≥Uijk >Uijk′ for all k < k′, which models scenarios in which the disutility of completing a
chore increases with the percentage required to be performed, for example, cutting emissions from a plant. In the
latter case, we use the notation Dijk � |Uijk | for agent i’s disutility on the kth segment of uij. Figure 1 provides an
illustration of SPLC utility functions.

2.2. Competitive Equilibrium
The two most ideal economic models to study competitive allocations are Fisher and exchange. These are two
fundamental economic models, introduced by Fisher (Brainard and Scarf [5]) andWalras [57] in the late 19th cen-
tury, respectively. An exchange model is like a barter system, in which each agent comes with an initial endow-
ment of items and exchanges them with others to maximize the agent’s utility function. Fisher is a special case of
the exchange model in which each agent has a fixed proportion of each item. CEEI (Varian [52]) is further a spe-
cial case of Fisher in which each agent has the same endowment.

Let wi � (Wij)j∈M denote agent i’s initial endowment containing Wij ≥ 0 amount of item j. In Fisher, Wij � ηi,
∀i ∈N, j ∈M, where ηi is the budget (entitlement/weight) of agent i. In CEEI, ηi � 1=n, ∀i ∈N. Given prices of
items, each agent demands a utility-maximizing (optimal) bundle by spending the agent’s budget (earned by
selling the initial endowment).

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1633

Definition 1 (Competitive Equilibrium). A competitive equilibrium is defined by prices p � (pj)j∈M and allocation
(xi)i∈N satisfying the following two conditions:

1. Optimal bundle: Allocation xi maximizes agent i’s utility at p, that is, xi ∈ {argmaxui(y) s:t: ∑j∈Myjpj �∑
j∈M

Wijpj;yj ≥ 0, ∀j}. We note that it is without loss of generality to assume that agents exhaust their entire budgets at
equilibrium for our sufficiency condition (defined subsequently) to ensure equilibrium existence in which each
agent is nonsatiated for some good.

2. Demand meets supply (market clearing): Demand of each item equals its supply, that is,
∑

i∈Nxij � ∑
i∈NWij,

∀j ∈M.
Observe that equilibrium prices are scale invariant; that is, if p is an equilibrium price vector, then so is

αp, ∀α > 0. We can assume without loss of generality that each agent brings some fraction of some item and
there is a unit amount of each item, that is,

∑
i∈NWij � 1, ∀j ∈M. This is like redefining the unit of items by appro-

priately scaling utility values. Competitive allocations are well-known to be not only envy-free and Pareto opti-
mal, but also core stable (i.e., no coalition of agents by standing alone can allocate better shares to each agent in
the coalition). We note that competitive allocations may not imply Pareto optimality when agents are satiated.
Because we assume that each agent is nonsatiated (defined subsequently) for some good to ensure equilibrium
existence, it is always implied in our case.

2.2.1. Assumptions. Even in the special case of good manna, equilibria in an exchange setting need not exist
(Devanur et al. [18]). We need to assume certain sufficiency conditions to allow an equilibrium to exist. We note
that our conditions follow the previous works of Chen and Teng [11], Chen et al. [13], and Garg et al. [31] that
consider only goods and is one of the weakest sufficiency conditions to guarantee that an equilibrium exists in
the case of good manna. First, we include our basic assumptions.

Condition 1. Each agent brings a positive amount of some good and positive amount of some bad.

Definition 2 (Nonsatiation and Economy Graph). For any good j ∈M, we say that agent i is nonsatiated for j if Uijk >
0, where k is the last segment of good j. Define the economy graph as a directed graph G with vertices N with
directed edges from i to i′ if agent i is nonsatiated for some good j that agent i′ brings. We call the instance
strongly connected if the economy graph G is strongly connected.

Condition 2. The economy graph of the input instance is strongly connected.

Note that, Condition 2 is needed to ensure the existence of equilibrium even for the case of good manna (Chen
et al. [13], Garg et al. [31]). We refer to Conditions 1 and 2 together as strong connectivity. We show that our algo-
rithm in Section 4 converges to a competitive equilibrium under strong connectivity; hence, we get a constructive
proof of the existence. Observe that this implies the existence of equilibrium in all instances of the Fisher (and,
hence, CEEI) setting under linear utilities and nonsatiated SPLC utilities.

2.3. Linear Complementarity Problem and Lemke’s Scheme
The LCP is a generalization of linear programming (LP) complementary slackness conditions: given an n × n
matrix A and an n-dimensional vector q, the problem is to find y such that

∀i ∈ [n] : (Ay)i ≤ qi; yi ≥ 0; yi(Ay− q)i � 0, (1)

Figure 1. An example of SPLC utility functions for a good and a bad.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1634 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

where [n] :� {1, 2, : : : ,n}. Clearly, the problem is only interesting when qj < 0 for some j ∈ [n]; otherwise, y � 0
offers a trivial solution. Let P denote the n-dimensional polyhedron defined by the first two constraints of (1).
We assume that P is nondegenerate. That is, exactly n – d constraints hold with equality on any d dimensional
face of P. Under this assumption, each solution to (1) corresponds to a vertex of P because exactly n equalities
must be satisfied.

LCPs are general enough to capture (strongly) NP-hard problems (Cottle et al. [15]) and, therefore, may not
have a solution. Lemke’s scheme first augments the LCP by adding a scalar variable z to create easily accessible
solutions and considers the formulation

∀i ∈ [n] : (Ay)i − z ≤ qi; yi ≥ 0; yi((Ay − q)i − z) � 0
z ≥ 0: (2)

Observe that a solution (y,z) with z � 0 of (2) gives a solution y of (1) and vice versa. Let P′ be the polyhedron
defined by the first two linear constraints for each i ∈ [n] and z ≥ 0 constraint. The dimension of P′ is n+1.
Assuming that P′ is nondegenerate, solutions to (2) must still satisfy n constraints. Therefore, the set of solutions
S is a subset of the one-skeleton of P′; that is, solutions consist of edges (one-dimensional faces) and vertices
(zero-dimensional faces) of P′. Further, any solution to (1) must be a vertex of P′ with z � 0.

Solutions S to the augmented LCP have some important structural properties. We say that label i is present at
(y,z) ∈ P′ if yi � 0 or (Ay)i − z � qi. Every solution in S is fully labeled because label i is present for all i ∈ [n]. A solu-
tion s ∈ S contains a double label i if yi � 0 and (Ay)i − z � qi for i ∈ [n]. Further, there are two edges of S incident to s
because there are only two ways to relax the double label still keeping all the other labels. Obviously, any solution s
to (2) that satisfies z � 0 contains no double labels. Relaxing z � 0 yields the unique edge incident to s at this vertex.
From these observations, it follows that S consists of paths and cycles. We note that some of the edges in S are

unbounded. An unbounded edge of S incident to vertex (y∗,z∗) with z∗ > 0 is called a ray. Formally, a ray R has
the form

R � {(y∗,z∗) + α(y′, z′)|α ≥ 0},
where (y′,z′)≠ 0 solves (2) with q � 0 (the direction vector). Among all rays, one is special. Observe that y �
0, z ≥ |mini qi | gives a solution to (2) that forms an unbounded edge of S, known as a primary ray. All other rays
are called secondary rays. Starting from the primary ray, Lemke’s scheme follows a path on the one-skeleton of
P′ with a guarantee that it never repeats a vertex. Therefore, either it reaches a vertex with z � 0 that is a solution
of the original LCP (1) or it ends up on a secondary ray. In the latter case, the algorithm fails to find a solution,
and in fact, the problem may not have a solution. Observe that we can replace zwith ciz in (2), where ci � 0 when
qi > 0 and ci > 0 when qi < 0 without changing the role of z.

In what follows, for simplicity, we use the shorthand notation of

(Ay)i ≤ qi ⊥ yi

to represent {(Ay)i ≤ qi; yi ≥ 0; yi(Ay− q)i � 0} when defining LCPs.

3. LCP Formulation
In this section, we derive an LCP formulation that captures all competitive equilibria of a mixed manna under
SPLC utility functions defined in Section 2.1.

3.1. Identifying Goods and Bads
We begin with an important observation. Examining the first segment of each agent’s utility function reveals
the sign of the item prices at equilibrium. If there exists an agent i ∈N such that Uij1 > 0, then pj ≥ 0. Because
Uijk ≥ 0, ∀k for such a j, i demands an infinite amount of j if pj < 0 and then demand will not meet supply. There-
fore, in any equilibrium, if there exists an agent i such that Uij1 > 0, then pj ≥ 0. Similarly, if Uij1 ≤ 0, ∀i ∈N, then
pj ≤ 0 as, at any positive price, the demand of j is zero. In view of this, we refer to items with a nonnegative price
as goods and items with a nonpositive price as bads. Here, a negative price for a bad implies an agent can earn
by doing (consuming) the chore.

We can further refine these observations to identify situations in which there exists an equilibrium in which an
item’s price is zero. For any good j, that is, pj ≥ 0, we define the desire for j as

desirej �
∑
i∈N

∑
k:Uijk>0

Lijk: (3)

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1635

In words, desirej is the maximum possible demand for good j at any price pj > 0. Suppose that desirej ≤ 1 and
then observe that there exists an equilibrium in which pj � 0 because there is a unit amount of each item. Thus,
for any good j with desirej ≤ 1, we may set pj � 0; allocate the segments that provide positive utility for agents,
that is, Uijk > 0; and assign any remaining fraction of the good to any zero utility segments.

Similarly, for any bad j, that is, pj ≤ 0, we define the indifference to j as

indifferencej �
∑
i∈N

∑
(i, j, 1):Uij1�0

Lij1:

The indifference to j is the maximum amount of j that can be assigned without causing any agent to lose utility.
If indifferencej ≥ 1, then observe that there exists an equilibrium in which pj � 0, and the item can be allocated
among the agents along segments with Uij1 � 0.

Henceforth, we assume that the desire for every good is more than one and indifference to every bad is less
than one. Further, if the indifference to bad j is less than one, then observe that any segment (i, j, 1) for which
Uij1 � 0 is fully bought by agent i. Because we can remove these segments by setting xij1 :� Lij1, for simplicity, we
assume that Uijk < 0 for all segments (i, j, k) of bad j.

Remark 1. We note that our results generalize to the setting in which an agent’s utility function for an item is arbi-
trary piecewise linear concave, subsuming the studied case in which an item is either a good or a bad for an agent.
For this, first compute the desire for an item j as desirej �∑

i∈N
∑

k:Uijk≥0Lijk. The discussion implies that, if
desirej > 1, we can consider it as a good by settingUijk �max{0,Uijk} for every (i, j, k). If desirej ≤ 1, we can consider
it as a bad by setting xijk � Lijk for every (i, j, k) for which Uijk ≥ 0. For the boundary case in which desirej � 1, we
also set its price pj to zero.

Note that spending on bads “costs” a negative amount of money because the price is negative for any bad. The
natural economic interpretation is as follows. Suppose agent i accepts some portion of bad j the agent dislikes.
As the price of j is negative, this decreases the agent’s overall spending. Equivalently, the agent increases the
agent’s budget by accepting responsibility for handling some universally disliked chore in order to spend more
on goods the agent enjoys. Thus, the negative spending on bads can be viewed as receiving payment on some
chore j to increase the agent’s budget.

3.2. Characterizing Optimal Bundles
At any prices, for each uij function, clearly segment k ≥ 1 is more attractive to agent i than any later segment k′ > k
because of the concavity of uij. Therefore, even if agent i is allowed to buy “segments” of uij, the agent buys them in
increasing order. Formally, given a vector of prices p, an optimal bundle of items for agent i, that is, the bundle
that maximizes the agent’s utility subject to the budget constraint, solves the following LP:

max
∑
j,k

Uijkxijk s:t:
∑
j, k

xijkpj ≤
∑
j
Wijpj; 0 ≤ xijk ≤ Lijk, ∀(i, j, k),

where xijk is the fraction of item j allocated to agent i on the kth segment of uij. However, we require a more
explicit characterization for later analysis.

For any good j, define the bang per buck (bpb) of agent i on segment (j, k) as

bpbijk � Uijk

pj
:

Note that, bpbijk is the utility gained per unit spending on the kth segment of good j. Similarly, for any bad j,
define the pain per buck (ppb) of agent i on segment (j, k) as

ppbijk � Uijk

pj
:

Note that, for a bad j, because pj < 0 and Uijk ≤ 0, we have ppbijk ≥ 0, and it is the disutility per unit earning on the
kth segment of bad j.

Intuitively, optimal bundles for any agent consist of segments with maximum bpb for goods, which yield the
highest utility per unit spending, and minimum ppb for bads, which minimizes disutility per unit spending. This
can be easily verified through Karush–Kuhn–Tucker conditions on the preceding LP. Given prices p, these seg-
ments can be computed as follows. Sort agent i’s segments for goods in decreasing order of bpbijk and increasing
order of ppbijk for bads. Define the equivalence classes (partition) G1, : : : ,Gl for goods with equal bpbijk and

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1636 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

B1, : : : ,Bl′ with equal ppbijk for bads. Observe that each segment in Gd adds an equal amount of utility per unit
spending, whereas each segment in Bd′ adds an equal amount of disutility per unit earning. Obviously, agent i
demands Gds and Bd′s in the increasing order to maximize the agent’s utility subject to the budget constraint. By
abuse of notation, we use bpb(Gd) (respectively, ppb(Bd′)) to denote the bpb (ppb) of the segments in equivalence
class Gd (Bd′).

