JI. of Technology and Teacher Education (2023) 31(2), 167-202

Levels of Programming Concepts Used in
Computing Integration Activities
across Disciplines

LAUREN MARGULIEUX
Georgia State University, USA
Imargulieux@gsu.edu

MIRANDA C. PARKER
San Diego State University, USA
mcparker@sdsu.edu

GOZDE CETIN UZUN
Georgia State University, USA
geetinl @gsu.edu

JONATHAN D. COHEN
Georgia State University, USA
jeohen@gsu.edu

Educators across disciplines are implementing lessons and
activities that integrate computing concepts into their curricu-
lum to broaden participation in computing. Out of myriad im-
portant introductory computing skills, it is unknown which—
and to what extent—these concepts are included in these in-
tegrated experiences, especially when compared to concepts
commonly taught in introductory computer science courses.
Thus, it is unclear how integrated computing activities serve
the goal of broadening participation in computing. To address
this deficit, we compiled a database of 81 integrated comput-
ing activities, constructed a framework of fundamental pro-
gramming concepts, and scored each activity in the database
for the presence of each concept. We also analyzed frequency
and patterns of scores across different activity features, in-

mailto:lmargulieux@gsu.edu
mailto:mcparker@sdsu.edu
mailto:gcetin1@gsu.edu
mailto:jcohen@gsu.edu

168 Margulieux, Parker, Cetin Uzun, and Cohen

cluding academic discipline, programming language, student
age, and duration of activity. Analysis showed that concepts
that appear most frequently in integration activities (i.e., con-
cepts for animation and visualization) largely did not align
with concepts taught most frequently in introductory pro-
gramming courses (i.e., concepts that automate problem-solv-
ing processes). We argue that our findings can inform the way
teacher educators frame integrated computing activities for
their students and the decisions they make when determining
the types of computing integration activities they introduce
to their students. We also discuss implications for treating
integration activities as prior knowledge in introductory pro-
gramming courses.

The computing education community has begun to advocate for in-
tegrating computing into other disciplines as a sustainable and equitable
method of introducing all students to computing, a skillset that is increas-
ingly incorporated into our personal and professional lives (Margulieux
et al., 2022; Mouza et al., 2017; Yadav et al., 2021; Yadav, Gretter, et al.,
2017). For example, elementary/primary English language arts teachers
could teach an integrated computing activity in which their students cre-
ate digital stories using the block-based programming language Scratch,
achieving learning outcomes in both English and computer science (CS).
Because every student takes English language arts courses, this approach
gives all students the opportunity to experience CS and learn fundamental
concepts. This widespread interest in integrated computing from both re-
searchers and teachers is evidenced by a new journal on the topic, the Jour-
nal of Computer Science Integration and a summit held in February 2022
called “CS Across the Curriculum” for both CS and non-CS teachers, or-
ganized by the Computer Science Teachers Association. While many inte-
grated computing initiatives began to provide an on-ramp to standalone CS
education, they now also target the role of computing in non-CS education
and as a general literacy (Lee et al., 2014; Waterman et al., 2020).

With growing interest and applications of CS, the CS community is still
working towards a concrete definition of general computational literacy for
people who will not become computer scientists. This definition is central
to integrated computing, as it can inform the work of teacher educators who
must balance computing learning objectives in integration activities with
learning objectives for their primary discipline.

CS educators tend to define the computing learning objectives of an
integration activity with one of two top-down approaches. They either em-

Levels of Programming 169

phasize computational thinking (CT) as a systematic problem-solving strat-
egy (e.g., Palts & Pedaste, 2020), or they focus on previewing concepts that
would be taught in an introductory programming course, such as variables,
operators, loops, conditionals, and functions (e.g., Brennan & Resnick,
2012). Accordingly, they design learning experiences for students to achieve
computing learning objectives. However, these top-down designs from CS
educators do not always best serve the non-CS educators who will imple-
ment the activities. Because teachers’ decisions to integrate (or not) technol-
ogy is driven by their values (Kopcha et al., 2020), teachers in a disciplin-
ary context will address other, non-CS-related factors, such as access to re-
sources, time, and their own expertise, when designing learning experiences
that include integrated computing.

Because the top-down approaches that center CS learning objectives
are already well-studied, the current analysis aimed to examine integration
activities that were designed primarily to teach non-CS learning objectives.
Specifically, the analysis examined with a bottom-up approach which pro-
gramming concepts emerge as the most used across integration activities
that do not prioritize computing learning objectives. Our project analyzed
existing integrated computing activities from a variety of disciplines, stu-
dent ages, designers, and languages to determine which programming con-
cepts they employ. The result was ratios of how commonly each program-
ming concept appears in activities. This analysis focused on programming
concepts because much work already examines CT concepts in integration
activities (e.g., Lee et al., 2014; Lye & Koh, 2014; Weintrop et al., 2016),
and these concepts are pervasive in all activities and well-defined, such as
in the competencies outlined by the Computer Science Teachers Association
and International Society for Technology in Education (ISTE). Our goal for
examining the frequency of programming concepts was to make progress
towards a definition of general computational literacy, especially to 1) serve
as a comparison to concepts typically taught in introductory computing
courses, and 2) inform the work of educators who are including computing
integration into their practice so that they can better prepare their students
for an increasingly technological world.

To make the scope of this project manageable, only integration activi-
ties based on block-based programming languages were included in the
analysis currently. Block-based languages, such as Scratch (scratch.mit.edu)
and Snap! (snap.berkeley.edu) are visual coding environments in which us-
ers create programs not by typing commands, but by selecting jigsaw puz-
zle-like blocks that perform actions when fit together properly (Figure 1).

170 Margulieux, Parker, Cetin Uzun, and Cohen

Figure 1
Block-based Coding and Text-based Coding Samples

= Code &f Costumes 4 Sounds

]
=
i g
g

=)
§

gotox: pick random m tor @ ¥ @

repeat untl touching calcher » 7

changey by (@)

‘@
Y 8 &
N N Rl
1 Gl G
1 0

3
H

- @ - @D

gheomln random position =

s @) = @ » €D

change score * hyo

start sound cheer »

import pygame

pygame. init()

B oW oMo

Set up the window and objects

window = pygame.display.set_mode((649, 488))
7 catcher = pygame.Rect({18®, 1@e, 58, 50)

& ball = pygame.Rect(308, 38@, 50, 5@)

9 score = @

Jom o

]

11 # Check for collisions between the player and the ball

1z2= if catcher.colliderect(ball):
13 score += 1 # Increase the score by 1
14

15 # Move the ball te a random location

16 ball.x = random.randint(®, window.get_width() - ball.width)
17 ball.y = random.randint(®, window.get_height() - ball.height)
18 I

Note. The top image is an example of block-based coding in Scratch. The code
(i.e., the shape on the right) is created by clicking-and-dragging blocks that
snap together from the menu on the left. The bottom image is text-based code
which achieves a similar objective to the Scratch blocks.

