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Abstract

The design and analysis of randomized experiments is fundamental to many areas,
from the physical and social sciences to industrial settings. Regression adjustment is
a popular technique to reduce the variance of estimates obtained from experiments,
by utilizing information contained in auxiliary covariates. While there is a large
literature within the statistics community studying various approaches to regression
adjustment and their asymptotic properties, little focus has been given to approaches
in the finite population setting with non-asymptotic accuracy bounds. Further, prior
work typically assumes that an entire population is exposed to an experiment,
whereas practitioners often seek to minimize the number of subjects exposed to an
experiment, for ethical and pragmatic reasons. In this work, we study the problems
of estimating the sample mean, individual treatment effects, and average treatment
effect with regression adjustment. We propose approaches that use techniques
from randomized numerical linear algebra to sample a subset of the population on
which to perform an experiment. We give non-asymptotic accuracy bounds for our
methods and demonstrate that they compare favorably with prior approaches.

1 Introduction

Randomized experiments play a crucial role in estimating counterfactual outcomes. The strength
of randomization lies in its ability to ensure independence between the treatment group and pre-
treatment covariates [14, 21]. This independence, in turn, results in unbiased estimation of treatment
effects through the comparison of sample averages. However, in finite sample settings, the use of
simple randomization techniques result in high variance of the estimated quantities. There have been
two broad approaches to address this issue by reducing the variance of the estimated effects when
subject level covariates are available: (1) design-based approaches, which focus on the mechanism
for assigning individuals to treatment and control groups in order to minimize imbalance (c.f.
[21, 18, 27, 34, 5, 15]), and (2) regression adjustment based approaches, which correct for imbalances
post hoc by incorporating a regression of the covariates on the outcome (c.f. [9, 24, 7, 13, 29]).

Much of the prior work examining variance reduction for experimentation has focused on asymptotic
properties of approaches [23, 24, 13, 21, 23]. Recently, there has been work focusing on design-based
variance reduction, which ties the treatment assignment problem to discrepancy minimization and
gives finite sample error bounds for estimating causal estimands such as the average treatment effect
(ATE) [18, 1, 5] and individual treatment effect (ITE) [1]. In particular, Harshaw et al. propose a
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design based on the Gram-Schmidt random walk (GSW) and give finite sample guarantees on the
mean squared error for average treatment effect estimation when using this design with the classic
Horvitz-Thompson estimator. Addanki, et al. [1] use GSW and leverage score sampling to provide
algorithms and finite sample guarantees for both average and individual treatment effect estimation in
the partial observation setting where only a subset of subjects are included in the experiment.

However, little work has examined the finite sample properties for experimental designs based on
regression adjustment. Mou, et al. [28] provide non-asymptotic guarantees, but the analysis is in
infinite population settings. The main contribution of this work is to analyze the finite population
behavior of regression adjustment for variance reduction in treatment effect estimation, for ATE and
ITE estimation in both the full and partial (sub-population) settings.

1.1 Problem Statement: Finite Population Treatment Effect Estimation

In the finite population treatment effect estimation problem, we have n units (or individuals) associated
with covariates x1, . . . ,xn ∈ Rd which are the rows of a covariate matrix X ∈ Rn×d. Each unit i is
associated with two real numbers y(1)i , y

(0)
i called the potential outcomes under the treatment and

control, respectively. We denote the corresponding potential outcome vectors with y(1),y(0) ∈ Rn.
The Individual Treatment Effect (ITE) vector t ∈ Rn is defined as t := y(1) − y(0) and the Average
Treatment Effect (ATE) τ is defined as the mean of this vector, i.e., τ := 1

n

∑n
i=1 ti.

In treatment effect estimation, we seek to estimate either the ITE or ATE, under the constraint that at
most one of the potential outcomes, either y(1)i or y(0)i , can be observed for each unit i. E.g., that unit
may be assigned to a treatment group in a controlled trial, and thus y(1)i is observed while y

(0)
i is not.

In full observation treatment effect estimation, we observe one potential outcome for each unit
in the population [9, 13, 24, 18]. In partial observation treatment effect estimation, we further
restrict ourselves to observing outcomes for just a small subsample of the population. This setting is
important when the goal is to minimize experimental costs by e.g., limiting the size of a controlled
trial [30, 20, 32, 1].

To reduce variance, many approaches to ATE and ITE estimation, including our own, attempt to
leverage the population covariates X to make inferences about the treatment outcomes. In particular,
throughout this work, we will target error bounds that depend on the best linear fit of the treatment
outcomes to our covariates. Such linear effects models are common in the literature on treatment
effect estimation [33, 18, 1] and provide a useful baseline for establishing theoretical bounds.

1.2 Our Contributions

We give new approaches to both ITE and ATE estimation in the full and partial observation settings that
combine the classic statistical technique of regression adjustment with techniques from randomized
numerical linear algebra. Our algorithms give natural, non-asymptotic error bounds depending on the
best linear fit for either the ITE vector t := y(1) − y(0) or the sum of the potential outcome vectors
µ := y(1) + y(0) to our covariates. µ is a natural quantity that arises e.g., in variance bounds for
classic approaches to ATE estimation, such as the Hovitz-Thompson estimator [19].

1.2.1 Individual Treatment Effect Estimation

Our first result is for individual treatment effect estimation in the full and partial observation settings.

Theorem 1 (ITE Estimation). For any ϵ, δ, α ∈ (0, 1], there exists a randomized algorithm (Algorithm
3) that observes a potential outcome for O(d log(d/δ)/ϵ2 + α · n) units and outputs a vector t̂.
Moreover there is an event E such that Pr(E) ≥ 1− δ (over the randomness of the algorithm) and

E
[
∥t̂− t∥22|E

]
≤ (1 + ϵ) ·minb∈Rd ∥Xb− t∥22 +

d
α · (1 + ϵ) ·

∥∥y(1) + y(0)
∥∥2
∞ .

Theorem 1 shows that with high probability (at least 1 − δ), our algorithm achieves an ex-
pected error bound that nearly matches the best linear fit of the ITE vector to our covariates (i.e.,
minb∈Rd ∥Xb− t∥22), up to an additive term depending on the maximum magnitude of the sum of
potential outcomes for any individual. In the full observation setting, when α = 1, this additive
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term is O(d), assuming that the maximum magnitude does not scale with the population size n. In
contrast, we expect the best fit error (minb∈Rd ∥Xb− t∥22) to grow as Θ(n), and thus the additive
term is lower order. In the partial observation setting, as long as we set α = ω(1/n), we still expect
this additive term to be lower order. Thus, the case when d≪ n, we are able to nearly match the best
fit error while only observing a very small subset of the full population.

We sketch the proof of Theorem 1 in Section 2. Our algorithm is based on pseudo-outcome regression,
which is studied in the asymptotic setting by Kennedy et al. for conditional ATE estimation [22].
Roughly, in the full observation setting, we construct a vector v where vi = 2y

(1)
i with probability

1/2 and vi = −2y(0)i with probability 1/2. We can see that E[v] = t (i.e., v is equal to the ITE
vector in expectation), and importantly, that constructing v only requires observing one potential
outcome for each individual. By regressing v onto our covariates, we obtain our estimate t̂ for t.

In the partial observation setting, we further subsample individuals according to the leverage scores
of the covariate matrix X. This is a standard technique in randomized linear algebra [26, 10, 35],
which allows us to approximately solve the above regression problem while only observing a subset
of Õ(d/ϵ2) entries of v (and thus only observing outcomes for a subset of the population). Addanki
et al. [1] similarly propose an algorithm for the partial observation setting based on leverage score
sampling. However, instead of pseudo-outcome regression, they learn separate approximations to
both outcome vectors y(1) and y(0). Thus, their final error depends on the best linear fit error for both
these vectors, rather than the more natural best linear fit error for the ITE vector t.

1.2.2 Average Treatment Effect Estimation

We can extend our general approach to give bounds for average treatment effect estimation. In the
full observation setting we show:
Theorem 2 (ATE Estimation – Full Observation). For any ϵ, δ ∈ (0, 1], there exists a randomized
algorithm (Algorithm 1) that computes an unbiased estimate τ̂ of the ATE τ , and for which there is
an event E with Pr(E) ≥ 1− δ (over the randomness of the algorithm) such that

E
[
(τ̂ − τ)2|E

]
≤ 8(1+ϵ)

n2 minb∈Rd

(
∥Xb− µ∥22 + 100 log(n/δ) · ζ2 · ∥b∥22

)
+ 32d

n2 ·∥y(1)−y(0)∥2∞,

where ζ := maxi∈[n] ∥xi∥2 and µ := y(0) + y(1) is the total outcome vector.

As with our result in ITE estimate, the error bound of Theorem 2 matches the error of the best linear
fit of the total outcome vector µ to our covariates up to a constant factor plus additive terms depending
on 1) the maximum magnitude of the sum of potential outcomes for any individual, and 2) the norm
of the coefficient vector used to approximately reconstruct µ from the covariates. Again, we expect
these additive terms to scale as O(1/n2) while we expect the term depending on the best fit error to
scale as O(1/n). Thus, we generally expect the additive error to be lower order.

Harshaw et al. [18] proposed an algorithm based on the Gram-Schmidt walk (GSW) design (see
Algorithm 5 in the appendix) for balancing assignments to treatment and control groups that achieves
an unbiased estimator for ATE with variance of 1

n2 minb

[
1
ϕ∥µ−Xb∥22 +

ζ2

1−ϕ ∥b∥
2
2

]
, where ϕ ∈

(0, 1) is chosen by the experiment designer. This guarantee is comparable to but stronger than ours,
e.g., when one sets ϕ = 1/2. If we ignore the additive error terms and focus just on the best linear
fit error ∥Xb− µ∥22, then GSW is better than our guarantees by about a factor of 8. But the GSW
design is computationally more expensive and, since is based on balancing the covariates, requires
availability of all covariates before running the experiment and hence cannot be applied in an online
setting [4]. In contrast, our approach can be applied directly in the online setting since we place each
unit independently in the treatment or control groups with equal probability. Moreover, as we show
in our experiments, the empirical performance of our algorithm is much closer to GSW than the
theoretical bounds we are able to show.

We sketch the ideas behind Theorem 2 in Section 2. Our algorithm is based on the classic Horvitz-
Thompson estimator [19]. Roughly, this estimator randomly assigns individuals to control and
treatment groups, and estimates ATE as the difference in the average outcome between these groups,
appropriately weighted by the assignment probabilities. It is well known that the variance of this
estimator is bounded by 1

n2 ∥µ∥22. To reduce this variance, we introduce full-observation regression
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adjusted Horvitz-Thompson (RAHT) estimator, which estimates ATE as the following. We partition
the units into two groups S and S (this is a different partitioning than the partitioning into control
and treatment), and we regress µS and µS onto their corresponding covariates. As in the ITE case,
since we cannot directly form µ, we instead perform the above regressions using a random vector u
with E[u] = µ, and where u can be formed by only observing one potential outcome per individual.
We then use the solution vector of group S to adjust the outcomes of the group S and vice versa, and
we apply the HT estimator to the adjusted outcomes. This gives the bound in Theorem 2.

Again, following a similar approach as in the ITE case, we can apply leverage score based subsampling
to tackle ATE estimation in the partial observation setting as well, obtaining:
Theorem 3 (ATE Estimation – Partial Observation). For any ϵ, δ ∈ (0, 1], ϕ ∈ (0, 1), and
m ∈ [n], there exists a randomized algorithm (Algorithm 4) that observes a potential outcome
for O(d log(d/δ)/ϵ2 +m) units and outputs an unbiased estimate τ̂ of the ATE τ , for which there is
an event E with Pr(E) ≥ 1− δ (over the randomness of the algorithm), such that

E
[
(τ̂ − τ)2|E

]
≤ 1

mn
1
ϕ ∥Xb∗ − µ∥22 +

1
m2

ζ2

(1−ϕ) ∥b
∗∥22 +

100d·log(d/δ)
n2ϵ2 ∥µ∥2∞

+ (1 + ϵ) ·
(

1
m ∥µ∥

2
∞ + 1

mn∥(X−X)b̂− (t− t)∥22 + λ
mn∥b̂∥

2
2

)
,

where ζ := maxi∈[n] ∥xi∥2, µ := y(0) + y(1), λ = 6·log(d/δ)
ϵ2 · ζ2, t ∈ Rn is a vector where all the

entries are equal to t = 1
n

∑n
i=1 ti, and

b∗ = arg min
b∈Rd

[m
n
∥Xb− µ∥22 + ζ2 ∥b∥22

]
, b̂ = argmin

b∈Rd

[
∥(X−X)b− (t− t)∥22 + λ∥b∥22

]
.

The error bound of Theorem 3 depends on 1) the error of best linear fits of the covariates onto µ and
t− t, 2) the norm of the coefficient vector used to approximately reconstruct µ and t− t from the
covariates, and 3) the largest component of the total outcome vector µ. We expect both the best linear
fit and ∥µ∥∞ terms to scale as O( 1

m ). All other terms are lower order. Namely, The terms depending
on the norms of the coefficient vectors scale as O( 1

mn ) and O( 1
m2 ). For the case where md≪ n, by

increasing the number of samples to O(d log(d/δ)/ϵ2 +md), we can make the ∥µ∥∞ term to scale
as O(1/m2) as well.

We deploy a different regression adjustment technique for achieving Theorem 3, which we call partial-
observation regression adjusted Horvitz-Thompson (RAHT) estimator. In the partial observation
setting, a simple approach is just to apply the full observation algorithm to a uniformly selected subset
of m units and then report the ATE estimate for these m units. However, this leads to a variance
bound depending on

∥∥t− t
∥∥2
2
. To reduce this variance, the partial observation RAHT adjusts the

estimate obtained from the m units using regression adjustment techniques. We give the details
behind the full algorithm in Section 2.3 and provide the full analysis in the appendix.

1.2.3 Experimental Evaluation

We compliment the above theoretical bounds with experiments using both synthetic and real data,
focusing on the full observation ATE and ITE estimation problems. For ATE, we compare our method
with classical regression adjustment [24], the GSW method [18], and the algorithm of [28]. We
observe that our estimator (which is unbiased) performs as well or better than all other estimators
except the classic regression adjustment, which is a biased estimator. For ITE, we compare our
approach with the method of [1], and observe superior performance. A discussion about the running
time of our algorithm and comparison to GSW design is included in the appendix.

