A Gelfand duality for continuous lattices

Ruiyuan Chen

Abstract

We prove that the category of continuous lattices and meet- and directed join-preserving maps is dually equivalent, via the hom functor to [0,1], to the category of complete Archimedean meet-semilattices equipped with a finite meet-preserving action of the monoid of continuous monotone maps of [0,1] fixing 1. We also prove an analogous duality for completely distributive lattices. Moreover, we prove that these are essentially the only well-behaved "sound classes of joins Φ , dual to a class of meets" for which " Φ -continuous lattice" and " Φ -algebraic lattice" are different notions, thus for which a 2-valued duality does not suffice.

1 Introduction

The classical Gelfand duality asserts that a compact Hausdorff space X may be recovered from its ring of continuous functions C(X), and moreover such rings are up to isomorphism precisely the commutative C^* -algebras. From a categorical perspective, C(X) is best regarded as having "underlying set" given by its (positive) unit ball, i.e., consisting of continuous $\mathbb{I} := [0,1]$ -valued functions, so that Gelfand duality falls under the umbrella of Stone-type dualities induced by two "commuting" structures on \mathbb{I} ; see [Joh82, VI §4]. Namely, \mathbb{I} is equipped with its usual compact Hausdorff topology, and also with all operations $\mathbb{I}^{\kappa} \to \mathbb{I}$ "commuting" with the topology, i.e., which are continuous. Thus, for another object in either category, the hom functor into \mathbb{I} yields a dual in the other category, and this gives a dual adjunction, which Gelfand duality asserts is an equivalence. An explicit axiomatization of the dual operations on the \mathbb{I} -valued C(X) was recently given in [MR17]; see there for a detailed history of \mathbb{I} -valued Gelfand duality. In [HNN18], [Abb19], \mathbb{I} -valued Gelfand duality was further extended to compact partially ordered spaces (a la Nachbin).

In this note, we prove analogous Gelfand-type dualities for compact pospaces equipped with lattice operations. Recall that a **continuous lattice** is a compact topological meet-semilattice obeying a "local convexity under meets" condition, that each point has a neighborhood basis of subsemilattices. Equivalently, they can be defined purely order-theoretically as posets with arbitrary meets distributing over directed joins. An analog of Urysohn's lemma, sometimes known as the Urysohn–Lawson lemma, states that every continuous lattice X admits enough morphisms to \mathbb{I} , i.e., the canonical evaluation map $X \to \mathbb{I}^{\mathrm{Hom}(X,\mathbb{I})}$ is an embedding; see [G⁺03, IV-3.3], [Joh82, VII 3.2]. It is thus natural to ask whether, by equipping $\mathrm{Hom}(X,\mathbb{I})$ with suitable structure commuting with the continuous lattice structure on \mathbb{I} , we may recover X as the double dual.

Let \mathbb{U} denote the monoid of continuous monotone maps $\mathbb{I} \to \mathbb{I}$ fixing 1, i.e., all unary operations on \mathbb{I} commuting with the continuous lattice structure. Note that finite meets do as well. By a

2020 Mathematics Subject Classification: Primary 06B35, 06D10, 18F70; Secondary 18A35. Key words and phrases: continuous lattice, completely distributive lattice, duality, free cocompletion.

 $\widehat{\mathbb{U}}$ -module, we mean a unital meet-semilattice equipped with an action of $\widehat{\mathbb{U}}$ preserving finite meets in both variables. In every $\widehat{\mathbb{U}}$ -module A, we have a canonical pseudoquasimetric

$$\rho(a,b) := \bigwedge \{ r \in \mathbb{I} \mid a \le b \dotplus r \}$$

where $b \dotplus r$ denotes the result of the action on b of the truncated addition $(-) \dotplus r \in \widehat{\mathbb{U}}$. We say A is **Archimedean** if $\rho(a,b) = 0 \implies a \le b$, and **complete** if A is Archimedean and complete with respect to the induced metric $d(a,b) := \rho(a,b) \lor \rho(b,a)$. We prove

Theorem 1.1 (Corollary 5.9). Hom into \mathbb{I} yields a dual equivalence of categories between continuous lattices and complete $\widehat{\mathbb{U}}$ -modules.

There is a generalization of continuous lattice theory, with the role of directed joins replaced by an arbitrary "class of joins Φ " obeying suitable axioms; see [WWT78], [BE83], [Xu95], as well as [AK88], [ABLR02], [KS05] for a further extension in enriched category theory. Other than Φ = "directed joins", the most well-known case is Φ = "all joins", for which Φ -continuous lattices are completely distributive lattices. As for continuous lattices, there is a Urysohn-type lemma, stating that all completely distributive lattices admit enough morphisms to \mathbb{I} ; see [G⁺03, IV-3.31–32], [Joh82, 1.10–14]. We likewise boost this to a Gelfand-type duality as follows.

Let $\mathbb{U} \subseteq \widehat{\mathbb{U}}$ denote the monoid of complete lattice morphisms, i.e., monotone surjections. A \mathbb{U} -poset is a poset with a monotone action of \mathbb{U} . There is a canonical way of defining a pseudoquasimetric on a \mathbb{U} -poset, agreeing with the above definition in $\widehat{\mathbb{U}}$ -modules; see Definition 4.2. A \mathbb{U} -poset A is **stackable** if, intuitively speaking, an element $a \in A$ may be specified via its "restrictions to sublevel and superlevel sets $a^{-1}([0,r]), a^{-1}([r,1])$ " for any 0 < r < 1; see Definition 4.12.

Theorem 1.2 (Corollary 5.5). Hom into \mathbb{I} yields a dual equivalence of categories between completely distributive lattices and complete stackable \mathbb{U} -posets.

In fact, we prove a single result underlying Theorems 1.1 and 1.2, for a "class of joins Φ dual to a class of meets Ψ^{op} ", more precisely for a *sound* class of joins in the sense of [ABLR02], [KS05]; see Section 3. This general result, Theorem 5.2, says that Φ -continuous lattices are dual to complete stackable \mathbb{U} - Ψ^{op} -inflattices, provided that not all Φ -continuous lattices are Φ -algebraic, i.e., already admit enough morphisms into 2. This is a reasonable restriction, since for these other Φ , we instead have a simple 2-valued duality generalizing the classical Hofmann–Mislove–Stralka duality [HMS74] between algebraic lattices and meet-semilattices (see Corollary 3.7).

Part of the reason we work with general Φ is to hint at the possibility of generalizing to quantale-enriched posets, or even to enriched categories, which we plan to pursue in future work. However, in the original context of mere posets, it turns out that essentially the only Φ are the classical ones:

Theorem 1.3 (Theorem 3.9). There are precisely 4 sound classes of joins Φ for which not every Φ -continuous lattice is Φ -algebraic: "directed joins", "all joins", and the minor variations including/excluding empty joins.

Acknowledgments I would like to thank the anonymous referee for numerous helpful comments and suggestions that improved the presentation of the paper. Research partially supported by NSF grant DMS-2224709.

2 Φ-continuous lattices

We assume familiarity with basic category theory. For a category C, C(X,Y) will denote the hom-set of morphisms from X to Y, while C^{op} will denote the opposite category; this includes opposite posets. We let Pos denote the category of posets, Sup denote the category of suplattices (i.e., complete lattices with join-preserving maps as morphisms), Inf denote the category of inflattices, and $CLat = Sup \cap Inf$ denote the category of complete lattices. These are all locally ordered categories: each hom-set is partially ordered pointwise, and composition is monotone on both sides. For $f: X \to Y \in Pos$ left adjoint to $g: Y \to X$, we will write $f = g^+$ and $g = f^\times$. We will frequently use the "mate calculus": for monotone h, k, we have $h \circ g \le k \iff h \le k \circ f$.

For a poset X, we let $\mathcal{L}(X)$ denote the poset of lower sets $\phi \subseteq X$, ordered via \subseteq . Then $\mathcal{L} : \mathsf{Pos} \to \mathsf{Pos}$ is the free suplattice monad, where the monad structure consists of:

- unit $\downarrow = \downarrow_X : X \to \mathcal{L}(X)$, where $\downarrow x = \{y \in X \mid y \leq x\}$ is the principal ideal below x;
- multiplication $\bigcup : \mathcal{L}(\mathcal{L}(X)) \to \mathcal{L}(X);$
- $f: X \to Y \in \text{Pos inducing } f_* = \mathcal{L}(f): \mathcal{L}(X) \to \mathcal{L}(Y) \in \text{Sup, where } f_*(\phi) = \bigcup_{x \in \phi} \downarrow f(x).$

We now review the theory of "relative" suplattices for a "class of joins" Φ . This is a special case of the theory of "classes of colimits" in enriched category theory [AK88], [ABLR02], [KS05], and has also been well-studied in the order theory literature as "Z-completeness" [WWT78], [BE83]. We will use notation and terminology based on that from enriched categories.