Because an agent’s utility decreases by consuming chores, the agent consumes one only if the agent needs the
money earned to either satisfy the agent’s budget constraint (pay for the chores the agent owns) or use it to buy
goods that (over)compensate for the disutility. Therefore, for agent i, if

∑
j∈MWijpj ≥ 0, then the agent consumes a

segment from Bd′ only if there exists a Gd such that bpb(Gd) ≥ ppb(Bd′). If the latter inequality is strict, then i choo-
ses to accept as much bads as possible from Bd′ to buy goods from Gd.

Suppose agent i stops buying goods and bads at equivalence classes Gd and Bd′ , respectively; Gd (Bd′) is the first
partition that is not fully consumed. We note that, if

∑
j∈MWijpj < 0, then agent imay consume only chores to earn

the desired money. For all k < d and k′ < d′, we call the segments of equivalence classes Gk and Bk′ forced. All the
segments of equivalence classes Gd and Bd′ are called flexible. And, for all k > d and k′ > d′, we call the segments
of Gk and Bk′ undesirable. For all agents, ppb ≥ bpb in their flexible partition.

3.3. LCP Formulation for All Bads
In this section, we derive an LCP formulation to capture competitive equilibria for the case when mixed manna
contains only bads, that is, Uijk ≤ 0, ∀(i, j,k). We build on the approaches of Eaves [22] and Garg et al. [31] for
only goods. Our task consists of two steps. First, we need to design constraints to ensure that the market clears
(i.e., all bads are fully allocated and each agent earns exactly the required budget). Second, we need to ensure
agents earn their budget on optimal bundles of bads.

The first problem, market clearing, is straightforward and does not even require complementarity. Note that
the LCP formulation requires nonnegative variables. However, prices and spending on bads are negative. There-
fore, we create nonnegative variables pj for all j ∈M, and fijk for all segments (i, j, k). We use (−pj) as the price of
bad j ∈M and (−fijk) as the amount agent i spends on segment (i, j, k). We also let Dijk � |Uijk | denote i’s disutility
on segment (i, j, k). Also, for each agent i, we introduce a variable ri to capture the reciprocal of the pain per buck
of agent i’s flexible partition.

Let ⊥ denote a complementarity constraint between an inequality and a variable (e.g.,
∑

jWijpj ≤∑
j,k fijk⊥ ri is a

shorthand for
∑

jWijpj ≤∑
j,k fijk; ri ≥ 0; ri(∑jWijpj − fijk) � 0). We ensure market clearing with the following con-

straints, in which each variable is paired with a constraint by complementarity conditions to yield a standard
LCP formulation:

∀i ∈N :
∑
j
Wijpj ≤

∑
j,k

fijk⊥ ri, (3a)

∀j ∈M :
∑
j,k

fijk ≤ pj⊥pj: (3b)

Lemma 1. If p∗ is an equilibrium price vector, then ∃ f � (fijks) such that (3a) and (3b) hold. Further, if p and f satisfy (3a)
and (3b) and p > 0, then the market clears.

Proof. Let p∗ be an equilibrium price vector and set p � |p∗ |. Let x∗ be an equilibrium allocation at p∗. For each
agent i and each bad j, we distribute x∗ij among individual segments by filling, starting from the first segment
until all of x∗ij is used, that is,

x∗ijk �min max x∗ij −
∑
k′<k

Lijk, 0

()
, Lijk

()
: (4)

The market clearing condition ensures that setting fijk � x∗ijkpj together with p satisfies (3a) and (3b). For the sec-
ond claim, suppose p, f satisfy (3a) and (3b) and p > 0. Summing (3a) over all i ∈N and (3b) over all j ∈M gives∑

j
pj �

∑
i, j

Wijpj ≤
∑
i, j,k

fijk ≤
∑
j
pj,

where the first equality uses the fact that there is a unit amount of each bad, that is,
∑

iWij � 1, ∀j ∈M. It follows
from the nonnegativity of all variables that all Constraints (3a) and (3b) hold with equality. Therefore, setting
xijk � fijk=pj ensures that the market clears. w

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1637

Next, we design constraints to ensure agents purchase optimal bundles of bads. Recall the characterization of
optimal bundles from Section 3. Let (i, j, k) be a segment of agent i’s flexible partition. We want variable ri to
satisfy

ppbijk � 1
ri
� Dijk

pj
> 0: (5)

For any forced segment (i, j′,k′), we have ppbij′k′ < ppbijk. We compensate for this by adding another variable
sij′k′ ≥ 0 for each segment (i, j′,k′) of i’s utility function. We want sijk > 0 for any forced segment and sijk � 0 other-
wise. The new variables can be interpreted as discount prices for each segment of i’s utility function. This leads
to the following constraints and complementarity conditions:

∀(i, j,k) : pj − sijk ≤Dijkri⊥ fijk, (3c)

∀(i, j,k) : fijk ≤ Lijkpj⊥ sijk: (3d)

We refer to each constraint by the equation number and the corresponding complementarity condition by the
equation number prime. Note that complementarity Condition (3d′) ensures that forced segments are fully pur-
chased. Let us denote the LCP defined by Constraints (3a)–(3d) as LCP (3). The next lemma shows that LCP (3)
captures all competitive equilibria.

Lemma 2. Any competitive equilibrium gives a solution to LCP (3).

Proof. Let (x∗,p∗) be a competitive equilibrium. Define p and f as in Lemma 1 and set ri according to (5) for any
segment (i, j, k) of i’s flexible partition. Note that ri > 0 because 0 <Dij1 <Dij2 < : : : for all bads j ∈M. By Lemma 1,
(3a) and (3b) hold with equality because (x∗,p∗) clears themarket.

We set variables sijk as follows: if (i, j, k) is undesirable or flexible, set sijk � 0. If (i, j, k) is a forced segment, set
sijk to satisfy

1
ri
� Dijk

pj − sijk
⇒ sijk � pj −Dijkri:

Note that sijk ≥ 0 because Dijk > 0 and Dijk=pj ≤ 1=ri for forced segments. It can be easily verified that, in each case
(segment is forced, flexible, or undesirable), the Constraints (3c) and (3d), and corresponding complementarity
conditions (3c′) and (3d′) are satisfied. w

LCP (3) suffers from a serious problem. The vector corresponding to the vector q in (1) representation contains
all zeros, meaning that it admits the trivial solution p � f � r � s � 0. We address this issue by a change of varia-
bles. For any equilibrium price vector p∗, there exists a largest price (in magnitude) P �maxj |p∗j |. Because equili-
brium prices are scale invariant, we can assume that P is a positive constant. Changing variables to define prices
relative to P makes −(P− pj) the price of bad j ∈M. Observe that bounding the maximum price (in absolute
value) also bounds each agent’s ppb in the agent’s flexible partition, that is, 1=ppb ≤ P=Dmin, ∀i ∈N, where
Dmin �mini,j,k:Dijk>0Dijk. Let a constant R > (P=Dmin) and replace ri with (R− ri). That is, we want 1=(R− ri) � ppbi
for i’s flexible partition. Substituting the new variables (i.e., pj with (P− pj) and ri with (R− ri)) into LCP (3) yields

∀i ∈N : −∑
j
Wijpj −

∑
j,k

fijk ≤ −P∑
j
Wij⊥ ri, (6a)

∀j ∈M :
∑
i, k

fijk + pj ≤ P⊥pj, (6b)

∀(i, j,k) :Dijkri − pj − sijk ≤DijkR−P⊥ fijk, (6c)

∀(i, j, k) : fijk + Lijkpj ≤ LijkP⊥ sijk: (6d)

LCP (6) still allows one noncompetitive equilibrium. Observe that setting pj � P, ∀j ∈M, ri � R, ∀i ∈N and all
other variables (f ,s) � 0 solves LCP (6), but this solution is not a competitive equilibrium. Rather, this degenerate
“equilibrium” proposes to make the price of each bad zero because the price of bad j is −(P− pj). In turn, this
makes each agent’s budget equal to zero and prevents the agent from earning on anything. Ultimately, this
leaves all bads unallocated, and the market doesn’t truly clear. We call this the degenerate solution. We show in
Section 4 that the algorithm never reaches this solution. Assuming pj < P, ∀j ∈M and ri < R, ∀i ∈N, it is straight-
forward to verify that Lemma 2 still holds.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1638 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

Lemma 3. In any solution to LCP (6)with pj < P, ∀j ∈M and ri < R, ∀i ∈N, each agent receives an optimal bundle of bads.

Proof. Recall that Dijk � |Uijk | > 0, ∀(i, j,k) because, for each agent, the agent’s utility for each bad is a concave,
decreasing function, that is, 0 <Dij1 <Dij2 < : : : . Because of the scale invariance of competitive equilibria, we may
pick any maximum price (in absolute value) P. Given the choice of P, we selected R such that R > P=Dmin. This
ensures DijkR−P > 0, ∀(i, j,k), which makes the right-hand side of (6c) positive for all segments (i, j,k). This
implies that ri > 0, ∀ i ∈N; otherwise, (6c) is a strict inequality. In turn, (6c′) forces fijk � 0, ∀(i, j, k). Then, for
each j ∈M, pj < P implies (6b) is strict, and therefore, we have pj � 0, which violates Inequality (6a).

Let (i, j, k) be a segment with the highest ppb that agent i spends on in the solution to LCP (6). Define σi as the
reciprocal of the pain per buck of this segment:

σi � P − pj
Dijk

� 1
ppbijk

:

Observe that σi > 0 because pj < P and Dijk > 0 for all segments of all bads.
We want to show that (R− ri) ≤ σi. Because agent i spends on segment (i, j, k), that is, fijk > 0, complementarity

Condition (6c′) requires that Constraint (6c) holds with equality. Because sijk ≥ 0, this yields

Dijk(R− ri) � P− pj − sijk ≤ P− pj �Dijkσi: (7)

Thus, (R− ri) ≤ σi because Dijk > 0.
Let Qi denote all segments of i’s utility function with ppb � 1=σi and call this the flexible partition. Similarly, let

the forced partition be all segments with strictly lower ppb than 1=σi and let the undesirable partition be all seg-
ments with strictly higher ppb than 1=σi. We show that these segments correspond to the forced, flexible, and
undesirable partitions described in Section 3.

Observe that undesirable partitions are unallocated by construction because we selected σi based on the seg-
ment receiving a positive allocation with the highest ppb. Now, consider any segment (i, j, k) in agent i’s forced
partition. We have

Dijk

P − pj
<

1
σi

⇒ P − pj > Dijkσi ≥ Dijk(R − ri):

Hence, to satisfy (6c), it must be that sijk > 0. Therefore, (6d) must hold with equality to satisfy (6d′). That is, the
segment is fully allocated.

Finally, let (i, j,k) ∈Qi. If (R− ri) < σi, then all segments of this partition are also fully allocated by the similar argu-
ment as earlier. In other words, the agent exhausts the agent’s budget when the agent is done consuming Qi as the
last partition. It follows from the characterization in Section 3 that each agent receives an optimal bundle of bads. w

Theorem 3. The solutions to LCP (6) with pj < P, ∀j ∈M and ri < R, ∀i ∈N exactly captures all competitive equilibria
(up to scaling).

Proof. By Lemma 1 at prices p∗j � −(P− pj) for all j the market clears. And, by Lemma 3, each agent receives an opti-
mal bundle of bads in any solution to LCP (6), that is, it is a competitive equilibrium. Further, up to change of varia-
bles from LCP (3) to LCP (6), Lemma 2 shows that every competitive equilibrium yields a solution to LCP (6). w

3.4. LCP Formulation for Mixed Manna
We now extend the LCP formulation to the general mixed manna case. Given the known LCP formulation for
SPLC utilities for good manna from Garg et al. [31] and LCP (6) for all bads, a natural question is can we simply
combine an LCP for goods and an LCP for bads to obtain an LCP for mixed manna? Note that this treats the
mixed manna case as two separate subproblems: one for goods and one for bads. Such a formulation requires
separate budget constraints for goods and bads; that is, each agent’s spending on goods (bads) is at least as much
as the agent’s earnings on goods (bads), similar to Constraint (3a). However, a simple example illustrates that, in
general, this is not possible.

Example 1. Consider an instance with two agents A and B and two items 1 and 2. Agents’ utilities are as follows:
uA(xA) � xA1 − 2xA2, and uB(xB) � xB1 − 3xB2. Assume each agent brings an equal amount of each item, that is,
WA1 �WA2 �WB1 �WB2 � 0:5.

There are a few important things to note. Both agents like item 1, so it is a good and p1 > 0, and because both
agents dislike item 2, it is a bad and p2 < 0. Clearly, both agents must purchase some of bad 2 at equilibrium. A
portion of item 1 cannot be purchased by both agents because optimal bundles require bpb � ppb. Thus, if both

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1639

agents purchase some of item 1, then uA1=p1 � uA2=p2 or p2 � −2p1, but we also have the requirement p2 � −3p1, a
contradiction. Therefore, only one agent purchases good 1. One can verify that prices p1 � 2 and p2 � −4 along
with allocation xA1 � 1, xA2 � 3=4, xB1 � 0, and xB2 � 1=4 are an equilibrium in which each agents’ initial budget is
set to –1. Note that agent 1’s total spending on the good (i.e., item 1) is two, and agent 2’s spending on the good
is zero. However, the total value of good in each agent’s initial bundle is one. Thus, neither agent’s spending on
the good equals the value of good in the agent’s initial endowment.

3.4.1. Basic Formulation. Similar to Section 3.3, we start by designing an LCP whose solutions capture competitive
equilibria. This requires that the market clears and agents purchase optimal bundles of goods and bads. Although
specialized to the case of all bads, the derivation of LCP (6) in Section 3.3 provides the basic framework needed to
handle the general mixed manna setting. As discussed in Section 3, we can identify which items are goods and
which are bads by examining the sign of the utility for the first segment of each agent. For every Uij1 ≤ 0 for a good
j, we set fijk :� 0 at the beginning itself and do not introduce the corresponding variables in our formulation. Note
that, when dealing with mixed manna, we assume strong connectivity (see Conditions 1 and 2).