Levels of Programming 171

Restricting the scope to block-based languages created a bias in the data that
has benefits and limitations. One benefit is that a touted asset of block-based
languages is the emphasis on concepts over syntax and semantics (Grover
& Basu, 2017; Papadakis et al., 2014), affording an emphasis on program-
ming concepts (i.e., the focus of the analysis) in learning activities. Like-
wise, block-based activities are typically designed for learners with little
to no programming experience (Kelleher & Pausch, 2005), allowing us to
capture concepts used at the most introductory level. Similarly, block-based
activities are more likely than text-based activities to be made by non-CS
teachers, especially in ScratchEd’s extensive database, providing authen-
ticity to the integration activities for achieving non-CS learning objectives.
Some of the limitations, especially when considering activities designed by
programming novices, are that concepts in block-based languages are prede-
termined by the blocks menu, which can affect how they are used. On one
hand, the order of blocks in a menu or grouping of blocks affects whether
concepts are considered for inclusion (Weintrop & Wilensky, 2015, 2018).
On the other hand, block menus allow novices to scroll through various op-
tions that they might not recall in a text-based environment, increasing the
number of concepts used by novices in block-based programming compared
to text-based programming (Weintrop & Wilensky, 2015, 2018).

In recognition of this bias, we offer the current analysis as one step
towards a goal that cannot be encapsulated by a single analysis: defining
general computational literacy. We also recognize that our bottom-up analy-
sis was likely affected by top-down design approaches. However, we have
attempted to mitigate these biases by intentionally including activities that
varied on key features, such as applied discipline and student age, to pro-
vide a new perspective on the relevance of programming concepts in other
disciplines. Our research questions were:

e How frequently are different programming concepts used in
computing integration activities that feature non-CS disciplinary
learning objectives, and

¢ How do features of computing integration activities, such as disci-
pline, student age, programming language, and duration, affect the
concepts used?

LITERATURE REVIEW

In this paper, we aimed to move towards a general computational lit-
eracy outside of the context of standalone CS education. As such, this lit-

172 Margulieux, Parker, Cetin Uzun, and Cohen

erature review focuses on programming concepts from a general education
perspective rather than from a CS education perspective. Thus, the litera-
ture review draws from but does not attempt to thoroughly discuss research
related to teaching introductory programming (for a current summary, see
Luxton-Reilly et al. 2018), nor features of programming languages designed
for novices, such as those described by

Guzdial (2004) and Kelleher (2005) and including the recent landscape
of block-based languages by Lin and Weintrop (2021). We recognize that
work on learning trajectories for computing concepts (e.g., Fields et al.,
2016; Luo et al., 2022; Rich et al., 2018) is relevant to applying the findings
of our current analysis, but the analysis focused on identifying which con-
cepts are taught in various contexts, rather than how to teach them. We also
did not thoroughly discuss research on CT education, which tends to focus
on instructional strategies, assessment, and tools for CT learning objectives
(e.g., Kong & Abelson, 2019; Palts & Pedaste, 2020), and instead focus on
research about CT in education to examine the role of CT in supporting oth-
er disciplinary learning objectives.

Computing as a Tool for Teaching and Learning

Starting in the 1960s, Papert (1980), DiSessa (2000), and others have
called for a universal computational literacy that empowered learners to ap-
ply computational tools to problem-solving of all sorts. In addition to fields
that manage mounds of data or require extremely precise calculations, a
prominent area of application is education. In education, computing is com-
monly used as a tool to support constructivist or constructionist learning en-
vironments that enable students to create digital stories, collect and analyze
data, or simulate scientific phenomena (Lee et al., 2014). For example, in
science education, simulating phenomena in a computational model allows
students to tinker with variables and visualize the results, affording confron-
tation of misconceptions, instantaneous data collection to evaluate hypothe-
ses, and infinite concrete cases from which to induce scientific theories (Wa-
terman et al., 2020; Wilensky et al., 2014). Applying computational tools,
like any technical tool, to education requires professional development for
teachers. At least in the United States, integrated computing and CT are al-
most always introduced in the educational technology portion of non-CS
teacher preparation (Mouza et al., 2017; Yadav et al., 2014; Yadav, Stephen-
son, et al., 2017).

Because integrated computing is typically categorized as educational
technology in teacher preparation programs, it is commonly conceptualized

Levels of Programming 173

in the Technological Pedagogical and Content Knowledge (TPACK) frame-
work (Grover, 2021). TPACK is a widespread framework for the integration
of technology in educational practice that adds technological applications
to pedagogical content knowledge (PCK; Koehler & Mishra, 2009). The
PCK framework posits that effective teachers must know content knowl-
edge within their discipline, pedagogical knowledge about how to teach
generally, and pedagogical content knowledge about how to teach within
their discipline (Shulman, 1986). For example, PCK would argue that the
most effective methods for teaching social science are not the same as the
most effective methods for teaching science, though some general educa-
tion methods are shared. TPACK adds technological knowledge as an equal
component to this framework, including standalone technological knowl-
edge about how to use technology and its interaction with content, peda-
gogical, and pedagogical content knowledge (Koehler & Mishra, 2009).

Teacher education programs have largely found CT and integrated com-
puting useful as a technological tool in the classroom. Kale et al. (2018)
found that CT, framed in terms of TPACK, provided a useful approach for
teachers to develop students’ problem-solving strategies and to implement
other pedagogical content knowledge, such as modeling, guided discov-
ery, structured methods, scheme activation, and load-reducing. In addition,
teachers appreciated that computing allows students to be creative and con-
structive in pursuit of learning objectives in other disciplines, such as ge-
ometry, Spanish, and financial literacy (Kale et al., 2018). Further, Sarite-
peci found that teachers who had learned CT had higher TPACK overall and
better classroom management in the context of technology-enriched class-
rooms from a higher technological knowledge (2021). One of the benefits of
computing integration, especially framed as a technological activity, is that
the activities support learning environments that often provide immediate
feedback to learners (Margulieux et al., 2022; Saritepeci, 2021). In addition,
programming activities require students to formalize and externalize their
thought processes to create the program. This approach results in the student
essentially teaching the computer and can facilitate communication between
students or with teachers as they share their work or if they get stuck by
having their thought process externally formalized into a program (Margu-
lieux et al., 2022).