Definition 2.1. A **join doctrine** is a class Φ of posets ϕ , thought of as indexing posets for certain joins $\bigvee_{x \in \phi} f(x)$ of monotone $f : \phi \to Y$. We require Φ to obey the following "saturation" conditions:

- (i) The singleton poset **1** is in Φ .
- (ii) If ϕ is a poset which is a union $\bigcup \Psi$ of a set $\Psi \subseteq \Phi$ of subposets $\psi \subseteq \phi$ which are in Φ , and also Ψ (as a poset under \subseteq) is in Φ , then $\phi \in \Phi$.
- (iii) If $f: \phi \to \psi$ is a monotone map with cofinal image, and $\phi \in \Phi$, then $\psi \in \Phi$.
- (iv) If $\phi \subseteq \psi$ is a cofinal subposet, and $\psi \in \Phi$, then $\phi \in \Phi$.

A Φ -join in a poset X is a join of a subset $\phi \subseteq X$ such that $\phi \in \Phi$. A Φ -suplattice is a poset with all Φ -joins; we denote the category of all such (and monotone Φ -join-preserving maps) by Φ -Sup A Φ -ideal in a Φ -suplattice is a lower sub- Φ -suplattice. The free Φ -suplattice generated by a poset X is the subset $\Phi(X) \subseteq \mathcal{L}(X)$ of all lower subsets of X in Φ . Note that for a poset ϕ , we have $\phi \in \Phi \iff \phi \in \Phi(\phi)$; we thereby identify the class of posets Φ with the submonad $\Phi \subseteq \mathcal{L}$.

Example 2.2.

- The "class of directed joins" is given by the join doctrine $\Phi :=$ all directed posets, for which a Φ -suplattice is a directed-complete poset (DCPO), a Φ -ideal is a Scott-closed subset, and $\Phi(X)$ is the ideal completion of X (note: not " Φ -ideal completion").
- The "class of finite joins" is given by $\Phi :=$ all posets with finite cofinality.
- The "class of all joins" is given by $\Phi :=$ all posets.
- The least join doctrine, of "trivial joins", is given by $\Phi :=$ posets with a greatest element.

Remark 2.3. In [AK88] and [KS05], a more general notion of "class of colimits" is considered, consisting in the posets case of an arbitrary submonad $\Phi \subseteq \mathcal{L}$, i.e., an assignment to each poset X of a set of lower sets $\Phi(X) \subseteq \mathcal{L}(X)$ closed under the monad operations on \mathcal{L} .

The precise connection with our definition of "join doctrine" as a class of posets is as follows. Each join doctrine Φ induces a free Φ -suplattice submonad as above; this yields an order-embedding

$$\{\text{join doctrines}\} \longrightarrow \{\text{submonads of } \mathcal{L}\},\$$

whose image consists of those submonads $\Phi \subseteq \mathcal{L}$ obeying the additional "saturation" condition

(*) for each order-embedding between posets $f: X \hookrightarrow Y$, we have $\Phi(X) = f_*^{-1}(\Phi(Y))$.

This condition is implied by condition (iv) in Definition 2.1 of join doctrine, and conversely, ensures that $\{\phi \in \mathsf{Pos} \mid \phi \in \Phi(\phi)\}$ is a join doctrine inducing the submonad Φ .

An example of a submonad not obeying (*) is $\Phi(X) := \{ \phi \in \mathcal{L}(X) \mid \phi \text{ has an upper bound in } X \}$, which yields the "class of bounded joins". However, (*) is automatic for the Φ suitable for our duality purposes, which is why we use the simpler definition of "join doctrine"; see Remark 3.2.

Definition 2.4. Let Φ be a join doctrine, X be a Φ -suplattice. We define, for $x, y \in X$,

$$\downarrow = \downarrow_X^{\Phi} : X \longrightarrow \mathcal{L}(X)$$

$$x \longmapsto \bigcap \{\phi \in \Phi(X) \mid x \leq \bigvee \phi\},$$

$$x \ll y :\iff x \ll^{\Phi} y :\iff x \in \downarrow y.$$

We call $x \in X$ Φ -compact $(\Phi$ -atomic in [KS05]) if $x \ll^{\Phi} x$, i.e., whenever $\bigvee_i y_i$ is a Φ -join $\geq x$, then some $y_i \geq x$, i.e., the indicator function of $\uparrow x : X \to 2$ preserves Φ -joins. Denote these by

$$X_{\Phi} := \{ x \in X \mid x \ll^{\Phi} x \}.$$

We call X Φ -algebraic if it is generated under Φ -joins by $X_{\Phi} \subseteq X$. In that case, it is easy to see that in fact, for each $x \in X$ the set $X_{\Phi} \cap \downarrow x$ belongs to $\Phi(X_{\Phi})$ and has join x; and this yields an order-isomorphism $X \cong \Phi(X_{\Phi})$. Conversely, for any poset Y, we easily have that $\Phi(Y)$ is Φ -algebraic, with $\Phi(Y)_{\Phi} = \{\text{principal ideals}\} \cong Y$.

Proposition 2.5. Let Φ be a join doctrine, X be a Φ -suplattice. The following are equivalent:

- (i) For each $x \in X$, there is a $\phi \in \Phi(X)$ such that $\phi \subseteq x$ and $x \subseteq V$, whence in fact $\phi = x$.
- (ii) $\bigvee : \Phi(X) \to X$ has a left adjoint, namely \downarrow .

If X is a complete lattice, these are further equivalent to:

- (iii) $\bigvee : \Phi(X) \to X$ preserves meets.
- (iv) Arbitrary meets distribute over Φ -joins: if $\bigvee_{j \in J_i} x_{i,j}$ is a Φ -join for each $i \in I$, then

$$\bigwedge_{i \in I} \bigvee_{j \in J_i} x_{i,j} = \bigvee_{(j_i)_i \in \prod_i J_i} \bigwedge_{i \in I} x_{i,j_i}.$$

All of these hold if X is algebraic, with $\downarrow = \downarrow_* : \Phi(X_{\Phi}) \to \Phi(\Phi(X_{\Phi})), i.e.,$

$$x \ll y \iff \exists z \in X_{\Phi} (x < z < y).$$

If (i), (ii) hold for a Φ -suplattice X, we call X Φ -continuous. If furthermore X is a complete lattice, we call X a Φ -continuous lattice, or a Φ -algebraic lattice if X is algebraic.

Proof. (i) \iff (ii) since it is easily seen that ϕ in (i) must be $\mspace{1mu} x$.

- $(ii) \iff (iii)$ by the adjoint functor theorem.
- (iii) \iff (iv) because the latter says $\bigwedge_{i \in I} \bigvee \bigcup_{j \in J_i} \downarrow x_{i,j} = \bigvee \bigcap_{i \in I} \bigcup_{j \in J_i} \downarrow x_{i,j}$.

Proposition 2.6. In every Φ -suplattice,

(a)
$$\mbox{\downarrow} x \subseteq \mbox{\downarrow} x$$
, i.e., $y \ll x \implies y \leq x$.

(b)
$$x' \le x \ll y \le y' \implies x' \ll y'$$
.

In a Φ -continuous Φ -suplattice,

(c) (interpolation)
$$\downarrow = \bigcup \downarrow_* \downarrow$$
, i.e., $\downarrow x = \bigcup_{y \leqslant x} \downarrow y$, i.e.,

$$z \ll x \iff \exists y (z \ll y \ll x).$$

Proof. The first two are obvious. For interpolation: since X is an algebra of the monad Φ , we have $\bigvee \bigcup = \bigvee \bigvee_* : \Phi(\Phi(X)) \to X$; taking left adjoints yields $\downarrow_* \not\downarrow = \not\downarrow_* \not\downarrow$; now take \bigcup .

A morphism of Φ -continuous lattices is a meet-preserving, Φ -join-preserving map between Φ -continuous lattices. Let Φ CtsLat denote the category of Φ -continuous lattices and morphisms, and Φ AlgLat $\subseteq \Phi$ CtsLat denote the full subcategory of Φ -algebraic lattices.

Proposition 2.7. Let $f: X \to Y$ be a right adjoint between Φ -continuous Φ -suplattices, with left adjoint $f^+: Y \to X$. Then f preserves Φ -joins iff f^+ preserves \ll . Thus

$$\begin{split} \Phi \mathsf{CtsLat}(X,Y)^{\mathsf{op}} & \cong \ll^{\Phi} \mathsf{Sup}(Y,X) := \{ f^{+} : Y \to X \mid f^{+} \ \mathit{preserves} \ll, \bigvee \} \\ & f \mapsto f^{+}. \end{split}$$

Proof.
$$f \bigvee = \bigvee f_* : \Phi(X) \to Y$$
 iff, taking left adjoints, $\sharp f^+ = (f^+)_* \sharp : Y \to \Phi(X)$.

Proposition 2.8. Let Φ be a join doctrine. The following are equivalent:

- (i) For every complete lattice X, $\Phi(X) \subseteq \mathcal{L}(X)$ is closed under meets.
- (ii) For every poset X, $\Phi(\mathcal{L}(X)) \subseteq \mathcal{L}(\mathcal{L}(X))$ is closed under meets.
- (iii) For every poset X, $\mathcal{L}(X)$ is Φ -continuous.

If these conditions hold, we call Φ a **continuous** join doctrine.

