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Abstract

We prove that the category of continuous lattices and meet- and directed join-preserving
maps is dually equivalent, via the hom functor to [0, 1], to the category of complete Archimedean
meet-semilattices equipped with a finite meet-preserving action of the monoid of continuous
monotone maps of [0, 1] fixing 1. We also prove an analogous duality for completely distributive
lattices. Moreover, we prove that these are essentially the only well-behaved “sound classes of
joins Φ, dual to a class of meets” for which “Φ-continuous lattice” and “Φ-algebraic lattice” are
different notions, thus for which a 2-valued duality does not suffice.

1 Introduction

The classical Gelfand duality asserts that a compact Hausdorff space X may be recovered from
its ring of continuous functions C(X), and moreover such rings are up to isomorphism precisely
the commutative C∗-algebras. From a categorical perspective, C(X) is best regarded as having
“underlying set” given by its (positive) unit ball, i.e., consisting of continuous I := [0, 1]-valued
functions, so that Gelfand duality falls under the umbrella of Stone-type dualities induced by two
“commuting” structures on I; see [Joh82, VI §4]. Namely, I is equipped with its usual compact
Hausdorff topology, and also with all operations Iκ → I “commuting” with the topology, i.e., which
are continuous. Thus, for another object in either category, the hom functor into I yields a dual in
the other category, and this gives a dual adjunction, which Gelfand duality asserts is an equivalence.
An explicit axiomatization of the dual operations on the I-valued C(X) was recently given in [MR17];
see there for a detailed history of I-valued Gelfand duality. In [HNN18], [Abb19], I-valued Gelfand
duality was further extended to compact partially ordered spaces (a la Nachbin).

In this note, we prove analogous Gelfand-type dualities for compact pospaces equipped with
lattice operations. Recall that a continuous lattice is a compact topological meet-semilattice
obeying a “local convexity under meets” condition, that each point has a neighborhood basis of
subsemilattices. Equivalently, they can be defined purely order-theoretically as posets with arbitrary
meets distributing over directed joins. An analog of Urysohn’s lemma, sometimes known as the
Urysohn–Lawson lemma, states that every continuous lattice X admits enough morphisms to I, i.e.,
the canonical evaluation map X → IHom(X,I) is an embedding; see [G+03, IV-3.3], [Joh82, VII 3.2].
It is thus natural to ask whether, by equipping Hom(X, I) with suitable structure commuting with
the continuous lattice structure on I, we may recover X as the double dual.

Let ˆ︁U denote the monoid of continuous monotone maps I→ I fixing 1, i.e., all unary operations
on I commuting with the continuous lattice structure. Note that finite meets do as well. By a
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ˆ︁U-module, we mean a unital meet-semilattice equipped with an action of ˆ︁U preserving finite meets
in both variables. In every ˆ︁U-module A, we have a canonical pseudoquasimetric

ρ(a, b) :=
⋀︁
{r ∈ I | a ≤ b∔ r}

where b∔ r denotes the result of the action on b of the truncated addition (−)∔ r ∈ ˆ︁U. We say A is
Archimedean if ρ(a, b) = 0 =⇒ a ≤ b, and complete if A is Archimedean and complete with
respect to the induced metric d(a, b) := ρ(a, b) ∨ ρ(b, a). We prove

Theorem 1.1 (Corollary 5.9). Hom into I yields a dual equivalence of categories between continuous
lattices and complete ˆ︁U-modules.

There is a generalization of continuous lattice theory, with the role of directed joins replaced
by an arbitrary “class of joins Φ” obeying suitable axioms; see [WWT78], [BE83], [Xu95], as well
as [AK88], [ABLR02], [KS05] for a further extension in enriched category theory. Other than Φ =
“directed joins”, the most well-known case is Φ = “all joins”, for which Φ-continuous lattices are
completely distributive lattices. As for continuous lattices, there is a Urysohn-type lemma, stating
that all completely distributive lattices admit enough morphisms to I; see [G+03, IV-3.31–32],
[Joh82, 1.10–14]. We likewise boost this to a Gelfand-type duality as follows.

Let U ⊆ ˆ︁U denote the monoid of complete lattice morphisms, i.e., monotone surjections. A
U-poset is a poset with a monotone action of U. There is a canonical way of defining a pseudoquasi-
metric on a U-poset, agreeing with the above definition in ˆ︁U-modules; see Definition 4.2. A U-poset
A is stackable if, intuitively speaking, an element a ∈ A may be specified via its “restrictions to
sublevel and superlevel sets a−1([0, r]), a−1([r, 1])” for any 0 < r < 1; see Definition 4.12.

Theorem 1.2 (Corollary 5.5). Hom into I yields a dual equivalence of categories between completely
distributive lattices and complete stackable U-posets.

In fact, we prove a single result underlying Theorems 1.1 and 1.2, for a “class of joins Φ dual to
a class of meets Ψop”, more precisely for a sound class of joins in the sense of [ABLR02], [KS05];
see Section 3. This general result, Theorem 5.2, says that Φ-continuous lattices are dual to complete
stackable U-Ψop-inflattices, provided that not all Φ-continuous lattices are Φ-algebraic, i.e., already
admit enough morphisms into 2. This is a reasonable restriction, since for these other Φ, we instead
have a simple 2-valued duality generalizing the classical Hofmann–Mislove–Stralka duality [HMS74]
between algebraic lattices and meet-semilattices (see Corollary 3.7).

Part of the reason we work with general Φ is to hint at the possibility of generalizing to quantale-
enriched posets, or even to enriched categories, which we plan to pursue in future work. However,
in the original context of mere posets, it turns out that essentially the only Φ are the classical ones:

Theorem 1.3 (Theorem 3.9). There are precisely 4 sound classes of joins Φ for which not
every Φ-continuous lattice is Φ-algebraic: “directed joins”, “all joins”, and the minor variations
including/excluding empty joins.
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2 Φ-continuous lattices

We assume familiarity with basic category theory. For a category C, C(X,Y ) will denote the hom-set
of morphisms from X to Y , while Cop will denote the opposite category; this includes opposite
posets. We let Pos denote the category of posets, Sup denote the category of suplattices (i.e.,
complete lattices with join-preserving maps as morphisms), Inf denote the category of inflattices,
and CLat = Sup ∩ Inf denote the category of complete lattices. These are all locally ordered
categories: each hom-set is partially ordered pointwise, and composition is monotone on both sides.
For f : X → Y ∈ Pos left adjoint to g : Y → X, we will write f = g+ and g = f×. We will
frequently use the “mate calculus”: for monotone h, k, we have h ◦ g ≤ k ⇐⇒ h ≤ k ◦ f .

For a poset X, we let L(X) denote the poset of lower sets ϕ ⊆ X, ordered via ⊆. Then
L : Pos→ Pos is the free suplattice monad, where the monad structure consists of:

• unit ↓ = ↓X : X → L(X), where ↓x = {y ∈ X | y ≤ x} is the principal ideal below x;

• multiplication
⋃︁

: L(L(X))→ L(X);

• f : X → Y ∈ Pos inducing f∗ = L(f) : L(X)→ L(Y ) ∈ Sup, where f∗(ϕ) =
⋃︁
x∈ϕ ↓f(x).