For clarity, we first write all complementarity conditions with a minimal change of variables. Let M– and M+

denote the set of bads and goods, respectively. For all j ∈M−, prices, spending, and utilities are negative. We intro-
duce nonnegative variables pj and fijk for all j ∈M. We interpret pj as the price of good j ∈M+ and (−pj) as the price
of bad j ∈M−. Similarly, fijk gives agent i’s spending on segment (i, j, k) for good j, whereas −fijk gives i’s spending on
segment (i, j, k) of bad j ∈M−. We ensure market clearing with the following complementarity conditions:

∀i ∈N :
∑

k, j∈M+
fijk −

∑
k, j∈M−

fijk ≤
∑
j∈M+

Wijpj −
∑
j∈M−

Wijpj⊥ ri, (8a)

∀j ∈M− :
∑
i,k

fijk ≤ pj⊥pj, (8b)

∀j ∈M+ : pj ≤
∑
i, k

fijk⊥pj: (8c)

Note that we treat the spending constraints for bads (8b) and goods (8c) differently. Further, if all items are bads,
then we recover (3a) and (3b).

Lemma 4. If p∗ is an equilibrium price vector, then ∃ f such that (p, f) satisfies (8a)–(8c), where p � |p∗ |. Further, if p and
f satisfy (8a)–(8c) and p > 0, then the market clears.

Proof. Let (x∗,p∗) be an equilibrium. Set pj � |p∗j |, ∀j ∈M−, and pj � p∗j , ∀j ∈M+. For each agent i and each item j,
we distribute x∗ij among individual segments by filling starting from the first segment until all of x∗ij is used,
according to (4). The market clearing conditions for an equilibrium ensure that setting fijk � x∗ijkpj together with p
satisfies (8a)–(8c).
For the other case, suppose p, f satisfy (8a)–(8c) and p > 0. Summing (8a) over all i ∈N, (8b) over all j ∈M−, and

(8c) over all j ∈M+ gives∑
j∈M+

pj −
∑
j∈M−

pj �
∑

i, k, j∈M+
fijk −

∑
i,k, j∈M−

fijk ≤
∑

i, j∈M+
Wijpj −

∑
i, j∈M−

Wijpj �
∑
j∈M+

pj −
∑
j∈M−

pj,

because there is a unit amount of each item, that is,
∑

iWij � 1. Because all variables are nonnegative, it follows
that (8a)–(8c) hold with equality. Therefore, setting xijk � fijk=pj ensures that the market clears. w

The next step is to make sure agents purchase optimal bundles. Let (i, j, k) be a segment of agent i’s flexible par-
tition. We use variable ri to satisfy

1
ri
� Uijk

pj
if j ∈ M+, and

1
ri
� Dijk

pj
if j ∈ M−, (9)

where Dijk � |Uijk | for bad j. Recall that forced segments of goods and bads correspond to slightly different condi-
tions. For any forced segment (i, j,k′), we have ppbijk′ < ppbijk. For any forced segment (i, j, k′), we have bpbijk′ > bpbijk.
Again, we compensate for this by introducing a variable sijk ≥ 0 into each segment (i, j, k) of i’s utility function, lead-
ing to the following complementarity conditions:

∀j ∈M−, ∀(i, j,k) : pj − sijk ≤Dijkri⊥ fijk, (8d)

∀j ∈M+, ∀(i, j,k) : Uijkri ≤ pj + sijk⊥ fijk, (8e)

∀(i, j,k) : fijk ≤ Lijkpj⊥ sijk: (8f)

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1640 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

Observe that, if all items are bads, then we recover (3c) and (3d). Let us denote the LCP defined by Constraints
(8a)–(8f) as LCP (8).

Lemma 5. Any competitive equilibrium of mixed manna gives a solution to LCP (8).

Proof. Let (x∗,p∗) be a competitive equilibrium. In the LCP set pj � |p∗j |, ∀j ∈M and f as done in the proof of
Lemma 4. By Lemma 4, (8a)–(8c) hold with equality because (x∗,p∗) clears the market. Therefore, so do (8a′),
(8b′), and (8c′). For each agent i, if i purchases any goods, then set ri according to (9) for any flexible segment of
goods. Otherwise, set ri according to (9) for any flexible segment of bads. In either case, ri > 0 because i is nonsati-
ated for some good j, that is, Uijk > 0 and 0 <Dij1 <Dij2 < : : : for all bads j ∈M−.

We set variables sijk as follows: if (i, j, k) is undesirable or flexible set sijk � 0 whether j is a good or a bad. Recall
that, for a forced segment (i, j, k), if j ∈M+, then 1

ri
<

Uijk

pj
, and if j ∈M−, then 1

ri
>

Uijk

pj
. Using this, set its sijk to satisfy

1
ri
� Uijk

pj + sijk
, if j ∈M+, or

1
ri
� Dijk

pj − sijk
, if j ∈M−:

It is easy to verify that, in each case (segment is forced, flexible, or undesirable), Constraints (8d)–(8f) are satisfied
as well as the corresponding complementarity conditions (8d′)–(8f′). w

Similar to the case of all bads, LCP (8) admits solutions that are not competitive equilibria, for example, the trivial
solution p � f � r � s � 0. We use the same change of variables as before. We fix a maximum price (in absolute value)
P and define the relative prices: (P− pj) for all goods j ∈M+ and−(P− pj) for all bads j ∈M−. This bounds each agent’s
ppb or bpb in the agent’s flexible partition, that is, 1=bpb, 1=ppb ≤ P=Umin, where Umin �mini,j,k:Uijk≠0 |Uijk |. Using this,
we define a constantR > P=Umin and replace riwith (R− ri). That is, wewant 1

(R−ri) to represent ppb and bpb of agent i’s
flexible partition. Substituting pjwith (P− pj) for each j ∈M and riwith (R− ri) for each agent i ∈N into LCP (8) yields

∀i ∈N :
∑
j∈M+

Wijpj −
∑
j∈M−

Wijpj +
∑

k, j∈M+
fijk −

∑
k, j∈M−

fijk ≤ P
∑
j∈M+

Wij −
∑
j∈M−

Wij

()
⊥ ri, (10a)

∀j ∈M− :
∑
i,k

fijk + pj ≤ P⊥pj, (10b)

∀j ∈M+ : −∑
i,k

fijk − pj ≤ −P⊥pj, (10c)

∀j ∈M−, ∀i, k :Dijkri − pj − sijk ≤DijkR−P⊥ fijk, (10d)

∀j ∈M+, ∀i,k : −Uijkri + pj − sijk ≤ P−UijkR⊥ fijk, (10e)

∀(i, j, k) : fijk + Lijkpj ≤ LijkP⊥ sijk: (10f)

In the case of all bads, LCP (10) is equivalent to LCP (6) from Section 3.3.
Similar to LCP (6), LCP (10) still allows (at least) one noncompetitive equilibrium. By setting pj � P,

∀j ∈M, ri � R, ∀i ∈N, and all other variables (f ,s) � 0, we get a solution to LCP (10). However, this solution
does not correspond to a competitive equilibrium, but rather a degenerate solution in which all prices are zero
and no items are allocated. We show in Section 4.1 that the algorithm never reaches this degenerate solution.
Assuming pj < P, ∀j ∈M, and ri < R, ∀i ∈N, it is straightforward to verify that Lemmas 4 and 5 still hold.

Lemma 6. In any solution to LCP (10) with pj < P, ∀j ∈M, and ri < R, ∀i ∈N, all agents receive an optimal bundle and
market clears with respect to prices p∗, where p∗j � (P− pj) for all goods j ∈M+ and p∗j � −(P− pj) for all chores j ∈M−.

Proof. Given a solution of LCP (10), define p∗j � (P− pj), ∀j ∈M+ and p∗j � −(P− pj), ∀j ∈M− and allocation
x∗ij �∑

k fijk=p∗j , ∀(i, j). We want to show that (p∗,x∗) gives a competitive equilibrium. It is easy to show that the
market clears at (p∗,x∗) using (10a)–(10c) via a similar argument as in Lemma 4. Next, we show that every agent
receives an optimal bundle as per x∗ at prices p∗.

Recall that we picked P and R such that minj∈M−,i,kDijkR−P > 0, and P−minj∈M+,i:k UijkR < 0. Whereas similar to
the proof of Lemma 3, we now rely on the assumption that each agent i is nonsatiated for some good j; that is,
the final segment (i, j, k) of good j satisfies Uijk > 0. Notice that because Dijk > 0, ∀i,k for any bad j, and the preced-
ing assumption on goods implies that ri > 0, ∀i ∈N. Consider two cases: an agent purchases some bads or only
goods. In the first case, if ri � 0, then (10d) is a strict inequality. Then, (10d′) requires fijk � 0, ∀k, ∀j ∈M−, contra-
dicting the assumption that i purchases some bads. Similarly, in the second case, if ri � 0, then (10e) cannot hold
for the nonsatiated segment with infinite length.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1641

Here, we diverge from the case of all bads, depending onwhether an agent purchases any goods (or bads). Con-
sider any agent i. There are three cases, i purchases (a) only goods, (b) only bads, or (c) goods and bads. We focus
on the last case as it is the most complicated. The first two cases can be handled in a similar manner. Let (i, j, k) be
the segment of goods with the lowest bang per buck on which agent i spends, that is, fijk > 0. Define νi as the recip-
rocal bpb of this segment

νi � P − pj
Uijk

:

Note that 0 < νi <∞ because pj < P, and each agent is nonsatiated for some good j. Similarly, let (i, j′, k′) be the
segment of bads with the highest pain per buck, ppb, on which i spends, and define σi as in Lemma 3. We want to
show that νi ≤ (R− ri) ≤ σi. Therefore, bpbijk ≥ ppbij′k′ for any good j and any bad j′ on which i spends. From (7),
we have (R− ri) ≤ σi. By a similar argument, for the segment (i, j, k) with the lowest bang per buck,

Uijk(R− ri) � (P− pj) + sijk ≥ (P− pj) �Uijkνi:

Thus, (R− ri) ≥ νi.
Let Gi denote the set of segments of goods with bpb � 1=νi and call this the flexible partition of goods. Similarly,

let the forced partition of goods be all segments with strictly higher bpb than 1=νi and let the undesirable partition
of goods be all segments with strictly lower bpb than 1=νi. Define the various partitions of bads as forced for ppb
strictly less than σi, undesirable if ppb is strictly more than σi, and let Bi be the flexible partition for bads in which
ppb � 1=σi. As per the optimal bundle characterization described in Section 3, we need to show that fijk’s are zero
for the segments in undesirable partitions, fijk � Lijk(P− pj) for the segments in forced partitions, and 0 ≤ fijk ≤
Lijk(P− pj) for segments in Gi and Bi.

Observe that undesirable goods (bads) are unallocated by construction because we selected νi (σi) based on the
segment receiving a positive allocation with the lowest bpb (highest ppb). Consider any segment (i, j, k) in agent
i’s forced partition, whether a bad or a good. Observe that sijk > 0 in order to satisfy (10d) or (10e). Therefore,
(10f′) requires that (10f) holds with equality. That is, the segment is fully allocated.
For the flexible partition, if νi < (R− ri), then for all (i, j, k) ∈ Gi, it must be that sijk > 0, and hence, fijk � Lijk(P− pj);

otherwise, (i, j, k) could be partially allocated. Similarly, if (R− ri) < σi, then all the segments in Bi are fully allo-
cated; otherwise, they could be partially allocated. Thus, i only purchases goods with bpb ≥ ppb, and in the flexible
partition of goods and bads, bpb � ppb. It follows from the characterization in Section 3 that each agent receives an
optimal bundle of bads. w

The next theorem follows using Lemmas 5 and 6 together with the way LCP (10) is constructed from LCP (8).

Theorem 4. The solutions to LCP (10) with pj < P, ∀j ∈M, and ri < R, ∀i ∈N, exactly captures competitive equilibrium
of mixed manna (up to scaling).

Proof. By Lemmas 4 and 6, the market clears and each agent receives an optimal bundle of items in any solution to
LCP (10) with pj < P, ∀j ∈M and ri < R, ∀i ∈N; that is, it is a competitive equilibrium. Further, Lemma 5 shows that
every competitive equilibrium price yields a solution to LCP (10) with pj < P, ∀j ∈M and ri < R, ∀i ∈N. Therefore,
solutions to LCP (10)with pj < P, ∀j ∈M, and ri < R, ∀i ∈N, exactly captures competitive equilibria up to scaling. w

3.4.2. Augmented LCP and Nondegeneracy. Observe that LCP (10) has the same form as (1) in Section 2.3. We
now give the augmented LCP for this problem. By the choice of P and R > P=mini,j,k:Uijk≠0 |Uijk | we have that, for
all bads j ∈M−, DijkR−P > 0, ∀i,k. This makes the right-hand side of (10d) positive for all bads. Standard LCP
techniques (Eaves [22], Garg et al. [30, 31]) add variable z only in constraints with a negative right-hand side. We
make two changes. First, we include variable z in any constraints with a negative right-hand side and all budget
constraints (10a). Second, when adding z into spending constraints for goods (10c), we use a coefficient
δj � 1+ 1=(m+ j), where we use 1 ≤ j ≤ |M+ | as the index of the jth good j ∈M+. This change is necessary to ensure
that the polyhedron corresponding to the augmented LCP remains nondegenerate as discussed shortly. Adding
z to any constraints with a negative right-hand side and all budget constraints (10a) yields

∀i ∈N :
∑
j∈M+

Wijpj −
∑
j∈M−

Wijpj +
∑

k, j∈M+
fijk −

∑
k, j∈M−

fijk − z ≤ P
∑
j∈M+

Wij −
∑
j∈M−

Wij

()
⊥ ri, (11a)

∀j ∈M− :
∑
i, k

fijk + pj ≤ P⊥pj, (11b)

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1642 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

∀j ∈M+ : −∑
i, k

fijk − pj − δjz ≤ −P⊥pj, (11c)

∀j ∈M−, ∀i,k :Dijkri − pj − sijk ≤DijkR−P⊥ fijk, (11d)

∀j ∈M+, ∀i,k : −Uijkri + pj − sijk − z ≤ P−UijkR⊥ fijk, (11e)

∀(i, j,k) : fijk + Lijkpj ≤ LijkP⊥ sijk, (11f)

z ≥ 0: (11g)

Let P be the polyhedron corresponding to LCP (11). Lemke’s algorithm requires nondegeneracy of the polyhe-
dron P; that is, if P is defined on k variables, then at any d dimensional face of P, exactly (k− d) inequalities hold
with equality. In that case, the solutions of LCP (11) are paths and cycles on the one-skeleton of P. However,
there is an inherent degeneracy present when z � 0, that is, solutions of LCP (10).