Despite the benefits of integrated computing, learning programming
concepts (i.e., technological knowledge) takes considerable time in an al-
ready crowded teacher preparation curriculum. Kong and Lai (2021) devel-
oped a TPACK-based CT unit for teachers that used block-based languages
to minimize time spent learning technological knowledge. They found this
design decision to minimize time learning programming worthwhile be-

174 Margulieux, Parker, Cetin Uzun, and Cohen

cause teachers found the explicit discussion of all seven TPACK compo-
nents (CK, PK, TK, CPK, CTK, PTK, TPACK) valuable to understanding
how CT connects to the disciplinary learning objectives and practices in
their classroom. Several researchers have made the same decision to mini-
mize programming instruction and found that a couple of hours of instruc-
tion about integrated computing activities allow teachers to implement pre-
designed lessons in their classrooms, but it does not allow them to design
their own integration activities (da Silva et al., 2020; Margulieux et al.,
2022; Mouza et al., 2017). To add a substantive programming element that
enabled teachers to independently create computing integration activities,
Kong et al. (2020) found that two 39-hour courses that included sustained
instruction and practice of programming concepts were necessary to learn
sufficient technological knowledge, similar to yearlong sequence for intro-
ductory programming for CS majors. This amount of time and effort is not
realistic in the context of teacher preparation programs. The teacher prepa-
ration programs that emphasize integrated computing typically give a maxi-
mum of 10 hours to CT and computing integration, and it is only one area of
TPACK that contends with all the other technologies teachers use.

Feasible Programming Instruction in Teacher Preparation

It is not currently viable to teach programming to non-CS teachers the
same way as we would teach programming to CS teachers. This section dis-
cusses US-based teacher preparation programs, but this statement is likely
true everywhere. Even if we considered the opportunity for non-CS teach-
ers to take introductory programming courses as an elective, like other non-
CS undergraduates, preparing all teachers for computing instruction is not
feasible. Teacher preparation programs are typically among the most rigid
undergraduate and graduate majors, with few opportunities for electives.
Take a future biology teacher as an example. That teacher candidate must
take general education courses, a sequence of biology courses and educa-
tion courses, and teach in an actual biology classroom during their final year
while submitting portfolios to certification agencies for accreditation. Biol-
ogy teachers essentially dual-major in biology and education with a manda-
tory yearlong internship and certification. The requirements for elementary
teachers, who do not need the disciplinary sequence of courses, are no more
flexible because they must prepare to teach literacy, math, science, and hu-
manities, all within an emphasis on child development.

Informed by the requirements of teacher preparation programs, the CS
education community needs to make strategic decisions about which pro-

Levels of Programming 175

gramming concepts are most useful in integrated computing activities. Sev-
eral researchers have responded to this integration challenge by eschewing
programming instruction and focusing on CT as a problem-solving strategy.
While reasonable, this strategy is akin to teaching mathematical thinking as
a way to solve problems involving data in science classes without enabling
students to use calculators or spreadsheets to analyze data. It does not in-
troduce the technical skills required to use computing as a tool to solve an
array of problems. In addition, many teachers and students want to learn to
program but do not know how to start or where to look (Lye & Koh, 2014).
Before experiencing programming, many teachers think as consumers of
technology who must use existing tools as they were designed (Margulieux
et al., 2022). After a brief introduction to programming, they change their
perception to a producer of technology who can, perhaps not create their
own program independently, but begin to recognize the possibilities for
modifying tools and automating tasks (Margulieux et al., 2022). The authors
argue that this shift in perception is critical for achieving general computa-
tional literacy, making the introduction to programming critical for compu-
tational literacy. The current analysis aims to describe the current state of
computing integration activities used in classrooms so that teacher educa-
tors can consider the inclusion of computing integration practices in their
curricula in a more targeted way.

METHOD
Selection Criteria: Features and Limitations
Non-CS Disciplinary Learning Objectives

Given the current analysis’ focus on programming concepts used out-
side of standalone computing, the first selection criterion for activities to in-
clude in the analysis was the inclusion of learning objectives in a discipline
other than computing. No restrictions were placed on which other disci-
plines qualified, and we found activities from language arts, math, science,
art, music, foreign language, history, social studies, and even spatial skill
development for young children.

One indirect benefit of requiring non-computing disciplinary learning
objectives was that many included activities have substantive lesson plans.
These lesson plans make the activities more accessible to teachers by in-
cluding TPACK-related information, such as disciplinary learning objec-

176 Margulieux, Parker, Cetin Uzun, and Cohen

tives for the activity. As discussed in the literature review, teachers can often
apply pre-designed computing-integration activities in their class but not
create them themselves. As a result, the authors recognize the limitations of
requiring non-computing learning objectives but also that it provides a level
of authenticity and accessibility for the included activities.

One of the major sources of computing integration activities affected
by this requirement was the ScratchEd website. Scratch is a popular lan-
guage for computing integration activities, aided by an extensive repository
of student- and teacher-created projects that users are encouraged to remix
into their own projects. The thousands of programs in this repository are of
widely varying complexity and quality, and most of them are listed with a
topic but without explicit learning objectives. To draw from this wealth of
activities without comprehensively including projects, we identified lists of
vetted computing integrated activities using Scratch to include in the analy-
sis. These lists were “Integrated Scratch Programming in the Curriculum,”
“Scratch Projects Across the Curriculum,” “From Music to Math: Scratch
Across Every Subject,” and “Scratch Cross-Curricular Integration Guide.”
Similarly, resources related to the Snap! language had plentiful examples of
projects across disciplines with limited explicit non-CS disciplinary learn-
ing objectives.