We now review the theory of “relative” suplattices for a “class of joins” Φ. This is a special case
of the theory of “classes of colimits” in enriched category theory [AK88], [ABLR02], [KS05], and
has also been well-studied in the order theory literature as “Z-completeness” [WWT78], [BE83].
We will use notation and terminology based on that from enriched categories.

Definition 2.1. A join doctrine is a class Φ of posets ϕ, thought of as indexing posets for certain
joins

⋁︁
x∈ϕ f(x) of monotone f : ϕ→ Y . We require Φ to obey the following “saturation” conditions:

(i) The singleton poset 1 is in Φ.

(ii) If ϕ is a poset which is a union
⋃︁
Ψ of a set Ψ ⊆ Φ of subposets ψ ⊆ ϕ which are in Φ, and

also Ψ (as a poset under ⊆) is in Φ, then ϕ ∈ Φ.

(iii) If f : ϕ→ ψ is a monotone map with cofinal image, and ϕ ∈ Φ, then ψ ∈ Φ.

(iv) If ϕ ⊆ ψ is a cofinal subposet, and ψ ∈ Φ, then ϕ ∈ Φ.

A Φ-join in a poset X is a join of a subset ϕ ⊆ X such that ϕ ∈ Φ. A Φ-suplattice is a poset with
all Φ-joins; we denote the category of all such (and monotone Φ-join-preserving maps) by ΦSup.
A Φ-ideal in a Φ-suplattice is a lower sub-Φ-suplattice. The free Φ-suplattice generated by a
poset X is the subset Φ(X) ⊆ L(X) of all lower subsets of X in Φ. Note that for a poset ϕ, we
have ϕ ∈ Φ ⇐⇒ ϕ ∈ Φ(ϕ); we thereby identify the class of posets Φ with the submonad Φ ⊆ L.

Example 2.2.

• The “class of directed joins” is given by the join doctrine Φ := all directed posets, for which
a Φ-suplattice is a directed-complete poset (DCPO), a Φ-ideal is a Scott-closed subset, and
Φ(X) is the ideal completion of X (note: not “Φ-ideal completion”).

• The “class of finite joins” is given by Φ := all posets with finite cofinality.

• The “class of all joins” is given by Φ := all posets.

• The least join doctrine, of “trivial joins”, is given by Φ := posets with a greatest element.
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Remark 2.3. In [AK88] and [KS05], a more general notion of “class of colimits” is considered,
consisting in the posets case of an arbitrary submonad Φ ⊆ L, i.e., an assignment to each poset X
of a set of lower sets Φ(X) ⊆ L(X) closed under the monad operations on L.

The precise connection with our definition of “join doctrine” as a class of posets is as follows.
Each join doctrine Φ induces a free Φ-suplattice submonad as above; this yields an order-embedding

{join doctrines} ↪−→ {submonads of L},

whose image consists of those submonads Φ ⊆ L obeying the additional “saturation” condition

(∗) for each order-embedding between posets f : X ↪→ Y , we have Φ(X) = f−1
∗ (Φ(Y )).

This condition is implied by condition (iv) in Definition 2.1 of join doctrine, and conversely, ensures
that {ϕ ∈ Pos | ϕ ∈ Φ(ϕ)} is a join doctrine inducing the submonad Φ.

An example of a submonad not obeying (∗) is Φ(X) := {ϕ ∈ L(X) | ϕ has an upper bound in X},
which yields the “class of bounded joins”. However, (∗) is automatic for the Φ suitable for our
duality purposes, which is why we use the simpler definition of “join doctrine”; see Remark 3.2.

Definition 2.4. Let Φ be a join doctrine, X be a Φ-suplattice. We define, for x, y ∈ X,

↓↓ = ↓↓ΦX : X −→ L(X)

x ↦−→
⋂︁
{ϕ ∈ Φ(X) | x ≤

⋁︁
ϕ},

x≪ y :⇐⇒ x≪Φ y :⇐⇒ x ∈ ↓↓y.

We call x ∈ X Φ-compact (Φ-atomic in [KS05]) if x ≪Φ x, i.e., whenever
⋁︁
i yi is a Φ-join ≥ x,

then some yi ≥ x, i.e., the indicator function of ↑x : X → 2 preserves Φ-joins. Denote these by

XΦ := {x ∈ X | x≪Φ x}.

We call X Φ-algebraic if it is generated under Φ-joins by XΦ ⊆ X. In that case, it is easy to
see that in fact, for each x ∈ X the set XΦ ∩ ↓x belongs to Φ(XΦ) and has join x; and this yields
an order-isomorphism X ∼= Φ(XΦ). Conversely, for any poset Y , we easily have that Φ(Y ) is
Φ-algebraic, with Φ(Y )Φ = {principal ideals} ∼= Y .

Proposition 2.5. Let Φ be a join doctrine, X be a Φ-suplattice. The following are equivalent:

(i) For each x ∈ X, there is a ϕ ∈ Φ(X) such that ϕ ⊆ ↓↓x and x ≤
⋁︁
ϕ, whence in fact ϕ = ↓↓x.

(ii)
⋁︁

: Φ(X)→ X has a left adjoint, namely ↓↓.

If X is a complete lattice, these are further equivalent to:

(iii)
⋁︁

: Φ(X)→ X preserves meets.

(iv) Arbitrary meets distribute over Φ-joins: if
⋁︁
j∈Ji xi,j is a Φ-join for each i ∈ I, then⋀︁

i∈I
⋁︁
j∈Ji xi,j =

⋁︁
(ji)i∈

∏︁
i Ji

⋀︁
i∈I xi,ji .

All of these hold if X is algebraic, with ↓↓ = ↓∗ : Φ(XΦ)→ Φ(Φ(XΦ)), i.e.,

x≪ y ⇐⇒ ∃z ∈ XΦ (x ≤ z ≤ y).
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If (i), (ii) hold for a Φ-suplattice X, we call X Φ-continuous. If furthermore X is a complete
lattice, we call X a Φ-continuous lattice, or a Φ-algebraic lattice if X is algebraic.

Proof. (i)⇐⇒ (ii) since it is easily seen that ϕ in (i) must be ↓↓x.
(ii)⇐⇒ (iii) by the adjoint functor theorem.
(iii)⇐⇒ (iv) because the latter says

⋀︁
i∈I

⋁︁⋃︁
j∈Ji ↓xi,j =

⋁︁⋂︁
i∈I

⋃︁
j∈Ji ↓xi,j .

Proposition 2.6. In every Φ-suplattice,

(a) ↓↓x ⊆ ↓x, i.e., y ≪ x =⇒ y ≤ x.

(b) x′ ≤ x≪ y ≤ y′ =⇒ x′ ≪ y′.

In a Φ-continuous Φ-suplattice,

(c) (interpolation) ↓↓ =
⋃︁
↓↓∗↓↓, i.e., ↓↓x =

⋃︁
y≪x ↓↓y, i.e.,

z ≪ x ⇐⇒ ∃y (z ≪ y ≪ x).