Inherent degeneracy in LCP (10): summing (10a) over all i ∈N and (10b) over all j ∈M− and (10c) over all j ∈M+
yields two identical equations; see the proof of Lemma 4 for details. That is, there is an inherent degeneracy inP.

Clearly, the inherent degeneracy of LCP (10) is still present in P when z � 0. We need to show that no other
degeneracies exist. Note that, by using δj � 1+ 1=(m+ j) for all goods j ∈M+, we preclude the following degener-
acy at the primary ray: suppose δj � 1, ∀j ∈M+ and that pj � 0, ∀j ∈M+ and fijk � 0 for all segments (i, j, k) of
each good. If z � P, then (11c) also holds with equality ∀j ∈M+. Therefore, we have double labels for each good
j ∈M+.

If there is a degenerate vertex v ∈ P with z > 0, pj < P, ∀j ∈M, and ri < R, ∀i ∈N, then using the extra tight
inequalities at v we can derive a polynomial relation among the input parameters U �Uijks, W �Wijs, and
L � Lijks, that is, a multivariate polynomial equation in which each monomial is a product of some of U,W, and L
with integer coefficients. We show this formally in the following two theorems.

Theorem 5. If the instance parameters U, W, and L have no polynomial relation among them, then every vertex of P with
z > 0, pj < P, ∀j ∈M, and ri < R, ∀i ∈N, is nondegenerate.

Proof. We first show this theorem for the case of all bads, that is, for LCP (11) without (11c) and (11e). Let S �
(p,q, r,s, z) be a vertex solution to LCP (11) with z > 0 and pj < P, ∀j ∈M. For a contradiction, suppose S is degen-
erate. Then, S has at least two double labels. Let I be the set of inequalities of LCP (11) that hold with equality at
S. Remove all zero variables and their nonnegativity conditions from I as well as all conditions corresponding to
double labels at S. Our goal is to write all nonzero variables as linear functions of z, where the coefficients are in
terms of monomials of input parameters. Then, substituting these expressions into the double labels at S yields a
polynomial relation among input parameters.

For forced segments, that is, sijk > 0, remove conditions (11d) and (11f) from I and replace fijk with Lijk(P− pj).
For undesirable segments, (11f) is a strict inequality and fijk � 0. Thus, I contains no conditions (11d) or (11f) for
undesired segments either.

Now, we may write all nonzero variables as linear functions of z. All remaining fijk correspond to spending in
flexible segments. Clearly, for each agent I and each bad j, only one such segment exists. To simplify notation, we
relabel fijk for these flexible segments as fij and the corresponding Dijk as Dij.

Let E be the set of (i, j) pairs such that agent i has a flexible segment for bad j, that is, when condition (11d)
holds with sijk � 0. Then,

Dijri − pj �DijR−P: (12)

By considering the pairs of E as edges between N and M, we obtain a bipartite graph, say G. Note that G is acy-
clic; otherwise, we obtain a polynomial relation among Dij’s using (12) along the cycles to eliminate the ri’s and
pj’s.

Let H be a connected component of G. We pick a representative bad for H. If there is an undersold bad, that is,
(11b) is a strict inequality, then we pick this item, say b. Observe that, for any bad j ∈H, we may write

P− pj � φ1(D)
φ2(D) (P− pb), where φ1(D) and φ2(D) are monomials in terms of Dijs. Similarly, we may write R− ri in

terms of monomials of Dijs. Now, because (11b) is a strict inequality for bad b, the complementary condition
(11b′) requires pb � 0. In addition, no other bad j can be undersold in H; otherwise, these steps yield a polynomial
relation among Dijs.

Suppose that, for component H, the representative bad b is not undersold, that is, (11b) holds with equality.
Consider any leaf node v0 of H and remove the edge incident to it in H, say (v0, v1), to create H′. Let H′ be rooted
at v1. Starting from leaves of H′ and working toward the root v1, we can use market clearing conditions (11b) and
(11a) for bads and agents, respectively, to write all fij’s for edges in H′ as linear functions of z and the

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1643

representative prices obtained in the first step. Market clearing conditions give two different expressions for fij
on the missing edge (v0, v1). Thus, yielding a linear relation among the representative prices and z. This relation
is nontrivial because exactly one of them must contain aWij that is not present in the other.

If bad b is undersold, then a similar approach using b as the root allows us to write fij’s as linear functions of
representative prices and z. This gives a system of linear equations: pb � 0 if b is undersold, and pj is a linear func-
tion of representative prices and z otherwise. Solving this system, we obtain pj’s as linear functions of z. Substitut-
ing these expressions for representative prices in terms of z, we obtain expressions for fij’s, ri’s, and remaining
pj’s. We perform these steps for each connected component of G.

Finally, consider the equalities of G corresponding to double labels that we removed from I . Replace all varia-
bles by their linear functions of z. Use one double label to solve for z in terms of input parameters D, W, and L.
Substitute this value of z into the other double label to get a polynomial relation among input parameters, a
contradiction.

Now, for the general mixed manna case, the proof closely follows the case of all bads. We assume for a contra-
diction that the vertex is degenerate. Our goal is to write all nonzero variables as linear functions of z, where the
coefficients are in terms of monomials of input parameters. Then, substituting these expressions into the double
labels at S yields a polynomial relation among input parameters. Notice that we can still follow these steps in the
case of all bads to solve for r as well as p, f , and s for all bads j ∈M−. Thus, it remains to solve for p, f , and s for
all goods j ∈M+. Using similar arguments to the case of all bads, we find expressions for these variables as linear
functions of z. Substituting these expressions into the two sets of double labels yields a polynomial relation
among input parameters. w

By a similar argument, together with Theorem 4 and the fact that solutions of LCP (11) with z � 0 are solutions
of LCP (10), we get the following.

Theorem 6. If the instance parameters U, W, and L have no polynomial relation among them, then solutions of LCP (11)
with z � 0, pj < P, ∀j ∈M, and ri < R, ∀i ∈N, are in one-to-one correspondence with competitive equilibria.

Proof. To prove the theorem, it suffices to show one-to-one correspondence between solutions of LCP (10) and
competitive equilibria. For this, we first show a similar result for the case of all bads, that is, using LCP (6).
Because of scale invariance, it suffices to show this for the set of competitive equilibria, say E, where the mini-

mum price is –P. In LCP (6), we represent the equilibrium price of a bad as p∗j � −P+ pj. Therefore, we show a
one-to-one correspondence between elements of E and solutions to LCP (6) with pj � 0 for some bad j. Let
(x∗,p∗) ∈ E. By Theorem 3, any competitive equilibrium (x∗,p∗) yields a solution to LCP (6) using p � P+ p∗ and f ,
where fijk � x∗ijk(P− pj). We show that this choice of (p, f) yields exactly one solution to LCP (6).

For a contradiction, suppose not. Then, there exists different choices of r and s that, together with (p, f), solve
LCP (6). Observe that fixing p, f , and s also fixes r. Therefore, it must be true that, for some agent, say i, the
agent’s flexible partition, sayQi, is fully allocated, that is, fijk � Lijk(P− pj), ∀(j,k) ∈Qi. Set ri so that

1
R− ri

� Dijk

P− pj
,

for some segment (j,k) ∈Qi and set sijk � 0, ∀(j, k) ∈Qi. Set the r and s for all other agents similarly.
Let C �∑

i,j |uij | be the total number of segments over all agents and items. Observe that there are n+m+ 2C
variables in LCP (6). Further, the solution described gives at least n+m+ 2C+ 2 inequalities of LCP (6) that hold
with equality: market clearing gives (6a) ∀i ∈N and (6b) ∀j ∈M, and optimal bundles satisfy complementarity
conditions (6c′) and (6d′). Plus the requirement pj � 0 for some bad. Finally, all segments of agent i’s flexible par-
tition Q satisfy both (6d) and sijk � 0. However, nondegeneracy of LCP (6) means at most n+m+ 2C+ 1 inequal-
ities hold with equality at any vertex.

Now, for the general mixed manna case, showing the one-to-one correspondence follows from a nearly identi-
cal argument to that of the case of all bads. The only difference is that we must consider the set of equilibria with
the maximum magnitude of price equal to P, that is, pj � 0 for some good or some bad. Assuming a bad has price
with the maximum magnitude price P, follow the preceding arguments. The other case with a good also follows
from a similar argument. w

Remark 2. We can solve a degenerate instance using the standard ways to handle degeneracy in Lemke’s
scheme, namely, the lexico-minimum ratio test (see Chvátal [14], Cottle et al. [16, section 4.9], Savani [45, section
4.3]) to ensure termination in a finite number of steps.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1644 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

4. Algorithm
In Section 3.4.2, we design augmented LCP (11) that permits use of Lemke’s scheme, and we show a one-to-
one correspondence between competitive equilibria and solutions to LCP (11) with z � 0 and pj < P, ∀j ∈M
and ri < R, ∀i ∈N so long as the polyhedron P defined by LCP (11) is nondegenerate. Observe that LCP (11)
has the following form:

Ay− cz ≤ q, y ≥ 0, z ≥ 0, and y · (q−Ay+ cz) � 0,

where c is the vector of coefficients for z in LCP (11). For convenience, we use vk as a shorthand for (q−Ay+ cz)k.
Note that the condition v ≥ 0 follows from q−Ay+ cz ≥ 0. Of course, when vk � (q−Ay+ cz)k � 0, the kth con-
straint holds. Therefore, at any fully labeled vertex solution S of the polyhedron defined by LCP (11), either vk �
0 or yk � 0. At a double label, vk � yk � 0. Using the notation of Section 2.3, we let y � (p, f , r, s) be a vertex solution
to LCP (11).

Recall from Section 2.3 that Lemke’s algorithm explores a certain path of the one-skeleton of P, traveling from
vertex solution to vertex solution along the edges of P. Note that we chose R such that R > P=mini,j,k |Uijk |, which
ensures that the right-hand side of (11d) is positive, that is, DijkR−P > 0, for all segments (i, j, k), ∀i,k, ∀j ∈M−,
and that the right-hand side of (11e) is negative, that is, P−UijkR < 0, for all segments (i, j, k), ∀i,k, ∀j ∈M+. Fur-
ther, for sufficiently large R, we have miniP(∑j∈M+Wij −∑

j∈M−Wij) > P−maxj∈M+ ,i,kUijkR. Then, we get the primary
ray (initial solution) S0 by setting

S0 � y0 � 0, z � max
j∈M+, i, k

UijkR−P, v0 � q+ cz
{ }

:

Clearly, this initialization gives the unique double label y(ijk)∗ � v(ijk)∗ � 0 for (i, j,k)∗ � argmax(j∈M+,i,k)UijkR−P.
Algorithm 1 gives a formal description of Lemke’s algorithm applied to LCP (11). Assuming the input parame-

ters U, W, and L have no polynomial relation among them, Theorem 5 guarantees that any vertex with z > 0 is
nondegenerate. Therefore, a unique double label, say k, such that yk � vk � 0 always exists. Algorithm 1 pivots at
the double label by relaxing one constraint and traveling along the corresponding edge of P to the next vertex
solution. We prove the following theorem in the next section.

Theorem 7. If the input parameters U, W, and L have no polynomial relation among them, then Algorithm 1 terminates at
a competitive equilibrium in finite time.

Algorithm 1 (Algorithm for Competitive Equilibrium of a Mixed Manna)
Data: A, q
Result: A competitive equilibrium

1 S← S0;
2while z > 0 do
3 Let k be the double label in solution S, that is, yk � vk � 0.
4 if vk just became 0 then
5 Pivot by relaxing yk � 0.
6 else
7 Pivot by relaxing vk � 0.
8 end
9 Let S′ be the next vertex solution to LCP (11) reached, S← S′;

10 end

4.1. Convergence of Lemke’s Algorithm
We now show that Algorithm 1 always finds an equilibrium when the instance contains at least one good and
satisfies the strong connectivity assumption as defined in Section 2.2. Note that the strong connectivity assump-
tion is vacuous when all items are bads. For this case, we provide a separate convergence proof in Appendix C
without any assumptions. We note that, unlike earlier works that consider only good manna (Eaves [22], Garg
et al. [31], our LCP formulation allows for secondary rays and one nonequilibrium solution. This makes the proof
that Lemke’s algorithm finds a competitive equilibrium significantly more complex.

Let P be the polyhedron corresponding to LCP (11). To verify that Algorithm 1 terminates at a competitive
equilibrium, we need to examine two potential problems. First, we need to show that the algorithm never finds a

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1645

secondary ray. Second, we need to show that, starting from the primary ray, Algorithm 1 never reaches the
degenerate solution at which pj � P, ∀j ∈M, and ri � R, ∀i ∈N.