1.3 Roadmap

We present the high-level ideas and techniques for ITE and ATE estimation for the full and partial
observation settings in Section 2. We then present notation and preliminaries required for a more
in-depth discussion of our result in Section 3. In Section 4, we give a detailed non-asymptotic analysis
of the random vector (i.e., pseudo-outcome) regression technique, which forms the basis for all of our
algorithms. We present our algorithm for the full observation ATE estimation and sketch the proof of
its accuracy (Theorem 2). Finally, we present our experimental results in Section 5.
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We relegate the details of other algorithms and proofs to the appendix, along with additional details
and results for the experimental results. In the appendix, we also include a warm-up result for the
mean estimation problem in the partial observation setting (where there is only one outcome y and
we seek to estimate 1

n

∑n
i=1 yi from a small number of samples). This result illustrates the key ideas

behind leverage score sampling, which is used for our results on both ITE and ATE estimation. In
addition we discuss how to remove the 1− δ probability from our results in Section C.1.

2 Technical Overview

In this section, we sketch the key ideas behind our main results on ITE estimation (Theorem 1) and
ATE estimation (Theorems 2 and 3).

2.1 ITE Estimation

We first consider ITE estimation in the full observation setting. The key challenge here is that we
must infer the full treatment effect vector t = y(1)−y(0), while only observing one outcome, y(1)i or
y
(0)
i for any unit i. To do so, we use the idea of pseudo-outcome regression in [22]. We construct a

random vector v ∈ Rn that is equal to t in expectation, i.e., E [v] = t but only requires observing one
outcome per unit. Specifically, we independently set vi = 2y

(1)
i with probability 0.5 and vi = −2y(0)i

with probability 0.5. We then regress v onto our covariates, and use the result to estimate t. In
particular, we set b̂ := argminb∈Rd ∥Xb− v∥22 and construct our ITE estimate as t̂ = Xb̂.

To give a non-asymptotic error bound for this approach, we observe that we can write v = t+ z⊙µ,
where z ∈ {1,−1}n is a random sign vector, µ = y(1)+y(0) is the sum of potential outcome vectors,
and ⊙ denotes the Hadamard (entrywise) product. Thus, letting πX ∈ Rn×n be the projection matrix
onto the column span of X, we can write b̂ = πXv = πXt+ πX(z⊙ µ). In turn, we have

E
[
∥t̂− t∥22

]
= E

[
∥Xb̂− t∥22

]
= E

[
∥πXt− t∥22 + ∥πX(z⊙ µ)∥22 + 2zTXTX(z⊙ µ)

]
.

The first term on the righthand side is simply the best linear fit error for t, ∥πXt− t∥22 =

minb∈Rd ∥Xb− t∥22. The third term is 0 in expectation since E[z ⊙ µ] = 0. Finally, since the
entries of z ◦ µ are independent and mean 0, the expectation of the second term can be bounded by
tr(πX) · ∥µ∥2∞ = d ∥µ∥2∞. Putting these all together, we have

E
[
∥t̂− t∥22

]
≤ minb∈Rd ∥Xb− t∥22 + d ∥µ∥2∞ , (1)

which gives the bound of Theorem 1 in the full observation setting. We note that this expected
error bound can also be turned into a high probability bound using concentration inequalities, i.e.,
Hanson-wright inequality [31].

ITE Estimation with Partial Observation. Our next step is to extend the above to the partial ob-
servation setting. To do so, we apply leverage score sampling, which is a standard technique
for approximate regression via subsampling [10, 26, 35]. It is well known that if we sample
O(d log(d/δ)/ϵ2) rows of X and the corresponding entries of v according to the leverage scores
of X, then we can solve a reweighted regression problem on just these rows to find b̂ satisfying∥∥∥Xb̂− v

∥∥∥2
2
≤ (1 + ϵ) ·minb∈Rd ∥Xb− v∥22. Observe that to compute b̂, we only need to observe

potential outcomes for the units (i.e., the entries of v) that are sampled. Thus, this almost allows us to
recover a similar bound to (1), up to a multiplicative (1 + ϵ) factor, in the partial observation setting.
However, the leverage score of any one row may be very small, and if sampled, that row may be
scaled up by a large factor in our reweighted regression problem (to preserve expectation). It thus
becomes difficult to control to error introduced by approximating t by v.

To handle this issue, we mix leverage score sampling, with uniform sampling at rate α. This
increases our sample complexity to O(d log(d/δ)/ϵ2 + αn), but allows us to bound the error due to
approximating t by v by (1+ϵ)d

α ∥µ∥22. This yields the final sample complexity and error bound of
Theorem 1. For a full proof, see Appendix B.
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2.2 ATE with Full Observation

We build on our techniques for ITE estimation to tackle the ATE estimation problem. We start with
the classic Horvitz-Thompson (HT) estimator for ATE, defined below.
Definition 4 (Horvitz–Thompson estimator). Given two outcome vectors y(1),y(0) ∈ Rn, let Z+

and Z− = [n] \Z+ be a random partitioning of the units to two groups under a distribution P . Then

the Horvitz–Thompson (HT) estimator is τ̂ := 1
n (
∑

i∈Z+

y
(1)
i

PP [i∈Z+] −
∑

i∈Z−
y
(0)
i

PP [i∈Z−] ), where
PP [i ∈ Z+] denotes the probability of placing i in Z+ when the partitioning is performed according
to distribution P .

Note that if units are assigned independently with equal probability to treatment and control, the HT
estimator is equivalent to outputting the average of the random vector v used in our regression-based
estimate for ITE. In this case, the HT estimator is unbiased and well known to have variance bounded
by 1

n2 ∥µ∥22, where µ := y(1) + y(0). Our goal is to improve this variance to instead depend on the
error of the best linear fit to µ, minb∈Rd ∥Xb− µ∥22, as in Theorem 2. To do so, we will employ the
classic technique of regression adjustment.

Horvitz-Thompson on Regression Adjusted Outcomes. Suppose we were given a vector b ∈ Rd

determined independently of the randomness in the HT estimator. Then applying the HT estimator
directly on the regression adjusted vectors ỹ(i) := y(i) − Xb (which have the same ATE as the
original vectors), would yield an unbiased estimate for the ATE with variance at most 1

n2 ∥Xb−µ∥22.
Naturally, we would like to find such a b making this variance bound as small as possible.

To do so, we will apply the same approach as in ITE estimation. We cannot directly regress µ onto
our covariates to find an optimal b, as we cannot observe any entry of µ since it is the sum of the two
potential outcomes. Instead, we can construct a vector u with E[u] = µ, and use it as a surrogate in
our regression problem. In particular, we let ui = 2y

(1)
i with probability 1/2 and ui = 2y

(0)
i with

probability 1/2. As in the ITE setting, we can bound the error incurred by approximating µ by u in
our regression problem, and thus bound the variance of our regression adjusted HT estimator. We
note that to the best of our knowledge, this idea has not been leveraged in ATE estimation.

Unfortunately, a difficulty arises in this approach. We need to assign each unit to a treatment or
control group both when computing u to solve our regression problem, and later when applying the
HT estimator. If we use the same assignment for both steps (as is required since we can only observe
one of y(1)i or y(0)i for each unit), we introduce bias in our estimator.

Avoiding Estimator Bias. To alleviate this issue, we use ridge leverage score sampling to first
partition the units into two groups. Ridge leverage score sampling is a technique similar to lever-
age score sampling that gives similar approximation guarantees to linear regression but for ridge
regression problems (i.e., linear regression problems with an ℓ2 regularization term). We pick a ridge
(regularization) parameter that guarantees that each unit only needs to be in the first or second group
with a probability of at most 0.5 while guaranteeing that the solution obtained from this sampling is
a (1 + ϵ) approximation of the optimal ridge regression solution. Then we solve ridge regression
problems on the groups separately to obtain two vectors b̂(1) and b̂(2), for the first and the second
group, respectively. We then use b̂(1) to adjust the outcomes of the second group and use b̂(2)

to adjust the outcomes of the first group. Since the vector of each group is not used to adjust the
outcomes of itself, this gives an unbiased estimator.

2.3 ATE with Partial Observation

We now consider ATE estimation where we desire to only observe y
(1)
i or y(0)i for a small subset of

the population. If we draw a subset of size m uniformly at random and observe the outcomes of the
samples in the subset independently and with equal probability and apply the Horvitz-Thompson
estimator, the variance is E

[
(τ̂ − τ)2

]
≤ ∥µ∥2

2

mn +
∥t−t∥2

2

m . We would like to replace terms ∥µ∥22 and
∥t − t∥22 with minb ∥µ −Xb∥2 and minb ∥t − t − (X −X)b∥2, respectively. To deal with the
∥µ∥22 term, we use the HT estimator applied to the GSW design [18] on the uniformly selected subset
of size m of the data. Then for ϕ ∈ (0, 1) that the experiment designer selects, The variance reduces
to 1

m2 minb∈Rd

[
m
n

1
ϕ ∥Xb− µ∥22 +

ζ2

1−ϕ ∥b∥
2
2

]
+

∥t−t∥2
2

mn . To replace the ∥t−t∥2
2

mn term with the error
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of the best linear fit, we use the partial observation RAHT estimator that given a solution vector b̃
adjusts the estimate obtained by the GSW design on the sample of size m. Similar to our approach
for partial observation ITE estimation, we compute b̃ by sampling about d units according to leverage
scores of the matrix and performing the random vector regression (pseudo-outcome regression) on
a vector that is equal to t/2 in expectation. Let S be the set of units selected by leverage score
sampling and S = [n] \ S. We denote the estimate obtained by sampling m units from S (we denote
this set with T ) and applying GSW design with τ̂S . Then, the RAHT estimator estimates the ATE
as τ̂S −

1
m

∑
i∈T (xi − xS)b̃. This estimate is biased because some units have a higher probability

of being included in S and, therefore, would contribute to the estimate with a lower probability. To
resolve this issue, we also estimate the ATE on the set S with the same random vector of outcomes
that is used in regression to learn b̃. We use HT estimator for this estimate, and we denote it by τ̂S .
Then, our final estimate is a convex combination of the two estimates as the following.

|S|
n ·

(
τ̂S −

1
m

∑
i∈T (xi − xS)b̃

)
+ |S|

n · τ̂S .
This estimator is unbiased and achieves the variance bounds stated in Theorem 3.

3 Preliminaries

Notation. Vectors and matrices are denoted with bold lowercase and capital letters, respectively.
the Hadamard (entrywise) product of x,y is denoted by x ⊙ y. We denote the vectors of all ones
and all zeros in Rn by 1n and 0n, respectively. We drop the subscript if the dimension is clear. We
denote the identity matrix of dimension n by In. For X ∈ Rn×d we denote the projection matrix of
X by πX := X(X⊤X)+X, where + denotes the pseudoinverse. For x ∈ Rn and i ≤ n, xi denotes
its ith entry and x1:i denotes a vector in Ri that is equal to its first i entries. We use Xi,: and xi

interchangeably to denote row i of X. Similarly for S ⊆ [n], XS,: ∈ R|S|×d denotes the submatrix
with row indices in S and for y ∈ Rn, yS ∈ R|S| denotes the vector restricted to indices in S.
Definition 5 (Ridge leverage scores [2]). Let X ∈ Rn×d, λ ≥ 0, and xi ∈ Rd be the ith row of X.
Then the λ-ridge leverage score of row i of X is defined as ℓ(λ)i := x⊤

i (X
⊤X+ λI)−1xi. We denote

the leverage scores (i.e., λ = 0) with ℓi. If the corresponding matrix X is not clear from the context,
we denote the λ-ridge leverage scores with ℓ

(λ)
i (X).

Note that ℓi is the i’th diagonal entry of the projection matrix πX = X(X⊤X)−1X⊤. Thus, since
tr(πX) = rank(X),

∑n
i=1 ℓi = rank(X). Since in our approach, we need to sample different sets

of population for different purposes, we require a bound on the ridge leverage scores that can be
achieved by taking the regularization factor λ to be large enough.

Theorem 6. Let ζ := maxi∈[n] ∥xi∥2. Then for λ ≥ c · ζ2, for c ≥ 1, ℓ(λ)i (X) ≤ 1
c for all i ∈ [n].

The following theorem provides a sampling procedure based on λ-ridge leverage scores to solve a
linear ridge regression problem approximately.
Theorem 7 (6, 12). Let ϵ, δ ∈ (0, 1], and u ∈ Rn be a vector that upper bounds the λ-ridge leverage
scores of a matrix X ∈ Rn×d, i.e., ℓ(λ)i ≤ ui. Let S = Rn×n be a random diagonal matrix in which
Sii = 1/

√
pi with probability pi = min{1, 3 · ui · log(d/δ)/ϵ}, and Sii = 0, otherwise. Then for

any y ∈ Rn, letting b̂ = argminb∈Rd

[
∥SXb− Sy∥22 + λ ∥b∥22

]
, with probably at least 1− δ,

∥Xb̂− y∥22 + λ∥b̂∥22 ≤ (1 + ϵ)minb∈Rd

[
∥Xb− y∥22 + λ ∥b∥22

]
.

4 Average Treatment Effect Estimation

In this section, we first analyze the random vector regression (i.e., pseudo-outcome regression)
approach which is used both for our ITE and ATE estimation. We then discuss our full observation
ATE estimation using this approach and provide a sketch of the proof of Theorem 2.

4.1 Random Vector Regression

For both ATE and ITE estimation, regression adjustment allows us to reduce the variance of estimation
to the error of the best linear fit on vectors µ and t, respectively. Since we do not have access to the
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entries of these vectors, we cannot compute a solution vector directly. Therefore, for ATE (or ITE),
our approach is to instead compute a solution vector b by performing regression on a random vector
that, in expectation, is equal to µ (or t). The following theorem characterizes the error of the solution
vector obtained in this way.

The following is a more general result that combines this random assignment technique with leverage
score sampling to allow us to observe only a small subset of the population. Algorithm 3 and the
proof of the following theorem are presented in the appendix.