Proof. The first two are obvious. For interpolation: since X is an algebra of the monad Φ, we have⋁︁⋃︁
=

⋁︁⋁︁
∗ : Φ(Φ(X))→ X; taking left adjoints yields ↓∗↓↓ = ↓↓∗↓↓; now take

⋃︁
.

A morphism of Φ-continuous lattices is a meet-preserving, Φ-join-preserving map between
Φ-continuous lattices. Let ΦCtsLat denote the category of Φ-continuous lattices and morphisms,
and ΦAlgLat ⊆ ΦCtsLat denote the full subcategory of Φ-algebraic lattices.

Proposition 2.7. Let f : X → Y be a right adjoint between Φ-continuous Φ-suplattices, with left
adjoint f+ : Y → X. Then f preserves Φ-joins iff f+ preserves ≪. Thus

ΦCtsLat(X,Y )op ∼=≪ΦSup(Y,X) := {f+ : Y → X | f+ preserves ≪,
⋁︁
}

f ↦→ f+.

Proof. f
⋁︁

=
⋁︁
f∗ : Φ(X)→ Y iff, taking left adjoints, ↓↓f+ = (f+)∗↓↓ : Y → Φ(X).

Proposition 2.8. Let Φ be a join doctrine. The following are equivalent:

(i) For every complete lattice X, Φ(X) ⊆ L(X) is closed under meets.

(ii) For every poset X, Φ(L(X)) ⊆ L(L(X)) is closed under meets.

(iii) For every poset X, L(X) is Φ-continuous.

If these conditions hold, we call Φ a continuous join doctrine.

Proof. (i) =⇒ (ii) is obvious.
(ii) =⇒ (iii) since

⋃︁
: Φ(L(X))→ L(X) is the composite of the inclusion Φ(L(X)) ↪→ L(L(X))

and
⋃︁

: L(L(X))→ L(X), which both preserve meets, i.e., have left adjoints.

(iii) =⇒ (i) since the composite L(X)
↓↓L(X)−−−−→ Φ(L(X))

⋁︁
∗−−→ Φ(X) yields the Φ(X)-closure of

each lower set ψ: we have 1L(X) ≤
⋁︁

∗ ↓↓L(X) because
⋃︁
≤

⋁︁
∗ : Φ(L(X)) → Φ(X) ⊆ L(X), while⋁︁

∗ ↓↓L(X) restricted to Φ(X) ⊆ L(X) becomes
⋁︁

∗ ↓∗ = 1Φ(X).

The following are the two main examples of continuous join doctrines:
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Example 2.9. If Φ is the “class of directed joins”, i.e., the class of all directed posets, so that
Φ(X) for X ∈ Pos is the ideal completion of X, then ≪ is the classical way-below relation, and
Φ-continuity and Φ-algebraicity become classical continuity and algebraicity for DCPOs.

Similarly, for any infinite regular cardinal κ, one can consider κ-directed joins. But it turns out
that for uncountable κ, continuity and algebraicity coincide; see Corollary 2.13.

Example 2.10. If Φ is the “class of all joins”, i.e., the class of all posets, so that Φ(X) = L(X), then
a Φ-continuous lattice is a completely distributive lattice, and ≪ is the “way-way-below” relation
sometimes denoted ≪; see e.g., [G+03, IV-3.31].

Minor variations are to include/exclude empty joins, which only affects Φ-compactness of ⊥.

Example 2.11 (the unit interval). For any join doctrine Φ, I := [0, 1] is a Φ-continuous lattice.
Indeed, ≪ contains <, since any ϕ ∈ L(I) with r ≤

⋁︁
ϕ must clearly contain [0, r); thus r =

⋁︁
↓↓r.

We now completely characterize the≪Φ relation on I, by determining which r ∈ I are Φ-compact.

Proposition 2.12. Let Φ be a join doctrine.

(a) For every Φ-suplattice X, ⊥ ∈ X is Φ-compact iff ∅ ̸∈ Φ. In particular, this holds for 0 ∈ I.

(b) If ω ∈ Φ (where ω has the usual linear order), then no r > 0 is Φ-compact in I. Otherwise:

(i) For every ϕ ∈ Φ and x0, x1, . . . ∈ ϕ, there are i0 < i1 < · · · such that xi0 , xi1 , . . . have
an upper bound in ϕ. In particular, every x0 ≤ x1 ≤ · · · ∈ ϕ has an upper bound.

(ii) Every Φ-continuous Φ-suplattice X which also has countable increasing joins is Φ-
algebraic, with the join of any x0 ≪ x1 ≪ · · · ∈ X being Φ-compact. In particular, every
r > 0 is Φ-compact in I.

Proof. (a) is clear from the definition of Φ-compact.
(b) If ω ∈ Φ, then no r > 0 is Φ-compact, since r is the join of a sequence in [0, r). Now suppose

ω ̸∈ Φ. Then for ϕ ∈ Φ and x0, x1, . . . ∈ ϕ, if no infinite subfamily has an upper bound, then we
have a monotone map ϕ → ω taking ϕ \

⋃︁
n ↑xn to 0 and each ↑xn \

⋃︁
m>n ↑xm to n + 1; since

ω ̸∈ Φ, this map must have finite image, whence there are i0 < i1 < · · · with xi0 ≥ xi1 ≥ · · · , a
contradiction, which proves (i). It follows that for a Φ-continuous Φ-suplattice X with countable
increasing joins, every ↓↓x ∈ Φ(X) is closed under countable increasing joins. In particular, for
x0 ≪ x1 ≪ · · · ∈ X, x :=

⋁︁
n xn has xn ≪ x for each n, whence x ≪ x. Now for any y ∈ X and

x0 ≪ y, by interpolation (Proposition 2.6(c)) we may find x0 ≪ x1 ≪ · · · ≪ y, whence x :=
⋁︁
n xn

is Φ-compact with x0 ≤ x≪ y; since y =
⋁︁
↓↓y, it follows that X is Φ-algebraic, proving (ii).

Corollary 2.13. For a join doctrine Φ, the following are equivalent:

(i) ω ̸∈ Φ.

(ii) I is Φ-algebraic.

(iii) Every Φ-continuous lattice is Φ-algebraic.
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3 Commuting meets and joins

We are interested in recovering Φ-continuous lattices from their dual algebras of morphisms (to 2
or I). In order to do so, by general duality theory, the dual algebras must be equipped with all
operations which commute with the Φ-continuous lattice operations of arbitrary meets and Φ-joins.
Thus, we now review the theory of classes of commuting meets and joins, again due in the general
enriched categories context to [KS05], although the posets case is much simpler.

It is convenient to treat a “class of meets” as simply the order-dual of a “class of joins”. Thus,
given a join doctrine Φ, we will refer to Φop := {ϕop | ϕ ∈ Φ} as a meet doctrine, and a
meet indexed by ϕop ∈ Φop as a Φop-meet. A poset with all Φop-meets is a Φop-inflattice, with
the category of all such denoted ΦopInf. A Φop-filter is an upper sub-Φop-inflattice. The free
Φop-inflattice generated by a poset X is Φ(Xop)op.