First, we consider secondary rays. Recall that a ray R is a unbounded edge of P incident to the vertex (y∗,z∗)
with z∗ > 0:

R � {[y∗,z∗] + α[y′, z′]|∀α ≥ 0}:
Clearly, all points onR solve LCP (11). Algorithm 1 begins at the primary ray S0, and all other rays are called sec-
ondary. Themajor issue is that, if Algorithm 1 finds a secondary ray, then it fails to terminate. Observe that setting
pj � P for some j ∈M− leads to secondary rays. Suppose we set pj � P for some subset of bads B ⊆M− and pj � 0
otherwise andmake all other variables (f , r, s) � 0. Then, wemay select sufficiently large z∗ to satisfy all constraints
of the form (11a), (11c), and (11e). Let y∗ � (p, f , r,s) be this vertex solution and consider the rayR � [y∗,z∗] + α[0, 1]
incident to (y∗,z∗). It is easily verified that R solves LCP (11) for all α > 0 and, therefore, is a secondary ray. We
want to show that the path traced by Algorithm 1 never reaches these problematic vertices.

We begin with a simple observation. Notice that setting pj � P for any good requires that z � 0 by (11c) and
(11c′). Therefore, Algorithm 1 stops at a vertex at which any pj � P for any j ∈M+. We follow this result with a
few useful facts.

Lemma 7. Let S be any solution to LCP (11) with pj < P, ∀j ∈M. Pick any agent i ∈N and any item (good or bad) j ∈M
and let k � |uij | be i’s final segment for item j. If j ∈M−, then sijk � 0. If j ∈M+ and pj > 0, then sijk � 0.

Proof. Recall that the length of the final segment (i, j, k) is infinite; however, we set Lijk � 1+ ε for some small ε > 0
because there is a unit amount of each item. We consider two cases: j is a bad or a good. First, suppose j ∈M−, and
for a contradiction, assume sijk > 0. By complementarity Condition (11f′), (11f) holds with equality. Then, fijk �
Lijk(P− pj) > 0 because pj < P at S. Consider Constraint (11b). From these observations, we see that

Lijk(P− pj) � fijk ≤
∑
i′,k′

fi′jk′ ≤ P− pj,

a contradiction because Lijk > 1, and pj < P.
Now, suppose j ∈M+ and pj > 0. For a contradiction, assume sijk > 0. Again (11f′) requires that (11f) holds with

equality so that fijk � Lijk(P− pj) > 0. Because pj > 0, then (11c′) requires that

P− pj �
∑
i′,k′

fi′jk′ + δjz ≥ fijk + δjz � Lijk(P− pj) + δjz,

a contradiction because Lijk > 1, δj, z ≥ 0. w

Lemma 8. At any solution to LCP (11), pj ≤ P, ∀j ∈M and ri ≤ R, ∀i ∈N. Further, if ri � R for some i ∈N, then
pj � P, ∀j ∈M−.

Proof. First, suppose pj > 0 for some j ∈M−. Complementarity Condition (11b′) requires that (11b) holds with
equality. Thus,

∑
i,k fijk + pj � P. Then, pj ≤ P because P and fijk’s are nonnegative. The case of j ∈M+ follows simi-

larly, using complementarity Condition (11c′).
Next, if ri > R for some i ∈N, then (11d) is infeasible because of Lemma 7, a contradiction.
For the second claim, we show the contrapositive. Suppose that pj < P for any j ∈M− and pick any agent i ∈N.

Recall that 0 <Dij1 <⋯<Dijk, where k is the final segment of i’s utility function for j. By Lemma 7, sijk � 0 so that
Constraint (11d) for segment (i, j, k) becomes Dijkri − pj ≤DijkR−P. Because pj < P, it follows that ri < R. w

Lemma 9. Starting from the primary ray, if Algorithm 1 reaches a vertex at which pj � P for some good j ∈M+, then pj′ �
P for all other items j′ ∈M, ri � R, for all i ∈N, and z � 0.

Proof. For a contradiction, let T be the vertex solution to LCP (11) in which pj � P for some good j for the first
time and assume that pj′ < P for some item j′ ∈M. Let S be the vertex that precedes T starting from the primary
ray and E be the edge between S and T. Note that such S exists because we start from the primary ray at which
p � r � 0. At T, z � 0 because of (11c), which implies that z→ 0 along E.

Let M1 be the set of goods for which pj → P on E and N1 � {i ∈N : ∃j ∈M1 s:t: Uijk > 0, k � |uij |} be the set of
agents that are nonsatiated for some good inM1.

Claim 1. At T, ri � R, ∀i ∈N1.

Proof. Let j ∈M1 and let i ∈N1 be an agent that is not satiated for good j. Let (i, j, k) be i’s final segment for good
j. Note that pj > 0 on E so that pj can increase to P. By Lemma 7, sijk � 0. Consider Constraint (11e) for this segment

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1646 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

on edge E

Uijk(R− ri) − (P− pj) − z ≤ 0: (13)

Along E, both z→ 0 and pj → P. Therefore, (13) implies that ri → R because Uijk > 0. w

Claim 2. If pj → P for some good j ∈M+, then pj′ → P, ∀j′ ∈M−.

Proof. Because item j is a good, at least one agent, say i, is nonsatiated for j. Therefore, by Claim 1, ri → R on E.
Consider any j′ ∈M−. Let k′ � |uij′| be i′s final segment of j′. By Lemma 7, sij′k′ � 0 on E. Then, Constraint (11d)
requires that

(P− pj′) ≤Dij′k′ (R− ri),
which implies that pj′ → P because ri → R. w

Claim 3. The agents of N1 purchase no items at T, that is, fijk � 0, ∀j, k, ∀i ∈N1.

Proof. At T, pj � P, ∀j ∈M− by Claim 2. Therefore, (11b′) requires that
∑

i,k fijk + pj � P, ∀j ∈M− at T. It follows
that no agent purchases any bad at T, that is, fijk � 0 ∀i,k, ∀j ∈M−. A similar argument shows that no agent pur-
chases any goods j ∈M1 at T.

Let i ∈N1, and j be any good such that pj < P at T. For a contradiction, suppose i purchases j at T, that is, at least
fij1 > 0. Then, (11e′) requires that (P− pj) + sij1 � 0 because ri � R and z � 0 at T. Thus, we obtain a contradiction
because sij1 ≥ 0 and pj < P. Therefore, the agents of N1 purchase no items (bads or goods) at T. w

Claim 4. Agents of N1 are not endowed with any fraction of any good j with pj < P, that is, ∀i ∈N1, Wij � 0 for all
j ∈M0 �M+\M1. Therefore, the budget of each agent i ∈N1 is equal to zero at T.

Proof. At T, the following conditions hold for all i ∈N1. First, ri � R by Claim 1. Then, (11a′) requires that (11a)
holds with equality. Next, Claim 2 shows that pj � P, ∀j ∈M−, and Claim 3 states that fijk � 0, ∀j, k. Recalling,
that z � 0 at T, then (11a) simplifies to ∑

j∈M0

Wij(P− pj) � 0:

Clearly, Wij � 0, ∀j ∈M0 for any i ∈N1 because pj < P, ∀j ∈M0. It follows that agents of N1 are only endowed
with items inM−⋃M1. All of these items have price |P− pj | � 0 at T. Thus, the budget of agents in N1 equals zero
at T. w

We now prove the lemma. Suppose pj < P for some item at T. Claim 2 shows that pj � P, ∀j ∈M−. Therefore,
j ∈M0. Define N0 �N\N1. Observe that |N0 | > 0; otherwise, |M0 | � 0 by Claim 4. It follows from Claim 1 that any
agent i ∈N0 is satiated for all j ∈M1, that is, the final segment (i, j, k) has Uijk � 0. Further, the agents of N1 start
with only goods of M1 by Claim 4. Therefore, in the economic graph described in Section 2.2, there are no edges
from the agents of N0 to any agents of N1. That is, the economic graph is not strongly connected, a contradiction.
Therefore, |M0 | � 0, N1 �N, and pj � P for all j at T. By Claim 1, ri � R, ∀i ∈N at T. w

Next, we show that, starting from the primary ray, Algorithm 1 never reaches secondary rays at which
pj � P, ∀j ∈ S ⊂M−, whereas pj < P, ∀j ∈M−\S. For this, we first prove the following lemma.

Lemma 10. Starting from the primary ray, if Algorithm 1 reaches a vertex at which pj � P for some bad j ∈M−, then pj′ �
P for all j′ ∈M−.

Proof. For the sake of contradiction, suppose T is the solution to LCP (11) in which pj � P for some bad j ∈M− for
the first time. Now, consider the vertex S � (p, f , r, s,z), which precedes T. That is, Algorithm 1 pivots at the vertex
S and travels along the edge E to T.

At S, 0 ≤ pj < P, ∀j ∈M− because T is the first time pj � P for some j ∈M−. In addition, complementarity Con-
dition (11b′) requires that Constraint (11b) holds with equality for bad j along the entire edge E so that pj may
increase to P. Then, the conditions

∑
i,k fijk + pj � P and pj < P imply that at least one agent, say i, spends on some

segment (i, j, k) along E. Recall that we select R large enough that the right-hand side of (11d) is positive for all seg-
ments (i, j,k). Observe that this implies ri > 0; otherwise, (11d) holds with strict inequality, which forces fijk � 0,
∀j,k by complementarity Condition (11d′). Thus, segment (i, j, k) is either forced or flexible for i, ri > 0, and (11d)
holds with equality for segment (i, j, k) along E.

Let j′ be a bad such that pj′ < P at T. By Lemma 7, i’s final segment k′ � |uij′| has sij′k′ � 0. Because (11d) holds
along E for segment (i, j, k), then Dijk(R− ri) � P− pj − sijk < P− pj. Also, because sij′k′ � 0, then Dij′k′ (R− ri) ≥ P− pj′

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1647

holds along E. Equivalently, we have

0 <
Dijk

(P− pj) ≤
Dijk

(P− pj) − sijk
� 1
R− ri

≤ Dij′k′

(P− pj′) :

Thus, we obtain a contradiction because pj → P but pj′ < P. w

Lemma 10 implies that we cannot have pj � P for some subset of bads, whereas pj < P for all remaining bads.
We still need to rule out the case in which pj � P, ∀j ∈M−. The argument follows similar reasoning to that of
Lemma 10. Setting pj � P, that is, the price of all bads equals zero, requires that at least one agent purchases some
bad as pj → P, sending ppb ↑ ∞. The more complicated portion of the proof lies in showing that this agent also
must purchase some goods. However, if pj < P, ∀j ∈M+, then bpb remains bounded. This gives a contradiction
because bpb ≥ ppbwhenever an agent purchases both bads and goods.

Lemma 11. Starting from the primary ray, if Algorithm 1 reaches a vertex at which pj � P, ∀j ∈M−, then pj′ � P, ∀j′ ∈
M+ and z � 0.

Proof. For a contradiction, let T be a solution to LCP (11) in which pj � P, ∀j ∈M− for the first time, but
pj < P, ∀j ∈M+. Note that Lemma 9 shows that pj < P, ∀j ∈M+; otherwise, pj � P, ∀j ∈M. Let S be the vertex
that precedes T.

On E, pj > 0, ∀j ∈M− so that pj may increase to P. Then, the conditions
∑

i,k fijk + pj � P and pj < P, ∀j ∈M−
imply that at least one agent, say i, spends in the agent’s first segment (i, j, 1) for some bad j. Note that ri > 0;
otherwise, (11d) holds with strict inequality, and so (11d′) requires fijk � 0 for all bads. Thus, segment (i, j, 1) is
either forced or flexible for i, ri > 0, and (11d) holds with equality for segment (i, j, 1) along edge. We want to
show that these conditions imply that the agent also purchases some good.

Observe that, on the edge E from S to T, every agent’s budget eventually becomes strictly positive because
pj → P, ∀j ∈M−. Fix ε > 0 and pick a point T′ on E so that 2|M− |maxj∈M−(P− pj) < ε. At T′, it follows that∑

k, j∈M−
| fajk −Waj(P− pj)| ≤ 2|M− |max

j∈M− (P− pj) ≤ ε, ∀a ∈N,

because Waj ≤ 1, and
∑

k fajk ≤ P− pj by (11b). Recall that ri > 0 so that (11a′) requires that ∑j′∈M+Wij′ (P− pj′) + z−∑
j∈M−Wij(P− pj) +∑

k,j∈M− fijk �∑
k,j′∈M+ fij′k, or∑

j′∈M+
Wij′ (P− pj′) + z− ε ≤ ∑

k, j′∈M+
fij′k ≤

∑
j′∈M+

Wij′ (P− pj′) + z+ ε,

at T′. Therefore, we must have fij′k′ > 0 at least for some segment (i, j′, k′) of some good j′ because
∑

j∈M+Wij

(P− pj) > 0, z ≥ 0, and ε > 0 was arbitrary. For this segment, complementarity Condition (11e′) requires that
Uij′k′ (R− ri) � (P− pj′) + z+ sij′k′ . Note that Uij′k′ > 0 because (P− pj′) > 0 on E, and z, sij′k′ ≥ 0. For the bad j, (11d′)
requires Dij1(R− ri) � (P− pj) − sij1 because fij1 > 0. Further, these conditions hold along the edge from T′ to T at
which pj → P, ∀j ∈M−. But, then,

Uij′k′

P− pj′ + z+ sij′k′
� 1
R− ri

� Dij1

(P− pj) − sij1
≥ Dij1

P− pj
,

so that Uij′k′=(P− pj′ + z+ sij′k′) →∞ because pj → P. Then, we must have pj′ → P, sij′k′ → 0, and z→ 0, along the
edge from T′ to T because sij′k′ ,z ≥ 0 and pj′ ≤ P, ∀j ∈M by Lemma 8. This is a contradiction because pj′ < P,
∀j ∈M+. w

Lemmas 9–11 rule out the possibility of secondary rays for which pj � P for some j ∈M−. We still need to show
that Algorithm 1 never reaches the degenerate solution.