Block-Based Programming Languages

Because computing integration activities are becoming popular, an ini-
tial search revealed too many activities to score in one analysis. For exam-
ple, in the Exploring Computational Thinking repository originally created
by Google and now managed by ISTE, there are 141 activities. To narrow
the scope of the analysis, the next selection criterion was that the activity
had to use a block-based programming language. The authors intend to an-
alyze other types of programming environments in later analyses. As dis-
cussed in the introduction, this criterion has benefits and limitations. One of
the main benefits for the goal of the current analysis was that block-based
activities include a range of concepts, regardless of their syntactic or seman-
tic difficulty (Grover & Basu, 2017; Papadakis et al., 2014). This benefit
means that concepts that best serve the activity can be included for learners
with little to no programming experience (Weintrop & Wilensky, 2018). The
associated limitation, however, was that concepts are also restricted by the
blocks that are built into the language. Most popular languages use a low-
floor, high-ceiling design that includes blocks for all concepts that would be
taught in an introductory programming course, though (Grover, 2021; Wein-

Levels of Programming 177

trop & Wilensky, 2015). Thus, this limitation was not expected to substan-
tially affect the results. Another limitation was that prominent, text-based
integration activities, such as Bootstrap’s curricula in Algebra and Physics,
are excluded, though they are planned to be included in future analyses.
This selection criterion also notably excluded commonly used science
simulation platforms, like NetLogo and PhET. These platforms include an
extensive range of simulations for scientific phenomena and other mod-
els beyond science. While the simulations allow users to easily access the
source code, the primary interface does not include the program used to cre-
ate the simulation. In addition, the source code, except for some adapted
NetLogo simulations, is text-based. Though the programs are heavily com-
mented to make them understandable, they do not meet the inclusion cri-
teria for the current analysis. More programming-centric and block-based
options for scientific simulations, like StarLogo Nova, were included.

Access

Because the goal of the current analysis was towards a general com-
putational literacy, the accessibility of the activities was the final criterion
for inclusion. Following the accessibility criteria used by Lin and Weintrop
(2021), we included activities only if they could be found online, were free
of cost, did not require a physical device like robotics toolkits, and were
updated recently enough that it ran on current versions of languages and op-
erating systems. The requirement to be found online is not expected to sub-
stantially narrow the analysis because Lin and Weintrop found that 90% of
block-based programming languages ran in a web browser. Exclusion for
use of physical devices is a corollary to the requirement to be free of cost.
We felt that these criteria would result in a dataset that had the broadest and
most equitable applications because many public schools in low-income ar-
eas in the US cannot afford physical computing or robotics Kkits.

Search Criteria

It is important for readers to recognize that the current analysis was
based on a review of computing integration activities but not a systematic
review. Unlike systematic literature reviews of scholarly work on a given
keyword or topic area, there are no databases of indexed computing inte-
gration activities that span our inclusion criteria. Some repositories for cer-
tain languages exist, such as ScratchEd’s repository of Scratch projects and

178 Margulieux, Parker, Cetin Uzun, and Cohen

the Exploring Computational Thinking repository of Pencil Code and Py-
thon activities. However, computing integration activities are not published
through a central organization, so they can be difficult to find.

In lieu of a systematic review, we attempted to build a database that
represented activities from a variety of disciplines, student ages, designers,
and languages. To create this database, we included any activities that we
were already aware of, such as Action Fractions, links from lists of com-
puting integration activities, such as “Scratch Projects Across the Curricu-
lum,” links from CSforAll’s curriculum directory, and a general Google
search for “‘integrated computing’ activities” and “‘computational thinking’
+ programming” or “‘computational thinking’ + coding.” We examined the
first 100 returns for these searches. However, many of the activities found
through Google search were excluded based on our criteria, primarily for
not including non-CS learning objectives.

We included activities as whole units, whether they were single-class
lessons or extended curricular units that included multiple lessons, like Cod-
ing as Another Language. Treating individual lessons from curricular units
as individual activities would have created over-representation of extended
units (e.g., 72 lessons for the kindergarten, 1Ist, and 2nd grade curricular
units from Coding as Another Language instead of three activities). Our da-
tabase included 81 activities from the following sources:

1133

CANON Lab

Code.org’s CS Connections

Code.org’s Hour of Code

Coding as Another Language curriculum

CS+ units from University of California San Diego
CSforALL’s Curriculum Repository (including 144 curricular units
at the time of searching)

CT4Edu

Everyday Computing

Exploring Computational Thinking

Google search

Google’s CS First

Integrated computing activities from Georgia State University
Project GUTS

ScratchEd

The Tech Interactive

TVO Learn

UCL Scratch Maths

Levels of Programming 179

We analyzed the distribution of these activities’ characteristics based
on primary discipline, student age, programming language, and minimum
time to complete (see Table 1). Based on discipline, we recognized that we
had only two from history or social studies and searched for additional ac-
tivities. While we found many projects on ScratchEd’s website, they did not
meet the selection criteria. Required courses, including language arts, math,
and science had a sufficient number of activities, matching their representa-
tion in the school day. “Other” disciplines in Table | refer to foreign lan-
guage, spatial skill practice for young children, and an any-discipline vo-
cabulary learning activity. We also had a wide range of activities based on
student age and minimum time to complete, so we did not search for any
additional activities based on these characteristics.

Table 1

Characteristics of Computing Integration Activities Included in The
Database

Discipline n Grade n Language n Minimum Time n
Math 29 K-2 10 Scratch 36 <1 hour 37
Language Arts 22 3-5 46 PencilCode 23 1-3 hours 20
Science 16 6-8 14 AppLab 13 3-8 hours 15
Art/Music 6 9-12 3 StarLogo Nova 5 >8 hours 9
History/Social 2 All 8 ScratchJr 4

Studies

Other 6

To explore the representation in our database based on programming
languages, we used the categories identified in Lin and Weintrop (2021)
to ensure coverage of several types of block-based languages. The data-
base has activities from Pencil Code (i.e., block-based implementation of a
text-based language), Scratch (i.e., multimedia focused on animations and
storytelling), AppLab (i.e., mobile app development), StarLogo Nova (i.e.,
simulations), and ScratchJr (i.e., pre-reading language). We decided against
requiring languages from Lin and Weintrop’s other categories for data sci-
ence, physical computing, and task-specific languages because they did not
match our inclusion criteria. We explored other common languages to in-
clude, like Alice, Snap!, and App Inventor, but we did not find activities that
matched our criteria.

180 Margulieux, Parker, Cetin Uzun, and Cohen

Programming Concept Framework
Initial Programming Concept Framework

Integrated computing activities are often theoretically framed in a CT
framework, especially for science and math activities for which national
standards (e.g., the Next Generation Science Standards and Common Core)
explicitly include CT. Thus, we explored CT frameworks for the program-
ming concepts that they include (Aho, 2012; Armoni, 2016; Barr & Ste-
phenson, 2011; Brennan & Resnick, 2012; Denner et al., 2012; Denning,
2017; Grover & Pea, 2013; Lye & Koh, 2014; Palts & Pedaste, 2020; Tang
et al., 2020; Weintrop et al., 2016; Wing, 2010; Yadav et al., 2014). As Tang
et al. (2020) highlight in their systematic review of CT frameworks aimed
at assessment, many of the frameworks focus on problem-solving compe-
tencies rather than programming concepts. The main exception to this trend
is Brennan and Resnick’s (2012) framework, which includes a category for
computational concepts that lists sequences, parallelism, loops, events, con-
ditionals, operators, and data. We used these concepts as the initial founda-
tion for our scoring scheme. In addition, Weintrop et al.’s (2016) definition
of CT for math and science integration includes specific data practices, such
as creating, manipulating, and visualizing data. We transformed these prac-
tices into programming practices, such as inputting variable values, using
operators to calculate variables, and various visualization concepts.