Definition 3.1 (see [KS05]). For two join doctrines Φ,Ψ, where we regard Ψop as a meet doctrine,
to say that Ψop-meets commute with Φ-joins in 2 means that for any posets X,Y ,

∀ϕ ∈ Φ(Y ) ∀ψ ∈ Ψ(X)∀F : Xop × Y → 2
(︂⋀︁

x∈ψ
⋁︁
y∈ϕ F (x, y) =

⋁︁
y∈ϕ

⋀︁
x∈ψ F (x, y)

)︂
(where F runs over monotone maps). By currying F , this is equivalent to

∀ϕ ∈ Φ(Y )∀ψ ∈ Ψ(X) ∀f : Y → L(X)
(︂
ψ ⊆

⋃︁
y∈ϕ f(y) ⇐⇒ ∃y ∈ ϕ (ψ ⊆ f(y))

)︂
⇐⇒ ∀ψ ∈ Ψ(X) (ψ ∈ L(X) is Φ-compact).

We write Φ∗(X) := L(X)Φ for the Φ-compact lower sets ψ ⊆ X, i.e., those indexing meets commuting
with Φ-joins in 2. Note that by order-duality, the roles of Φ,Ψ may be swapped. Thus

Ψop-meets commute with Φ-joins in 2 ⇐⇒ Ψ ⊆ Φ∗ ⇐⇒ Φ ⊆ Ψ∗ (as submonads of L).

Remark 3.2. The above definition of Φ∗, which follows [KS05], yields a priori a submonad of L.
But such a submonad automatically obeys the saturation condition (∗) of Remark 2.3, since given
an order-embedding i : X ↪→ X ′ and poset Y , a monotone F : Xop × Y → 2 may be extended along
i to F ′ : X ′op × Y → 2 (e.g., the left Kan extension F ′(x′, y) :=

⋁︁
x∈i−1(↑x′) F (x, y)), so that for

ψ ∈ L(X), the ψop-meet of F commutes with all Φ-joins iff the i∗(ψ)
op-meet of F ′ does. Thus by

Remark 2.3, we may equally well regard Φ∗ as a class of posets. Namely, for a poset ψ,

ψ ∈ Φ∗ ⇐⇒ ψ ∈ Φ∗(ψ) = L(ψ)Φ
⇐⇒ whenever ψ is a Φ-union of lower subsets, one of them is ψ.

Note moreover that this reasoning applies to Φ∗ even if Φ is only a submonad of L to begin with;
this justifies our claim from Remark 2.3 that for our duality-theoretic purposes, it suffices to consider
“join doctrines” which are classes of posets, rather than arbitrary submonads of L as in [KS05].

Remark 3.3. Φ-joins commute with Ψop-meets in 2 iff they do in the unit interval I. This follows
from the facts that 2 is a complete sublattice of I, while I is a complete lattice homomorphic image
via

⋁︁
: L(I)→→ I (by complete distributivity, Example 2.11) of a complete sublattice L(I) ⊆ 2I.

Remark 3.4. If ϕ ∈ Ψ∗(X) for a Ψ-suplattice X, then by considering the indicator function of
≤ ⊆ Xop ×X, we get that ϕ must be a Ψ-ideal. (The converse is false in general: for Ψ = directed
posets, a Ψ-ideal is a Scott-closed subset, but only finite meets commute with directed joins.)
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Proposition 3.5 ([KS05, 8.9, 8.11, 8.13]). Let Φ,Ψ be two join doctrines such that Ψop-meets
commute with Φ-joins in 2. The following are equivalent:

(i) For every poset X, L(X) is generated under Φ-joins by Ψ(X) ⊆ L(X)Φ.

(ii) For every Ψ-suplattice X, Φ(X) consists precisely of all Ψ-ideals in X.

(iii) For every poset X, there is a sub-Ψ-suplattice Ψ′(X) ⊆ L(X) containing all principal ideals ↓x
(e.g., Ψ′(X) = L(X) or Ψ′(X) = Ψ(X)) such that Φ(Ψ′(X)) contains all Ψ-ideals in Ψ′(X).

If these hold, then in fact Ψ(X) = L(X)Φ = Φ∗(X), whence L(X) ∼= Φ(Ψ(X)) is Φ-algebraic,
whence in particular Φ is a continuous join doctrine; and similarly Φ = Ψ∗.

If these hold, we call Φ a sound join doctrine, dual to the sound meet doctrine Ψop. Thus,
Φ is a sound join doctrine iff L(X) ∼= Φ(Φ∗(X)), iff Φ(X) contains every Φ∗-ideal in a Φ∗-suplattice
X. (Warning: this notion is not preserved under swapping Φ,Ψ, in contrast to Definition 3.1.)

Proof. (ii) =⇒ (iii) is obvious.
(iii) =⇒ (i): For any θ ∈ L(X), clearly Ψ′(X)∩ ↓θ = {ψ ∈ Ψ′(X) | ψ ⊆ θ} is a Ψ-ideal in Ψ′(X),

thus by (iii) is in Φ(Ψ′(X)); and its union is θ, which is thus a Φ-join of elements of Ψ(X).
(i) =⇒ (ii): For every θ ∈ L(X), the Ψ-ideal ⟨θ⟩ it generates is in Φ(X): this is true for θ ∈ Ψ(X)

since ⟨θ⟩ = ↓
⋁︁
θ, and is true for a Φ-join θ =

⋃︁
i θi if it is true for each θi since ⟨θ⟩ =

⋃︁
i⟨θi⟩ (using

that Ψop-meets commute with Φ-joins in 2), thus is true for all θ ∈ L(X) by (i). Conversely, as
noted above, every ϕ ∈ Φ(X) is a Ψ-ideal.

The last sentence follows from (i), (ii), and Remark 3.4, which imply that Φ(X) = Ψ∗(X) for a
Ψ-suplattice X, hence for every poset X by applying (∗) in Remark 2.3 to ↓ : X → Ψ(X).

Lemma 3.6. For any join doctrine Φ, we have ω ∈ Φ iff ω ̸∈ Φ∗.

Proof. ω ̸∈ Φ ∩ Φ∗ since ω-joins do not commute with ωop-meets in 2. If ω ̸∈ Φ∗, i.e., ω ∈ L(ω) is
not Φ-compact, then ω is a Φ-union of proper lower subsets of ω; the order-type of this union must
clearly be ω. (This argument is due to the referee; my original proof assumed soundness of Φ.)

Corollary 3.7 (generalized Hofmann–Mislove–Stralka duality). Let Φ be a sound join doctrine,
dual to the meet doctrine Ψop = Φ∗op. We have a dual equivalence of categories

ΦAlgLatop ΨopInf.
ΦAlgLat(−,2)

ΨopInf(−,2)

We may replace ΦAlgLat with ΦCtsLat iff ω ̸∈ Φ, i.e., ω ∈ Ψ.

Proof. For a Φ-algebraic lattice X, a morphism X → 2 is the indicator function of ↑x for Φ-algebraic
x. For a Ψop-inflattice A, a morphism A→ 2 is the indicator function of a Ψop-filter. So we have

ΦAlgLat(X, 2) ∼= Xop
Φ , ΨopInf(A, 2) ∼= Φ(Aop).