Theorem 8 (Random vector regression). Let y(0),y(1) ∈ Rn and y ∈ Rn be a random vector such
that for each i ∈ [n], yi is independently and with equal probability is either equal to y

(0)
i or y(1)i .

Moreover, let b∗ = argminb ∥Xb− y∥22 . Let µ := y(1) + y(0). Then

E
[
∥2Xb∗ − µ∥22

]
≤ d∥y(1) − y(0)∥2∞ +minb ∥Xb− µ∥22 .

Proof. Let z ∈ {−1,+1}n, where zi = +1 if yi = y
(1)
i , and zi = −1, otherwise. First, note that

2y = µ+ z⊙ t, where µ = y(1) + y(0), and t = y(1) − y(0). Therefore

µ− 2Xb∗ = µ− 2πXy = µ− πX(µ+ z⊙ t) = (µ− πXµ)− πX(z⊙ t).

Moreover since I− πX and πX are orthogonal to each other,

∥µ− 2Xb∗∥22 = ∥(µ− πXµ)∥22 + ∥πX(z⊙ t)∥22 .

Now note that ∥(µ− πXµ)∥22 = minb ∥Xb− µ∥22. So we only need to bound E
[
∥πX(z⊙ t)∥22

]
.

We have ∥πX(z⊙ t)∥22 = (z ⊙ t)⊤πX(z ⊙ t) = z⊤TπXTz, where T is the diagonal matrix
associated with the vector t. Since zi and zj are independent for i ̸= j, we have

E
[
z⊤TπXTz

]
=
∑n

i=1 t
2
i (πX)ii ≤ ∥t∥2∞ (πX)ii.

Then the result follows by noting that (πX)ii is equal to the leverage score of row i, and the sum of
leverage scores is less than or equal to d.
We can use the same theorem to characterize the regression error for t by changing the sign of y(0).

4.2 Full Observation ATE

We now sketch a proof of our result for ATE estimation with full observation.
Proof sketch of Theorem 2. Here, we only sketch our proof for the variance bound. For S ⊆ [n] and
z ∈ {−1,+1}n (where Z+ = {i : zi = +1} and Z− = {i : zi = −1}), we define

τS := 1
|S| ·

∑
i∈S(y

(1)
i − y

(0)
i ), and τ̂S := 2

|S| ·
(∑

i∈Z+∩S ỹ
(2,1)
i −

∑
i∈Z−∩S ỹ

(2,0)
i

)
.

Similarly, define τS and τ̂S . Then for τ̂ as defined in Algorithm 1, we have,

Ez

[
ES

[
(τ̂ − τ)2

]]
= Ez

[
ES

[(
|S|·τ̂S+|S|·τ̂S

n − |S|·τS+|S|·τS
n

)2]]
= ES

[
|S|2
n2 ·Ez

[
(τ̂S − τS)

2
]
+ |S|2

n2 ·Ez

[
(τ̂S − τS)

2
]]
+ES

[
2· |S|·|S|

n2 ·Ez [(τ̂S − τS)·(τ̂S − τS)]
]
.

By Cauchy-Schwarz inequality, Ez [(τ̂S − τS)·(τ̂S − τS)] ≤
√
Ez [(τ̂S − τS)

2]·Ez [(τ̂S − τS)2].

Therefore we only need to bound Ez

[
(τ̂S − τS)

2
]

and Ez

[
(τ̂S − τS)

2
]
. We can bound

Ez

[
(τ̂S − τS)

2
]

by Theorem 7 (ridge leverage score sampling) and using the fact that τ̂S is ob-
tained by ỹ(2,1) and ỹ(2,0) which are adjusted by b̂(2), a vector that is learned from the units in the set
S. Since S and S are disjoint, b̂(2) is independent of zS and this allows us to bound Ez

[
(τ̂S − τS)

2
]
.

The bound on Ez

[
(τ̂S − τS)

2
]

follows from a similar argument.

5 Experiments

In this section, we compare our method for estimating ATE and ITE with full observation with
prior art and baselines on synthetic and real-world datasets. For ATE estimation, our experiments
demonstrate that our approach either outperforms other unbiased estimation approaches or has
comparable performance in terms of the achieved variance.
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Algorithm 1: ATE estimation with leverage score sampling and cross adjustment

1 Input: X ∈ Rn×d, y(0),y(1) ∈ Rn, ϵ, δ ∈ (0, 1].
2 Set y ∈ Rn to a random vector such that for each i ∈ [n], yi is independently and with equal

probability either equal to y
(0)
i or y(1)i .

3 Set Z+ to the set of entries i such that yi is equal to y
(1)
i and Z− = [n] \ Z+.

4 Set λ = 6
ϵ2 · ζ

2 log(n/δ), where ζ = maxi∈[n] ∥xi∥2.
5 Set S ⊆ [n] to a random set of indices where each i ∈ [n] is included in S independently and

with probability 0.5. Set S = [n] \ S.
6 Set S to an n× n diagonal matrix corresponding to S where each entry Sii = 2 if i ∈ S, and

Sii = 2, otherwise. Similarly, set S.
7 Set b̂(1) = argmin

b
∥SXb− Sy∥22 + λ · ∥b∥22 , b̂

(2) = argmin
b

∥SXb− Sy∥22 + λ · ∥b∥22 .

8 Set ỹ(1,0)=y(0)−Xb̂(1), ỹ(1,1)=y(1)−Xb̂(1), ỹ(2,0)=y(0)−Xb̂(2), ỹ(2,1)=y(1)−Xb̂(2).
9 Return τ̂ := 2

n (
∑

i∈Z+∩S ỹ
(1,1)
i +

∑
i∈Z+∩S ỹ

(2,1)
i −

∑
i∈Z−∩S ỹ

(1,0)
i −

∑
i∈Z−∩S ỹ

(2,0)
i ).

ATE methods. Our ATE estimation method is compared against five other approaches. (i) HT
Uniform: This employs the Hurvitz Thompson estimator, using a uniform assignment of units to
treatment and control groups. (ii) GSW: This design follows the methodology in [18]. (iii) Classic
Regression Adjustment: As described in [24], this estimator is inherently biased. (iv) Leverage
Score-Based: In this method, we learn two distinct vectors for y(1) and y(0) through leverage
score sampling. The difference between these vectors predicts the treatment effect. Though this
method has its advantages, it is biased and was previously employed by Addanki et al. [1]. (v) 4
Vectors: Obtained by specializing Mou et al. [28] to linear regressors, this approach adopts the same
cross-adjustment mechanism to mitigate bias as in this paper. However, instead of random vector
regression, it determines separate vectors for y(1) and y(0) for each group, leading to four vectors
obtained by linear regressions.

ITE methods. We discuss two distinct approaches for ITE methods. (i) Baseline: The ideal
scenario or "oracle" baseline involves utilizing a linear function, trained on vector t. Naturally, this
is not feasible in practical applications. (ii) leverage score based: This is based on learning two
different vectors by ridge leverage score sampling and using the difference of the two linear functions
for estimating t. This is an adaptation of the algorithm in [1] to the full observation setting — we
make this adaptation because the exact algorithm of [1] cannot be applied to the full-observation
setting due to sampling with replacement. We do not compare to [28] because their guarantees are
only for an infinite population.

Synthetic Datasets. For synthetic datasets, we will construct y(0),y(1) such that µ (for the ATE
case) or t (for the ITE case) is a linear function of the covariate matrix.

1. ATE Dataset. There are 50 covariates (i.e., features). Each entry of X ∈ Rn×d is a uniform
random number in [0, 0.01]. Each entry of b ∈ R50 is a uniform random number in [0, 1]. The
individual treatment effect vector µ is Xb+r, where each entry of r ∈ Rn is randomly picked
from a mean zero Gaussian distribution with standard deviation of 0.2. Each entry of y(0) is picked
uniformly at random from [0, 5]. Then y(1)=−y(0)+µ and t=y(1)−y(0). The results for this
dataset with different number of samples is shown in the right plot of Figure 1. Our experiments
illustrate that on the synthetic dataset, our approach outperforms all other approaches except the
GSW design. However, we note that our approach is computationally more efficient than GSW
design (see Table 6) and gives a much simpler design that can be used in different settings.

2. ITE Dataset. The covariate matrix X and the vectors b, r,y(0) are picked similar to the ATE
dataset. Then individual treatment effect vector t is Xb+ r and y(1) = y(0) + t. The results for
this dataset with different number of samples is shown in the left plot of Figure 1. ITE error for
our method is consistently smaller than leverage score based method.

Real-World Datasets We analyze the following three distinct real-world datasets. A comprehensive
breakdown, including variance and other measurements for each dataset, is available in Table 5 in the
appendix.

9



Figure 1: Results for synthetic ITE and ATE datasets are shown on the left and right, respectively.
For different population sizes (i.e., n), estimation is performed for 1000 trials. Then the average of
∥t−t̂∥2√
n·∥t∥2

over these trials is shown with solid lines for ITE and the shades around these lines denote
the standard deviation. For ATE, the solid lines represent the average of |τ̂ − τ |/|τ | over 1000 trials.

1. Boston Dataset [17]: This is a dataset of housing prices in the Boston area, consisting of 506
samples and 13 features. Since it has only one label, we set y(1) = y(0), i.e., ATE is zero.

2. IHDP Dataset [16, 11]: Derived from the characteristics of children and their mothers, this
dataset comprises 747 samples and 25 features. ATE for is -4.016.

3. Twins Dataset [3]: This dataset is constructed based on the characteristics and mortality rates
of twin births in the US. We specifically selected samples that have complete feature values,
resulting in a dataset of 32,120 samples with 50 features. The ATE of this dataset is 0.0064.

Table 1: Results of ATE estimation. For each result, the first number is the average of |τ − τ̂ | over
1000 trials and the second number is the standard deviation of this quantity.

Dataset Uniform HT GSW Classic Reg Adj Lev Score 4 vecs Ours

Boston 1.736
±1.339

0.663
±0.510

0.333
±0.255

0.658
±0.504

1.677
±1.256

0.628
±0.459

IHDP 0.272
±0.206

0.042
±0.031

0.012
±0.009

0.536
±0.050

0.264
±0.203

0.040
±0.030

Twins 1.351e−3
±1.025e−3

1.231e−3
±0.937e−3

1.201e−3
±0.899e−3

1.226e−3
±0.911e−3

1.369e−3
±1.015e−3

1.218e−3
±0.936e−3

Table 2: Results of ITE estimation. For each result, the first number is the average of 1√
n
∥t− t̂∥2

over 1000 trials and the second number is the standard deviation of this quantity. The relative error
columns report 1√

n
∥t− t̂∥2/ ∥t∥2.

Dataset Baseline Leverage Score Ours Leverage Score Relative Ours Relative
Boston 0.0 0.827± 0.469 7.654± 1.678 - -
IHDP 0.548 2.449± 0.071 1.765± 0.223 0.021± 0.637e−3 0.015± 1.9e−3
Twins 0.155 0.156± 2.66e−5 0.156± 2.21e−4 5.571e−3± 9.5e−7 5.571e−3± 7.9e−7

6 Conclusion

In this paper, we considered the problems of mean estimation, ATE and ITE estimations in the
presence of covariates. We considered the finite population setting and provided non-asymptotic
variance bounds for several novel variants of the classical regression adjustment method-based
estimators. Our guarantees are model-free, even if the covariates are arbitrary (are not informative of
the estimand and may be chosen adversarially), the variance bounds are still meaningful and almost
match the variance bounds of widely used estimators not based on covariates.

Our algorithms are simple and efficient, and we believe they readily extend to many related settings
like arbitrary assignment probabilities and online treatment assignments. We also believe the results
can be stated for the kernel setting. These extensions will be part of future work.
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A Warm-up: Mean Estimation

In this section, we consider the problem of estimating the mean of a single vector y by observing only
a few entries (i.e., y := 1

n

∑n
i=1 yi). The most classic approach is to simply uniformly sample m

units from the population and report their average. This results in a variance of at most 1
mn ∥y − y∥22,

where y is a vector of the same size as y with all of its entries equal to y.

The main theme of regression adjustment is to replace the dependence of variance on ∥y − y∥22
with a dependence on the error of the best linear fit, i.e., minb∈Rd

∥∥y − y − (X−X)b
∥∥2
2
, where

X is a vector of the same size as X with all of its rows equal to x = 1
n

∑n
i=1 xi. We wish to do so

without making any modeling assumptions — a common modeling assumption in statistics is that the
response vector is a linear function of the covariates plus a Gaussian noise. However, our goal is to
achieve significant variance reduction if y − y can be well approximated by a vector in the span of
X−X without any such modeling assumptions. In the worst case, when y − y is orthogonal to the
column span of (X−X), minb∈Rd

∥∥y − y − (X−X)b
∥∥2
2
= ∥y − y∥22 which recovers the result

of the classic approach.

For the mean estimation problem, if an oracle provided b∗ = argminb∈Rd

∥∥y − y − (X−X)b
∥∥2
2
,

the estimator ŷ = 1
|S|
∑

i∈S yi − (xi − x)⊤b∗ is unbiased with its variance bounded by
1

mn minb∈Rd

∥∥y − y − (X−X)b
∥∥2
2
, where S is a uniformly sampled subset of the population

of size m. This is a classic result (see Chapter 7 of [9]) that also follows from the following Lemma.
Lemma 9 (9 - Chapter 2). Let y ∈ Rn and ŷ be the average of a uniformly sampled set of entries of
y of size m. Then

E
[
(ŷ − y)2

]
=
∥y − y∥22
m(n− 1)

(1− m

n
),

where y is a vector of size equal to y for which all the entries are equal to y.

One can easily see that by applying Lemma 9 to ỹ, where ỹi = yi − (xi − x)⊤b, a variance of
∥y−y−(X−X)b∥2

2

m(n−1) (1− m
n ) can be obtained.

Key challenge. The main challenge for the mean estimation problem is to compute b∗ (or a vector
close to it) without observing all the entries of vector y. Note that we do not have access to any entry
of y − y because we cannot compute y without observing all the entries of y.