Proof. (i) \Longrightarrow (ii) is obvious.

- (ii) \Longrightarrow (iii) since $\bigcup : \Phi(\mathcal{L}(X)) \to \mathcal{L}(X)$ is the composite of the inclusion $\Phi(\mathcal{L}(X)) \hookrightarrow \mathcal{L}(\mathcal{L}(X))$ and $\bigcup : \mathcal{L}(\mathcal{L}(X)) \to \mathcal{L}(X)$, which both preserve meets, i.e., have left adjoints.
- (iii) \Longrightarrow (i) since the composite $\mathcal{L}(X) \xrightarrow{\slashed{\sharp}_{\mathcal{L}(X)}} \Phi(\mathcal{L}(X)) \xrightarrow{\slashed{\bigvee}_*} \Phi(X)$ yields the $\Phi(X)$ -closure of each lower set ψ : we have $1_{\mathcal{L}(X)} \leq \bigvee_* \slashed{\sharp}_{\mathcal{L}(X)}$ because $\bigcup \leq \bigvee_* : \Phi(\mathcal{L}(X)) \to \Phi(X) \subseteq \mathcal{L}(X)$, while $\bigvee_* \slashed{\sharp}_{\mathcal{L}(X)}$ restricted to $\Phi(X) \subseteq \mathcal{L}(X)$ becomes $\bigvee_* \slashed{\downarrow}_* = 1_{\Phi(X)}$.

The following are the two main examples of continuous join doctrines:

Example 2.9. If Φ is the "class of directed joins", i.e., the class of all directed posets, so that $\Phi(X)$ for $X \in \mathsf{Pos}$ is the ideal completion of X, then \ll is the classical way-below relation, and Φ -continuity and Φ -algebraicity become classical continuity and algebraicity for DCPOs.

Similarly, for any infinite regular cardinal κ , one can consider κ -directed joins. But it turns out that for uncountable κ , continuity and algebraicity coincide; see Corollary 2.13.

Example 2.10. If Φ is the "class of all joins", i.e., the class of all posets, so that $\Phi(X) = \mathcal{L}(X)$, then a Φ-continuous lattice is a completely distributive lattice, and \ll is the "way-way-below" relation sometimes denoted \ll ; see e.g., [G⁺03, IV-3.31].

Minor variations are to include/exclude empty joins, which only affects Φ -compactness of \bot .

Example 2.11 (the unit interval). For any join doctrine Φ , $\mathbb{I} := [0,1]$ is a Φ -continuous lattice. Indeed, \ll contains <, since any $\phi \in \mathcal{L}(\mathbb{I})$ with $r \leq \bigvee \phi$ must clearly contain [0,r); thus $r = \bigvee \mbox{$\rlap{\downarrow}$} r$.

We now completely characterize the \ll^{Φ} relation on \mathbb{I} , by determining which $r \in \mathbb{I}$ are Φ -compact.

Proposition 2.12. Let Φ be a join doctrine.

- (a) For every Φ -suplattice $X, \perp \in X$ is Φ -compact iff $\emptyset \notin \Phi$. In particular, this holds for $0 \in \mathbb{I}$.
- (b) If $\omega \in \Phi$ (where ω has the usual linear order), then no r > 0 is Φ -compact in \mathbb{I} . Otherwise:
 - (i) For every $\phi \in \Phi$ and $x_0, x_1, \ldots \in \phi$, there are $i_0 < i_1 < \cdots$ such that x_{i_0}, x_{i_1}, \ldots have an upper bound in ϕ . In particular, every $x_0 \le x_1 \le \cdots \in \phi$ has an upper bound.
 - (ii) Every Φ -continuous Φ -suplattice X which also has countable increasing joins is Φ -algebraic, with the join of any $x_0 \ll x_1 \ll \cdots \in X$ being Φ -compact. In particular, every r > 0 is Φ -compact in \mathbb{I} .

Proof. (a) is clear from the definition of Φ -compact.

(b) If $\omega \in \Phi$, then no r > 0 is Φ -compact, since r is the join of a sequence in [0, r). Now suppose $\omega \notin \Phi$. Then for $\phi \in \Phi$ and $x_0, x_1, \ldots \in \phi$, if no infinite subfamily has an upper bound, then we have a monotone map $\phi \to \omega$ taking $\phi \setminus \bigcup_n \uparrow x_n$ to 0 and each $\uparrow x_n \setminus \bigcup_{m > n} \uparrow x_m$ to n + 1; since $\omega \notin \Phi$, this map must have finite image, whence there are $i_0 < i_1 < \cdots$ with $x_{i_0} \ge x_{i_1} \ge \cdots$, a contradiction, which proves (i). It follows that for a Φ -continuous Φ -suplattice X with countable increasing joins, every $\downarrow x \in \Phi(X)$ is closed under countable increasing joins. In particular, for $x_0 \ll x_1 \ll \cdots \in X$, $x := \bigvee_n x_n$ has $x_n \ll x$ for each n, whence $x \ll x$. Now for any $y \in X$ and $x_0 \ll y$, by interpolation (Proposition 2.6(c)) we may find $x_0 \ll x_1 \ll \cdots \ll y$, whence $x := \bigvee_n x_n$ is Φ -compact with $x_0 \le x \ll y$; since $y = \bigvee_n y_n$ it follows that X is Φ -algebraic, proving (ii). \square

Corollary 2.13. For a join doctrine Φ , the following are equivalent:

- (i) $\omega \notin \Phi$.
- (ii) \mathbb{I} is Φ -algebraic.
- (iii) Every Φ -continuous lattice is Φ -algebraic.

3 Commuting meets and joins

We are interested in recovering Φ -continuous lattices from their dual algebras of morphisms (to 2 or \mathbb{I}). In order to do so, by general duality theory, the dual algebras must be equipped with all operations which commute with the Φ -continuous lattice operations of arbitrary meets and Φ -joins. Thus, we now review the theory of classes of commuting meets and joins, again due in the general enriched categories context to [KS05], although the posets case is much simpler.

It is convenient to treat a "class of meets" as simply the order-dual of a "class of joins". Thus, given a join doctrine Φ , we will refer to $\Phi^{\sf op} := \{\phi^{\sf op} \mid \phi \in \Phi\}$ as a **meet doctrine**, and a meet indexed by $\phi^{\sf op} \in \Phi^{\sf op}$ as a $\Phi^{\sf op}$ -meet. A poset with all $\Phi^{\sf op}$ -meets is a $\Phi^{\sf op}$ -inflattice, with the category of all such denoted $\Phi^{\sf op}$ Inf. A $\Phi^{\sf op}$ -filter is an upper sub- $\Phi^{\sf op}$ -inflattice. The free $\Phi^{\sf op}$ -inflattice generated by a poset X is $\Phi(X^{\sf op})^{\sf op}$.

Definition 3.1 (see [KS05]). For two join doctrines Φ , Ψ , where we regard Ψ^{op} as a meet doctrine, to say that Ψ^{op} -meets commute with Φ -joins in 2 means that for any posets X, Y,

$$\forall \phi \in \Phi(Y) \, \forall \psi \in \Psi(X) \, \forall F: X^{\mathsf{op}} \times Y \to 2 \left(\bigwedge_{x \in \psi} \bigvee_{y \in \phi} F(x,y) = \bigvee_{y \in \phi} \bigwedge_{x \in \psi} F(x,y) \right)$$

(where F runs over monotone maps). By currying F, this is equivalent to

$$\forall \phi \in \Phi(Y) \, \forall \psi \in \Psi(X) \, \forall f : Y \to \mathcal{L}(X) \left(\psi \subseteq \bigcup_{y \in \phi} f(y) \iff \exists y \in \phi \, (\psi \subseteq f(y)) \right)$$
$$\iff \forall \psi \in \Psi(X) \, (\psi \in \mathcal{L}(X) \text{ is } \Phi\text{-compact}).$$

We write $\Phi^*(X) := \mathcal{L}(X)_{\Phi}$ for the Φ -compact lower sets $\psi \subseteq X$, i.e., those indexing meets commuting with Φ -joins in 2. Note that by order-duality, the roles of Φ, Ψ may be swapped. Thus

$$\Psi^{\mathsf{op}}$$
-meets commute with Φ -joins in $2 \iff \Psi \subseteq \Phi^* \iff \Phi \subseteq \Psi^*$ (as submonads of \mathcal{L}).

Remark 3.2. The above definition of Φ^* , which follows [KS05], yields a priori a submonad of \mathcal{L} . But such a submonad automatically obeys the saturation condition (*) of Remark 2.3, since given an order-embedding $i: X \hookrightarrow X'$ and poset Y, a monotone $F: X^{\mathsf{op}} \times Y \to 2$ may be extended along i to $F': X'^{\mathsf{op}} \times Y \to 2$ (e.g., the left Kan extension $F'(x', y) := \bigvee_{x \in i^{-1}(\uparrow x')} F(x, y)$), so that for $\psi \in \mathcal{L}(X)$, the ψ^{op} -meet of F commutes with all Φ -joins iff the $i_*(\psi)^{\mathsf{op}}$ -meet of F' does. Thus by Remark 2.3, we may equally well regard Φ^* as a class of posets. Namely, for a poset ψ ,

$$\psi \in \Phi^* \iff \psi \in \Phi^*(\psi) = \mathcal{L}(\psi)_{\Phi}$$
 \iff whenever ψ is a Φ -union of lower subsets, one of them is ψ .