Lemma 12. Starting from the primary ray, Algorithm 1 never reaches the solution pj � P, ∀j ∈M, and ri � R, ∀i ∈N
with all other variables, including z, equal to zero.

Proof. Let T be the degenerate solution. By Lemma 11, Algorithm 1 never reaches a vertex with pj � P, ∀j ∈M−,
whereas pj < P, ∀j ∈M+. Therefore, the only possibility is that all pj are set to P simultaneously.

Consider the vertex S that precedes T. At S, 0 < pj < P, ∀j ∈M so that pj’s can increase to P. Thus, (11b′) and
(11c′) require that (11b) and (11c) hold with equality at S. Summing these equalities over all j ∈M shows that the

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1648 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

total spending is ∑
i,k, j∈M+

fijk −
∑

i,k, j∈M−
fijk �

∑
i, j∈M+

(P− pj) −
∑

i, j∈M−
(P− pj) − z

∑
j∈M+

δj:

Note that z � 0 at T so that Algorithm 1 stops there. This implies 0 < ri < R, ∀i ∈N, at S so that the ri can increase
to R as required by Lemma 9. Therefore, (11a′) requires that (11a) holds with equality for all i ∈N. Summing over
all i yields ∑

i,k, j′∈M+
fij′k −

∑
i, k, j∈M−

fijk �
∑

i, j′∈M+
Wij′ (P− pj′) −

∑
i, j∈M−

Wij(P− pj) + zn:

Or, because there is a unit amount of each item, that is,
∑

iWij � 1, we see that∑
i, k, j′∈M+

fij′k −
∑

i,k, j∈M−
fijk �

∑
j′∈M+

(P− pj′) −
∑
j∈M−

(P− pj) + zn:

This implies that z(n+∑
j∈M+δj) � 0 at S. Thus, z � 0 because the δj > 0, ∀j ∈M+. This means that the algorithm

stops at S, which is a competitive equilibrium by Theorem 6. w

Theorem 8. Starting from the primary ray, Algorithm 1 never reaches a secondary ray.

Proof. Here, we need to impose conditions on the choices of P and R. After fixing any P ∈ R+, select R large
enough to ensure that the right-hand side of (11d) is positive, that is, DijkR−P > 0 for all segments (i, j, k),
∀i,k, ∀j ∈M−, and that the right-hand side of (11e) is negative, that is, P−UijkR < 0 for all segments (i, j, k),
∀i,k, ∀j ∈M+. Recall that the ray R � {[y∗,z∗] + α[y′,z′]|∀α ≥ 0} begins at the vertex (y∗, z∗) and travels in the
direction (y′, z′), where y � (p, f , r,s).

First, we show that y′ � 0, starting with p′ � 0. Consider Constraints (11b) and (11c) and complementarity Con-
ditions (11b′) and (11c′). For a contradiction, suppose p′j > 0 for some j ∈M. Then, p′j > 0, ∀α > 0, so (11b) or (11c)
must hold with equality. Because P is fixed, f ′ijk ≥ 0, ∀i, j,k, and z > 0, then eventually (11b) or (11c) is violated.
Therefore, p′ � 0. Similarly, by (11b), f ′ � 0, ∀j ∈M−. Note that, if p′ � 0, then the price of each item is constant
along E. Recall from Lemma 7 that sijk � 0 for the final segment k � |uij | of any bad. Therefore, r′ � 0; otherwise,
(11d) is eventually violated for the final segment (i, j, k) of any bad j ∈M− for any agent i ∈N. Also, because f ′ � 0
for all bads j ∈M−, the spending on bads is constant. If f ′ijk > 0 for some good j ∈M+, then z must increase to
ensure Inequality (11a) holds. Further, (11e) must hold for this segment (i, j, k) by complementarity Condition
(11e′) because f ′ijk > 0. However, because r′i and p′j are constant and sijk ≥ 0, (11e) cannot hold with equality as z
increases. This shows that p′, f ′, and r′ are constant. Observe that these variables determine s by (11d) and (11e).
Therefore, s′ � 0. It follows that z′ > 0; otherwise, no variables change.

Finally, we show y∗ � 0. Notice that, along the ray R, the money earned and spent by each agent remains con-
stant. However, z increases. Thus, complementarity Condition (11a′) implies that r∗ � 0. It follows that (11d)
holds with strict inequality for all bads j ∈M−, forcing f ∗ � 0 for bads j ∈M− by (11d′). Now, (11b′) requires that
p∗ � 0 for all bads j ∈M− because pj < P, ∀j ∈M and f ∗ � 0 for all bads j ∈M−. Because z increases, whereas ri and
pj remain fixed for all goods j ∈M+, complementarity Conditions (11c′) and (11e′) require that both p∗ and f ∗ are
equal to 0 for all goods j ∈M+. As a result, s∗ � 0 by (11f′) as (11f) holds with strict inequality ∀j ∈M because
pj < P, ∀j ∈M. Therefore, y∗ � 0, and the ray isR � [0,z∗] + α[0, 1], that is, the primary ray. w

Proof of Theorem 7. Theorem 5 shows that every vertex solution to LCP (11) with p < P, r < R, and z > 0 is non-
degenerate as long as there is no polynomial relation among U, W, and L. Lemmas 9–11 show that we never
reach a vertex at which pj � P for any j ∈M or ri � R for any i ∈N when the instance contains at least one good.
We provide a separate proof for the case when all items are bads in Appendix C. Therefore, there is always a
unique double label for Algorithm 1 at which to pivot. Theorem 8 establishes that Algorithm 1 never reaches a
secondary ray so that eventually it reaches a solution with z � 0, p < P, and r < R, which is an equilibrium by The-
orem 6.

4.2. Results
Theorem 7 directly yields the following results on existence, membership in PPAD, and the rational-valued
property.

Theorem 9. If the fair division instance of a mixed manna under SPLC utilities satisfies strong connectivity, as defined in
Section 2.2, then

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1649

i. There exists a competitive allocation, and Algorithm 1 terminates with one. Furthermore, Algorithm 1 finds a rational-
valued solution if all input parameters are rational numbers.

ii. The problem of computing a competitive allocation is in PPAD.

Proof. The first part follows from the last section. The second part follows from the result of Todd [51] on orient-
ability of the path followed by a complementary pivot algorithm and is exactly same as the proof of Garg et al.
[31, theorem 6.2]. w

Theorem 10. If the fair division instance of a mixed manna under SPLC utilities satisfies strong connectivity, as defined in
Section 2.2, and the input parameters U, W, and L have no polynomial relation among them, then there is an odd number
of competitive equilibria.

Proof. Because the parameters U, W, and L have no polynomial relation among them, Theorem 6 shows that all
solutions to LCP (11) with pj < P, ∀j ∈M, ri < R, ∀i ∈N, and z � 0 are competitive equilibria. Theorem 7 estab-
lishes that Algorithm 1 always terminates at one of these solutions. We now argue that all other equilibria are
paired up on paths of the polyhedron corresponding to LCP (11).

Theorem 5 shows that every vertex solution of LCP (11) with pj < P, ∀j ∈M, and ri < R, ∀i ∈N is nondegener-
ate. Therefore, a unique double label exists. Lemmas 9–12 show that, starting from a solution with pj < P, ∀j ∈M,
and ri < R, ∀i ∈N and traveling along the edge incident to the double label, we always reach another solution in
which pj < P, ∀j ∈M, and ri < R, ∀i ∈N. Thus, a set of paths connect these solutions. Moreover, Theorem 8
shows that these paths never reach a secondary ray. Therefore, if one starts from an equilibrium, then the subse-
quent path of solutions with pj < P, ∀j ∈M, and ri < R, ∀i ∈N must eventually end at a vertex where z � 0, that
is, another equilibrium. Then, all other equilibria, besides the one found starting from the primary ray, must be
paired. Thus, there is an odd number of equilibria. w

5. Strongly Polynomial Bound for All Bads
Devanur and Kannan [17] offer a strongly polynomial-time algorithm for the exchange model for goods with
SPLC utilities when the number of either goods or agents is constant, which Garg and Kannan [26] extend to the
more general Arrow–Debreu model with production. The approach uses a cell decomposition technique and the
fact that n hyperplanes in R

d form at most O(nd) nonempty regions or cells. Garg et al. [31] adapt this argument
to bound the number of fully labeled vertices in their LCP formulation for the exchange model for goods under
SPLC utilities. We follow their analysis and obtain a strongly polynomial bound on the runtime for the case of all
bads as well.

The main result of this section is the following theorem.

Theorem 11. If the fair division instance of a mixed manna under SPLC utilities that contains only bads has either con-
stantly many agents or constantly many bads, then Algorithm 1 runs in strongly polynomial time.

The idea is as follows. Suppose the number of bads, that is, m, is a constant. We decompose (p,z) space, that is,
R

m+1
+ , into cells by a set of polynomially many hyperplanes such that each cell corresponds to unique setting of

forced, flexible, and undesirable partitions. Then, we show that each fully labeled vertex maps into a cell by pro-
jection. Further, at most two vertices map to any given cell. Consider LCP (11) from Section 3 with M− �M (i.e.,
M+ � ∅). That is,

∀i ∈N : −∑
j∈M

Wijpj −
∑
k, j∈M

fijk − z ≤ −P∑
j∈M

Wij⊥ ri, (14a)

∀j ∈M :
∑
i, k

fijk + pj ≤ P⊥pj, (14b)

∀j ∈M, ∀i, k :Dijkri − pj − sijk ≤DijkR−P⊥ fijk, (14c)

∀(i, j, k) : fijk + Lijkpj ≤ LijkP⊥ sijk: (14d)

5.1. Constantly Many Bads
We consider R

m+1
+ with coordinates p1, : : : ,pm, z. For each tuple (i, j, j′, k, k′), where i ∈N, j≠ j′ ∈M, k ≤ |uij |, and

k′ ≤ |uij′|, create a hyperplane Dijk(P− pj′) −Dij′k′ (P− pj) � 0. This divides Rm+1
+ into cells in which each region has

one of the signs ≤ , �, or ≥. For any agent i ∈N, the sign of each cell gives a partial order on the pain per buck of
the agent’s segments. Thus, in any cell, we can sort segments (j, k) of agent i in increasing order of pain per buck

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1650 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

and create equivalence classes Bi
1, : : : ,B

i
l with same pain per buck. Let Bi

<l � Bi
1
⋃

⋯
⋃
Bi
l−1 and define Bi

≤l and Bi
≥l

similarly.
Next, we show how to represent the flexible partition. We further subdivide each cell by adding the hyper-

planes
∑

(j,k)∈Bi
<l
Lijk(P− pj) �∑

jWij(P− pj) − z for each agent i ∈N and each of the agent’s partitions Bi
l. For each

subcell, let Bi
li be the rightmost partition such that

∑
(j,k)∈Bi

<li
Lijk(P− pj) <∑

jWij(P− pj) − z for agent i. Then, Bi
li is

the agent’s flexible partition. Finally, we add the hyperplanes pj � 0, ∀j ∈M and z � 0 so that we only consider
the cells in which pj ≥ 0 and z ≥ 0. Because every vertex on the path followed by Algorithm 1 satisfies pj < P, we
only consider the cells in which pj < P. Observe that any vertex (y,z) traced by our algorithm maps to a cell by
projecting it onto (p,z) space.
Lemma 13. Let P be the polyhedron corresponding to LCP (14). Then, at most two fully labeled vertices of P map onto any
given cell. Further, if two vertices map to the same cell, then they are adjacent.

Proof. Each fully labeled vertex and each cell correspond to their own settings of forced, flexible, and undesirable
partitions for each agent. Therefore, if a vertex maps to a given cell, then these two setting must match. If a vertex
S � (p, f , r, s,z) maps to a certain cell, then the following inequalities are satisfied:

• If pj > 0, then
∑

i,k fijk � P− pj; else pj � 0 at S.
• If

∑
jWij(P− pj) − z ≥ 0, then

∑
jWij(P− pj) −∑

j,k fijk − z � 0; else ri � 0 at S.
• IfDij′k′ (P− pj) −Dijk(P− pj′) ≥ 0 for (j′,k′) ∈ Bi

li , then −Dijk(R− ri) + (P− pj) − sijk � 0; else fijk � 0 at S.
• IfDij′k′ (P− pj) −Dijk(P− pj′) > 0 for (j′,k′) ∈ Bi

li , then fijk � Lijk(P− pj); else sijk � 0.
In each of these complementarity conditions, one inequality is enforced. Therefore, their intersection forms a

line. If this line does not intersect P, then no vertex maps to this cell. If it does, then intersection is either a fully
labeled vertex or a fully labeled edge on which the solution is fully labeled along the entire edge. In the former
case, only the vertex S maps to the cell. In the latter, only the endpoints of the fully labeled edge map to the cell.
Clearly, these vertices are adjacent. w

Notice that the total number of hyperplanes we created is strongly polynomial. Therefore, this creates a
strongly polynomial number of cells as well.

5.2. Constantly Many Agents
In this case, we consider the space Rn

+ corresponding to the coordinates of r. Then, we create a partitioning of seg-
ments corresponding to the bads. Besides this change, the remaining analysis is similar.