We resolve the issue of not being able to compute y by performing the regression on a modified
matrix. We add a column of all ones to the matrix X−X and perform a regression on y using the
modified matrix — see the proof of Theorem 10. More specifically, we prove the following.

min
b∈Rd

∥∥(X−X)b− (y − y)
∥∥2
2
= min

b∈Rd+1

∥∥[(X−X) 1
]
b− y

∥∥2
2

To solve the regression problem on the right-hand side without observing all the entries of y, we use
leverage score sampling [25, 10]. Leverage score sampling is a numerical linear algebraic tool that
allows for solving a linear regression problem approximately by subsampling about d units from the
population and solving a regression problem over these units, where d is the number of features [8] —
see Section 3 for details. Combining these techniques gives the following results.
Theorem 10 (Leverage score sampling based regression adjustment). Let ϵ, δ ∈ (0, 1], and m ∈ N
and X ∈ Rn×d be a covariate matrix. Then, Algorithm 2 computes an unbiased estimator of the mean
of an outcome vector y (on a population of size n) with O(d log(d/δ)/ϵ2 +m) samples. Moreover,
there is an event E with Pr(E) ≥ 1− δ (over the randomness of the algorithm) such that the variance
of the estimator conditioned to E is bounded by

(1 + ϵ)
1

m(n− 1)

(
1− m

n

)
min
b

∥∥(X−X)b− (y − y)
∥∥2
2
. (2)

Note that since the dependence of number of samples on δ is logarithmic, we can pick δ polynomially
small, e.g., δ = 1/n2. The variance upper bound achieved by our method is compared to other
methods in Table 3.
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Table 3: Variance of different methods for estimating the mean of a population with few samples. ζ
denotes the maximum norm over rows of X, 0 < ϕ < 1 is an input parameter of GS walk design,
and y is a vector where all entries are equal to the mean of y.

Method Variance Reference

Uniform sampling
O(m) samples

1

m(n− 1)

(
1− m

n

)
∥y − y∥22 [9]

GS walk design
(by adjusting
probabilities)
O(m) samples

1

m2
min
b∈Rd

[
1

ϕ

∥∥(X−X)b− (y − y)
∥∥2

2
+

1

1− ϕ
ζ2 ∥b∥22

]
[18]

Two-phase
O(m log(m/δ)/ϵ2)

samples
(1 + ϵ)

1

m2
min
b∈Rd

[m
n
∥(X−X)b− (y − y)∥22 + ζ2 ∥b∥22

]
This paper

Two-phase
O(m+ d log(d/δ)/ϵ2)

samples
(1 + ϵ)

1

m(n− 1)

(
1− m

n

)
min
b∈Rd

∥∥(X−X)b− (y − y)
∥∥2

2
This paper

Regression adjustment. Our estimators are based on a classic technique in statistics called regres-
sion adjustment [9]. Given a vector b̂ (either given by an oracle or learned from the data), the classical
technique uses the sample covariates to “adjust” the estimate of the sample mean 1

|S′|
∑

i∈S′ yi and
outputs the following estimate

1

|S′|
∑
i∈S′

yi − (xi − x)b̂.

If S′ is a random sample independent of b̂, the adjusted estimator is unbiased. The adjusted estimate
will have a lower variance than the sample mean estimator if ∥y − y − (X−X)b̂∥22 < ∥y − y∥22.
Lemma 11. Let y ∈ Rn and X ∈ Rn×d. Let b̂ be a fixed/preassigned vector. Then the variance of
ŷ := 1

|S′|
∑

i∈S′ yi − (xi − x)⊤b̂, where S′ is a uniformly sampled subset of [n] of size m, is

1

m(n− 1)

(
1− m

n

)∥∥∥(y − y)− (X−X)b̂
∥∥∥2
2
.

Proof. Since b̂ is fixed, by linearity of expectation

E [ŷ] = E

[
1

|S′|
∑
i∈S′

yi

]
+ E

[
1

|S′|
∑
i∈S′

(x− xi)
⊤b̂

]
= y + (x− 1

n

∑
i∈S′

xi)
⊤b̂ = y.

Therefore by Lemma 9 (applied to the quantities yi + (x− xi)
⊤b̂),

E
[
(ŷ − y)2

]
=

1

m

(
1− m

n

) n∑
i=1

(
yi − y − (xi − x)⊤b̂

)2
n− 1

,

and the result follows.

Therefore our goal is to find b̂ that minimizes ∥y−y− (X−X)b̂∥22. Our approach is to use leverage
score sampling (Theorem 7) to find a vector b̂ that approximately minimizes this error. A main
technique in our approach is that the samples picked for leverage score sampling are independent of
the samples drawn for estimation. More specifically, our estimator is based on two sets of samples.
We use one set of samples S to estimate b̂ and we use the another set S′ of m uniform samples (that
is independent of S) in the following estimator ŷ = 1

|S′|
∑

i∈S′ yi + (x−xi)
⊤b̂. By Lemma 11, this

is unbiased and achieves a variance of
1

m(n− 1)

(
1− m

n

)∥∥∥(X−X)b̂− (y − y)
∥∥∥2
2
.

Although it is straightforward to carry this independence for the mean estimation problem, as we will
see, we require a more involved algorithm to provide it for the treatment effect estimation problems.
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Algorithm 2: (Ridge) leverage score sampling based regression adjustment

1 Input: X ∈ Rn×d, y ∈ Rn, m ∈ N, 0 < ϵ < 1.
2 For Theorem 10, set λ = 0, and for Theorem 12, set λ = ζ2 · n/m // ζ = maxi ∥Xi:∥2
3 Compute the leverage scores ℓ(λ)i of X̃ =

[
(X−X) 1

]
.

4 Set pi = min{1, 3 · ℓ(λ)i · log(d/δ)/ϵ2} for i ∈ [n].
5 Let S ∈ Rn×n be a random diagonal matrix with Sii = 1/

√
pi with probability pi, and

Sii = 0, otherwise.

6 Let b̃ = argminb∈Rd+1

∥∥∥SX̃b− Sy
∥∥∥2
2
+ λ ∥b1:d∥22, and b̂ ∈ Rd be a vector consisting of

the first d entries of b̃.
7 Let S′ be a uniformly sampled subset of size m of [n] and τ̂ = 1

m

∑
i∈S′ yi + (x− xi)

⊤b̂
8 Return τ̂ .

Theorem 10 (Leverage score sampling based regression adjustment). Let ϵ, δ ∈ (0, 1], and m ∈ N
and X ∈ Rn×d be a covariate matrix. Then, Algorithm 2 computes an unbiased estimator of the mean
of an outcome vector y (on a population of size n) with O(d log(d/δ)/ϵ2 +m) samples. Moreover,
there is an event E with Pr(E) ≥ 1− δ (over the randomness of the algorithm) such that the variance
of the estimator conditioned to E is bounded by

(1 + ϵ)
1

m(n− 1)

(
1− m

n

)
min
b

∥∥(X−X)b− (y − y)
∥∥2
2
. (2)

Proof. Let X̃ :=
[
(X−X) 1

]
. We first show that

min
b∈Rd

∥∥(X−X)b− (y − y)
∥∥2
2
= min

b∈Rd+1

∥∥∥X̃b− y
∥∥∥2
2
. (3)

Note that minb∈Rd+1

∥∥∥X̃b− y
∥∥∥2
2
=
∥∥πX̃y − y

∥∥2
2
. Since 1 is orthogonal to X−X,

πX̃y = π(X−X)y + π1y.

Moreover π1y = y. Since 1 is orthogonal to X − X, y = y · 1 is orthogonal to X − X, and
π(X−X)y = 0. Therefore

πX̃y = π(X−X)(y − y) + y.

Subtracting both sides by y and taking the norm, we have∥∥πX̃y − y
∥∥2
2
=
∥∥∥π(X−X)(y − y)− (y − y)

∥∥∥2
2
= min

b∈Rd

∥∥(X−X)b− (y − y)
∥∥2
2
,

which implies our claim. Now note that by sampling O(d log(d/δ)/ϵ2) entries of y, by Theorem 7,
with high probability, we can find b̃ such that∥∥∥X̃b̃− y

∥∥∥2
2
≤ (1 + ϵ) min

b∈Rd+1

∥∥∥X̃b− y
∥∥∥2
2
= (1 + ϵ) min

b∈Rd

∥∥(X−X)b− (y − y)
∥∥2
2
. (4)

Let b̂ ∈ Rd be a vector obtained by taking the first d entries of b̃. Then, we have

X̃b̃− y = (X−X)b̂− y + b̃d+1 · 1.

Now consider the following regression problem:

min
t∈R

∥∥∥1 · t− (y − (X−X)b̂)
∥∥∥2
2
.

The optimal solution is 1
n1

⊤(y − (X−X)b̂) = 1
n1

⊤y = y. Therefore∥∥∥X̃b̃− y
∥∥∥2
2
=
∥∥∥(X−X)b̂− y + b̃d+1 · 1

∥∥∥2
2
≥
∥∥∥(X−X)b̂− y + y

∥∥∥2
2
. (5)
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Thus by (4) and (5),∥∥∥(X−X)b̂− (y − y)
∥∥∥2
2
≤ (1 + ϵ) min

b∈Rd

∥∥(X−X)b− (y − y)
∥∥2
2
,

and the result follows by Lemma 11.

Note that the number of samples in Theorem 10 depends on the number of covariates (also called
features). This dependence can be alleviated by using ridge leverage score sampling at the expense of
a higher variance bound. If we want to sample m < d log(d/δ)/ϵ2, we can use ridge leverage score
sampling, which gives a bound on the ridge regression error instead of the regression error. Using
λ-ridge leverage scores, for λ = ζ2 · n

m , where ζ is the maximum ℓ2 norm over rows of X, gives the
following result. Before providing this result, note that the block leverage score sampling approach
of [12] shows that to solve

min
b∈Rd

[
∥Xb− y∥22 + λ ∥b1:d−1∥22

]
,

we can use the same ridge leverage sampling as for minb∈Rd

[
∥Xb− y∥22 + λ ∥b∥22

]
, and the

number of samples only needs to be increased by a constant factor. We require this for our ridge
leverage score sampling-based mean estimation result.
Theorem 12 (Ridge leverage score sampling based regression adjustment). Let 0 < ϵ < 1, 0 < δ <
0.5, m ∈ N, and X be a covariate matrix. Then Algorithm 2 computes an unbiased estimator of
the mean of an outcome vector y (on a population of size n) by using O(m log(m/δ)/ϵ2) samples.
Moreover, there is an event E with Pr(E) ≥ 1− δ (over the randomness of the algorithm) such that
the variance of the estimator conditioned on E is bounded by

(1 + ϵ)
1

m2
min
b∈Rd

[∥∥(X−X)b− (y − y)
∥∥2
2
+ ζ2 ∥b∥22

]
. (6)

Proof. Let X̃ :=
[
(X−X) 1

]
, and

Z =

[
(X−X)√

λId

]
, Z̃ =

[
(X−X) 1√

λId 0

]
.

Matrix Z̃ corresponds to the regression problem

min
b∈Rd+1

[∥∥∥X̃b− y
∥∥∥2
2
+ λ ∥b1:d∥22

]
.

In other words, defining the vector ỹ ∈ Rn+d as a vector that is equal to y on the first n entries and
is zero on other entries, we have∥∥∥Z̃b− ỹ

∥∥∥2
2
=
∥∥∥X̃b− y

∥∥∥2
2
+ λ ∥b1:d∥22 ,

for any vector b ∈ Rd+1. Now note that the solution to argminb∈Rd+1

∥∥∥Z̃b− ỹ
∥∥∥2
2

is

(Z̃⊤Z̃)−1Z̃⊤ỹ = (Z̃⊤Z̃)−1X̃⊤y,

by definition of ỹ. Moreover by definition,

Z̃⊤Z̃ = X̃⊤X̃+ λ

[
Id 0
0⊤ 0

]
.

Therefore since 1⊤(X−X) = 0⊤, we have

Z̃⊤Z̃ =

[
(X−X)⊤(X−X) + λId 0

0⊤ n

]
.

Since this is a block diagonal matrix

(Z̃⊤Z̃)−1 =

[(
(X−X)⊤(X−X) + λId

)−1
0

0⊤ n−1

]
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Therefore

(Z̃⊤Z̃)−1Z̃⊤ỹ =

[(
(X−X)⊤(X−X) + λId

)−1
(X−X)⊤y

y

]
.

Thus∥∥πZ̃ỹ − ỹ
∥∥2
2
=

∥∥∥∥[(X−X)√
λId

] (
(X−X)⊤(X−X) + λId

)−1
(X−X)⊤y +

[
y − y
0d

]∥∥∥∥2
2

.

Note that
(
(X−X)⊤(X−X) + λId

)−1
(X−X)⊤(y − y) is the solution to

argmin
b∈Rd

[∥∥(X−X)b− (y − y)
∥∥2
2
+ λ ∥b∥22

]
,

and because 1 is in the null space of X−X,(
(X−X)⊤(X−X) + λId

)−1
(X−X)⊤(y−y) =

(
(X−X)⊤(X−X) + λId

)−1
(X−X)⊤y.

Therefore ∥∥(πZ̃ − I)ỹ
∥∥2
2
=

∥∥∥∥(πZ − I)

[
y − y
0d

]∥∥∥∥2
2

,

and

min
b∈Rd

[∥∥(X−X)b− (y − y)
∥∥2
2
+ λ ∥b∥22

]
= min

b∈Rd+1

[∥∥∥X̃b− y
∥∥∥2
2
+ λ ∥b1:d∥22

]
. (7)

Now note that by ridge leverage score sampling, we find a vector b̃ ∈ Rd+1 such that, with high
probability, ∥∥∥X̃b̃− y

∥∥∥2
2
+ λ

∥∥∥b̃1:d

∥∥∥2
2
≤ (1 + ϵ) min

b∈Rd+1

[∥∥∥X̃b− y
∥∥∥2
2
+ λ ∥b1:d∥22

]
.

Therefore∥∥∥X̃b̃− y
∥∥∥2
2
+ λ

∥∥∥b̃1:d

∥∥∥2
2
≤ (1 + ϵ) min

b∈Rd

[∥∥(X−X)b− (y − y)
∥∥2
2
+ λ ∥b∥22

]
. (8)

Now let b̂ ∈ Rd be the vector that is equal to the first d entries of b̃. Then we have∥∥∥X̃b̃− y
∥∥∥2
2
+ λ

∥∥∥b̃1:d

∥∥∥2
2
=
∥∥∥(X−X)b̂+ b̃d+1 · 1− y

∥∥∥2
2
+ λ

∥∥∥b̂∥∥∥2
2
.