Now the adjunction (co)unit on the left is given by, for X ∈ ΦAlgLat, the evaluation map

X −→ ΨopInf(ΦAlgLat(X, 2), 2)

x ↦−→ (f ↦→ f(x)),

which via the above isomorphisms becomes the canonical isomorphism X ∼= Φ(XΦ) characterizing
algebraicity. Similarly, for A ∈ ΨopInf, the unit A → ΦAlgLat(ΨopInf(A, 2), 2) is the canonical
isomorphism Aop ∼= Φ(Aop)Φ. By Corollary 2.13, ΦAlgLat = ΦCtsLat iff I is Φ-algebraic, iff ω ̸∈ Φ.
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Example 3.8. Φ = directed posets forms a sound join doctrine, dual to Ψop = “finite meets”,
i.e., Ψ = the class of posets with finite cofinality. In this case, Corollary 3.7 becomes the classical
Hofmann–Mislove–Stralka duality [HMS74] between (unital) meet-semilattices and algebraic lattices.

Similarly, the join doctrine Φ of κ-directed posets for an uncountable regular cardinal κ is sound,
dual to κ-ary meets. But since ω ̸∈ Φ for uncountable κ, we get a duality between κ-meet-semilattices
and κ-continuous lattices.

We now show that there are very few sound join doctrines Φ ∋ ω, for which ΦAlgLat ̸= ΦCtsLat:
essentially, they are only the classical cases of continuous and completely distributive lattices
(Examples 2.9 and 2.10), plus the minor variations including/excluding empty joins.

Theorem 3.9. There are precisely 4 sound join doctrines Φ ∋ ω, dual to Ψop:

(i) Φ = directed posets, Ψ = posets with finite cofinality;

(ii) Φ = empty or directed posets, Ψ = nonempty posets with finite cofinality;

(iii) Φ = nonempty posets, Ψ = posets which are empty or have greatest element;

(iv) Φ = all posets, Ψ = posets with greatest element.

Proof. It is well-known and easily seen that each of these 4 cases is sound; we show the converse.
First, we show that Φ must contain every directed poset, i.e., every poset in Ψ must have finite

cofinality. For every set X, Φ contains the finite powerset Pω(X), since this is a Ψ-ideal in the full
powerset P(X), since by Proposition 2.12(i) (applied to Ψ ̸∋ ω), every ψ ∈ Ψ(Pω(X)) can have
neither a strictly increasing sequence nor infinitely many maximal elements, thus must be finite.
Now for every join-semilattice X, we have a monotone surjection

⋁︁
: Pω(X)→→ X, whence X ∈ Φ.

Since every directed poset ϕ is cofinal in the free join-semilattice it generates, it follows that ϕ ∈ Φ.
So Ψ is determined by the finite antichains n in it. If some n > 1 is in Ψ, then by induction so

is each nk ∼=
⨆︁
i∈n n

k−1; now every m ≥ 1 admits a surjection nk →→ m, whence m ∈ Ψ.

4 U-posets

Henceforth, we assume Φ ∋ ω is a sound join doctrine, dual to Ψop, so one of the cases in Theorem 3.9.
Then Hofmann–Mislove–Stralka duality does not apply to all Φ-continuous lattices, and so we would
like to formulate a duality based on morphisms to I instead of 2.

By Remark 3.3, the dual algebra ΦCtsLat(X, I) will still be equipped with Ψop-meets. But these
are not all the operations on I commuting with the Φ-continuous lattice operations: clearly any
complete lattice homomorphism I→ I does as well. We thus introduce the following notions:

Definition 4.1. Let U := CLat(I, I) denote the partially ordered monoid of all complete lattice
homomorphisms I→ I, i.e., surjective monotone maps.

A U-poset is a poset equipped with a monotone (in both variables) action of the monoid U.
Denote the category of these (and equivariant monotone maps) by UPos.

A U-Ψop-inflattice is a U-poset which is also a Ψop-inflattice such that the action of each u ∈ U
preserves Ψop-meets. Denote the category of these by UΨopInf.

Definition 4.2. Let ∔, .− denote truncated +,− on I; note that they obey the adjunction

(4.3) r .− s ≤ t ⇐⇒ r ≤ s∔ t.
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For a U-poset A and a, b ∈ A, define

a ≤r b :⇐⇒ ∀u, v ∈ U (u((−)∔ r) ≤ v =⇒ u(a) ≤ v(b)),
ρ(a, b) :=

⋀︁
{r ∈ I | a ≤r b},

d(a, b) := ρ(a, b) ∨ ρ(b, a).

Remark 4.4. In the definition of ≤r, instead of testing ∀u, v, it is enough to test any particular
u ∈ U which restricts to an order-isomorphism u : [r, 1] ∼= [0, 1] (e.g., the linear such isomorphism
extended by 0 on [0, r]), so that v := u((−) ∔ r) ∈ U. Indeed, for any other u′, v′ ∈ U with
u′((−)∔ r) ≤ v′, there is w ∈ U with u′ = w ◦ u, whence u′(a) = w(u(a)) ≤ w(v(a)) ≤ v′(a).

Remark 4.5. There is an evident order-duality for U-posets A: let u ∈ U act on the order-dual
Aop via 1− u(1− (−)); this reverses each ≤r, and turns ρ into ρop(a, b) := ρ(b, a).

Intuitively, a ≤r b means “a ≤ b∔ r”. The following properties justify this interpretation:

Proposition 4.6. In I, we have a ≤r b ⇐⇒ a ≤ b∔ r, whence ρ(a, b) = a .− b and d(a, b) = |a− b|.

Proof. If a ≤ b∔ r, then for every u, v ∈ U with u((−)∔ r) ≤ v, we have u(a) ≤ u(b∔ r) ≤ v(b).
For the converse, the case r = 1 is vacuous; thus we may assume r < 1. Note that (−)∔ r : I→ I

can be written as u× ◦ v where v := 1 ∧ (−)/(1− r), u := v((−) .− r), and u× is the right adjoint of
u. Now from a ≤r b and u((−)∔ r) = v, we get u(a) ≤ v(b), whence a ≤ u×(v(b)) = b∔ r.

Lemma 4.7. In every U-poset A, we have the following, for r, s, t ∈ I, u, v ∈ U, a, b, c ∈ A:

(a) r ≤ s & a ≤r b =⇒ a ≤s b.

(b) ≤0 is the same as ≤.

(c) a ≤r b ≤s c =⇒ a ≤r∔s c.

(d) ρ is a pseudoquasimetric: ρ(a, a) = 0, and ρ(a, b)+ρ(b, c) ≥ ρ(a, c). Thus, d is a pseudometric.

(e) u((−) ∔ r) ≤ v ∔ s & a ≤r b =⇒ u(a) ≤s v(b). Thus, ρ(u(a), v(a)) ≤ ρ(u, v) :=
⋁︁
(u .− v),

i.e., the U-action is 1-Lipschitz in the first variable with respect to the ℓ∞-quasimetric on U.
Moreover, if u ∈ U is uniformly continuous with modulus µ : I→ I, i.e., u(r) .−u(s) ≤ µ(r .−s),
then the action of u is uniformly continuous with the same modulus: ρ(u(a), u(b)) ≤ µ(ρ(a, b)).