To supplement the CT frameworks, we also considered how different
block-based programs grouped blocks into menus. These groupings were
recently analyzed in Lin and Weintrop’s (2021) landscape report of block-
based programming languages. Their analysis of 36 languages grouped
blocks based on concepts. The conceptual groupings included: variables/
data structures, logic operators, sprite/character appearance, operators (nu-
merical, textual, color), customize block (i.e., function), movement, sound,
sense/input, interacting with the physical/virtual environment, output, de-
bug, comment, and extension. These categories were added to our initial
conceptual framework.

From this theoretical basis, we began an iterative scoring of computing
integration activities. Our goal was to refine the framework based on con-
cepts that were missing and differentiate large categories into more specific
concepts, such as separating the concept of loops into for and while loops.

Levels of Programming 181

Revisions to Programming Concept Framework

Our full, revised programming concept framework can be found in Ta-
ble 2, with definitions and examples for each concept that we considered
when analyzing the integrated computing activities. In this section, we dis-
cuss the evolution of the initial concept framework into this final version.
When considering each concept definition, it is important to differentiate the
role of the programmer and of the user, which can often be the same per-
son in integrated activities. The programmer is the person creating the pro-
gram by interacting with the blocks, such as initializing a variable. The user
is the person interacting with the program as it runs, such as responding to
prompts to change the value of variables.

Certain concept categories were minimally modified from the initial
concept framework. The algorithms category is higher order than the other
concept categories because it does not refer to particular code blocks but
instead the nature of the entire program. The category includes Brennan and
Resnick’s (2012) concepts of sequences and parallelism, which can be used
to describe the quality of a program used in an activity. Namely, it describes
whether the program involved sequential steps and/or parallel components
operating in tandem. We also maintained the operator category, which dif-
ferentiates between arithmetic, relational, and Boolean/logic operators for
processing and analyzing data. The last minimally modified category, func-
tions, includes using parameters and defining and calling a function, which
is sometimes called creating or customizing a code block in the block-based
paradigm.

Table 2

Definitions of Programming Concepts Used in Integrated Computing
Activities with Examples

Concepts Definitions Examples

Algorithms — nature of the program

Sequence The order of blocks was critical to Defining the variables before using
correct execution them to calculate other variables
Parallelism Used multiple code sequences in ~ Multiple sprites programmed with

the program their own behaviors

182

Margulieux, Parker, Cetin Uzun, and Cohen

Concepts Definitions

Examples

Variables (and Data Structures) — how data is stored or managed

Variable Used a variable

Assigned a string to the variable
“adjective” and used that variable
later in the program

sub-concept: +=/
change

Used a += or change block to cal-
culate a new value for a variable

Increase the value of variables to
visualize the Fibonacci sequence

sub-concept: cal-
culated variable

Used arithmetic operators or the
value of other variables to calcu-
late the value of the variable

Subtract the value of other angles
from 180 to find the value of the
last angle in a triangle

List Used a list to assign multiple

values to a variable

Used a list to provide multiple op-
tions for the variable “adjective”

Operators — how data is processed or analyzed

Arithmetic Used +, -, *, /, or other operators

to calculate numerical values

Divide a wavelength in half to
draw the first half of the wave

Relational Used <, <=, >, >=, or == Compare the value of different
fractions
Boolean/Logical Used and, or, not, true, false, Determine the quadrant of a graph

or other logical operators

based on the x- and y-axis value

Loops — how code is repeated

For loop Used a loop that repeated for a
specific number of times entered
by the user or a forever loop that

repeated infinitely

A program that repeats a sequence
multiple times to draw a sym-
metrical shape

Sub-concept: loop Used an index to count or control
index how many times to loop

An index within a loop that counts
the number of times a loop has run

While loop Used a loop with a termination

condition

Loops until a variable becomes
negative

sub-concept:
nested loop

Used a loop within another struc-
ture, like a loop

Repeat a drawing sequence within
a larger repeated sequence to draw
symmetrical shapes

Conditionals — how the program makes decisions

If-then Used a statement to determine
whether a condition was met to
determine whether code should be

executed

Compare a variable to a predeter-
mined value to determine whether
to display a message

If-else Used a series of statements to
determine which matched a given

condition

Compare a variable to a predeter-
mined value to determine which
message to display

Used a conditional within another
structure, like a loop

sub-concept:
nested conditional

Repeat a conditional statement for
the changing value of a variable
within a loop

Functions — chunks of code that are easy to reuse

Define/call Called a function defined by the
user

Define a function that draws a
shape

Levels of Programming

183

Concepts

Definitions

Examples

Parameter

Included a parameter as part of the
function definition

Define a function that draws and
shape using a parameter for the
size of the shape

Visualization — how components move around the screen

Movement

Moved sprites or objects to visual-
ize a process

Characters in a story move
throughout the story

sub-concept: pen

Used the pen up or pen down

Using pen up and down to differ-

up/down blocks entiate between different shapes

Cartesian Used Cartesian coordinates to Start a character in the bottom left
determine the location of a sprite ~ corner by setting their location to
or object negative x and y values

Angles Changed the direction of sprites or Draw a triangle based on the

objects using angles

angles of vertices

Components — audiovisual components to be visualized

Multimedia

Added a multimedia component
to the program such as a sprite,
sound, pen, or stamp

Add two characters and a back-
ground to a digital story

sub-concept:
button

Added a button for the user to
click to trigger an event

Add a button that says “Click here
when ready”

sub-concept:
counter

Added a counter for the number of

times an event has occurred

Count how many times a sprite
has touched another sprite

Properties

Changed the default properties

Change the color of a pen

Output — the program communicating with the user

String Displayed a string entered by the A character is programmed to say
programmer a line

Variable Displayed the value of a variable, = The program prints the final value
either string or numeric of a variable

String and Variable Displayed a string and value of A character says, “And you

a variable in the same output
statement

picked,” + a variable selected by
the user

Input — the user communicating with the program

Event

Triggered the execution of code
based on the action of the user,
sensor, or internal feature

A character in a story will not talk
until the user clicks them or a mes-
sage is broadcasted