Now consider a regression problem of the following form.

min
t∈R

∥∥∥1 · t− (y − (X−X)b̂)
∥∥∥2
2
.

The optimal solution to this problem is 1
n1

⊤((y − (X−X)b̂)) = 1
n1

⊤y = y. Therefore∥∥∥X̃b̃− y
∥∥∥2
2
=
∥∥∥(X−X)b̂− y + b̃d+1 · 1

∥∥∥2
2
≥
∥∥∥(X−X)b̂− y + y

∥∥∥2
2
. (9)

Thus by (8) and (9), and because λ
∥∥∥b̂∥∥∥2

2
≥ 0 ,∥∥∥(X−X)b̂− (y − y)

∥∥∥2
2
≤ (1 + ϵ) min

b∈Rd

[∥∥(X−X)b− (y − y)
∥∥2
2
+ λ ∥b∥22

]
.

Therefore by Lemma 11, the variance of the regression-adjusted estimator with m samples is less
than,

(1 + ϵ)

mn
min
b∈Rd

[∥∥(X−X)b− (y − y)
∥∥2
2
+ λ ∥b∥22

]
Finally by definition λ

mn = ζ2n/m
nm = ζ2

m2 , and the result follows.
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We now explain previous approaches to mean estimation. The classical approach to regression
adjustment [9] is to learn a vector b̂ from the same set of samples that are used for estimation.

b̂ = argmin
b

∥yS′ − yS′ − (XS′ −XS′)b∥22.

The Gram-Schmidt walk design of Harshaw et al. [18] has originally been developed for the average
treatment effect estimation and achieves the following bound using the Horvitz-Thompson estimator
— see Algorithm 5.
Theorem 13 (Gram-Schmidt walk design [18]). Let 0 < ϕ < 1. Given y(1),y(0) ∈ Rn and
X ∈ Rn×d, the Horvitz-Thompson estimator under the Gram-Schmidt walk design is unbiased and
has a variance of

E
[
(τ̂ − τ)2

]
≤ 1

n2
min
b∈Rn

[
1

ϕ
∥Xb− µ∥22 +

ζ2

1− ϕ
∥b∥22

]
,

where µ = y(1) + y(0).

A special setting of ATE estimation problem reduces to mean estimation. Suppose y(1) = y and
y(0) = 0. Then the average treatment effect for this problem equals the mean of y. This approach
partitions the samples into two groups. The first outcome is observed for the first group, and the
second outcome is observed for the second group. The estimate is then produced by the Horvitz-
Thompson estimator. Note that in our special case, only the samples in the first group amount to
observation since y(0) is the fixed vector of all zeros. This yields the following guarantee for mean
estimation
Theorem 14 (Gram-Schmidt walk based design [18]). The Horvitz-Thompson estimator applied to
the output of Algorithm 5 gives an unbiased estimator of the mean of y with a variance of less than
or equal to

1

m2
min
b∈Rd

[∥∥(X−X)b− (y − y)
∥∥2
2
+ ζ2 ∥b∥22

]
(10)

with O(m) samples.

In comparison, the bound of Theorem 12 is better by a factor of m/n on the ∥Xb− y∥22 term.

B Individual Treatment Effect Estimation

In this section, we give an ITE estimation algorithm with partial observation (Algorithm 3). Our
approach is to learn a vector b that nearly optimally fits t := y(1) − y(0) linearly onto X, i.e.,
∥Xb− t∥2 is small. Since we do not have access to t/2, we perform regression on a random vector
for which the expectation is t. To this end, we construct the random vector by setting yi independently
to either y(1)

i or −y(0)
i with equal probability. If we observe all samples, and use Theorem 8 on

vectors y(1) and −y(0), this approach gives the following expected error bound.

E
[
∥2Xb∗ − t∥22

]
≤ d

∥∥∥y(1) + y(0)
∥∥∥2
∞

+min
b
∥Xb− t∥22 .

We can achieve a similar bound using leverage score sampling by thresholding the probability of
sampling rows from below while we guarantee that the number of samples does not increase too
much with high probability. The following is the main technical contribution of this part.
Theorem 1 (ITE Estimation). For any ϵ, δ, α ∈ (0, 1], there exists a randomized algorithm (Algorithm
3) that observes a potential outcome for O(d log(d/δ)/ϵ2 + α · n) units and outputs a vector t̂.
Moreover there is an event E such that Pr(E) ≥ 1− δ (over the randomness of the algorithm) and

E
[
∥t̂− t∥22|E

]
≤ (1 + ϵ) ·minb∈Rd ∥Xb− t∥22 +

d
α · (1 + ϵ) ·

∥∥y(1) + y(0)
∥∥2
∞ .

Proof. Note that 2y = t+ z⊙ µ. Then

2Xb̂ = 2X(X⊤SSX)−1X⊤SSy

= X(X⊤SSX)−1X⊤SSt+X(X⊤SSX)−1X⊤SS(z⊙ µ).
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Algorithm 3: ITE estimation with random vector regression and leverage score sampling

1 Input: X ∈ Rn×d, y(1),y(2) ∈ Rn, 0 < ϵ < 1, 0 < α ≤ 1.
2 Compute the leverage scores ℓi of X.
3 Set pi = min{1,max{α, 3 · ℓi · log(d/δ)/ϵ2}} for i ∈ [n].
4 Let S ∈ Rn×n be a random diagonal matrix with Sii = 1/

√
pi with probability pi, and

Sii = 0, otherwise.
5 Let b̂ = argminb∈Rd+1 ∥SXb− Sy∥22.
6 Return t̂ := 2Xb̂.

Moreover
(X⊤SSX)−1X⊤SSt = argmin

b∈Rd

∥SXb− St∥22 .

Therefore by Theorem 7, and since ∥πXt− t∥22 = minb ∥Xb− t∥22,∥∥X(X⊤SSX)−1X⊤SSt− t
∥∥2
2
≤ (1 + ϵ) ∥πXt− t∥22 .

Now note that

E
[∥∥X(X⊤SSX)−1X⊤SS(z⊙ µ)

∥∥2
2

]
≤ (1 + ϵ)E

[
(z⊙ µ)⊤SSX(X⊤SSX)−1X⊤SS(z⊙ µ)

]
= (1 + ϵ)

∑
i:Sii ̸=0

ℓi(SX) · µ2
i

pi

≤ 1

α
· (1 + ϵ) ∥µ∥2∞

∑
i:Sii ̸=0

ℓi(SX)

≤ d

α
· (1 + ϵ) ∥µ∥2∞ ,

where the last inequality follows from the fact that the sum of leverage scores is less than d, and the
penultimate inequality follows from the definition of pi. Finally, the result follows by noting that,

E
[
(X(X⊤SSX)−1X⊤SSt− t)⊤X(X⊤SSX)−1X⊤SS(z⊙ µ)

]
= 0.

C ATE with Full Observation

Our approach for ATE with full observation is similar to ITE in the sense that we perform regression
on a random vector to learn a solution vector b̂. Then, for estimation, we apply regression adjustment
based on b̂ to adjust the outcomes. We first present a naive version of this approach that is biased
and achieves a factor proportional to d2/n2 in one of the terms bounding the variance. We improve
this to d/n2 by partitioning the units into two groups and using the learned vector for each group to
adjust the estimation in the other group. With this approach, our estimator is unbiased.

Before discussing our results, we discuss the other approaches in the literature. The Gram-Schmidt
walk design of [18] that uses the Horvitz-Thompson estimator gives the following variance for the
ATE estimation.

1

n2
min
b∈Rn

[
1

ϕ
∥Xb− µ∥22 +

ζ2

1− ϕ
∥b∥22

]
,

where 0 < ϕ < 1 is an input parameter. The classic regression adjustment with interaction term
gives an asymptotic variance proportional to 1

m (σ2
1 + 2σ2

0 + σ1,0), where σ2
1 is the variance of

ỹ
(1)
i = y

(1)
i − y(1) +(Xi−x)b(1) [24], where b(1) is the best linear fit for y(1)−y(1) using X−X

when n → ∞ [24]. Similarly, σ2
1 is the variance of ỹ(0)i = y

(0)
i − y(0) + (Xi − x)b(0), and σ1,0

is the covariance of ỹ(1)i · ỹ(0)i . Note that the above mentioned bound is achieved by learning two
separate vectors for regression over y(1)i − y(1) and y

(0)
i − y(0). Moreover, note that because these

bounds are asymptotic, we need to assume a model of data generation.

For our naive approach, we first need the following technical lemma.
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Lemma 15. Let X ∈ Rn×d, T ∈ Rn×n be a diagonal matrix and z ∈ {−1,+1}n be a random
vector where each entry is picked independently and uniformly at random. Then

E
[
z⊤TπXzz⊤πXTz

]
≤ (d2 + 2d) · ∥t∥2∞ ,

where t ∈ Rn is the vector corresponding to the diagonal matrix T.

Proof. Let M ∈ Rn,n and. Then

E
[
z⊤Mzz⊤M⊤z

]
= E

( n∑
i=1

n∑
j=1

zizjMij)
2


= E

 n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

zizjzkzlMijMkl


=

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E [zizjzkzlMijMkl] .

Note that for any term such that there exists one of the i, j, k, l that is not equal to any of the other
three, the expectation is equal to zero. Therefore we need to look at terms where for each i, j, k, l, at
least one of the other three is equal to it. Therefore we have four cases:

1. i = j = k = l. This gives an expectation of M2
ii. So total from these terms is

∑n
i=1 M

2
ii.

2. i = j and k = l but i ̸= k. This gives an expectation of MiiMkk. So total from these terms is
2
∑n−1

i=1

∑n
k=i+1 MiiMkk.

3. i = k, j = l and i ̸= j. This gives an expectation of M2
ij . So total from these terms is

2
∑n−1

i=1

∑n
j=i+1 M

2
ij .

4. i = l, j = k, i ̸= j. This gives an expectation of MijMji. So total from these terms is
2
∑n−1

i=1

∑n
j=i+1 MijMji.

Recall that we denote the leverage scores of matrix X with ℓi. Therefore taking the above over our
matrix M = TπX, since Mij = ti(πX)ij , we have

E
[
z⊤Mzz⊤M⊤z

]
=

n∑
i=1

n∑
j=1

titj(πX)ii(πX)jj

+ 2
n−1∑
i=1

n∑
j=i+1

t2i (πX)2ij

+ 2
n−1∑
i=1

n∑
j=i+1

titj(πX)2ij

≤ ∥t∥2∞ ·

(
(

n∑
i=1

ℓi)
2 + 2 ∥πX∥2F

)
≤ ∥t∥2∞ ·

(
d2 + 2tr(πX)

)
≤ ∥t∥2∞ ·

(
d2 + 2d

)
,

where the last two inequalities follow from the fact that the sum of leverage scores (which are the
diagonal entries of the projection matrix πX) is at most the rank of the matrix.

We are now equipped to analyze the ATE estimation obtained by purely using random vector
regression and regression adjustment.
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Theorem 16 (ATE with full observation). Let y(0),y(1) ∈ Rn and y ∈ Rn be a random vector
such that for each i ∈ [n], yi is independently and with equal probability either equal to y

(0)
i or

y
(1)
i . Moreover let Z+ be the set of entries i such that yi is equal to y

(1)
i and Z− = [n] \ Z+. Let

b̂ = argminb ∥Xb− y∥2 . Let ỹ(0) = y(0) −Xb̂ and ỹ(1) = y(1) −Xb̂. Let τ̂ be the following
Horvitz-Thompson estimator, i.e.,

τ̂ =
2

n
(
∑
i∈Z+

ỹ
(1)
i −

∑
i∈Z−

ỹ
(0)
i ).

Then |E [τ̂ − τ ]| ≤ d
n∥y

(1) − y(0)∥∞, and

E
[
(τ̂ − τ)2

]
≤ d2 + 2d

n2
·
∥∥∥y(1) − y(0)

∥∥∥2
∞

+
1

n2
min
b
∥Xb− µ∥22 ,

where µ = y(1) + y(0).

Proof. Let z ∈ {−1,+1}n, where zi = +1 if i ∈ Z+, and zi = −1, otherwise. Moreover let
µ̃ := ỹ(0) + ỹ(1) = y(0) + y(1) − 2Xb̂. First, note that 2y = µ+ z⊙ t. Therefore

µ̃ = µ− 2Xb̂ = µ− 2πXy = µ− πX(µ+ z⊙ t) = (µ− πXµ)− πX(z⊙ t).

Moreover

τ̂ − τ =
1

n

(∑
i∈Z+

(2ỹ
(1)
i − y

(1)
i + y

(0)
i )−

∑
i∈Z−

(2ỹ
(0)
i + y

(1)
i − y

(0)
i )

)
(11)

=
1

n

(∑
i∈Z+

(y
(1)
i + y

(0)
i − 2Xb̂)−

∑
i∈Z−

(y
(1)
i + y

(0)
i − 2x⊤

i b̂)

)

=
1

n
µ̃⊤z.

Therefore

E [τ̂ − τ ] =
1

n
E
[
(µ− πXµ)⊤z− (z⊙ t)⊤πXz

]
. (12)

Thus by the linearity of expectation and since zi is equal to +1 and −1 with an equal probability,
E
[
(µ− πXµ)⊤z

]
= 0. Let T be a diagonal matrix associated with t. Then z⊙ t = Tz. Therefore

E [τ̂ − τ ] = − 1

n
E
[
z⊤TπXz

]
Therefore since zi and zj are independent for i ̸= j, and z2i = 1 with probability one.

E [τ̂ − τ ] = − 1

n

n∑
i=1

ti(πX)ii = −
1

n

n∑
i=1

tiℓi

Therefore by the triangle inequality

|E [τ̂ − τ ]| ≤ 1

n

n∑
i=1

|tiℓi| ≤
∥t∥∞
n

n∑
i=1

|ℓi|.

Then the first part of the theorem follows by the fact that the sum of leverage scores is less than d,
and noting that by definition, t = y(1) − y(0).