Note moreover that this reasoning applies to Φ^* even if Φ is only a submonad of \mathcal{L} to begin with; this justifies our claim from Remark 2.3 that for our duality-theoretic purposes, it suffices to consider "join doctrines" which are classes of posets, rather than arbitrary submonads of \mathcal{L} as in [KS05].

Remark 3.3. Φ -joins commute with Ψ^{op} -meets in 2 iff they do in the unit interval \mathbb{I} . This follows from the facts that 2 is a complete sublattice of \mathbb{I} , while \mathbb{I} is a complete lattice homomorphic image via $V: \mathcal{L}(\mathbb{I}) \twoheadrightarrow \mathbb{I}$ (by complete distributivity, Example 2.11) of a complete sublattice $\mathcal{L}(\mathbb{I}) \subseteq 2^{\mathbb{I}}$.

Remark 3.4. If $\phi \in \Psi^*(X)$ for a Ψ -suplattice X, then by considering the indicator function of $\leq \subseteq X^{\mathsf{op}} \times X$, we get that ϕ must be a Ψ -ideal. (The converse is false in general: for Ψ = directed posets, a Ψ -ideal is a Scott-closed subset, but only finite meets commute with directed joins.)

Proposition 3.5 ([KS05, 8.9, 8.11, 8.13]). Let Φ, Ψ be two join doctrines such that Ψ^{op} -meets commute with Φ -joins in 2. The following are equivalent:

- (i) For every poset X, $\mathcal{L}(X)$ is generated under Φ -joins by $\Psi(X) \subseteq \mathcal{L}(X)_{\Phi}$.
- (ii) For every Ψ -suplattice X, $\Phi(X)$ consists precisely of all Ψ -ideals in X.
- (iii) For every poset X, there is a sub- Ψ -suplattice $\Psi'(X) \subseteq \mathcal{L}(X)$ containing all principal ideals $\downarrow x$ (e.g., $\Psi'(X) = \mathcal{L}(X)$ or $\Psi'(X) = \Psi(X)$) such that $\Phi(\Psi'(X))$ contains all Ψ -ideals in $\Psi'(X)$.

If these hold, then in fact $\Psi(X) = \mathcal{L}(X)_{\Phi} = \Phi^*(X)$, whence $\mathcal{L}(X) \cong \Phi(\Psi(X))$ is Φ -algebraic, whence in particular Φ is a continuous join doctrine; and similarly $\Phi = \Psi^*$.

If these hold, we call Φ a sound join doctrine, dual to the sound meet doctrine Ψ^{op} . Thus, Φ is a sound join doctrine iff $\mathcal{L}(X) \cong \Phi(\Phi^*(X))$, iff $\Phi(X)$ contains every Φ^* -ideal in a Φ^* -suplattice X. (Warning: this notion is *not* preserved under swapping Φ, Ψ , in contrast to Definition 3.1.)

Proof. (ii) \Longrightarrow (iii) is obvious.

- (iii) \Longrightarrow (i): For any $\theta \in \mathcal{L}(X)$, clearly $\Psi'(X) \cap \downarrow \theta = \{ \psi \in \Psi'(X) \mid \psi \subseteq \theta \}$ is a Ψ -ideal in $\Psi'(X)$, thus by (iii) is in $\Phi(\Psi'(X))$; and its union is θ , which is thus a Φ -join of elements of $\Psi(X)$.
- (i) \Longrightarrow (ii): For every $\theta \in \mathcal{L}(X)$, the Ψ -ideal $\langle \theta \rangle$ it generates is in $\Phi(X)$: this is true for $\theta \in \Psi(X)$ since $\langle \theta \rangle = \bigcup_i \forall \theta$, and is true for a Φ -join $\theta = \bigcup_i \theta_i$ if it is true for each θ_i since $\langle \theta \rangle = \bigcup_i \langle \theta_i \rangle$ (using that Ψ^{op} -meets commute with Φ -joins in 2), thus is true for all $\theta \in \mathcal{L}(X)$ by (i). Conversely, as noted above, every $\phi \in \Phi(X)$ is a Ψ -ideal.

The last sentence follows from (i), (ii), and Remark 3.4, which imply that $\Phi(X) = \Psi^*(X)$ for a Ψ -suplattice X, hence for every poset X by applying (*) in Remark 2.3 to $\downarrow : X \to \Psi(X)$.

Lemma 3.6. For any join doctrine Φ , we have $\omega \in \Phi$ iff $\omega \notin \Phi^*$.

Proof. $\omega \notin \Phi \cap \Phi^*$ since ω -joins do not commute with ω^{op} -meets in 2. If $\omega \notin \Phi^*$, i.e., $\omega \in \mathcal{L}(\omega)$ is not Φ -compact, then ω is a Φ -union of proper lower subsets of ω ; the order-type of this union must clearly be ω . (This argument is due to the referee; my original proof assumed soundness of Φ .)

Corollary 3.7 (generalized Hofmann–Mislove–Stralka duality). Let Φ be a sound join doctrine, dual to the meet doctrine $\Psi^{op} = \Phi^{*op}$. We have a dual equivalence of categories

$$\Phi \mathsf{AlgLat^{op}} \xrightarrow{\Phi \mathsf{AlgLat}(-,2)} \Psi^{\mathsf{op}} \mathsf{Inf}.$$

We may replace Φ AlgLat with Φ CtsLat iff $\omega \notin \Phi$, i.e., $\omega \in \Psi$.

Proof. For a Φ-algebraic lattice X, a morphism $X \to 2$ is the indicator function of $\uparrow x$ for Φ-algebraic x. For a Ψ^{op} -inflattice A, a morphism $A \to 2$ is the indicator function of a Ψ^{op} -filter. So we have

$$\Phi \mathsf{AlgLat}(X,2) \cong X_{\Phi}^{\mathsf{op}}, \qquad \qquad \Psi^{\mathsf{op}}\mathsf{Inf}(A,2) \cong \Phi(A^{\mathsf{op}}).$$

Now the adjunction (co)unit on the left is given by, for $X \in \Phi AlgLat$, the evaluation map

$$\begin{split} X &\longrightarrow \Psi^{\mathsf{op}}\mathsf{Inf}(\Phi\mathsf{AlgLat}(X,2),2) \\ x &\longmapsto (f \mapsto f(x)), \end{split}$$

which via the above isomorphisms becomes the canonical isomorphism $X \cong \Phi(X_{\Phi})$ characterizing algebraicity. Similarly, for $A \in \Psi^{\mathsf{op}}\mathsf{Inf}$, the unit $A \to \Phi\mathsf{AlgLat}(\Psi^{\mathsf{op}}\mathsf{Inf}(A,2),2)$ is the canonical isomorphism $A^{\mathsf{op}} \cong \Phi(A^{\mathsf{op}})_{\Phi}$. By Corollary 2.13, $\Phi\mathsf{AlgLat} = \Phi\mathsf{CtsLat}$ iff \mathbb{I} is Φ -algebraic, iff $\omega \notin \Phi$. \square

Example 3.8. Φ = directed posets forms a sound join doctrine, dual to Ψ^{op} = "finite meets", i.e., Ψ = the class of posets with finite cofinality. In this case, Corollary 3.7 becomes the classical Hofmann–Mislove–Stralka duality [HMS74] between (unital) meet-semilattices and algebraic lattices.

Similarly, the join doctrine Φ of κ -directed posets for an uncountable regular cardinal κ is sound, dual to κ -ary meets. But since $\omega \notin \Phi$ for uncountable κ , we get a duality between κ -meet-semilattices and κ -continuous lattices.

We now show that there are very few sound join doctrines $\Phi \ni \omega$, for which $\Phi AlgLat \neq \Phi CtsLat$: essentially, they are only the classical cases of continuous and completely distributive lattices (Examples 2.9 and 2.10), plus the minor variations including/excluding empty joins.

Theorem 3.9. There are precisely 4 sound join doctrines $\Phi \ni \omega$, dual to Ψ^{op} :

- (i) $\Phi = directed posets$, $\Psi = posets with finite cofinality;$
- (ii) $\Phi = empty \ or \ directed \ posets, \ \Psi = nonempty \ posets \ with finite \ cofinality;$
- (iii) $\Phi = nonempty posets$, $\Psi = posets which are empty or have greatest element;$
- (iv) $\Phi = all\ posets$, $\Psi = posets\ with\ greatest\ element$.

Proof. It is well-known and easily seen that each of these 4 cases is sound; we show the converse.