Variable: String

The user entered a string into the
program

A poem generator asks for a verb

Variable: The programmer entered a starting The user picks a number
Numerical variable value or asks the user for

input
Cleaning/ Used a cleaning or transforming Change all text to lowercase
transforming process on user-inputted data

184 Margulieux, Parker, Cetin Uzun, and Cohen

The category variables (and data structures) evolved from data con-
cepts that originated in all three source frameworks related to data storage
and handling (Brennan & Resnick, 2012; Lin & Weintrop, 2021; Weintrop
et al.,, 2016) This category primarily revolved around data being passed
through the program as variables. During our iterative review of integrated
activities, we found recurring use cases that we added as sub-concepts for
using variables. In our framework, sub-concepts are particular ways of ap-
plying a concept within an activity that would not be taught separately but
also are not necessary for applying the concept. In this case, the first is us-
ing += or change, which is often included in the base set of blocks, to up-
date a variable based on the current value. The second is using operators
to dynamically calculate the value of a variable, compared to the program-
mer entering a static value for a variable. In this category, we put “and data
structures” in parentheses because the use of multifaceted data structures is
rare in the activities we analyzed. Except in one case of importing a spread-
sheet, the most activities would do, occasionally, is use a list.

We adopted the loop category from Brennan and Resnick’s framework
to describe how programs repeat code. This category does not appear in Lin
and Weintrop’s (2021) framework because loops are often included in the
control category with conditionals (Brennan & Resnick, 2012). We added
a distinction between for and while loops to mark a difference in repeating
part of the program for a specified number of times, including forever, as
opposed to while a continuation condition is met. One area of discussion
among scorers was how to categorize a for loop that repeated for a dynamic
value, such as the length of a list (i.e., for each). We decided to categorize
this as a for loop and added a sub-concept for a loop index variable to in-
dicate cases when the number of repetitions was not static. We also added
a sub-concept for nested loops (i.e., when a loop is inside another control
structure) as a recurring, though somewhat rare, use case.

The category conditions describe how programs make decisions and
had the same origination as loops. We added a differentiation between if-
then and if-else. These are typically represented as different blocks, but we
also wanted to mark the conceptual difference between them. The if-then
conditionals were those that checked for a specific condition and executed
code only when it was met. The if-else conditionals were those that served
as a decision tree, affecting the flow of the program regardless of which
condition was met. Like in loops, we also added a sub-concept for nested
conditionals for when conditionals were inside another control structure.

The visualization category stemmed from data concepts from all three
frameworks but focused primarily on visualizing data (Brennan & Resnick,

Levels of Programming 185

2012; Lin & Weintrop, 2021; Weintrop et al., 2016). The initial version of
this category was later split between visualization and components. The vi-
sualization category includes concepts that are not necessarily programming
concepts but are common enough in integrated activities to warrant discus-
sion, like the movement of a component to show a process. A particular
use case we highlight as a sub-concept is using the pen up or down blocks,
which are often in the base set of blocks. The other two concepts are math
concepts commonly applied in the integrated activities — use of coordinates
in the Cartesian plane and use of angles.

The other category that stemmed from visualization, components, is
more directly related to programming concepts for multimedia elements.
The first concept is creating a multimedia object, such as a sprite, sound, or
pen. The second concept is changing the properties of that object, such as
adding a file or picking an option from a preset list. We also included two
unique recurring options as sub-concepts: buttons and counters.

The last two categories manage the input and output data for a program,
which describe how users communicate with the program and how pro-
grams communicate with users. In the output category, we included output-
ting a string that is predetermined by the programmer, such as a line of dia-
logue. The other type of output was printing the current value of a variable.
We also specifically scored activities for whether they output both a string
and variable in the same line of code, which includes a different procedure
than outputting them on separate lines.

The final category was for inputs, which included inputs from the pro-
grammer and user. One type of input was a variable, and it was either a
string or numerical value except in rare cases. The other type of input was
an event, which is explicitly included in Brennan and Resnick’s (2012)
framework. Events could be triggered by sensors, internally programmed
as information is passed, or based on input from users. Input from users
included either pressing a button to trigger an effect, like the arrow key to
move a sprite, or entering data that was stored as a variable. In the case of
entering data, we included a sub-concept for any sort of automatic cleaning
or transformation of that data, like removing punctuation.

Scoring Activities for Concepts

Activities were scored by two of three raters for whether they included
a concept. We decided to score activities for whether they included a con-
cept rather than the number of times a concept is used. Our goal was to de-

186 Margulieux, Parker, Cetin Uzun, and Cohen

termine which concepts are more commonly used across computing integra-
tion activities, and scoring for the number of times a concept was used in
an activity might have skewed the results based on incidental features of
the activities. For example, if an activity used five variables, the concep-
tual knowledge required is not necessarily different than if an activity used
two variables. Thus, scoring for times a concept was used was more likely
to result in over-representation of the concept rather than information about
which concepts were most commonly used in computing integration.

The raters were three CS education researchers. Two have a Ph.D. in
areas related to CS education, one from educational psychology and one
from CS and have worked and published in computing education for at least
five years. The other has a master’s degree in CS and is earning a Ph.D. in
instructional technology with an emphasis on CS education. Each activity
was scored by at least one rater with a degree in education and at least one
rater with a degree in computer science.

To determine interrater reliability, we used Cohen’s Kappa. Cohen’s
Kappa is appropriate to compare binary data from two raters, such as
whether a concept is used in an activity. Cohen’s Kappa compares the ob-
served agreement, in this case 96%, to the chance of agreement, calculated
from the base rate of each binary option from each rater. For example, if rat-
er one marked 80% of concepts as present in each activity on average while
rater two marked 20% of concepts as present, then the chance of agreement
would be low. A higher Kappa indicates higher agreement, with 0.81 to
1.00 indicating nearly absolute agreement (McHugh, 2012). For the current
study, Kappa was 0.92, indicating nearly absolute agreement.

RESULTS

By scoring the concepts used in computing integration activities includ-
ed in our database of 81 activities, we can look at bottom-up trends across
activities to address our first research question. Our results describe how
common concepts, defined in Table 2, were used across activities. The per-
centage of activities including each concept can be seen in Figure 2.

For each concept, to address our second research question, we explore
the distribution within unique features of each activity, including discipline,
student age, programming language, and minimum time on task. in regard
to discipline, only language arts, math, and science had substantial represen-
tation, so any differences in distribution in art/music, history/social studies,
or other disciplines are not likely to be reliable. As such, we focus on only

Levels of Programming 187

these three disciplines for this analysis, which are also represented in Figure
2. For student age, we examined the earliest age at which an activity could
be completed. Language was similar to discipline in that there was little
representation in ScratchJr and StarLogo Nova. Within languages, we high-
light cases when common concepts are never used, especially if there was
no block for the concept. Uneven distributions across these activity features
will be called out in the results. Otherwise, the reader can assume an even,
relative (i.e., percentage-based) distribution across categories.