We now prove the second part of the theorem. First, note that since zi and zj are independent for
i ̸= j and zi = ±1 with equal probability,

E
[
(µ− πXµ)⊤zz⊤TπXz

]
= E

[
(µ− πXµ)⊤TπXz

]
= 0.
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Therefore by (11) and Lemma 15,

E
[
(τ̂ − τ)2

]
=

1

n2
E
[
z⊤(µ− πXµ)(µ− πXµ)⊤z

]
+

1

n2
E
[
z⊤TπXzz⊤πXTz

]
≤ 1

n2

(
∥µ− πXµ∥22 + (d2 + 2d) · ∥t∥2∞

)
.

The next step is two use a subset of samples for regression and the rest of the samples for estimating
the ATE.

Since we want to have a guarantee on the regression error, we need to make sure that the sampling
(i.e., partitioning) to two groups is done according to leverage scores. However, if the leverage score
of a row is greater than half, then it cannot have a probability larger than its leverage score for being
assigned to each group. To reduce this probability, we use the ridge leverage score. The following
lemma states that by picking a large enough ridge parameter, we can achieve a small enough ridge
leverage score for all rows (therefore, small enough sampling probabilities). This is at the expense of
a regularization term of the form λ · ∥b∥22 in the regression error.

Theorem 6. Let ζ := maxi∈[n] ∥xi∥2. Then for λ ≥ c · ζ2, for c ≥ 1, ℓ(λ)i (X) ≤ 1
c for all i ∈ [n].

Proof. Recall that ζ := maxi∈[n] ∥xi∥2. Therefore, ∥xi∥2 ≤ ζ2 for all i ∈ [n]. We have

ℓ
(λ)
i (X) = x⊤

i (X
⊤X+ λI)−1xi ≤ x⊤

i (λI)
−1xi = ∥xi∥2/λ ≤ 1/c.

Equipped with this, we present the main result of this section.
Theorem 2 (ATE Estimation – Full Observation). For any ϵ, δ ∈ (0, 1], there exists a randomized
algorithm (Algorithm 1) that computes an unbiased estimate τ̂ of the ATE τ , and for which there is
an event E with Pr(E) ≥ 1− δ (over the randomness of the algorithm) such that

E
[
(τ̂ − τ)2|E

]
≤ 8(1+ϵ)

n2 minb∈Rd

(
∥Xb− µ∥22 + 100 log(n/δ) · ζ2 · ∥b∥22

)
+ 32d

n2 ·∥y(1)−y(0)∥2∞,

where ζ := maxi∈[n] ∥xi∥2 and µ := y(0) + y(1) is the total outcome vector.

Proof. For S ⊆ [n] and z ∈ {−1,+1}n (where Z+ = {i : zi = +1} and Z− = {i : zi = −1}), we
define

τS :=
1

|S|
·
∑
i∈S

(y
(1)
i − y

(0)
i ), and τ̂S :=

2

|S|
·

( ∑
i∈Z+∩S

ỹ
(2,1)
i −

∑
i∈Z−∩S

ỹ
(2,0)
i

)
.

Similarly, define τ̂S . Then we have,

Ez

[
ES

[
(τ̂ − τ)2

]]
= Ez

[
ES

[
(
|S| · τ̂S + |S| · τ̂S

n
−
|S| · τS + |S| · τS

n
)2
]]

= ES

[
|S|2

n2
· Ez

[
(τ̂S − τS)

2
]]

+ ES

[
|S|2

n2
· Ez

[
(τ̂S − τS)

2
]]

+ ES

[
2 · |S| · |S|

n2
· Ez [(τ̂S − τS) · (τ̂S − τS)]

]
.

We now bound all of the terms above. Let

µ̃(1) := ỹ(1,0) + ỹ(1,1) = y(0) + y(1) − 2Xb̂(1)

µ̃(2) := ỹ(2,0) + ỹ(2,1) = y(0) + y(1) − 2Xb̂(2)
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Note that

τ̂S − τS =
1

|S|
·

 ∑
i∈Z+∩S

(2ỹ
(1,1)
i − y

(1)
i + y

(0)
i )−

∑
i∈Z−∩S

(2ỹ
(1,0)
i + y

(1)
i − y

(0)
i )


=

1

|S|
·

 ∑
i∈Z+∩S

(y
(1)
i + y

(0)
i − 2x⊤

i b̂
(1))−

∑
i∈Z−∩S

(y
(1)
i + y

(0)
i − 2x⊤

i b̂
(1))


=

1

|S|
· (µ̃(1)

S
)⊤zS .

Similarly, we have

τ̂S − τS =
1

|S|
· (µ̃(2)

S )⊤zS

Therefore

|S| · |S|
n2

· Ez [(τ̂S − τS) · (τ̂S − τS)] =
1

n2
· Ez

[
z⊤
S
µ̃

(1)

S
(µ̃

(2)
S )⊤zS

]
≤ 1

n2
·
(
Ez

[
z⊤
S
µ̃

(1)

S
(µ̃

(1)

S
)⊤zS

]
· Ez

[
z⊤S µ̃

(2)
S (µ̃

(2)
S )⊤zS

])1/2
,

where the inequality follows from Cauchy-Schwarz inequality. Moreover

|S|2

n2
· Ez

[
(τ̂S − τS)

2
]
=

1

n2
· Ez

[
z⊤
S
µ̃

(1)

S
(µ̃

(1)

S
)⊤zS

]
, and

|S|2

n2
· Ez

[
(τ̂S − τS)

2
]
=

1

n2
· Ez

[
z⊤S µ̃

(2)
S (µ̃

(2)
S )⊤zS

]
Therefore we only need to bound Ez

[
z⊤S µ̃

(2)
S (µ̃

(2)
S )⊤zS

]
and Ez

[
z⊤
S
µ̃

(1)

S
(µ̃

(1)

S
)⊤zS

]
. Since S and

S are disjoint, µ̃(1)

S
is independent of zS . Moreover, the entries of z are independent from each other.

Therefore, since 2y = µ+ z⊙ t,

Ez

[
z⊤
S
µ̃

(1)

S
(µ̃

(1)

S
)⊤zS

]
= Ez

∑
i∈S

(µ̃
(1)
i )2


= Ez

[∥∥(µ−X(X⊤SSX+ λ · I)−1X⊤SS(µ+ z⊙ t))S
∥∥2
2

]
,

where λ = 100ζ2 log(n). We have

Ez

[∥∥(µ−X(X⊤SSX+ λ · I)−1X⊤SS(µ+ z⊙ t))S
∥∥2
2

]
≤ 2Ez

[∥∥(µ−X(X⊤SSX+ λ · I)−1X⊤SSµ)S
∥∥2
2

]
+ 2Ez

[∥∥(X(X⊤SSX+ λ · I)−1X⊤SSTz)S
∥∥2
2

]
.

Note that due to guarantees of leverage score sampling,∥∥(µ−X(X⊤SSX+ λ · I)−1X⊤SSµ)S
∥∥2
2
≤
∥∥µ−X(X⊤SSX+ λ · I)−1X⊤SSµ

∥∥2
2

≤ (1 + ϵ)min
b

(
∥Xb− µ∥+ λ ∥b∥22

)
Moreover

Ez

[∥∥(X(X⊤SSX+ λ · I)−1X⊤SSTz)S
∥∥2
2

]
≤ Ez

[∥∥X(X⊤SSX+ λ · I)−1X⊤SSTz
∥∥2
2

]
.

Since

X⊤X ⪯ (1 + ϵ)X⊤SSX+ λ · I,
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we have

Ez

[∥∥X(X⊤SSX+ λ · I)−1X⊤SSTz
∥∥2
2

]
≤ Ez

[
z⊤TSSX(X⊤SSX+ λ · I)−1X⊤SSTz

]
=
∑
i∈S

t2iS
2
ii(SX(X⊤SSX+ λ · I)−1X⊤S)2ii

≤ 4 ∥t∥2∞ · d.

Therefore

Ez

[
z⊤
S
µ̃

(1)

S
(µ̃

(1)

S
)⊤zS

]
≤ 8 · ∥t∥2∞ · d+ 2 · (1 + ϵ)min

b

(
∥Xb− µ∥+ λ ∥b∥22

)
With a similar argument, one can show that

Ez

[
z⊤S µ̃

(2)
S (µ̃

(2)
S )⊤zS

]
≤ 8 · ∥t∥2∞ · d+ 2 · (1 + ϵ)min

b

(
∥Xb− µ∥+ λ ∥b∥22

)
.

Thus

Ez

[
ES

[
(τ̂ − τ)2

]]
≤ 32d

n2
·
∥∥∥y(1) − y(0)

∥∥∥2
∞
+
8(1 + ϵ)

n2
min
b

(
∥Xb− µ∥22 + 100 log(n)ζ2 · ∥b∥22

)
.

We can get a high probability bound for the above result using the Hanson-Wright inequality [31].
Adjusting the vectors y(1) and y(0) using Xb∗ as ỹ(0) = y(0) −Xb̂ and ỹ(1) = y(1) −Xb̂, and
using the Horvitz-Thompson estimator on the adjusted outcomes ỹ(0) and ỹ(1), we achieve the
following result.

C.1 Unconditional Bound for ATE

The only reason the 1 − δ probability appears in our bound for the variance of ATE estimation
(Theorem 2) is that leverage score sampling only gives a high probability guarantee for the regression
error. Moreover, our variance only depends on the regression error, and the estimator is always
unbiased, even if the leverage score sampling does not give the (1+ϵ) approximation guarantee on the
regression. This “bad event” happens with probability at most δ. Therefore, it is enough to bound the
regression error when the bad event happens. Here we present such an approach. However, to keep
our argument simple, we just work with a single solution vector. To actually apply this to our ATE
estimation approach, one needs to consider both solution vectors for groups S and S and consider the
bad event for both. Such an argument follows similar to the following and provides the same result
(up to constant factors). This approach essentially can make all of our results unconditional (i.e.,
remove the 1− δ probability) at the expense of increasing the variance/error bounds by a constant
factor and adding an additive term proportional to δ.

If X⊤S⊤SX is not a spectral approximation of X⊤X, i.e., (1−ϵ)X⊤X ⪯ X⊤S⊤SX ⪯ (1+ϵ)X⊤X
does not hold (this can be checked since we have access to matrix X and only happens with probability
at most δ), we just set b = 0. In this case, ∥Xb − µ∥22 + λ∥b∥22 = ∥µ∥22. Otherwise (i.e.,
(1− ϵ)X⊤X ⪯ X⊤S⊤SX ⪯ (1 + ϵ)X⊤X) let X̂ ∈ R(n+d)×d be the matrix X concatenated with
factor λ of the identity matrix and µ̂ ∈ Rn+d be the vector µ concatenated with a zero vector and

b∗ := argmin
b

∥X̂b− µ̂∥22 = argmin
b

∥Xb− µ∥22 + λ∥b∥22.

Let X̃ ∈ R(n+d)×d be the matrix SX concatenated with the factor λ of the identity matrix and
µ̃ ∈ R(n+d) be the vector Sµ concatenated with a zero vector and

b̃ := argmin
b

∥X̃b− µ̃∥22 = argmin
b

∥SXb− Sµ∥22 + λ∥b∥22.

Then since X̃ is a spectral approximation of X̂ (i.e., (1− ϵ)X̂⊤X̂ ⪯ X̃⊤X̃ ⪯ (1 + ϵ)X̂⊤X̂),

∥X̂b̃− µ̂∥2 ≤ ∥X̂b∗ − µ̂∥2 + ∥X̂b̃− X̂b∗∥2 ≤ ∥X̂b∗ − µ̂∥2 +
1

1− ϵ
∥X̃b̃− X̃b∗∥2, (13)
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where the first inequality follows by triangle inequality. Moreover, by triangle inequality and
optimality of b̃

∥X̃b̃− X̃b∗∥2 ≤ ∥X̃b̃− µ̃∥2 + ∥X̃b∗ − µ̃∥2 ≤ 2 · ∥X̃b∗ − µ̃∥2. (14)

Now let E1 be the event that X⊤S⊤SX is not a spectral approximation of X⊤X. Let E2 be
the event that X⊤S⊤SX is a spectral approximation of X⊤X, but ∥SXb − Sµ∥22 + λ∥b∥22 >
(1+ϵ) ·(∥Xb−µ∥22+λ∥b∥22). Finally let E3 be the event that X⊤S⊤SX is a spectral approximation
of X⊤X, but ∥SXb−Sµ∥22 + λ∥b∥22 ≤ (1 + ϵ) · (∥Xb−µ∥22 + λ∥b∥22). Then, by the law of total
expectation,

E[(τ̂ − τ)2] = E[(τ̂ − τ)2|E1] · P [E1] + E[(τ̂ − τ)2|E2] · P [E2] + E[(τ̂ − τ)2|E3] · P [E3]
Note that P [E1] ,P [E2] ≤ δ and therefore by the above argument and Theorem 2,

E[(τ̂ − τ)2] ≤ δ · ∥µ∥22 + δ · E[(τ̂ − τ)2|E2] (15)

+ (1− δ)

(
8(1 + ϵ)

n2
min
b∈Rd

(
∥Xb− µ∥22 + 100 log(n/δ) · ζ2 · ∥b∥22

)
+

32d

n2
· ∥y(1) − y(0)∥2∞

)
Now note that
E[(τ̂ − τ)2|E2]

≤ E[
8(1 + ϵ)

n2
·
(∥∥∥Xb̃− µ

∥∥∥2
2
+ 100 log(n/δ) · ζ2 ·

∥∥∥b̃∥∥∥2
2

)
+

32d

n2
· ∥y(1) − y(0)∥2∞|E2]

≤ 1

P [E2]
· E[ 8(1 + ϵ)

n2
·
(∥∥∥Xb̃− µ

∥∥∥2
2
+ 100 log(n/δ) · ζ2 ·

∥∥∥b̃∥∥∥2
2

)
+

32d

n2
· ∥y(1) − y(0)∥2∞]

≤ 1

P [E2]
· E[ 8(1 + ϵ)

n2
·
(
∥Xb∗ − µ∥22 + 100 log(

n

δ
) · ζ2 · ∥b∗∥22

)
+

32d

n2
· ∥y(1) − y(0)∥2∞]

+
1

P [E2]
· E[ 8(1 + ϵ)

n2
· 2

1− ϵ
·
(
∥SXb∗ − Sµ∥22 + 100 log(

n

δ
) · ζ2 · ∥b∗∥22

)
],

where the last inequality follows from (13) and (14). Now since leverage score sampling preserves
the norms in expectation, we have E

[
∥X̃b∗ − µ̃∥2

]
= ∥X̂b∗ − µ̂∥2. Therefore

E[(τ̂ − τ)2|E2] · P [E2]

≤ 8(1 + ϵ)

n2
· (1 + 2

1− ϵ
) ·
(
∥SXb∗ − Sµ∥22 + 100 log(

n

δ
) · ζ2 · ∥b∗∥22

)
+

32d

n2
· ∥y(1) − y(0)∥2∞,

Combining this with (15), we have
E[(τ̂ − τ)2]

≤

(
64d

n2
· ∥y(1) − y(0)∥2∞ +

8(2 + 2
1−ϵ )

n2
min
b

(
∥Xb− µ∥22 + 100 log(n/δ) · ζ2 · ∥b∥22

))
+ δ · ∥µ∥22.