First, we show that Φ must contain every directed poset, i.e., every poset in Ψ must have finite cofinality. For every set X, Φ contains the finite powerset $\mathcal{P}_{\omega}(X)$, since this is a Ψ -ideal in the full powerset $\mathcal{P}(X)$, since by Proposition 2.12(i) (applied to $\Psi \not\ni \omega$), every $\psi \in \Psi(\mathcal{P}_{\omega}(X))$ can have neither a strictly increasing sequence nor infinitely many maximal elements, thus must be finite. Now for every join-semilattice X, we have a monotone surjection $\forall : \mathcal{P}_{\omega}(X) \twoheadrightarrow X$, whence $X \in \Phi$. Since every directed poset ϕ is cofinal in the free join-semilattice it generates, it follows that $\phi \in \Phi$.

So Ψ is determined by the finite antichains n in it. If some n > 1 is in Ψ , then by induction so is each $n^k \cong \bigsqcup_{i \in n} n^{k-1}$; now every $m \ge 1$ admits a surjection $n^k \twoheadrightarrow m$, whence $m \in \Psi$.

4 U-posets

Henceforth, we assume $\Phi \ni \omega$ is a sound join doctrine, dual to Ψ^{op} , so one of the cases in Theorem 3.9. Then Hofmann–Mislove–Stralka duality does not apply to all Φ -continuous lattices, and so we would like to formulate a duality based on morphisms to \mathbb{I} instead of 2.

By Remark 3.3, the dual algebra $\Phi\mathsf{CtsLat}(X,\mathbb{I})$ will still be equipped with Ψ^op -meets. But these are not all the operations on \mathbb{I} commuting with the Φ -continuous lattice operations: clearly any complete lattice homomorphism $\mathbb{I} \to \mathbb{I}$ does as well. We thus introduce the following notions:

Definition 4.1. Let $\mathbb{U} := \mathsf{CLat}(\mathbb{I}, \mathbb{I})$ denote the partially ordered monoid of all complete lattice homomorphisms $\mathbb{I} \to \mathbb{I}$, i.e., surjective monotone maps.

A \mathbb{U} -poset is a poset equipped with a monotone (in both variables) action of the monoid \mathbb{U} . Denote the category of these (and equivariant monotone maps) by \mathbb{U} Pos.

A \mathbb{U} - Ψ^{op} -inflattice is a \mathbb{U} -poset which is also a Ψ^{op} -inflattice such that the action of each $u \in \mathbb{U}$ preserves Ψ^{op} -meets. Denote the category of these by $\mathbb{U}\Psi^{\mathsf{op}}\mathsf{Inf}$.

Definition 4.2. Let $\dot{+}$, $\dot{-}$ denote truncated +, - on \mathbb{I} ; note that they obey the adjunction

$$(4.3) r - s \le t \iff r \le s + t.$$

For a \mathbb{U} -poset A and $a, b \in A$, define

$$a \leq_r b :\iff \forall u, v \in \mathbb{U} (u((-) \dotplus r) \leq v \implies u(a) \leq v(b)),$$
$$\rho(a,b) := \bigwedge \{ r \in \mathbb{I} \mid a \leq_r b \},$$
$$d(a,b) := \rho(a,b) \vee \rho(b,a).$$

Remark 4.4. In the definition of \leq_r , instead of testing $\forall u, v$, it is enough to test any particular $u \in \mathbb{U}$ which restricts to an order-isomorphism $u : [r, 1] \cong [0, 1]$ (e.g., the linear such isomorphism extended by 0 on [0, r]), so that $v := u((-) \dotplus r) \in \mathbb{U}$. Indeed, for any other $u', v' \in \mathbb{U}$ with $u'((-) \dotplus r) \leq v'$, there is $w \in \mathbb{U}$ with $u' = w \circ u$, whence $u'(a) = w(u(a)) \leq w(v(a)) \leq v'(a)$.

Remark 4.5. There is an evident order-duality for \mathbb{U} -posets A: let $u \in \mathbb{U}$ act on the order-dual A^{op} via 1 - u(1 - (-)); this reverses each \leq_r , and turns ρ into $\rho^{\mathsf{op}}(a, b) := \rho(b, a)$.

Intuitively, $a \leq_r b$ means " $a \leq b + r$ ". The following properties justify this interpretation:

Proposition 4.6. In \mathbb{I} , we have $a \leq_r b \iff a \leq b \dotplus r$, whence $\rho(a,b) = a \dotplus b$ and d(a,b) = |a-b|.

Proof. If $a \le b \dotplus r$, then for every $u, v \in \mathbb{U}$ with $u((-) \dotplus r) \le v$, we have $u(a) \le u(b \dotplus r) \le v(b)$.

For the converse, the case r=1 is vacuous; thus we may assume r<1. Note that $(-)\dotplus r:\mathbb{I}\to\mathbb{I}$ can be written as $u^\times\circ v$ where $v:=1\land (-)/(1-r),\ u:=v((-)\dotplus r),\ \text{and}\ u^\times$ is the right adjoint of u. Now from $a\le_r b$ and $u((-)\dotplus r)=v,$ we get $u(a)\le v(b),$ whence $a\le u^\times(v(b))=b\dotplus r.$

Lemma 4.7. In every \mathbb{U} -poset A, we have the following, for $r, s, t \in \mathbb{I}$, $u, v \in \mathbb{U}$, $a, b, c \in A$:

- (a) $r \leq s \& a \leq_r b \implies a \leq_s b$.
- (b) \leq_0 is the same as \leq .
- (c) $a \leq_r b \leq_s c \implies a \leq_{r \neq s} c$.
- (d) ρ is a pseudoquasimetric: $\rho(a,a) = 0$, and $\rho(a,b) + \rho(b,c) \ge \rho(a,c)$. Thus, d is a pseudometric.
- (e) $u((-) \dotplus r) \le v \dotplus s \& a \le_r b \implies u(a) \le_s v(b)$. Thus, $\rho(u(a), v(a)) \le \rho(u, v) := \bigvee (u \dotplus v)$, i.e., the \mathbb{U} -action is 1-Lipschitz in the first variable with respect to the ℓ^{∞} -quasimetric on \mathbb{U} . Moreover, if $u \in \mathbb{U}$ is uniformly continuous with modulus $\mu : \mathbb{I} \to \mathbb{I}$, i.e., $u(r) \dotplus u(s) \le \mu(r \dotplus s)$, then the action of u is uniformly continuous with the same modulus: $\rho(u(a), u(b)) \le \mu(\rho(a, b))$.
- (f) $u^{\times}((-) \dotplus r) \leq v \dotplus s \& u(a) \leq_r b \implies a \leq_s v(b)$ (where u^{\times} is the right adjoint of u).

In a \mathbb{U} - Ψ ^{op}-inflattice, we moreover have, for $\psi, \psi' \in \Psi(A^{op})$:

(g)
$$a \leq_r \bigwedge \psi \iff \forall b \in \psi \ (a \leq_r b)$$
. Thus, $\rho(\bigwedge \psi, \bigwedge \psi') \leq \bigwedge_{a \in \psi} \bigvee_{b \in \psi'} \rho(a, b)$.

Proof. (a) and (b) are straightforward, as is (d) given the previous parts.

- (c) For $u, w \in \mathbb{U}$ with $u((-) \dotplus (r \dotplus s)) \le w$, we have $v := u((-) \dotplus r) \in \mathbb{U}$ with $u((-) \dotplus r) \le v$ and $v((-) \dotplus s) \le w$, whence $u(a) \le v(b) \le w(c)$.
- (e) For $u', v' \in \mathbb{U}$ with $u'((-) \dotplus s) \leq v'$, we have $u'(u((-) \dotplus r)) \leq u'(v(-) \dotplus s) \leq v' \circ v$, whence $u'(u(a)) \leq v'(v(b))$. For the last assertion: $u(r) \dotplus u(s) \leq \mu(r \dotplus s)$ means $u((-) \dotplus r) \leq u(-) \dotplus \mu(r)$.
- (f) The assumption is equivalent to $(-) \dot{-} s \leq v(u(-) \dot{-} r)$; thus for $u', v' \in \mathbb{U}$ with $u'((-) \dot{+} s) \leq v'$, we have $u' \leq v'((-) \dot{-} s) \leq v'(v(u(-) \dot{-} r))$, whence $u'(a) \leq v'(v(u(a) \dot{-} r)) \leq v'(v(b))$.
- (g) \Longrightarrow and the last assertion follow from (c). For \Leftarrow : for $u, v \in \mathbb{U}$ with $u((-) \dotplus r) \leq v$, we have $u(a) \leq \bigwedge_{b \in \psi} v(b) = v(\bigwedge \psi)$.

For general background on (pseudo)quasimetrics, see e.g., [Kün09]. A pseudoquasimetric ρ as above induces a topology, where a basic neighborhood of $a \in A$ is $\{b \in A \mid \rho(a,b) < r\}$ for some r > 0. Thus the closure of $B \subseteq A$ is the set of all $a \in A$ such that

$$\rho(a,B) = \bigwedge_{b \in B} \rho(a,b) = 0,$$

which is in particular a lower set. To avoid confusion, we will call a closed set in this topology a ρ -closed lower set, and denote the set of all such by $\overline{\mathcal{L}}(A) \subseteq \mathcal{L}(A)$. We will also say ρ^{op} -closed upper set $B \subseteq A$ for the order-dual notion, i.e., if $\rho(B, a) = 0$ then $a \in B$; the set of all such is thus $\overline{\mathcal{L}}(A^{\mathsf{op}})$. For a \mathbb{U} - Ψ^{op} -inflattice A, recalling that $\Phi(A^{\mathsf{op}})$ consists of Ψ^{op} -filters by soundness, let

$$\overline{\Phi}(A^{\mathsf{op}}) := \Phi(A^{\mathsf{op}}) \cap \overline{\mathcal{L}}(A^{\mathsf{op}})$$

denote the ρ^{op} -closed Ψ^{op} -filters in A.