Figure 2

Frequency Counts of Concepts Identified Within the 81 Integrated
Computing Activities in Our Database

Frequency of Concepts in Integration Activities
10 20 30 40 50 60 70 80

(=]

Sequences
Properties
Multimedia
Events
Movement

For loop

String output
Variables
Cartesian
Parallelism
Angles
Functions
Variable output
Anthmetic operator
If-then
Relational operator
Numerical input
Combo output
Parameters
While loop
If-else

List

String mnput
Boolean operator
Data cleaning

mScience mMath mLanguage Arts = Other

188 Margulieux, Parker, Cetin Uzun, and Cohen

The last distribution that we considered was the minimum time to com-
plete the activity, but we found no notable differences in concept frequency
across this feature. We expected that less common programming concepts
would appear only in the longer duration activities because activities that
included less common concepts typically also included the more common
concepts. Thus, activities that included less common concepts generally in-
cluded more concepts in total, which was expected to result in longer ac-
tivities. However, this was not true. All concepts were evenly distributed
among activities of different durations.

Most Frequent Programming Concepts

Based on the distribution of frequencies for each concept, the most fre-
quent programming concepts are defined as those that are present in more
than half of the activities. They include 9 of the 25 concepts in the frame-
work (excluding sub-concepts). No sub-concepts, which are specific appli-
cations of concepts that recur in the data, were used in over half of the ac-
tivities.

The most frequent concept—sequences—came, unsurprisingly, from
the algorithms category, which were found in 91% of activities. Earlier
ages were more likely to not use this concept, i.e., not need the program
to be in a particular order to work. All activities from 4th grade/age 9 and
later included sequences. The simplicity of programs for the younger age
group was likely a contributing factor, such as sprites doing only one thing.
In addition, sequences were only absent from the activities in AppLab and
Scratch that focused on digital storytelling.

The next most frequent concepts were multimedia components, 80%,
and their properties, 83%, from the components category. In a couple of
cases, multimedia components, like a background picture, were pre-created
for learners, so they only had to set properties. These concepts were distrib-
uted evenly across all activity features.

About 70% of the activities included events or movement. Events, such
as clicking on a character in an animation, were more frequent in language
arts than in math or science. They were also less common in Pencil Code
than in the other languages, likely a result of the use of events in digital
storytelling activities. The next concept, movement, was evenly distributed
across all features. Movement is not a programming concept but blocks for
movement were used frequently enough to include in this analysis, such as
to draw with a pen or move a character.

Levels of Programming 189

The last four concepts in this category neared 50% use. Forloops (used
to repeat code for a set number of times), 63%, were less common in sci-
ence than language arts or math. String outputs (used to show a predeter-
mined set of characters, often text), 57%, were most common in language
arts, perhaps unsurprisingly given the use of dialogue. Variables (used to
store data values), 54%, were least common in language arts, again unsur-
prisingly given the use of variables in math and science. Last, another non-
programming topic, the use of Cartesian coordinates, 54%, was more com-
mon in science than language arts or math. In addition, Cartesian coordi-
nates were more common for older students, used in about half of activities
starting at 3rd grade/8 years old.

Frequent Concepts Summary

Perhaps the most striking takeaway from these results is that the most
frequently used concepts in integrated computing activities are not the con-
cepts that are typically the focus of instruction in introductory programming
courses. Concepts of sequences, multimedia components and their prop-
erties, and events might be discussed, but they are not typically featured.
Further, non-programming concepts tied to specific blocks are included in
the most frequent list: movement and Cartesian coordinates. With these con-
cepts aside, only for loops, variables, and string outputs appear in the most
frequently used concepts. Each of these represents, most likely, a day of in-
struction in an introductory programming course. This difference is likely
due to a difference in goals and knowledge, which will be expanded upon in
the discussion section.

Common Programming Concepts

The next level of programming concepts used in integrated computing
activities is those found in 25% to 50% of activities. We found 7 of 25 con-
cepts were commonly used. Again, no sub-concepts were found with this
frequency range. In this intermediate frequency category, the most common
concept was again from the algorithms category. Parallelism, which allows
multiple things to happen at once in a program, was in 49% of activities
and most common in language arts, especially for digital storytelling activi-
ties with multiple sprites. It also did not appear in any of the Pencil Code
activities. Pencil Code can support parallelism, but as a Logo/turtle-based

190 Margulieux, Parker, Cetin Uzun, and Cohen

programming language, it is not commonly used to support multiple turtles.
The next concept was another non-programming concept, the use of angles,
47%. Unsurprisingly, angles were less common in language arts than in
math or science activities.

The next two concepts were in about 35% of activities. Functions,
which allow programmers to more easily reuse code, were distributed even-
ly across activity features. The other concept, an output that showed the
value of a variable, shifted from rare to more common around 5th grade/10
years old, and it was most common in science.

The last group of concepts came from the conditional and operator cat-
egories. I/f-then conditionals, 28%, were evenly distributed across features.
Arithmetic operators (e.g., + or -), 30%, were rare before 3rd grade/8 years
old, which makes sense given students are still learning arithmetic at this
age. They were also less common in language arts than in math or science,
again unsurprisingly. Relational operators (e.g., <, >, =), 25%, were most
common in science. They did not appear in activities that used AppLab or
Scratchlr.

Common Concepts Summary

Compared to the most frequently used concepts, these commonly used
concepts are more representative of concepts that comprise the bulk of in-
struction in introductory programming courses. However, the most com-
mon concepts within this category are again concepts that appear briefly in
a standalone computing course. Not until we get to concepts in about a third
of activities do we see concepts like functions, conditionals, or operators.
One implication for this result is that even students engaged in integrated
computing activities might have little exposure to concepts that would be
the focus of instruction in standalone introductory programming courses.

Uncommon Programming Concepts

The last level of programming concepts was those found in fewer than
25% of activities. We found 9 of 25 concepts were used in less than a quar-
ter of activities, plus all of the eight sub-concepts. Within uncommonly used
concepts, the most frequent concepts were related to the input and output
of data. Users inputting numerical variables, 22%, were evenly distributed
among most features but absent in AppLab and Scratchlr activities, which

Levels of Programming 191

had no blocks to support this functionality. For output, the combination of
variable and string within the same output, 19%, had no instances before
3rd grade/8 years old, but was otherwise evenly distributed. Given that this
code commonly includes an arithmetic operator, +, this aligns with the rela-
tively low use of arithmetic operators.