D ATE with Partial Observation

A simple approach for estimating ATE using partial observations is to first uniformly sample a
subset of size m of the population and then apply any of the methods for ATE with full observation
to this subset. If we observe the outcomes of the samples in the subset independently and with
equal probability and apply the Horvitz-Thompson estimator, we achieve an squared error of less

than ∥µ∥2
2

mn +
∥t−t∥2

2

m

(
1− m

n

)
. If we use the Gram-Schmidt walk design and the Horvitz-Thompson

estimator on the uniformly sampled subset, then we achieve an unbiased estimator with a variance of
less than

E
[
(τ̂ − τ)2

]
≤ 1

m2
min
b∈Rd

[
m

n
· 1
ϕ
∥Xb− µ∥22 +

1

1− ϕ
ζ2 ∥b∥22

]
+

∥∥t− t
∥∥2
2

m

(
1− m

n

)
.
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Our approach is to adjust the Horvitz-Thompson estimator itself. We call this partial observation
regression adjusted Horvitz-Thompson (RAHT) estimator. The first result we prove in this section
is independent of the algorithm we use for estimation over the uniformly selected subset of the
population. We introduce the following novel estimator by applying regression adjustment to HT
estimator.

Definition 17 (Partial Observation Regression-Adjusted Horvitz-Thompson (RAHT) Estimator).
Given a matrix of covariates X ∈ Rn×d, a fixed vector b̂, and an integer 1 ≤ m ≤ n, we introduce
the partial observation regression adjusted Horvitz-Thompson estimator as the following. Estimation
is based on a uniformly sampled set S of size m that we partition to two sets Z+ and Z− by a random
process (e.g., Gram-Schmidt walk). Then the ATE estimate is the following.

τ̂ =
1

m

[∑
i∈Z+

y
(1)
i

P [i ∈ Z+]
−
∑
i∈Z−

y
(0)
i

P [i ∈ Z−]

]
− 1

m

∑
i∈S

x⊤
i b̂. (16)

The following result indicates that the partial observation regression-adjusted Horvitz-Thompson
estimator is a powerful tool for estimating ATE with partial observation.

Lemma 18. Let y(1),y(0) ∈ Rn, b̂ ∈ Rd be a fixed/preassigned vector and X ∈ Rn×d. Given an
unbiased estimator τ̂S for τS := 1

|S|
∑

i∈S y
(1)
i − y

(1)
i , and a uniformly sampled set S of size m, the

estimator τ̂ := τ̂S − 1
m

∑
i∈S(xi − x)⊤b̂ is unbiased and its variance is

E
[
(τ̂ − τ)2

]
≤ ES∼D

[
E
[
(τ̂S − τS)

2
]]

+
1

mn

∥∥∥(X−X)⊤b̂− (t− t)
∥∥∥2
2
, (17)

where the second expectation on the right-hand side is over the randomness of τ̂S , and D denotes the
distribution of choosing a uniformly random set of size m.

Proof. We have E
[
(τ̂ − τ)2

]
= ES∼D

[
E
[
(τ̂S − ( 1

m

∑
i∈S(xi − x)⊤b̂)− τ)2

]]
. Moreover

(τ̂S − (
1

m

∑
i∈S

(xi − x)⊤b̂)− τ)2 = (τ̂S − τS + τS − (
1

m

∑
i∈S

(xi − x)⊤b̂)− τ)2

= (τ̂S − τS)
2 + (τS − (

1

m

∑
i∈S

(xi − x)⊤b̂)− τ)2 + 2(τ̂S − τS)(τS − (
1

m

∑
i∈S

(xi − x)⊤b̂)− τ).

Since τ̂S is an unbiased estimator of τS ,

ES∼D

[
E

[
2(τ̂S − τS)(τS − (

1

m

∑
i∈S

(xi − x)⊤b̂)− τ)

]]

= ES∼D

[
E [2(τ̂S − τS)] (τS − (

1

m

∑
i∈S

(xi − x)⊤b̂)− τ)

]
= 0.

Moreover

ES∼D

[
E

[
(τS − (

1

m

∑
i∈S

(xi − x)⊤b̂)− τ)2

]]
= ES∼D

[
(τS − (

1

m

∑
i∈S

(xi − x)⊤b̂)− τ)2

]
.

Since ES∼D

[
τS − ( 1

m

∑
i∈S(xi − x)⊤b̂)

]
= τ, by Lemma 9,

ES∼D

[
(τS − (

1

m

∑
i∈S

(xi − x)⊤b̂)− τ)2

]
=

1−m/n

m(n− 1)

∥∥∥(X−X)b̂+ (y(1) − y(0))− t
∥∥∥2
2

≤ 1

mn

∥∥∥(X−X)b̂− (t− t)
∥∥∥2
2
.
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We next prove a varaince bound if the Gram-Schmidt walk design is applied for estimation over the
uniformly selected subset.
Theorem 19. Let τ̂S be an estimate obtained by the Horvitz-Thompson estimator on the Gram-
Schmidt walk design. Let b̂ be a fixed/preassigned vector and 0 < ϕ < 1. Then, the partial
observation regression-adjusted Horvitz-Thompson estimator with m samples is an unbiased estima-
tor with variance of

E
[
(τ̂ − τ)2

]
≤ 1

mn

1

ϕ
∥Xb∗ − µ∥22 +

1

m2

ζ2

(1− ϕ)
∥b∗∥22 +

1

mn

∥∥∥(X−X)⊤b̂− (t− t)
∥∥∥2
2
,

where b∗ = argminb∈Rd

[
1
ϕ ∥Xb− µ∥22 +

ζ2

(1−ϕ) ∥b∥
2
2

]
.

Proof. By Theorem 13 and Lemma 18,

E
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]
≤ ES∼D
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+

1

mn

∥∥∥(X−X)⊤b̂− (t− t)
∥∥∥2
2

≤ 1

m2
ES∼D

[
1

ϕ
∥XS:b

∗ − µS∥
2
2 +

ζ2

1− ϕ
∥b∗∥22

]
+

1

mn

∥∥∥(X−X)⊤b̂− (t− t)
∥∥∥2
2

=
1

m2
ES∼D

[
1

ϕ
∥XS:b

∗ − µS∥
2
2

]
+

1

m2

ζ2

1− ϕ
∥b∗∥22

+
1

mn

∥∥∥(X−X)⊤b̂− (t− t)
∥∥∥2
2

Now note that
∥XS:b

∗ − µS∥
2
2 =

∑
i∈S

(x⊤
i b

∗ − µi)
2.

The probability of any i ∈ [n] appearing in a uniformly sampled set of size m is(
n−1
m−1

)(
n
m

) =
m

n
.

Therefore

ES∼D

[
∥XS:b

∗ − µS∥
2
2

]
=

m

n

∑
i∈[n]

(x⊤
i b

∗ − µi)
2 =

m

n
∥Xb∗ − µ∥22 ,

and the result follows by combining the above.

In Lemma 18 and Theorem 19, we have assumed that the vector b̂ (which is used for adjusting the
Horvitz-Thompson estimator) is given. For our final result, we combine our approach for regression
on random vectors (with partial observation according to leverage score sampling) with partial
observation RAHT to obtain a complete algorithm for estimation.
Theorem 3 (ATE Estimation – Partial Observation). For any ϵ, δ ∈ (0, 1], ϕ ∈ (0, 1), and
m ∈ [n], there exists a randomized algorithm (Algorithm 4) that observes a potential outcome
for O(d log(d/δ)/ϵ2 +m) units and outputs an unbiased estimate τ̂ of the ATE τ , for which there is
an event E with Pr(E) ≥ 1− δ (over the randomness of the algorithm), such that

E
[
(τ̂ − τ)2|E

]
≤ 1

mn
1
ϕ ∥Xb∗ − µ∥22 +

1
m2

ζ2

(1−ϕ) ∥b
∗∥22 +

100d·log(d/δ)
n2ϵ2 ∥µ∥2∞

+ (1 + ϵ) ·
(

1
m ∥µ∥

2
∞ + 1

mn∥(X−X)b̂− (t− t)∥22 + λ
mn∥b̂∥

2
2

)
,

where ζ := maxi∈[n] ∥xi∥2, µ := y(0) + y(1), λ = 6·log(d/δ)
ϵ2 · ζ2, t ∈ Rn is a vector where all the

entries are equal to t = 1
n

∑n
i=1 ti, and

b∗ = arg min
b∈Rd

[m
n
∥Xb− µ∥22 + ζ2 ∥b∥22

]
, b̂ = argmin

b∈Rd

[
∥(X−X)b− (t− t)∥22 + λ∥b∥22

]
.
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Algorithm 4: Regression Adjusted Horvitz-Thompson Estimation

1 Input: X ∈ Rn×d, y(1),y(0) ∈ Rn, m ∈ N, 0 < ϵ < 1, 0 < ϕ < 1.
2 Set α = d/n and λ = 6·log(d/δ)

ϵ2 · ζ2.
3 Compute the λ-ridge leverage scores ℓ(λ)i of X̃ =

[
(X−X) 1

]
.

4 Set pi = min{1,max{α, 3 · ℓi · log(d/δ)/ϵ2}}.
5 For all i ∈ [n] define the random variable qi that is 1 with probability pi, and is zero,

otherwise. Let S be the set of all indices i with qi = 1.
6 Let S ∈ Rn×n be a random diagonal matrix with Sii = 1/

√
pi if qi = 1, and Sii = 0,

otherwise.
7 Let y ∈ Rn be a random vector where yi is independently equal to either y(1)i or −y(0)i with

equal probability.

8 Let ṽ = argminb∈Rd+1

∥∥∥SX̃b− Sy
∥∥∥2
2
+ λ ∥b1:d∥22, and v̂ ∈ Rd be a vector consisting of

the first d entries of ṽ
9 Let T be a uniformly sampled set of size m from [n] \ S.

10 Obtain τ̂S by Horvitz-Thompson estimator and Gram-Schmidt walk design on T with
parameter ϕ. // See Theorem 13

11 Let τ̂S = 2
∑

i∈S yi.

12 Return |S|
n · (τ̂S −

1
m

∑
i∈T (xi − x)⊤v̂) + |S|

n · τ̂S .

Proof. We first prove that the estimator is unbiased. By the law of total expectation, we have

E [τ̂ − τ ] =
∑
S,y

E [τ̂ − τ |S] · P [S] ,

where the summation is over all sets S that are selected from leverage score sampling. Note that
given S and y, the solution vector ṽ is fixed. We denote this fixed solution vector with ṽS,y. Let
v̂S,y ∈ Rd be the vector obtained by taking the first d entries of ṽS,y. Let xS be the average row of
XS . Then we have

E [τ̂ − τ |S] =
∑
y

E

[
|S|
n
·

(
τ̂S −

1

m

∑
i∈T

(xi − xS)⊤ṽS,y

)
− |S|

n
· τS |S,y

]
· P [y]

+ E
[
|S|
n
· τ̂S −

|S|
n
· τS |S

]
,

where the summation is over the assignments of the random vector y, xS is the average row over the
set of rows indexed by S, T is a uniformly random subset of S of size m, τ̂S is estimated by using
GSW design and Horvitz-Thompson estimator on set T , and τ̂S is estimated by the Bernoulli design
and Horvitz-Thompson estimator (the observation is compatible with vector y). Trivially since τ̂S
is an unbiased estimator of τS , the second term is equal to zero. Moreover since τ̂S is an unbiased
estimator of τS , over the expectation, they cancel out and therefore,

E [τ̂ − τ |S] =
∑
y

−|S|
n
· E

[(
1

m

∑
i∈T

(xi − xS)⊤ṽS,y

)
|S,y

]
· P [y] .

Now since ṽS,y is fixed given S and y, we have

E [τ̂ − τ |S] =
∑
y

− |S|
mn
· E

[∑
i∈T

(xi − xS)⊤|S,y

]
ṽS,y · P [y] .

We have

E

[∑
i∈T

(xi − xS)⊤|S,y

]
=

∑
i∈S

(|S|−1
m−1

)(|S|
m

) x⊤
i

− m

|S|

∑
i∈S

x⊤
i

⊤

= 0.
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Therefore E [τ̂ − τ |S] = 0 and E [τ̂ − τ ] = 0. Thus, the estimator is unbiased.