Lemma 4.8. If $\phi \in \Phi(A^{op})$ is a Ψ^{op} -filter, then so is the ρ^{op} -closure $\overline{\phi}$.

Proof. This follows from the facts that Ψ^{op} is a class of finite meets by Theorem 3.9, and that Ψ^{op} -meets are Lipschitz by Lemma 4.7(g).

As usual for actions, a subset $B \subseteq A$ of a \mathbb{U} -poset is \mathbb{U} -invariant if it is closed under the action. For a class of sets $\Gamma(A)$, we write $\Gamma^{\mathbb{U}}(A)$ for the \mathbb{U} -invariant members, e.g., $\mathcal{L}^{\mathbb{U}}(A)$, $\overline{\Phi}^{\mathbb{U}}(A)$.

Lemma 4.9. If $\phi \in \mathcal{P}^{\mathbb{U}}(A)$ is a \mathbb{U} -invariant filter base, then its ρ^{op} -closure $\overline{\phi}$ is a \mathbb{U} -invariant Ψ^{op} -filter, hence is the \mathbb{U} -invariant ρ -closed Ψ^{op} -filter generated by ϕ .

Proof. By uniform continuity of the action of each u (Lemma 4.7(e)), $\overline{\phi}$ is \mathbb{U} -invariant. It is also upper, since every ρ^{op} -closed set is, thus it is also the ρ^{op} -closure of the upward closure of ϕ , which is a Ψ^{op} -filter since Ψ^{op} -meets are finite by Theorem 3.9, whence so is $\overline{\rho}$ by the preceding lemma. \square

Proposition 4.10. For a \mathbb{U} - Ψ^{op} -inflattice A, we have an order-isomorphism

$$\mathbb{U}\Psi^{\mathsf{op}}\mathsf{Inf}(A,\mathbb{I}) \cong \overline{\Phi}^{\mathbb{U}}(A^{\mathsf{op}}) = \{\mathbb{U}\text{-}invariant\ \rho^{\mathsf{op}}\text{-}closed\ \Psi^{\mathsf{op}}\text{-}filters\ in\ A\}$$

$$f \mapsto f^{-1}(1)$$

$$1 - \rho(\phi, -) \longleftrightarrow \phi.$$

Proof. For ease of notation, we will prove the dual statement that for a \mathbb{U} - Ψ -suplattice A,

$$\mathbb{U}\Psi\mathsf{Sup}(A,\mathbb{I})^\mathsf{op} \cong \overline{\Phi}^{\mathbb{U}}(A) = \{\mathbb{U}\text{-invariant ρ-closed Ψ-ideals in A}\}$$

$$f \mapsto f^{-1}(0)$$

$$\rho(-,\phi) \longleftrightarrow \phi.$$

It is immediate from the definitions that for a \mathbb{U} -equivariant Ψ -join-preserving $f: A \to \mathbb{I}, f^{-1}(0) \subseteq A$ is \mathbb{U} -invariant ρ -closed lower, and also that a ρ -closed lower $\phi \subseteq A$ is equal to $\rho(-,\phi)^{-1}(0)$.

We now check that for a \mathbb{U} -invariant Ψ -ideal $\phi \subseteq A$, $\rho(-,\phi): A \to \mathbb{I}$ is \mathbb{U} -equivariant Ψ -join-preserving (it is clearly monotone). For $\psi \in \Psi(A)$,

$$\rho(\bigvee \psi, \phi) = \bigwedge_{b \in \phi} \bigvee_{a \in \psi} \rho(a, b) \quad \text{by the dual of Lemma 4.7(g)}$$
$$= \bigvee_{a \in \psi} \bigwedge_{b \in \phi} \rho(a, b) \quad \text{because } \Phi \subseteq \Psi^* \text{ (Remark 3.3)}$$
$$= \bigvee_{a \in \psi} \rho(a, \phi);$$

thus $\rho(-,\phi)$ preserves Ψ -joins. To check \mathbb{U} -equivariance: let $u\in\mathbb{U}$ and $a\in A$. We have

$$\rho(u(a), \phi) = \bigwedge_{b \in \phi} \rho(u(a), b) = \bigwedge \{ r \in \mathbb{I} \mid u(a) \leq_r b \in \phi \},$$

$$u(\rho(a, \phi)) = u(\bigwedge_{b \in \phi} \rho(a, b)) = \bigwedge_{b \in \phi} u(\rho(a, b)) = \bigwedge \{ u(r) \mid a \leq_r b \in \phi \}.$$

For each $a \leq_r b \in \phi$, find

$$u((-) \dotplus r) \dotplus u(r) \le v \in \mathbb{U},$$

whence $u(a) \leq_{u(r)} v(b) \in \phi$ by Lemma 4.7(e); this proves $u(\rho(a, \phi)) \geq \rho(u(a), \phi)$. Conversely, for $u(a) \leq_r b \in \phi$ with r < 1, let u^{\times} be the right adjoint of u, and similarly to before, find

$$u^{\times}((-) \dotplus r) \dot{-} u^{\times}(r) \le v \in \mathbb{U},$$

whence $a \leq_{u^{\times}(r)} v(b) \in \phi$ by Lemma 4.7(f), whence $u(\rho(a,\phi)) \leq r$; so $\rho(u(a),\phi) \geq u(\rho(a,\phi))$.

Finally, we check that for \mathbb{U} -equivariant monotone $f: A \to \mathbb{I}$, we have $f = \rho(-, f^{-1}(0))$. We have \leq since f is 1-Lipschitz. Conversely, for $a \in A$ with f(a) < 1, find $(-) \div f(a) \leq u \in \mathbb{U}$ with u(f(a)) = 0; then $a \leq_{f(a)} u(a)$ by Lemma 4.7(e), so $\rho(a, f^{-1}(0)) \leq \rho(a, u(a)) \leq f(a)$.

The \mathbb{U} -poset \mathbb{I} obeys the following additional axioms, which must thus also hold in the dual of a Φ -continuous lattice:

Definition 4.11. We call a \mathbb{U} -poset A **Archimedean** if it obeys

$$\forall r > 0 (a \le_r b) \implies a \le b.$$

We call A (Cauchy-)complete if it is Archimedean and also complete in the metric d.

Definition 4.12. We call a \mathbb{U} -poset A unstackable if for any 0 < r < 1 and $u, v \in \mathbb{U}$ restricting to order-isomorphisms $u : [0, r] \cong [0, 1]$ and $v : [r, 1] \cong [0, 1]$, we have

$$u(a) < u(b) \& v(a) < v(b) \implies a < b.$$

We call A stackable if it is unstackable and for r, u, v as above and $a, b \in A$ such that $v'(b) \le u'(a)$ for all $u', v' \in \mathbb{U}$, there is a (unique, by unstackability) $c \in A$ with u(c) = a and v(c) = b.

Intuitively, stackability means that, thinking of A as the dual of a Φ -continuous lattice X, we may specify $A \ni a : X \to \mathbb{I}$ via its restrictions to its sublevel and superlevel sets $a^{-1}([0,r]), a^{-1}([r,1])$.

Remark 4.13. As in Remark 4.4, it is enough to take some particular u, v above. Also, it is enough to take some particular r (e.g., 1/2), since we may move r around via an order-isomorphism $\mathbb{I} \cong \mathbb{I}$.

Lemma 4.14. If A is (un)stackable, then more generally, for $0 = r_0 < r_1 < \cdots < r_n = 1$ and $u_1, \ldots, u_n \in \mathbb{U}$ restricting to $u_i : [r_{i-1}, r_i] \cong [0, 1]$, for $a_1, \ldots, a_n \in A$ such that $v'(a_{i+1}) \leq u'(a_i)$ for all $u', v' \in \mathbb{U}$, there is (at most one, depending monotonically on (a_1, \ldots, a_n)) $a \in A$ with $u_i(a) = a_i$.

Proof. By a straightforward induction on n.