(f) u×((−)∔ r) ≤ v ∔ s & u(a) ≤r b =⇒ a ≤s v(b) (where u× is the right adjoint of u).

In a U-Ψop-inflattice, we moreover have, for ψ,ψ′ ∈ Ψ(Aop):

(g) a ≤r
⋀︁
ψ ⇐⇒ ∀b ∈ ψ (a ≤r b). Thus, ρ(

⋀︁
ψ,

⋀︁
ψ′) ≤

⋀︁
a∈ψ

⋁︁
b∈ψ′ ρ(a, b).

Proof. (a) and (b) are straightforward, as is (d) given the previous parts.
(c) For u,w ∈ U with u((−)∔ (r ∔ s)) ≤ w, we have v := u((−)∔ r) ∈ U with u((−)∔ r) ≤ v

and v((−)∔ s) ≤ w, whence u(a) ≤ v(b) ≤ w(c).
(e) For u′, v′ ∈ U with u′((−)∔ s) ≤ v′, we have u′(u((−)∔ r)) ≤ u′(v(−)∔ s) ≤ v′ ◦ v, whence

u′(u(a)) ≤ v′(v(b)). For the last assertion: u(r) .− u(s) ≤ µ(r .− s) means u((−)∔ r) ≤ u(−)∔ µ(r).
(f) The assumption is equivalent to (−) .−s ≤ v(u(−) .−r); thus for u′, v′ ∈ U with u′((−)∔s) ≤ v′,

we have u′ ≤ v′((−) .− s) ≤ v′(v(u(−) .− r)), whence u′(a) ≤ v′(v(u(a) .− r)) ≤ v′(v(b)).
(g) =⇒ and the last assertion follow from (c). For ⇐=: for u, v ∈ U with u((−)∔ r) ≤ v, we

have u(a) ≤
⋀︁
b∈ψ v(b) = v(

⋀︁
ψ).
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For general background on (pseudo)quasimetrics, see e.g., [Kün09]. A pseudoquasimetric ρ as
above induces a topology, where a basic neighborhood of a ∈ A is {b ∈ A | ρ(a, b) < r} for some
r > 0. Thus the closure of B ⊆ A is the set of all a ∈ A such that

ρ(a,B) =
⋀︁
b∈B ρ(a, b) = 0,

which is in particular a lower set. To avoid confusion, we will call a closed set in this topology a
ρ-closed lower set, and denote the set of all such by L(A) ⊆ L(A). We will also say ρop-closed
upper set B ⊆ A for the order-dual notion, i.e., if ρ(B, a) = 0 then a ∈ B; the set of all such is
thus L(Aop). For a U-Ψop-inflattice A, recalling that Φ(Aop) consists of Ψop-filters by soundness, let

Φ(Aop) := Φ(Aop) ∩ L(Aop)

denote the ρop-closed Ψop-filters in A.

Lemma 4.8. If ϕ ∈ Φ(Aop) is a Ψop-filter, then so is the ρop-closure ϕ.

Proof. This follows from the facts that Ψop is a class of finite meets by Theorem 3.9, and that
Ψop-meets are Lipschitz by Lemma 4.7(g).

As usual for actions, a subset B ⊆ A of a U-poset is U-invariant if it is closed under the action.

For a class of sets Γ(A), we write ΓU(A) for the U-invariant members, e.g., LU(A),ΦU
(A).

Lemma 4.9. If ϕ ∈ PU(A) is a U-invariant filter base, then its ρop-closure ϕ is a U-invariant
Ψop-filter, hence is the U-invariant ρ-closed Ψop-filter generated by ϕ.

Proof. By uniform continuity of the action of each u (Lemma 4.7(e)), ϕ is U-invariant. It is also
upper, since every ρop-closed set is, thus it is also the ρop-closure of the upward closure of ϕ, which is
a Ψop-filter since Ψop-meets are finite by Theorem 3.9, whence so is ρ by the preceding lemma.

Proposition 4.10. For a U-Ψop-inflattice A, we have an order-isomorphism

UΨopInf(A, I) ∼= Φ
U
(Aop) = {U-invariant ρop-closed Ψop-filters in A}

f ↦→ f−1(1)

1− ρ(ϕ,−)← [ ϕ.

Proof. For ease of notation, we will prove the dual statement that for a U-Ψ-suplattice A,

UΨSup(A, I)op ∼= Φ
U
(A) = {U-invariant ρ-closed Ψ-ideals in A}

f ↦→ f−1(0)

ρ(−, ϕ)← [ ϕ.

It is immediate from the definitions that for a U-equivariant Ψ-join-preserving f : A→ I, f−1(0) ⊆ A
is U-invariant ρ-closed lower, and also that a ρ-closed lower ϕ ⊆ A is equal to ρ(−, ϕ)−1(0).

We now check that for a U-invariant Ψ-ideal ϕ ⊆ A, ρ(−, ϕ) : A → I is U-equivariant Ψ-join-
preserving (it is clearly monotone). For ψ ∈ Ψ(A),

ρ(
⋁︁
ψ, ϕ) =

⋀︁
b∈ϕ

⋁︁
a∈ψ ρ(a, b) by the dual of Lemma 4.7(g)

=
⋁︁
a∈ψ

⋀︁
b∈ϕ ρ(a, b) because Φ ⊆ Ψ∗ (Remark 3.3)

=
⋁︁
a∈ψ ρ(a, ϕ);
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thus ρ(−, ϕ) preserves Ψ-joins. To check U-equivariance: let u ∈ U and a ∈ A. We have

ρ(u(a), ϕ) =
⋀︁
b∈ϕ ρ(u(a), b) =

⋀︁
{r ∈ I | u(a) ≤r b ∈ ϕ},

u(ρ(a, ϕ)) = u(
⋀︁
b∈ϕ ρ(a, b)) =

⋀︁
b∈ϕ u(ρ(a, b)) =

⋀︁
{u(r) | a ≤r b ∈ ϕ}.

For each a ≤r b ∈ ϕ, find
u((−)∔ r) .− u(r) ≤ v ∈ U,

whence u(a) ≤u(r) v(b) ∈ ϕ by Lemma 4.7(e); this proves u(ρ(a, ϕ)) ≥ ρ(u(a), ϕ). Conversely, for
u(a) ≤r b ∈ ϕ with r < 1, let u× be the right adjoint of u, and similarly to before, find

u×((−)∔ r) .− u×(r) ≤ v ∈ U,

whence a ≤u×(r) v(b) ∈ ϕ by Lemma 4.7(f), whence u(ρ(a, ϕ)) ≤ r; so ρ(u(a), ϕ) ≥ u(ρ(a, ϕ)).
Finally, we check that for U-equivariant monotone f : A → I, we have f = ρ(−, f−1(0)). We

have ≤ since f is 1-Lipschitz. Conversely, for a ∈ A with f(a) < 1, find (−) .− f(a) ≤ u ∈ U with
u(f(a)) = 0; then a ≤f(a) u(a) by Lemma 4.7(e), so ρ(a, f−1(0)) ≤ ρ(a, u(a)) ≤ f(a).