We define the event E to be the event where the regression error is within a factor of (1 + ϵ) of error
and the number of nonzero entries in the matrix S is less than 100d · log(d/δ)/ϵ2. Note that

E
[
(τ̂ − τ)2|E

]
=
∑
S,y

E
[
(τ̂ − τ)2|S,y

]
· P [S,y|E ]

Note that condition to S and y,

τ̂ =
|S|
n
·

(
τ̂S −

1

m

∑
i∈T

(xi − xS)⊤ṽS,y

)
+
|S|
n
· τ̂S ,

where τ̂S and τ̂S are unbiased estimators for τS and τS , respectively. Then since τ = |S|
n ·τS+

|S|
n ·τS ,

this is an unbiased estimator. Now we have
E
[
(τ̂ − τ)2|S,y

]
= E

[
(
|S|
n
·

(
τ̂S −

1

m

∑
i∈T

(xi − xS)⊤ṽS,y

)
+
|S|
n
· τ̂S −

|S|
n
· τS −

|S|
n
· τS)2|S,y

]

= E

[
(
|S|
n
·

(
τ̂S −

1

m

∑
i∈T

(xi − xS)⊤ṽS,y

)
− |S|

n
· τS)

2|S,y

]

+ E
[
(
|S|
n
· τ̂S −

|S|
n
· τS)2|S,y

]
+ 2E

[
(
|S|
n
·

(
τ̂S −

1

m

∑
i∈T

(xi − xS)⊤ṽS,y

)
− |S|

n
· τS)(

|S|
n
· τ̂S −

|S|
n
· τS)|S,y

]
(18)

Note that condition to S,y, ( |S|
n · τ̂S −

|S|
n · τS) is a fixed number. Therefore

E

[
(
|S|
n
·

(
τ̂S −

1

m

∑
i∈T

(xi − xS)⊤ṽS,y

)
− |S|

n
· τS)(

|S|
n
· τ̂S −

|S|
n
· τS)|S,y

]

= E

[
(
|S|
n
·

(
τ̂S −

1

m

∑
i∈T

(xi − xS)⊤ṽS,y

)
− |S|

n
· τS)|S,y

]
· E
[
(
|S|
n
· τ̂S −

|S|
n
· τS)|S,y

]
.

Since E [τ̂S ] = τS and 1
|S|

∑
i∈S xi = xS , the above quantity is equal to zero. Now note that since

we use the Horvitz-Thompson estimator to estimate τ̂ , we have

E
[
(
|S|
n
· τ̂S −

|S|
n
· τS)2|S, y

]
=

(
|S|
n

)2
1

|S|2
∥µS∥

2
2 ≤

100d · log(d/δ)
n2 · ϵ2

∥µ∥2∞ . (19)

Now note that b̂ is fixed given S,y. Let

b̃S = argmin
b∈Rd

[
1

ϕ
∥XSb− µS∥

2
2
+

ζ2

(1− ϕ)
∥b∥22

]
.

Then by Theorem 19,

E

[
(
|S|
n
·

(
τ̂S −

1

m

∑
i∈T

(xi − xS)⊤ṽS,y

)
− |S|

n
· τS)

2|S,y

]

≤
(
|S|
n

)2
(

1

m · |S|
1

ϕ

∥∥∥XSb̃
S − µS

∥∥∥2
2
+

1

m2

ζ2

(1− ϕ)

∥∥∥b̃S
∥∥∥2
2
+

1

m · |S|

∥∥∥∥(XS −XS)ṽ
S,y − (t

S − tS)

∥∥∥∥2
2

)

≤ 1

mn

1

ϕ

∥∥∥XSb̃
S − µS

∥∥∥2
2
+

1

m2

ζ2

(1− ϕ)

∥∥∥b̃S
∥∥∥2
2
+

1

mn

∥∥∥∥(XS −XS)ṽ
S,y − (t

S − tS)

∥∥∥∥2
2

≤ 1

mn

1

ϕ
∥XSb

∗ − µS∥
2
2
+

1

m2

ζ2

(1− ϕ)
∥b∗∥22 +

1

mn

∥∥∥∥(XS −XS)ṽ
S,y − (t

S − tS)

∥∥∥∥2
2

≤ 1

mn

1

ϕ
∥Xb∗ − µ∥22 +

1

m2

ζ2

(1− ϕ)
∥b∗∥22 +

1

mn

∥∥∥∥(XS −XS)ṽ
S,y − (t

S − tS)

∥∥∥∥2
2

(20)
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We now use the guarantees of leverage score sampling to bound the following∥∥∥∥(XS −XS)ṽ
S,y − (t

S − tS)

∥∥∥∥2
2

.

The matrix X
S

denotes a matrix with a size equal to XS such that all of its rows are equal to the

average row of XS . Similarly, tS is a vector with a size equal to tS such that all of its entries are

equal to the average entry of tS . Similar to the proof of Theorem 12, let X̃S :=
[
(XS −X

S
) 1

]
,

and

ZS =

[
(XS −X

S
)√

λId

]
, Z̃S =

[
(XS −X

S
) 1√

λId 0

]
.

Moreover, let ỹ(1,S), ỹ(0,S) ∈ R|S|+d be vectors that are equal to y
(1)

S
,y

(0)

S
, respectively, on their

first |S| entries, and the rest of their entries are zero. Also let t̃S = ỹ(1,S)− ỹ(0,S). Then by Theorem
1, the vector ṽ in Algorithm 4 satisfies

E
[∥∥∥2Z̃Sṽ − t̃S

∥∥∥2
2
|S
]
≤ d

α
· (1 + ϵ) ∥µS∥

2
∞ + (1 + ϵ) min

b∈Rd+1

∥∥∥Z̃Sb− t̃S
∥∥∥2
2

≤ d

α
· (1 + ϵ) ∥µ∥2∞ + (1 + ϵ) min

b∈Rd+1

∥∥∥Z̃Sb− t̃S
∥∥∥2
2

Note that ∥∥∥Z̃Sb− t̃S
∥∥∥2
2
=
∥∥∥X̃Sb− tS

∥∥∥2
2
+ λ ∥b1:d∥22 ,

and similar to the proof of Theorem 12, one can see that

min
b∈Rd

[∥∥∥∥(XS −X
S
)b− (tS − t

S
)

∥∥∥∥2
2

+ λ ∥b∥22

]
= min

b∈Rd+1

[∥∥∥X̃Sb− tS

∥∥∥2
2
+ λ ∥b1:d∥22

]
Moreover ∥∥∥2Z̃Sṽ − t̃S

∥∥∥2
2
=

∥∥∥∥(XS −X
S
)v̂ + ṽd+1 · 1− tS

∥∥∥∥2
2

+ λ ∥v̂∥22 .

Again similar to the proof of Theorem 12, one can show that∥∥∥∥(XS −X
S
)v̂ − (tS − t

S
)

∥∥∥∥2
2

≤
∥∥∥∥(XS −X

S
)v̂ + ṽd+1 · 1− tS

∥∥∥∥2
2

Combining the above and noting that λ · ∥v̂∥22 ≥ 0, we have

E

[∥∥∥∥(XS −X
S
)v̂ − (tS − t

S
)

∥∥∥∥2
2

]

≤ d

α
· (1 + ϵ) ∥µ∥2∞ + (1 + ϵ) min

b∈Rd

[∥∥∥∥(XS −X
S
)b− (tS − t

S
)

∥∥∥∥2
2

+ λ ∥b∥22

]

≤ d

α
· (1 + ϵ) ∥µ∥2∞ + (1 + ϵ)

[∥∥∥∥(XS −X
S
)b̂− (tS − t

S
)

∥∥∥∥2
2

+ λ
∥∥∥b̂∥∥∥2

2

]

Now since (XS −X
S
)b̂− (tS − t

S
) is orthogonal to the vector of all ones, we have∥∥∥∥(XS −X

S
)b̂− (tS − t

S
)

∥∥∥∥2
2

≤
∥∥∥∥(XS −X

S
)b̂− (tS − t

S
)

∥∥∥∥2
2

+

∥∥∥∥(XS −XS)b̂− (t
S − tS)

∥∥∥∥2
2

=
∥∥∥(XS −XS)b̂− (tS − tS)

∥∥∥2
2

≤
∥∥∥(X−X)b̂− (t− t)

∥∥∥2
2
.
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Table 4: Variance of different methods for estimating ATE with few samples. µ = y(1) + y(0),
t = y(1) − y(0). 0 < ϕ < 1 is an input parameter. 0 < ϵ < 1 is an error parameter. ζ is
the maximum ℓ2 norm over rows of X. b∗ = argminb∈Rd

[
1
ϕ ∥Xb− µ∥22 +

1
1−ϕζ

2 ∥b∥22
]
, and

b̂ = argminb∈Rd

∥∥∥(X−X)b̂− (t− t)
∥∥∥2
2
+ λ

∥∥∥b̂∥∥∥2
2
, where λ = 6·log(d/δ)

ϵ2 · ζ2.

Method Variance

Uniform Sampling +
HT Estimator

∥µ∥22
mn

+
S2
t

m

(
1− m

n

)
GS Walk (trailed by
uniform sampling)

1

m2
min
b∈Rd

[
m

n
· 1
ϕ
∥Xb− µ∥22 +

1

1− ϕ
ζ2 ∥b∥22

]
+

S2
t

m

(
1− m

n

)
RAHT estimator +

Regression on
random vector +
GS walk design

1

mn

1

ϕ
∥Xb∗ − µ∥22 +

1

m2

ζ2

(1− ϕ)
∥b∗∥22 +

100d · log(d/δ)
n2ϵ2

∥µ∥2∞

+(1 + ϵ) ·
(

1

m
∥µ∥2∞ +

1

mn

∥∥∥(X−X)b̂− (t− t)
∥∥∥2

2
+

λ

mn

∥∥∥b̂∥∥∥2

2

)

Therefore

E

[∥∥∥∥(XS −X
S
)v̂ − (tS − t

S
)

∥∥∥∥2
2

]
(21)

≤ d

α
· (1 + ϵ) ∥µ∥2∞ + (1 + ϵ)

[∥∥∥(X−X)b̂− (t− t)
∥∥∥2
2
+ λ

∥∥∥b̂∥∥∥2
2

]
.

the results follows by picking α = d/n and combining (18), (19), (20), and (21).

We compared the variance bounds obtained by our approach for ATE estimation with partial observa-
tion with other methods in Table 4.
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E Detailed Description of Datasets and Extra Experiments

The costliest operation in our algorithms is to compute (ridge) leverage scores. This can be performed
in input-sparsity time (i.e., Õ(nnz + d3), where nnz denotes the number of nonzero entries in the
covariate matrix X [10]). Therefore, our algorithms are much more efficient than to the GSW design,
which has a running time of O(n2d) [18]. This significant difference in the running time is also
illustrated in our experiments, as shown in Table 6.

Some details of the datasets we used in our experiments are presented in Table 5. Moreover, the
comparison of our ATE approach with two other methods (Lin’s [24] and difference in means) is
presented in Table 7 and Figure 2.

Table 5: Detailed description of datasets.
Dataset Boston IHDP Twins Synthetic ITE Syntethic ATE

# samples 506 747 32120 10000 10000
# features 13 25 50 50 50

ATE 0.0 -4.016 0.0064 6.762 56.911
∥µ∥∞ 100 17.776 2.0 25.972 150.081
1√
n
∥µ∥2 48.668 9.045 0.303 12.740 71.713

1√
n

∥∥y(1)
∥∥
2

24.334 6.464 0.179 10.186 69.579
1√
n

∥∥y(0)
∥∥
2

24.334 2.749 0.160 2.883 2.891
1√
n
min ∥Xb− µ∥2 9.831 0.846 0.276 3.865 0.200

1√
n
min

∥∥Xb− y(1)
∥∥
2

4.915 0.585 0.167 1.940 1.923
1√
n
min

∥∥Xb− y(0)
∥∥
2

4.915 0.407 0.149 1.930 1.912
1√
n
min

∥∥Xb− (y(1) − y(0))
∥∥
2

0.0 0.548 0.155 0.199 3.830

Table 6: Average time (in milliseconds) for estimating ATE over 1000 trials for different methods.
Dataset Uniform HT GSW Classic Reg Adj Lev Score 4 vecs Ours
Boston 0.1 9.5 0.4 1.1 2.1 1.4
IHDP 0.1 19.8 0.6 1.6 2.5 2.0
Twins 2.8 27719.0 13.7 43.9 54.8 53.2

Table 7: Results of ATE estimation. For each result, the first number is the average of |τ − τ̂ | over
1000 trials and the second number is the standard deviation of this quantity.

Dataset Uniform HT GSW Classic
Reg Adj Lin’s [24] difference

in means Lev Score 4 vecs Ours

Boston 1.736
±1.339

0.663
±0.510

0.333
±0.255

0.349
±0.262

0.655
±0.496

0.658
±0.504

1.677
±1.256

0.628
±0.459

IHDP 0.272
±0.206

0.042
±0.031

0.012
±0.009

0.013
±0.010

0.049
±0.036

0.536
±0.050

0.264
±0.203

0.040
±0.030

Twins 1.351e−3
±1.025e−3

1.231e−3
±0.937e−3

1.201e−3
±0.899e−3

86839.0
±1091706.9

1.301e−3
±0.981e−3

1.226e−3
±0.911e−3

1.369e−3
±1.015e−3

1.218e−3
±0.936e−3
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Figure 2: Results for synthetic ATE dataset. For each number of samples, estimation is performed for
1000 trials. Then the average of |τ̂ − τ |/|τ | over these trials is shown with solid lines and the shades
around these lines denote the standard deviation.

F Gram-Schmidt Walk Design

Harshaw et al [18] introduced Algorithm 5 for balanced experimental design.

Algorithm 5: Non-Uniform Gram-Schmidt Walk

1 Input: Matrix X ∈ Rn×d, 0 < ϕ < 1, vector p ∈ Rn.
2 Initialize the vector of fractional assignments z(1) ← (2p1 − 1, . . . , 2pn − 1).
3 Initialize an index j ← 1.
4 Select an initial pivot unit k uniformly at random from [n].
5 Set ζ ← maxi∈[n] ∥Xi:∥2.

6 Let B ∈ Rn×(n+d) be a matrix such that Bi: :=

[ √
ϕ · ei

ζ−1
√
1− ϕ ·Xi:

]
, where ei is the i’th

basis vector of dimension n.
7 while z(j) /∈ {−1,+1}n do
8 Create the set S ← {i ∈ [n] : |z(j)i | < 1}.
9 If k /∈ S, select a new pivot k from S uniformly at random.

10 Compute a step direction as u(j) ← argminu{∥Bu∥2 : ui = 0 for all i /∈ S, uk = 1}.
11 Let ∆ = {δ ∈ R : z(j) + δ · u(j) ∈ [−1, 1]n}.
12 Set δ+ ← |max∆| and δ− ← |min∆|.
13 Pick a random step size δj that is equal to δ+ with probability δ−/(δ+ + δ−), and is equal

to −δ− with probability δ+/(δ+ + δ−).
14 Update fractional assignmenyt: z(j+1) ← z(j) + δju

(j).
15 Increment the index j ← j + 1.
16 Return the assigment vector z(j) ∈ {−1,+1}n.
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