Lemma 4.15. If A is unstackable, then more generally, for $0 \le r = r_0 < r_1 < \cdots < r_n = 1$ and $u_1, \ldots, u_n \in \mathbb{U}$ with $u_i : [r_{i-1}, r_i] \cong [0, 1]$, so that $u_i((-) \dotplus r) \in \mathbb{U}$, for any $a, b \in A$, we have

$$u_1(a) \le u_1(b \dotplus r) \& \cdots \& u_n(a) \le u_n(b \dotplus r) \implies a \le_r b.$$

Proof. By Remark 4.4, it suffices to check that for $w \in \mathbb{U}$ with $w : [r, 1] \cong [0, 1]$, we have $w(a) \leq w(b \dotplus r)$; this follows from applying the preceding lemma to $u_i \circ w^{-1} : [w(r_{i-1}), w(r_i)] \cong [0, 1]$. \square

The duality 5

Let $\mathsf{CSt}\mathbb{U}\Psi^{\mathsf{op}}\mathsf{Inf}\subseteq\mathbb{U}\Psi^{\mathsf{op}}\mathsf{Inf}$ denote the full subcategory of complete stackable $\mathbb{U}\Psi^{\mathsf{op}}\mathsf{-inflattices}$. Since the Φ -continuous lattice and \mathbb{U} - Ψ ^{op}-inflattice structures on \mathbb{I} commute, we have a dual adjunction

$$\Phi \mathsf{CtsLat}^\mathsf{op} \xrightarrow{\Phi \mathsf{CtsLat}(-,\mathbb{I})} \mathsf{CSt} \mathbb{U} \Psi^\mathsf{op} \mathsf{Inf} \subseteq \mathbb{U} \Psi^\mathsf{op} \mathsf{Inf}.$$

Theorem 5.2. For every Φ -continuous lattice X, the evaluation map

$$\begin{split} \eta: X &\longrightarrow \mathbb{U} \Psi^{\mathsf{op}} \mathsf{Inf}(\Phi \mathsf{CtsLat}(X, \mathbb{I}), \mathbb{I}) \\ x &\longmapsto (f \mapsto f(x)), \end{split}$$

which is the (co)unit on the left side of the above adjunction, is an order-isomorphism.

Proof. Via Propositions 2.7 and 4.10, η corresponds to the map

$$\begin{split} \widetilde{\eta}: X &\longrightarrow \overline{\Phi}^{\mathbb{U}}(\ll^{\Phi} \mathrm{Sup}(\mathbb{I}, X)) \subseteq \mathcal{L}(\ll^{\Phi} \mathrm{Sup}(\mathbb{I}, X)) \\ x &\longmapsto \{f^{+} \in \ll^{\Phi} \mathrm{Sup}(\mathbb{I}, X) \mid f^{+}(1) \leq x\} \end{split}$$

whose left adjoint is easily seen to be

$$\begin{split} \widetilde{\eta}^+ : \mathcal{L}(\ll^{\Phi} \mathrm{Sup}(\mathbb{I}, X)) &\longrightarrow X \\ \phi &\longmapsto \bigvee_{f^+ \in \phi} f^+(1). \end{split}$$

That $x < \tilde{\eta}^+(\tilde{\eta}(x))$ is Urysohn's lemma for Φ -continuous lattices; see [G⁺03, IV-3.1, IV-there is $f^+ \in \ll^{\Phi} \mathsf{Sup}(\mathbb{I}, X)$ with $y \leq f^+(1) \leq x$. Let $\mathbb{I}_2 \subseteq \mathbb{I}$ be the dyadic rationals, define $g: \mathbb{I}_2 \to X$ by g(0) := y, g(1) := x, and inductively using interpolation (Proposition 2.6(c)) so that $r < s \implies g(r) \ll g(s)$; then $f^+(r) := \bigvee g(\mathbb{I}_2 \cap [0,r))$ works. Now let $\phi \in \overline{\Phi}^{\mathbb{U}}(\ll^{\Phi} \operatorname{Sup}(\mathbb{I}, X))$; we must show $\widetilde{\eta}(\widetilde{\eta}^+(\phi)) \subseteq \phi$. Since $\widetilde{\eta}$ preserves Φ -joins,

$$\widetilde{\eta}(\widetilde{\eta}^+(\phi)) = \bigvee_{f^+ \in \phi} \widetilde{\eta}(f^+(1)).$$

For each $f^+ \in \phi$ and $g^+ \in \widetilde{\eta}(f^+(1))$, i.e., $g^+(1) \le f^+(1)$, we have $1 \le g(f^+(1))$, thus there is $g \circ f^+ \ge u \in \mathbb{U}$, whence $g \ge u \circ f$, so $g^+ \le (u \circ f)^+ \in \phi$ since ϕ is \mathbb{U} -invariant; thus $\widetilde{\eta}(f^+(1)) \subseteq \phi$. \square

Theorem 5.3. For every Archimedean unstackable \mathbb{U} - Ψ^{op} -inflattice A, the evaluation map

$$\begin{split} \iota: A &\longrightarrow \Phi\mathsf{CtsLat}(\mathbb{U}\Psi^\mathsf{op}\mathsf{Inf}(A,\mathbb{I}),\mathbb{I}) \\ a &\longmapsto (f \mapsto f(a)) \end{split}$$

is an embedding. If A is stackable, its image is dense; thus if A is also complete, it is an isomorphism.

Proof. Via Propositions 2.7 and 4.10, ι corresponds to the map

$$\widetilde{\iota}: A \longrightarrow \ll^{\Phi} \operatorname{Sup}(\mathbb{I}, \overline{\Phi}^{\mathbb{U}}(A^{\operatorname{op}}))^{\operatorname{op}}$$

$$a \longmapsto (r \mapsto \min\{\phi \in \overline{\Phi}^{\mathbb{U}}(A^{\operatorname{op}}) \mid r \leq 1 - \rho(\phi, a)\}).$$

We claim that in fact, for r > 0, $\tilde{\iota}(a)(r)$ is the ρ^{op} -closure $\overline{U_r(a)}$ of

$$U_r(a) := \{u(a) \mid u \in \mathbb{U} \& u(r) = 1\}.$$

 $\overline{U_r(a)}$ is a \mathbb{U} -invariant Ψ^{op} -filter by Lemma 4.9. Each $u(a) \in U_r(a)$ is in each $\phi \in \overline{\Phi}^{\mathbb{U}}(A^{\mathsf{op}})$ with $r \leq 1 - \rho(\phi, a)$: if u(s) = 1 for some s < r, we may let $b \in \phi$ with $b \leq_{1-s} a$ to get $\phi \ni u(b \dot{-} (1-s)) \leq u(a)$, while if there is no such s, we may write u as a limit of u_0, u_1, \ldots for which there are such s, then use that ϕ is closed. And $r \leq 1 - \rho(\overline{U_r(a)}, a)$: letting $(-) \dot{+} (1-r) \geq u \in \mathbb{U}$ with u(r) = 1, we have $U_r(a) \ni u(a) \leq_{1-r} a$ by Lemma 4.7(e). This proves the claim.

Now to show that $\widetilde{\iota}$ is an order-embedding: let $\widetilde{\iota}(a) \geq \widetilde{\iota}(b) : \mathbb{I} \to \overline{\Phi}^{\mathbb{U}}(A^{\mathsf{op}})$, i.e., $\overline{U_r(a)} \supseteq U_r(b)$ for every r > 0; since A is Archimedean, it suffices to show $a \leq_{2/n} b$ for all $n \geq 3$. For $i = 1, \ldots, n$, let

(*)
$$v_i \in \mathbb{U}, \quad v_i : [(i-1)/n, i/n] \cong [0,1].$$

Then $v_i(b) \in U_{i/n}(b)$, so there is $u_i \in \mathbb{U}$ with $u_i(i/n) = 1$ such that

$$u_i(a) \leq_{1/n} v_i(b)$$
.

Let $u', v' \in \mathbb{U}$ with $u'((-) \dotplus 1/n) \le v'$; then for $2 \le i \le n-1$, we have $v_{i+1}(a) \le u'(u_i(a)) \le v'(v_i(b)) \le v_{i+1}(b \dotplus 2/n)$ since $v_{i+1}(i/n) = 0$, $u'(u_i(i/n)) = 1$, $v'(v_i((i-1)/n)) = 0$, and $v_{i+1}((i-1)/n) + 2/n = 1$. Thus since A is unstackable, by Lemma 4.15 we have $a \le 2/n b$.