The U-poset I obeys the following additional axioms, which must thus also hold in the dual of a
Φ-continuous lattice:

Definition 4.11. We call a U-poset A Archimedean if it obeys

∀r > 0 (a ≤r b) =⇒ a ≤ b.

We call A (Cauchy-)complete if it is Archimedean and also complete in the metric d.

Definition 4.12. We call a U-poset A unstackable if for any 0 < r < 1 and u, v ∈ U restricting to
order-isomorphisms u : [0, r] ∼= [0, 1] and v : [r, 1] ∼= [0, 1], we have

u(a) ≤ u(b) & v(a) ≤ v(b) =⇒ a ≤ b.

We call A stackable if it is unstackable and for r, u, v as above and a, b ∈ A such that v′(b) ≤ u′(a)
for all u′, v′ ∈ U, there is a (unique, by unstackability) c ∈ A with u(c) = a and v(c) = b.

Intuitively, stackability means that, thinking of A as the dual of a Φ-continuous lattice X, we may
specify A ∋ a : X → I via its restrictions to its sublevel and superlevel sets a−1([0, r]), a−1([r, 1]).

Remark 4.13. As in Remark 4.4, it is enough to take some particular u, v above. Also, it is enough
to take some particular r (e.g., 1/2), since we may move r around via an order-isomorphism I ∼= I.

Lemma 4.14. If A is (un)stackable, then more generally, for 0 = r0 < r1 < · · · < rn = 1 and
u1, . . . , un ∈ U restricting to ui : [ri−1, ri] ∼= [0, 1], for a1, . . . , an ∈ A such that v′(ai+1) ≤ u′(ai) for
all u′, v′ ∈ U, there is (at most one, depending monotonically on (a1, . . . , an)) a ∈ A with ui(a) = ai.

Proof. By a straightforward induction on n.

Lemma 4.15. If A is unstackable, then more generally, for 0 ≤ r = r0 < r1 < · · · < rn = 1 and
u1, . . . , un ∈ U with ui : [ri−1, ri] ∼= [0, 1], so that ui((−)∔ r) ∈ U, for any a, b ∈ A, we have

u1(a) ≤ u1(b∔ r) & · · · & un(a) ≤ un(b∔ r) =⇒ a ≤r b.

Proof. By Remark 4.4, it suffices to check that for w ∈ U with w : [r, 1] ∼= [0, 1], we have w(a) ≤
w(b∔ r); this follows from applying the preceding lemma to ui ◦ w−1 : [w(ri−1), w(ri)] ∼= [0, 1].
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5 The duality

Let CStUΨopInf ⊆ UΨopInf denote the full subcategory of complete stackable U-Ψop-inflattices. Since
the Φ-continuous lattice and U-Ψop-inflattice structures on I commute, we have a dual adjunction

(5.1) ΦCtsLatop CStUΨopInf ⊆ UΨopInf.
ΦCtsLat(−,I)

UΨopInf(−,I)

Theorem 5.2. For every Φ-continuous lattice X, the evaluation map

η : X −→ UΨopInf(ΦCtsLat(X, I), I)
x ↦−→ (f ↦→ f(x)),

which is the (co)unit on the left side of the above adjunction, is an order-isomorphism.

Proof. Via Propositions 2.7 and 4.10, η corresponds to the map

˜︁η : X −→ Φ
U
(≪ΦSup(I, X)) ⊆ L(≪ΦSup(I, X))

x ↦−→ {f+ ∈ ≪ΦSup(I, X) | f+(1) ≤ x}

whose left adjoint is easily seen to be

˜︁η+ : L(≪ΦSup(I, X)) −→ X

ϕ ↦−→
⋁︁
f+∈ϕ f

+(1).

That x ≤ ˜︁η+(˜︁η(x)) is Urysohn’s lemma for Φ-continuous lattices; see [G+03, IV-3.1, IV-
3.32], [Joh82, VII 1.14, 3.2], [Xu95]. Since x =

⋁︁
↓↓x, it suffices to show that for each y ≪ x

there is f+ ∈ ≪ΦSup(I, X) with y ≤ f+(1) ≤ x. Let I2 ⊆ I be the dyadic rationals, define
g : I2 → X by g(0) := y, g(1) := x, and inductively using interpolation (Proposition 2.6(c)) so that
r < s =⇒ g(r)≪ g(s); then f+(r) :=

⋁︁
g(I2 ∩ [0, r)) works.

Now let ϕ ∈ Φ
U
(≪ΦSup(I, X)); we must show ˜︁η(˜︁η+(ϕ)) ⊆ ϕ. Since ˜︁η preserves Φ-joins,

˜︁η(˜︁η+(ϕ)) = ⋁︁
f+∈ϕ ˜︁η(f+(1)).

For each f+ ∈ ϕ and g+ ∈ ˜︁η(f+(1)), i.e., g+(1) ≤ f+(1), we have 1 ≤ g(f+(1)), thus there is
g◦f+ ≥ u ∈ U, whence g ≥ u◦f , so g+ ≤ (u◦f)+ ∈ ϕ since ϕ is U-invariant; thus ˜︁η(f+(1)) ⊆ ϕ.
Theorem 5.3. For every Archimedean unstackable U-Ψop-inflattice A, the evaluation map

ι : A −→ ΦCtsLat(UΨopInf(A, I), I)
a ↦−→ (f ↦→ f(a))

is an embedding. If A is stackable, its image is dense; thus if A is also complete, it is an isomorphism.

Proof. Via Propositions 2.7 and 4.10, ι corresponds to the map

˜︁ι : A −→≪ΦSup(I,ΦU
(Aop))op

a ↦−→ (r ↦→ min{ϕ ∈ Φ
U
(Aop) | r ≤ 1− ρ(ϕ, a)}).
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We claim that in fact, for r > 0, ˜︁ι(a)(r) is the ρop-closure Ur(a) of
Ur(a) := {u(a) | u ∈ U & u(r) = 1}.

Ur(a) is a U-invariant Ψop-filter by Lemma 4.9. Each u(a) ∈ Ur(a) is in each ϕ ∈ Φ
U
(Aop)

with r ≤ 1 − ρ(ϕ, a): if u(s) = 1 for some s < r, we may let b ∈ ϕ with b ≤1−s a to get
ϕ ∋ u(b .− (1−s)) ≤ u(a), while if there is no such s, we may write u as a limit of u0, u1, . . . for which
there are such s, then use that ϕ is closed. And r ≤ 1− ρ(Ur(a), a): letting (−)∔ (1− r) ≥ u ∈ U
with u(r) = 1, we have Ur(a) ∋ u(a) ≤1−r a by Lemma 4.7(e). This proves the claim.

Now to show that ˜︁ι is an order-embedding: let ˜︁ι(a) ≥ ˜︁ι(b) : I→ Φ
U
(Aop), i.e., Ur(a) ⊇ Ur(b) for

every r > 0; since A is Archimedean, it suffices to show a ≤2/n b for all n ≥ 3. For i = 1, . . . , n, let

(∗) vi ∈ U, vi : [(i− 1)/n, i/n] ∼= [0, 1].