Every fully labeled vertex S � (p, f , r, s,z) maps to R
n
+ by taking the projection on r. Given a fully labeled vertex,

for each bad j sort all of its segments (i, j, k) by increasing order of Dijk(R− ri) and partition them into equivalence
classes Bj

1, : : : ,B
j
l. Observe that, at this vertex, bad j gets allocated in order of these partitions. If segment (i, j,k) ∈

Bj
l is allocated, that is, fijk > 0, then all segments in partitions before Bj

l must also be allocated. We call the last allo-
cated partition the flexible segment, all partitions before it forced partitions, and all partitions after it the undesir-
able partitions of bad j. Suppose that segment (i, j, k) is in the flexible partition of bad j. Then, Dijk(R− ri) � P− pj;
otherwise, all segments in this partition are either undesirable or all of them are forced for the corresponding
agents. Therefore, the flexible partition defines the price of each bad.
Now, we decompose the space Rn

+ into cells in a way that captures the segment configuration of each bad. For
each tuple (i, i′, j,k,k′), where i≠ i′ ∈N, j ∈M, k ≤ |uij |, and k′ ≤ |ui′j |, we introduce the hyperplane Dijk(R− ri)−
Di′jk′ (R− ri′) � 0. In any cell, the signs of these hyperplanes gives a partial order of segments (i, k) for each agent i
based on Dijk(R− ri). Sort segments of each bad j in increasing order of Dijk(R− ri), and partition them into equal-

ity classes Bj
1, : : : ,B

j
l.

Next, we capture the flexible partition of each bad. If the bad is fully sold, then simply sum the lengths of seg-
ments starting from the first until it becomes one. An undersold bad requires more work. If a bad is undersold,
then pj � 0. Thus, segments of its flexible partition satisfy Dijk(R− ri) � P. To capture this, we add the hyperplanes
Dijk(R− ri) −P � 0, for all (i, j, k). Observe that the flexible partition of a bad is either the partition when it
becomes fully sold or where Dijk(R− ri) � P. This can easily be deduced from the signs of the hyperplanes.
Finally, we add the hyperplanes ri � 0, ∀i and consider only those cells for which 0 ≤ ri < R, ∀i.

From this discussion, it is clear that the fully labeled vertices that map to a given cell may be worked out simi-
larly to Lemma 13. Further, we obtain one equality for each complementarity condition because each cell cap-
tures the complete segment configuration, status of bads, and agents of the instance.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1651

Lemma 14. Let P be the polyhedron corresponding to LCP (14). Then, at most two fully labeled vertices of P map onto any
given cell. Further, if two vertices map to the same cell, then they are adjacent.

Clearly, our algorithm follows a systematic path rather than a brute force enumeration of every cell configura-
tion as in Branzei and Sandomirskiy [7] and Garg and McGlaughlin [27]. Theorem 11 follows from this discus-
sion because the number of hyperplanes is strongly polynomial in both cases.

Remark 3. It is not clear how to show a strongly polynomial bound for the case of mixed manna when the num-
ber of agents (or items) is a constant. This is due to the additional variable z appearing in (11e) (constraint to force
an optimal bundle). This makes the bpb condition unusable as a segment configuration at an arbitrary fully
labeled vertex.

6. Numerical Experiments
Table 1 summarizes the results of the numerical experiments conducted on randomly generated trials using a
Matlab implementation of our algorithm for a bad manna. Note that we used the same number of segments,
shown as #Seg in the table, for each agent and each item. We drew the Uijks, Lijks, and Wijs uniformly at random
from the intervals [−1, 0], [0, 1=# Seg], and [0, 1], respectively. Then, we rescaled the Wij values to ensure a unit
amount of each bad. Finally, for each agent i and each bad j, we sorted the Uijks in decreasing order to generate
SPLC utilities.

Figure 2 compares the maximum number of iterations versus the total number of segments in agents’ utility
functions, that is, N ×M × #Seg �∑

i,j |uij |. Note that, even in the worst case, the maximum number of iterations
is on the order of the total number of segments of the agents’ utility functions.

Acknowledgments
The authors are grateful to the anonymous referees for numerous valuable suggestions that have helped to improve the
presentation of the paper.

Table 1. Experimental results conducted on random instances.

N ×M × #Seg Instances Minimum iterations Mean iterations Maximum iterations

5 × 5 × 5 1,000 85 137.3 297
10 × 5 × 5 1,000 107 170.9 395
10 × 10 × 5 1,000 130 369.1 609
15 × 15 × 5 50 168 750.3 1,393
20 × 20 × 5 10 1,127 1,398.2 2,001

Figure 2. Plot of number of segments in agents’ utility functions versus max iterations in Table 1.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1652 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

Appendix A. Converting Bads into Goods?
Bogomolnaia et al. [3] propose a method to convert a competitive allocation problem with bads into a problem with only
goods. Note that their argument only applies to the Fisher setting and uses linear utility functions. The approach relies
on the interpretation of leisure as the opposite of work. Therefore, if agent i is assigned an xij fraction of bad j, then we
can equivalently view this as a good representing an exemption from completing a 1− xij fraction of the task.

The reduction from bads to goods proposed by Bogomolnaia et al. [3] is as follows. Assume there are n agents in the
competitive division problem. For each bad j, we create n – 1 units of a good j′ representing an exemption from complet-
ing bad j. Suppose agent i has utility Dij < 0 for bad j; then, i’s utility for good j′ is an SPLC with two segments. The first
segment has slope |Dij | > 0 and length Lij � 1, and the second segment has slope 0. Note that this means i values up to
one unit of exemption to the bad j.

Bogomolnaia et al. [3] state that, given an equilibrium (x′,p′) in the problem of goods, one can obtain an equilibrium
in bads by setting p∗j � −p′j and x∗ij � 1− x′ij.

A.1. Counter Example
Consider a competitive division problem with two agents a and b and three bads, 1, 2, and 3. The agents’ utility functions
are ua(x) � −10xa1 − 2xa2 − xa3, and ub(x) � −xa1 − 100xa2 − 100xa3. We create one unit of exemption for each bad. The utility
functions for agent a are SPLC in which the first segment has slope (10, 2, 1) for goods 1, 2, and 3, respectively, and are
capped at one unit of good. One can verify that prices p′ � (4=3,1=3,1=3), and allocation x′a � (3=4, 0, 0) and xb � (1=4, 1, 1)′
are an equilibrium in goods. In bads, this becomes p∗ � (−4=3, − 1=3, − 1=3) with the allocation x∗a � (1=4, 1, 1) and
x∗b � (3=4,0, 0). However, this is not a competitive equilibrium because a does not receive the same pbp for all bads. One
can check that prices p∗ � (−20=13, − 4=13, − 2=13) along with allocation x∗a � (7=20,4=13, 2=13) and x∗b � (13=20, 0, 0) give an
equilibrium.

Appendix B. Approach of Eaves [22] and Garg et al. [31] Gets Stuck on Secondary Rays
Previous works from Eaves [22] and Garg et al. [31] develop complementary pivot algorithms based on Lemke’s scheme for
good manna under SPLC utilities. The basic structure of our LCP is similar to prior works. However, they use a different
change of variables. Both Eaves [22] and Garg et al. [31] use a lower bound on prices by making the price of good j 1+ pj, where
pj ≥ 0. Thus, theminimum price is one (in absolute value). In addition, Eaves [22] and Garg et al. [31] make no changes to varia-
ble ri � 1=ppbi, where ppbi is the pain per buck of agent i’s flexible segment. In this section, we examine this change of variables
when applied to the special case of all bads with linear utilities. The resulting formulation is as follows:

∀i ∈N,
∑
j∈M

Wijpj −
∑
j∈M

fij − εiz ≤ −∑
j∈M

Wij⊥ ri, (B.1a)

∀j ∈M,
∑
i∈N

fij − pj ≤ 1⊥pj, (B.1b)

∀i ∈N, ∀j ∈M, pj −Dijri − δijz ≤ −1⊥ fij: (B.1c)

The constraints have the same interpretation as before: a budget constraint for all agents (B.1a), a constraint on the total
spending of agents for each bad (B.1b), and a minimum pain per buck constraint for each agent for each bad (B.1c). Note
that we add coefficients εi and δij to z for all terms with a negative right-hand side for two purposes. First, this provides
a degree of control over the primary ray, that is, the initial double label, and, therefore, how the algorithm starts. Second,
we require δij’s coefficients to ensure nondegeneracy of LCP when z > 0. To see this, suppose pj � 0 for some j ∈M, and
ri � 0, ∀i ∈N. Then, by setting z � 1, Constraints (B.1c) become tight (hold with equality) for this j, ∀i ∈N. Thus, there is
no unique double label.

We now examine the behavior of Lemke’s algorithm when starting from Constraint (B.1a) or (B.1c). We show that, in
both cases, the algorithm quickly reaches a secondary ray.

B.1. Starting from (B.1a)
Suppose we select εi � 1, ∀i ∈N, and ensure 1=δij <maxk

∑
jWkj. By setting z �maxk

∑
jWkj and all other variables (p, r, f) � 0,

we obtain a unique double label for Constraint (B.1a) for agent a � argmaxk
∑

jWkj. Specifically, all Constraints (B.1c) hold with
strict inequality.

Lemke’s algorithm then fixes z �maxk
∑

jWkj �∑
jWaj and increases ra. Observe that ra only appears in Constraints

(B.1c). However, because δajz > 1, and Daj > 0, ∀j ∈M, increasing ra never makes any Inequality (B.1c) tight for any j ∈M.
That is, we arrived at a secondary ray. Notice that the same problem arises regardless of from which budget Constraint
(B.1a) we start (assuming appropriate choice of εi’s and δij’s). Therefore, starting from budget Constraint (B.1a) always
leads to a secondary ray.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1653

B.2. Starting from (B.1c)
Suppose we fix εi � 1, ∀i ∈N, and δij’s such that maxk

∑
jWkj <maxi,j1=δij. Then, setting z �maxi,j1=δij and all other varia-

bles (p, r, f) � 0 yields the unique double label at Constraint (B.1c) for the pair (a,b) � argmini,jδij, that is, the agent a ∈N
and bad b ∈M that achieve maxi,j1=δij. Further, all Constraints (B.1a) hold with strict inequality.

Lemke’s algorithm fixes z � 1=δab and increases fab until some other inequality becomes tight. Note that (B.1a) cannot
become tight because of our choice of z. Then, (B.1b) becomes tight for bad b. At this point, we may change pb subject to
the following constraints:

fab � 1+ pb and 1+ pb � δabz:

We check whether a constraint of form (B.1a) or (B.1c) can become tight.

B.2.1. Starting from Pain per Buck Constraints (B.1c). For any i≠ a, we require that (B.1c) becomes tight yet observ-
ing the relationship between fab, pb, and z. Thus, we need

1+ pb � δibz � δib
δab

(1+ pb) > 1+ pb,

because δab �mini,jδij. Thus, no constraint of the form (B.1c) can become tight.

B.2.2. Budget Constraints (B.1a). For any i ∈N (including a), we require that (B.1a) becomes tight yet maintaining the
relationship between fab, pb, and z. Thus, for i≠ a, we need

Wib pb +
∑
j
Wij � z � 1+ pb

δab
,

or after rearranging,

ΣjWij − 1=δab︸

︷︷

︸
<0

� (1=δab −Wib)︸

︷︷

︸
>0

pb,

where the inequalities of the coefficients follow from 1=δab >maxk
∑

jWkj ≥Wib. However, no value of pb ≥ 0 suffices. Simi-
larly, if we want (B.1a) to become tight for agent a, then we need

ΣjWaj − 1=δab − 1︸

︷︷

︸
<0

� (1=δab −Wab + 1)︸

︷︷

︸
>0

pb,

and again, no value of pb > 0 works.

B.2.3. Conclusion. The examples demonstrate that, for this relationship between fab, pb, and z, no constraints can
become tight, that is, we have reached a secondary ray.

Appendix C. Convergence of Algorithm 1 with All Bads
In this section, we prove that Algorithm 1 always converges to an equilibrium in the case of all bads, M+ � ∅. The proofs
are similar in spirit to the mixed manna case, but there are minor differences in some details. We still show that the algo-
rithm never sets a subset price to zero, that is, pj � P, ∀j ∈ M̃ ⊂M; rather, all prices are set to zero simultaneously. How-
ever, we cannot rely on Lemma 9 to ensure that ri � R, ∀i ∈N, as used in Lemma 12, which shows that the algorithm
stops at an equilibrium before setting pj � P, ∀j ∈M. This is the only real difference between the proofs.

Recall LCP (14) of Section 5, which gives the augmented LCP formulation for all bads. Let k � argmaxi
∑

j∈MWij. Then,
we get the primary ray by setting z �∑

j∈MWkj and all other variables equal to zero.
We now show that Algorithm 1 never reaches a secondary ray at which pj � P for some subset of bads and z > 0 and

that the algorithm never reaches the degenerate solution at which pj � P, ∀j ∈M and all other variables equal to zero.
Note that Lemmas 7, 8, and 10 still hold. Therefore, pj ≤ P, ∀j ∈M, ri ≤ R, ∀i ∈N, and if pj � P for some j ∈M, then

pj � P, ∀j ∈M. Thus, the algorithm never reaches a secondary ray at which pj � P for some subset of bads and z > 0. It
remains to show that the algorithm never reaches the degenerate equilibrium at which pj � P, ∀j ∈M. The idea is similar
to Lemma 12. However, we cannot use Lemma 9 to show that pj � P, ∀j ∈M implies ri � R, ∀i ∈N.

Lemma C.1. Starting from the primary ray, Algorithm 1 never reaches the degenerate solution at which pj � P, ∀j ∈M, ri � R, ∀i ∈N,
and all other variables equal to zero.