Finally, suppose A is stackable, and let $f^+ \in \ll^{\Phi} \operatorname{Sup}(\mathbb{I}, \overline{\Phi}^{\mathbb{U}}(A^{\operatorname{op}}))$, left adjoint to f; we will find, for every $n \geq 2$, some $a \in A$ with $d(\iota(a), f) \leq 2/n$. For $i = 1, \ldots, n$, we have $f^+((i-1)/n) \ll f^+(i/n) = \bigvee_{a \in f^+(i/n)} \overline{U_1(a)} = \bigvee_{a \in f^+(i/n)} \bigvee_{r < 1} \overline{U_r(a)}$ (again by Lemma 4.9), whence

$$f^+((i-1)/n) \subseteq \overline{U_{r_i}(a_i)}$$

for some $a_i \in f^+(i/n)$ and $r_i < 1$. Let $u_i \in \mathbb{U}$ with $u_i(r_i) = 0$, and let v_i as in (*). Then for $u' \in \mathbb{U}$,

$$f^+((i-1)/n) \subseteq \uparrow u'(u_i(a_i)) \subseteq \overline{U_1(u_i(a_i))},$$

since for $b \in f^+((i-1)/n) \subseteq \overline{U_{r_i}(a_i)}$, for every s > 0, there is $u'' \in \mathbb{U}$ with $u''(r_i) = 1$, whence $u' \circ u_i \leq u''$, such that $u'(u_i(a_i)) \leq u''(a_i) \leq s$ b, whence $u'(u_i(a_i)) \leq b$ since A is Archimedean. In particular, this holds for $b = v'(u_{i-1}(a_{i-1}))$ for every $v' \in \mathbb{U}$, so by Lemma 4.14, there is $a \in A$ with

$$v_i(a) = u_i(a_i)$$

for each i. Then

$$U_{i/n}(a) = U_1(v_i(a)) = U_1(u_i(a_i)),$$

since every $u \in \mathbb{U}$ with u(i/n) = 1 is $\geq u' \circ v_i$ for some $u' \in \mathbb{U}$. We now show that $d(f, \iota(a)) \leq 2/n$, in terms of the left adjoints $f^+, \widetilde{\iota}(a)$: for each $t \in \mathbb{I}$, letting $1 \leq i \leq n$ with $t \leq i/n \leq t + 1/n$,

$$\widetilde{\iota}(a)(t) = \overline{U_t(a)} \subseteq \overline{U_{i/n}(a)} = \overline{U_1(u_i(a_i))} \subseteq f^+(i/n) \subseteq f^+(t \dotplus 1/n),
f^+(t \dotplus 1/n) \subseteq f^+((i-1)/n) \subseteq \overline{U_1(u_i(a_i))} = \overline{U_{i/n}(a)} \subseteq \overline{U_{t+1/n}(a)} = \widetilde{\iota}(a)(t \dotplus 1/n).$$

Theorem 5.4. The dual adjunction (5.1) is a dual equivalence of categories between Φ -continuous lattices and complete stackable \mathbb{U} - Ψ ^{op}-inflattices.

It is worth explicitly restating the duality for the two main examples of Φ :

Corollary 5.5. Hom into \mathbb{I} yields a dual equivalence of categories between completely distributive lattices and complete stackable \mathbb{U} -posets.

Let us say that a U-meet-semilattice is a U-poset with finite meets preserved by the U-action.

Corollary 5.6. Hom into \mathbb{I} yields a dual equivalence of categories between continuous lattices and complete stackable \mathbb{U} -meet-semilattices.

We end by showing that in the presence of meets, stackability admits a simpler formulation:

Definition 5.7. Let $\widehat{\mathbb{U}} := \mathsf{CtsLat}(\mathbb{I}, \mathbb{I}) \supseteq \mathbb{U}$ be the monoid of continuous lattice morphisms $\mathbb{I} \to \mathbb{I}$, i.e., continuous monotone maps preserving 1, but possibly not 0.

A $\hat{\mathbb{U}}$ -module is a (unital) meet-semilattice with a $\hat{\mathbb{U}}$ -action preserving finite meets on both sides.

Proposition 5.8. The forgetful functor is an isomorphism of categories between complete $\widehat{\mathbb{U}}$ -modules and complete stackable \mathbb{U} -meet-semilattices. The \leq_r relations in a $\widehat{\mathbb{U}}$ -module are given by

$$\rho(a,b) \le r \iff a \le_r b \iff a \le b \dotplus r.$$

Proof. The characterization of \leq_r is proved as in Proposition 4.6.

Next, an Archimedean $\widehat{\mathbb{U}}$ -module A is unstackable as a \mathbb{U} -poset: by Remark 4.13, it suffices to check that for 0 < r < 1, $u := 1 \land (-)/r$, and $v := ((-) \dot{-} r)/(1 - r)$, if $u(a) \leq u(b)$ and $v(a) \leq v(b)$, then $a \leq b$. Let s > 0, and let $r(-) \leq w \in \mathbb{U}$ with equality on [0, 1 - s]. Then $1_{\mathbb{I}} \leq (w \circ u) \land (v^{\times} \circ v) \leq (-) \dot{+} rs$, whence from $u(a) \leq u(b)$ and $v(a) \leq v(b)$ we have $a \leq b \dot{+} rs$, i.e., $a \leq_{rs} b$ by the above. Since A is Archimedean, it follows that $a \leq b$.

If moreover A is a complete $\hat{\mathbb{U}}$ -module, then it is stackable: for $a, b \in A$ such that $v'(b) \leq u'(a)$ for all $u', v' \in \mathbb{U}$, with the same s, u, v, w as above, letting $c_s := w(a) \wedge v^{\times}(b)$, we have $u(c_s) = u(w(a)) \wedge u(v^{\times}(b)) = u(w(a))$ which is within distance s of a since $1_{\mathbb{U}} \leq u \circ w \leq (-) + s$, and $v(c_s) = v(w(a)) \wedge v(v^{\times}(b)) = v(v^{\times}(b)) = b$. In particular, by unstackability (using Lemma 4.15 and uniform continuity of u), the c_s form a Cauchy net as $s \searrow 0$, hence converge to some c such that u(c) = a and v(c) = b. Thus the forgetful functor restricts to the claimed subcategories.

The forgetful functor is full on Archimedean \mathbb{U} -modules: the action by $w \in \mathbb{U} \setminus \mathbb{U}$ can be recovered from the \mathbb{U} -action, since $w(a) = \top$ for w(0) = 1, while for 0 < w(0) < 1, by unstackability, w(a) is the unique element such that $u(w(a)) = \top$ and $v(w(a)) = (v \circ w)(a)$ where u, v are as above for r := w(0). Thus \mathbb{U} -equivariance implies $\widehat{\mathbb{U}}$ -equivariance.

Conversely, in a complete stackable \mathbb{U} -meet-semilattice A, we may extend the \mathbb{U} -action to a $\widehat{\mathbb{U}}$ -action by defining w(a) for 0 < w(0) < 1 to be the unique element as above.

The \mathbb{U} -action on an Archimedean stackable \mathbb{U} -poset A preserves binary meets in \mathbb{U} : for piecewise linear $u,v\in\mathbb{U}$, we may show $(u\wedge v)(a)=u(a)\wedge v(a)$ by unstacking over a finite partition of [0,1] on each piece of which u,v are comparable; for arbitrary u,v, take piecewise linear approximations.

Finally, on a complete stackable \mathbb{U} -meet-semilattice, the extended $\widehat{\mathbb{U}}$ -action from above also preserves binary meets in $\widehat{\mathbb{U}}$, by a routine unstacking over 0 < w(0) < 1.

Corollary 5.9 (of Corollary 5.6 and Proposition 5.8). How into \mathbb{I} yields a dual equivalence of categories between continuous lattices and complete $\widehat{\mathbb{U}}$ -modules.

We end by noting that we currently do not know whether complete $\widehat{\mathbb{U}}$ -modules can be equationally axiomatized, perhaps along the lines of [Abb19], thereby showing that $\mathsf{CtsLat}^\mathsf{op}$ is a variety.

References

- [Abb19] M. Abbadini, The dual of compact ordered spaces is a variety, Theory Appl. Categ. **34** (2019), no. 44, 1401–1439.
- [ABLR02] J. Adámek, F. Borceux, S. Lack, and J. Rosický, A classification of accessible categories, J. Pure Appl. Algebra 175 (2002), no. 1–3, 7–30.
- [AK88] M. H. Albert and G. M. Kelly, *The closure of a class of colimits*, J. Pure Appl. Algebra **51** (1988), no. 1–2, 1–17.
- [BE83] H.-J. Bandelt and M. Erné, *The category of Z-continuous posets*, J. Pure Appl. Algebra **30** (1983), no. 3, 219–226.
- [G⁺03] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, Continuous lattices and domains, Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, 2003.
- [HNN18] D. Hofmann, P. Neves, and P. Nora, Generating the algebraic theory of C(X): the case of partially ordered compact spaces, Theory Appl. Categ. **33** (2018), no. 12, 276–295.
- [HMS74] K. H. Hofmann, M. Mislove, and A. Stralka, *The Pontryagin duality of compact 0-dimensional semilattices and its applications*, Lecture Notes in Mathematics, vol. 396. Springer-Verlag, Berlin-New York, 1974.
- [Joh82] P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, England, 1982.
- [KS05] G. M. Kelly and V. Schmitt, Notes on enriched categories with colimits of some class, Theory Appl. Categ. 14 (2005), no. 17, 399–423.
- [Kün09] H.-P. A. Künzi, An introduction to quasi-uniform spaces, in: Beyond topology, 239–304, Contemp. Math. vol. 486, Amer. Math. Soc., Providence, RI, 2009.
- [MR17] V. Marra and L. Reggio, Stone duality above dimension zero: axiomatising the algebraic theory of C(X), Adv. Math. **307** (2017), 253–287.
- [WWT78] J. B. Wright, E. G. Wagner, and J. W. Thatcher, A uniform approach to inductive posets and inductive closure, Theoret. Comput. Sci. 7 (1978), no. 1, 57–77.
- [Xu95] X. Xu, Construction of homomorphisms of M-continuous lattices, Trans. Amer. Math. Soc. **347** (1995), no. 8, 3167–3175.

Department of Mathematics University of Michigan Ann Arbor, MI 48109, USA Email: ruiyuan@umich.edu