Then vi(b) ∈ Ui/n(b), so there is ui ∈ U with ui(i/n) = 1 such that

ui(a) ≤1/n vi(b).

Let u′, v′ ∈ U with u′((−) ∔ 1/n) ≤ v′; then for 2 ≤ i ≤ n − 1, we have vi+1(a) ≤ u′(ui(a)) ≤
v′(vi(b)) ≤ vi+1(b∔ 2/n) since vi+1(i/n) = 0, u′(ui(i/n)) = 1, v′(vi((i− 1)/n)) = 0, and vi+1((i−
1)/n∔ 2/n) = 1. Thus since A is unstackable, by Lemma 4.15 we have a ≤2/n b.

Finally, suppose A is stackable, and let f+ ∈ ≪ΦSup(I,ΦU
(Aop)), left adjoint to f ; we will find,

for every n ≥ 2, some a ∈ A with d(ι(a), f) ≤ 2/n. For i = 1, . . . , n, we have f+((i − 1)/n) ≪
f+(i/n) =

⋁︁
a∈f+(i/n) U1(a) =

⋁︁
a∈f+(i/n)

⋁︁
r<1 Ur(a) (again by Lemma 4.9), whence

f+((i− 1)/n) ⊆ Uri(ai)

for some ai ∈ f+(i/n) and ri < 1. Let ui ∈ U with ui(ri) = 0, and let vi as in (∗). Then for u′ ∈ U,

f+((i− 1)/n) ⊆ ↑u′(ui(ai)) ⊆ U1(ui(ai)),

since for b ∈ f+((i − 1)/n) ⊆ Uri(ai), for every s > 0, there is u′′ ∈ U with u′′(ri) = 1, whence
u′ ◦ ui ≤ u′′, such that u′(ui(ai)) ≤ u′′(ai) ≤s b, whence u′(ui(ai)) ≤ b since A is Archimedean. In
particular, this holds for b = v′(ui−1(ai−1)) for every v

′ ∈ U, so by Lemma 4.14, there is a ∈ A with

vi(a) = ui(ai)

for each i. Then
Ui/n(a) = U1(vi(a)) = U1(ui(ai)),

since every u ∈ U with u(i/n) = 1 is ≥ u′ ◦ vi for some u′ ∈ U. We now show that d(f, ι(a)) ≤ 2/n,
in terms of the left adjoints f+,˜︁ι(a): for each t ∈ I, letting 1 ≤ i ≤ n with t ≤ i/n ≤ t∔ 1/n,

˜︁ι(a)(t) = Ut(a) ⊆ Ui/n(a) = U1(ui(ai)) ⊆ f+(i/n) ⊆ f+(t∔ 1/n),

f+(t .− 1/n) ⊆ f+((i− 1)/n) ⊆ U1(ui(ai)) = Ui/n(a) ⊆ Ut∔1/n(a) = ˜︁ι(a)(t∔ 1/n).

Theorem 5.4. The dual adjunction (5.1) is a dual equivalence of categories between Φ-continuous
lattices and complete stackable U-Ψop-inflattices.
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It is worth explicitly restating the duality for the two main examples of Φ:

Corollary 5.5. Hom into I yields a dual equivalence of categories between completely distributive
lattices and complete stackable U-posets.

Let us say that a U-meet-semilattice is a U-poset with finite meets preserved by the U-action.

Corollary 5.6. Hom into I yields a dual equivalence of categories between continuous lattices and
complete stackable U-meet-semilattices.

We end by showing that in the presence of meets, stackability admits a simpler formulation:

Definition 5.7. Let ˆ︁U := CtsLat(I, I) ⊇ U be the monoid of continuous lattice morphisms I→ I,
i.e., continuous monotone maps preserving 1, but possibly not 0.

A ˆ︁U-module is a (unital) meet-semilattice with a ˆ︁U-action preserving finite meets on both sides.

Proposition 5.8. The forgetful functor is an isomorphism of categories between complete ˆ︁U-modules
and complete stackable U-meet-semilattices. The ≤r relations in a ˆ︁U-module are given by

ρ(a, b) ≤ r ⇐⇒ a ≤r b ⇐⇒ a ≤ b∔ r.

Proof. The characterization of ≤r is proved as in Proposition 4.6.
Next, an Archimedean ˆ︁U-module A is unstackable as a U-poset: by Remark 4.13, it suffices

to check that for 0 < r < 1, u := 1 ∧ (−)/r, and v := ((−) .− r)/(1 − r), if u(a) ≤ u(b) and
v(a) ≤ v(b), then a ≤ b. Let s > 0, and let r(−) ≤ w ∈ U with equality on [0, 1 − s]. Then
1I ≤ (w ◦ u) ∧ (v× ◦ v) ≤ (−)∔ rs, whence from u(a) ≤ u(b) and v(a) ≤ v(b) we have a ≤ b∔ rs,
i.e., a ≤rs b by the above. Since A is Archimedean, it follows that a ≤ b.

If moreover A is a complete ˆ︁U-module, then it is stackable: for a, b ∈ A such that v′(b) ≤ u′(a)
for all u′, v′ ∈ U, with the same s, u, v, w as above, letting cs := w(a) ∧ v×(b), we have u(cs) =
u(w(a)) ∧ u(v×(b)) = u(w(a)) which is within distance s of a since 1U ≤ u ◦ w ≤ (−) ∔ s, and
v(cs) = v(w(a)) ∧ v(v×(b)) = v(v×(b)) = b. In particular, by unstackability (using Lemma 4.15 and
uniform continuity of u), the cs form a Cauchy net as s↘ 0, hence converge to some c such that
u(c) = a and v(c) = b. Thus the forgetful functor restricts to the claimed subcategories.

The forgetful functor is full on Archimedean ˆ︁U-modules: the action by w ∈ ˆ︁U\U can be recovered
from the U-action, since w(a) = ⊤ for w(0) = 1, while for 0 < w(0) < 1, by unstackability, w(a) is
the unique element such that u(w(a)) = ⊤ and v(w(a)) = (v ◦ w)(a) where u, v are as above for
r := w(0). Thus U-equivariance implies ˆ︁U-equivariance.

Conversely, in a complete stackable U-meet-semilattice A, we may extend the U-action to aˆ︁U-action by defining w(a) for 0 < w(0) < 1 to be the unique element as above.
The U-action on an Archimedean stackable U-poset A preserves binary meets in U: for piecewise

linear u, v ∈ U, we may show (u ∧ v)(a) = u(a) ∧ v(a) by unstacking over a finite partition of [0, 1]
on each piece of which u, v are comparable; for arbitrary u, v, take piecewise linear approximations.

Finally, on a complete stackable U-meet-semilattice, the extended ˆ︁U-action from above also
preserves binary meets in ˆ︁U, by a routine unstacking over 0 < w(0) < 1.

Corollary 5.9 (of Corollary 5.6 and Proposition 5.8). Hom into I yields a dual equivalence of
categories between continuous lattices and complete ˆ︁U-modules.

We end by noting that we currently do not know whether complete ˆ︁U-modules can be equationally
axiomatized, perhaps along the lines of [Abb19], thereby showing that CtsLatop is a variety.
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