Proof. Let T be a vertex at which pj � P, ∀j ∈M, S be the vertex that precedes T, and E be the edge between S and T. At
S, pj > 0 so that all pj → P on E. Therefore, complementarity Condition (14b′) requires that (14b) holds with equality on E,∑

i,k fijk � P− pj, ∀j ∈M. Because pj < P at S, this requires that, for each bad j ∈M, at least one agent, say i, purchases some
of this bad, that is, fijk > 0. Then, complementarity Condition (14c′) requires that (14c) is tight. Observe that this implies
that ri > 0; otherwise, (14c) holds with strict inequality for all segments (i, j, k). Therefore, for this agent, (14a) holds with
equality on E by complementarity Condition (14a′).

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1654 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

We argue that ri > 0, ∀i ∈N. If this condition holds, then (14a) is tight ∀i ∈N and (14b) is tight ∀j ∈M. Summing over
all of the constraints yields ∑

j
P− pj �

∑
j
Wij(P− pj) �

∑
i, j,k

fijk + nz �∑
j
P− pj + nz,

at S because
∑

iWij � 1. Then, z � 0 at S, which is a competitive equilibrium by Theorem 3.
For a contradiction, assume that rk > 0 for some strict subset of agents k ∈N1 ⊂N. Note that, for all agents i ∈N0 �N\N1,

(14c) holds with strict inequality because ri � 0, and therefore, complementarity Condition (14b′) requires that fijk � 0 for all
segments (j, k) for all i ∈N0. Further, because pj > 0, ∀j ∈M, at S, then (14b′) requires that (14b) is tight for all j ∈M. Then, we
see that

∑
j,k,i∈N1 fijk �∑

i,j,k fijk �∑
j(P− pj).

Next, observe that (14a) is tight for all i ∈N1 by complementarity Condition (14a′). Therefore,
∑

j,i∈N1Wij(P− pj) �∑
j,k,i∈N1 fijk + |N1 |z. Also, because every agent is endowed with some fraction of at least one bad and pj < P at S,

∑
j,i∈N1Wij(P

−pj) <∑
j(P− pj). Combining this results yields∑

j
(P− pj) >

∑
j, i∈N1

Wij(P− pj) �
∑

j, k, i∈N1

fijk + |N1 | z �
∑
j
(P− pj) + |N1 | z,

at S. Thus, we obtain a contradiction because pj < P, ∀j ∈M and z ≥ 0 at S. w

The only remaining step to show convergence of Algorithm 1 in the case of all bads is to show that the algorithm
never reaches a secondary ray at which p < P and r < R. However, this follows from the argument of Theorem 8 yet sim-
ply ignoring the steps that relate to goods.

Then, Lemmas 10 and C.1 show that, starting from the primary ray, p < P and r < R. Specifically, Algorithm 1 never
reaches a secondary ray at whih pj � P for some subset of bads, and it never reaches the degenerate solution. Theorem 8
shows that the algorithm never reaches any other secondary ray. Therefore, eventually, we reach a vertex at which
p < P, r < R, and z � 0, which is an equilibrium by Theorem 3.

Endnotes
1 A similar result is shown for only bad manna (Bogomolnaia et al. [4]). We also refer to an excellent survey article by Moulin [41].
2 Spliddit (www.spliddit.org) is a user-friendly online platform for computing fair allocation in a variety of problems, which has drawn tens
of thousands of visitors in the last five years (Goldman and Procaccia [33]). Spliddit uses linear utilities.

References
[1] Azrieli Y, Shmaya E (2014) Rental harmony with roommates. J. Econom. Theory 153:128–137.
[2] Bataille N, Lemaı̂tre M, Verfaillie G (1999) Efficiency and fairness when sharing the use of a satellite. Proc. Fifth Internat. Sympo. Artificial

Intelligence Robotics Automation Space, 465–470.
[3] Bogomolnaia A, Moulin H, Sandomirskiy F, Yanovskaia E (2017) Competitive division of a mixed manna. Econometrica 85(6):1847–1871.
[4] Bogomolnaia A, Moulin H, Sandomirskiy F, Yanovskaia E (2019) Dividing bads under additive utilities. Soc. Choice Welfare 52(3):395–417.
[5] Brainard W, Scarf H (2000) How to compute equilibrium prices in 1891. Cowles Foundation Discussion Paper 1270, New Haven, CT.
[6] Brams SJ, Taylor AD (1996) Fair Division—From Cake-Cutting to Dispute Resolution (Cambridge University Press, Cambridge, UK).
[7] Branzei S, Sandomirskiy F (2019) Algorithms for competitive division of chores. Preprint, submitted July 3, https://arxiv.org/abs/1907.

01766.
[8] Budish B, Cantillon E (2010) The multi-unit assignment problem: Theory and evidence from course allocation at Harvard. Amer. Econom.

Rev. 102(5):2237–2271.
[9] Chaudhury BR, Garg J, McGlaughlin P, Mehta R (2020) Dividing bads is harder than dividing goods: On the complexity of fair and effi-

cient division of chores. Preprint, submitted August 1, https://arxiv.org/abs/2008.00285.
[10] Chaudhury BR, Garg J, McGlaughlin P, Mehta R (2021) Competitive allocation of a mixed manna. Marx D, ed. Proc. 32nd Sympos. Discrete

Algorithms (SIAM, Philadelphia), 1405–1424.
[11] Chen X, Teng S (2009) Spending is not easier than trading: On the computational equivalence of Fisher and Arrow-Debreu equilibria.

Dong Y, Du D-Z, Ibarra OH, eds. Proc. 20th Internat. Sympos. Algorithms Comput. (Springer, New York), 647–656.
[12] Chen X, Paparas D, Yannakakis M (2017) The complexity of non-monotone markets. J. ACM 64(3):20:1–20:56.
[13] Chen X, Dai D, Du Y, Teng S (2009) Settling the complexity of Arrow-Debreu equilibria in markets with additively separable utilities.

Proc. 50th Sympos. Foundations Comput. Sci. (IEEE, Atlanta), 273–282.
[14] Chvátal V (1983) Linear Programming (W.H. Freeman and Company, New York).
[15] Cottle R, Pang JS, Stone R (1992) The Linear Complementarity Problem (Academic Press, Boston).
[16] Dantzig G (1963) Linear Programming and Extensions (Princeton University Press, Princeton, NJ).
[17] Devanur N, Kannan R (2008) Market equilibria in polynomial time for fixed number of goods or agents. Proc. 49th Sympos. Foundations

Comput. Sci. (IEEE, Philadelphia), 45–53.
[18] Devanur N, Garg J, Végh L (2016) A rational convex program for linear Arrow-Debreu markets. ACM Trans. Econom. Comput. 5(1):1–13.
[19] Devanur N, Papadimitriou C, Saberi A, Vazirani V (2008) Market equilibrium via a primal–dual algorithm for a convex program.

J. ACM 55(5):1–18.
[20] Duan R, Mehlhorn K (2015) A combinatorial polynomial algorithm for the linear Arrow-Debreu market. Inform. Comput. 243:112–132.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS 1655

http://www.spliddit.org
https://arxiv.org/abs/1907.01766
https://arxiv.org/abs/1907.01766
https://arxiv.org/abs/2008.00285

[21] Duan R, Garg J, Mehlhorn K (2016) An improved combinatorial polynomial algorithm for the linear Arrow-Debreu market. Krauthgamer
R, ed. Proc. 27th Sympos. Discrete Algorithms (SIAM, Philadelphia), 90–106.

[22] Eaves BC (1976) A finite algorithm for the linear exchange model. J. Math. Econom. 3(2):197–203.
[23] Eisenberg E (1961) Aggregation of utility functions. Management Sci. 7(4):337–350.
[24] Eisenberg E, Gale D (1959) Consensus of subjective probabilities: The Pari-Mutuel method. Ann. Math. Statist. 30(1):165–168.
[25] Etkin R, Parekh A, Tse D (2007) Spectrum sharing for unlicensed bands. Proc. First IEEE Sympos. New Frontiers Dynamic Spectrum Access

Networks. IEEE J. Selected Areas Commun. 25:517–528.
[26] Garg J, Kannan R (2015) Markets with production: A polynomial time algorithm and a reduction to pure exchange. Roughgarden T,

Feldman M, Schwarz M, eds. Proc. 16th Conf. Econom. Comput. (ACM, New York), 733–749.
[27] Garg J, McGlaughlin P (2020) Computing competitive equilibria with mixed manna. Seghrouchni AEF, Sukthankar G, An B, Yorke–

Smith N, eds. Proc. 19th Conf. Autonomous Agents Multi-Agent Systems (International Foundation for Autonomous Agents and Multiagent
Systems), 420–428.

[28] Garg J, Vazirani VV (2014) On computability of equilibria in markets with production. Chekuri C, ed. Proc. 25th Sympos. Discrete Algo-
rithms (SIAM, Philadelphia), 1329–1340.

[29] Garg J, Végh LA (2019) A strongly polynomial algorithm for linear exchange markets. Charikar M, Cohen E, eds. Proc. 51st Sympos.
Theory Comput. (ACM, New York), 54–65.

[30] Garg J, Mehta R, Vazirani VV (2018) Substitution with satiation: A new class of utility functions and a complementary pivot algorithm.
Math. Oper. Res. 43(3):996–1024.

[31] Garg J, Mehta R, Sohoni M, Vazirani VV (2015) A complementary pivot algorithm for market equilibrium under separable, piecewise-
linear concave utilities. SIAM J. Comput. 44(6):1820–1847.

[32] Ghodsi A, Zaharia M, Hindman B, Konwinski A, Shenker S, Stoica I (2011) Dominant resource fairness: Fair allocation of multiple
resource types. Proc. Eighth USENIX Conf. Networked Systems Design Implementation, 323–336.

[33] Goldman JR, Procaccia AD (2014) Spliddit: Unleashing fair division algorithms. SIGecom Exchanges 13(2):41–46.
[34] Hansen KA, Lund TB (2018) Computational complexity of proper equilibrium. Tardos E, Elkind E, Vohra R, eds. Proc. 19th Conf. Econom.

Comput. (ACM, New York), 113–130.
[35] Jain K (2007) A polynomial time algorithm for computing the Arrow-Debreu market equilibrium for linear utilities. SIAM J. Comput.

37(1):306–318.
[36] Klee V, Minty G (1972) How good is the Simplex algorithm? Shisha O, ed. Inequalities III (Academic Press, Boston), 159–175.
[37] Koller D, Megiddo N, von Stengel B (1994) Fast algorithms for finding randomized strategies in game trees. Leighton FT, Goodrich MT,

eds. Proc. 26th Sympos. Theory Comput. (ACM, New York), 750–759.
[38] Lemke C (1965) Bimatrix equilibrium points and mathematical programming. Management Sci. 11(7):681–689.
[39] Lemke C, Howson J (1964) Equilibrium points of bimatrix games. SIAM J. Appl. Math. 12(2):413–423.
[40] Moulin H (2003) Fair Division and Collective Welfare (MIT Press, Cambridge, MA).
[41] Moulin H (2019) Fair division in the internet age. Annual Rev. Econom. 11:407–441.
[42] Orlin J (2010) Improved algorithms for computing Fisher’s market clearing prices. Schulman LJ, ed. Proc. 42nd Sympos. Theory Comput.

(ACM, New York), 291–300.
[43] Pratt JW, Zeckhauser RJ (1990) The fair and efficient division of the Winsor family silver. Management Sci. 36(11):1293–1301.
[44] Robertson J, Webb W (1998) Cake-Cutting Algorithms: Be Fair if You Can (AK Peters, Natick, MA).
[45] Savani R (2006) Finding Nash equilibria of bimatrix games. Unpublished PhD thesis, London School of Economics and Political Science,

London.
[46] Savani R, von Stengel B (2006) Hard-to-solve bimatrix games. Econometrica 74(2):397–429.
[47] Sönmez T, Unver U (2010) Course bidding at business schools. Internat. Econom. Rev. 51(1):99–123.
[48] Sørensen TB (2012) Computing a proper equilibrium of a bimatrix game. Faltings B, Leyton–Brown K, Ipeirotis P, eds. Proc. 13th Conf.

Econom. Comput. (ACM, New York), 916–928.
[49] Steinhaus H (1948) The problem of fair division. Econometrica 16:101–104.
[50] Su FE (1999) Rental harmony: Sperner’s lemma in fair division. Amer. Math. Monthly 106(10):930–942.
[51] Todd M (1976) Orientation in complementary pivot algorithms. Math. Oper. Res. 1(1):54–66.
[52] Varian H (1974) Equity, envy and efficiency. J. Econom. Theory 29(2):217–244.
[53] Vazirani V, Yannakakis M (2011) Market equilibrium under separable, piecewise-linear, concave utilities. J. ACM 58(3):1–25.
[54] Végh LA (2014) Concave generalized flows with applications to market equilibria. Math. Oper. Res. 39(2):573–596.
[55] Végh LA (2017) A strongly polynomial algorithm for generalized flow maximization. Math. Oper. Res. 42(1):179–211.
[56] Vossen TW (2002) Fair allocation concepts in air traffic management. Unpublished PhD thesis, University of Maryland, College

Park, MD.
[57] Walras L (1874) Éléments d’économie politique pure, ou théorie de la richesse sociale (Elements of Pure Economics, or the Theory of Social

Wealth) (Lausanne, Paris), (1899, 4th ed.; 1926, rev ed., 1954, Engl. transl.).
[58] Ye Y (2007) Exchange market equilibria with Leontief’s utility: Freedom of pricing leads to rationality. Theoretical Comput. Sci. 378(2):

134–142.

Chaudhury et al.: A Complementary Pivot Algorithm for Allocating Mixed Manna
1656 Mathematics of Operations Research, 2023, vol. 48, no. 3, pp. 1630–1656, © 2022 INFORMS