The next few concepts represent more advanced programming con-
cepts in a programming course. Parameters, which are used with functions,
were found in 19%. While loops, which repeat code while a condition is
true, were found in 17%. If-else conditionals, which tell the program how
to make decisions, were found in 16% of activities. Despite being more ad-
vanced programming concepts, they appeared evenly over disciplines, lan-
guages, and surprisingly, student ages. Though perhaps the more appropri-
ate interpretation of these data is that they were equally uncommon across
these features.

The last four concepts all appeared in less than 10% of activities. Us-
ers inputting non-numerical variables and the use of lists were both evenly
distributed across activity features. Boolean operators (e.g., AND, NOT)
were equally common among student ages starting at 3rd grade/8 years old.
Lastly, code used to clean or transform input data was used in only five ac-
tivities, primarily in Pencil Code activities. Given the low frequency, these
distributions might be an artifact of the database rather than important dis-
tinctions.

Uncommon Concepts Summary

Most of these uncommon concepts are those that represent more ad-
vanced programming concepts or at least concepts that do not appear out-
side of computing or related fields. For example, it is uncommon to use
Boolean operators outside of computing or technology use, so it makes
sense that they would not be used for activities that primarily serve learning
objectives in another discipline. The other commonality in these uncommon
concepts is that many of them handle data inputs or outputs. Other disci-
plines handle data frequently, but concepts like cleaning and transforming
data are not often automated outside of computing, even if they could be be-
cause the process of cleaning data follows algorithmic rules. The infrequen-
cy of these input and output concepts is also likely due to those concepts be-
ing more user-facing, which is not commonly part of integration activities.

192 Margulieux, Parker, Cetin Uzun, and Cohen

Sub-concepts

All eight sub-concepts were used infrequently, which is expected given
that they are particular applications of the concepts. For all sub-concepts,
they were evenly distributed across activity features. Again, this distribution
mostly means that they were uncommon across all features. The most com-
mon sub-concept was calculating a variable, 23%. This concept is the only
one with an uneven distribution because it was rare before 3rd grade/8 years
old. Also related to the value of variables, the += or change blocks were
used in 14% of activities.

Nested loops and conditionals were a couple of the more common sub-
concepts with nested loops in 15% of activities and nested conditionals in
9%. Loop index variables were also used in 9% of the activities. None of
these sub-concepts represent difficult programming concepts, but they in-
crease the complexity of the program, especially for novice programmers.
The remaining three sub-concepts were related to visualization and multi-
media. The pen up/down, button, and counter blocks were each used in 11%
of activities. These sub-concepts, based on the integration activities, seem
like the type of concept that might not be used within a block-based lan-
guage, except that there are blocks to support them. Many of the activities
did not seem like these features were essential to the program.

DISCUSSION

The goal of the current analysis was to provide a bottom-up examina-
tion of the programming concepts used in integrated computing activities
that focus on non-CS learning objectives. This perspective serves as a com-
plement to top-down approaches that ensure certain CS concepts are includ-
ed. Our main finding suggests there are significant differences in the most
frequently taught concepts in the analyzed integration activities compared
to standalone programming instruction, which is often a basis for top-down
approaches. This finding is important because it contradicts a narrative in
CS education that integration activities preview concepts that students learn
in standalone programming courses, at least in the subset of activities in-
cluded in this analysis.

While the authors expected more alignment between bottom-up and
top-down designs of integration activities, the selection criteria to require
non-CS disciplinary learning objectives biased our database towards activi-
ties created primarily from the perspective of the non-CS discipline. Thus,

Levels of Programming 193

the activities in the current analysis do not have a primary goal of teaching
programming. Instead, the selection criteria were designed to identify inte-
gration activities in which the goal was to support disciplinary learning. In
this context, it is unsurprising that many of the most frequent concepts sup-
port visualization of processes and the use of multimedia to express ideas
through animation.

These visualization and multimedia concepts are valuable in other dis-
ciplines, otherwise they would not be the most frequent concepts, but they
do not harness the automated information processing potential of program-
ming. Much of the visualization and multimedia concepts in integrated
computing activities are simply a different medium in which to express
ideas. As an example of a computing integration activity that does or does
not use automated information processing, consider students learning about
different types of triangles (see Figure 3). In a computing integration activ-
ity, instead of students drawing triangles using a pencil, paper, and protrac-
tor, they might program a turtle. With no automation concepts (left-hand
side), they must manually calculate and enter the value of each angle. Thus,
the programming environment is a different medium, but conceptually no
different, than paper. To add automation (right-hand side), if students are
drawing isosceles triangles, then two of the angles will always equal each
other. In a programming environment, one variable can be used to represent
both the matching angles. Furthermore, that variable can be used with arith-
metic operators to calculate the value of the remaining angle. As a result,
they must only enter one angle, and the program calculates the rest. In this
case, the student is automating information processing, which requires them
to formalize principles of geometry in the program, reinforcing their knowl-
edge of geometry and teaching them how to enable automatic calculations
with programming.

Of the activities we analyzed, 12% included no programming concepts
that enable automated information processing (i.e., variables, operators,
loops, conditionals, or functions). While this represents a small percentage
of the activities, the authors question to what extent these activities support
computational literacy compared to any other kind of technology-enhanced
learning activity. Potential benefits include exposing students to program-
ming languages, which helps to demystify programming (Margulieux et al.,
2022) and introduce algorithms. However, within integrated computing,
there is an open question about the effects of this type of automation-free
activity and those that include automated information processing. This ques-
tion is particularly important because students tend to easily apply multime-
dia concepts, such as sprites and loops, but struggle to apply deeper automa-
tion concepts (Franklin et al., 2017).

194 Margulieux, Parker, Cetin Uzun, and Cohen

Figure 3

Information Processing Concepts in Code

p:n ¥ purplel; 10 1 |pén ¥ purplef; 10|

rt v20 2 isoscelesAngle| = TO|
fd Y100 3 remainingAngle = 180=- isoscelesAngle®2 ‘H
fd v 100 B 4 rt 90=-isoscelesAngle |

rt v11e 5 fd v 100

¢ IFE lSOfrema‘inﬁngAngle|

T E‘d ¥ 100

g rt 180-1isoscelesAngle |
g E‘d Y75

Note. Two programs that can draw an isosceles triangle (middle panel). The left
example uses no information processing concepts and must be manually updated

throughout to change the angles. The right example automates information
processing so that only the first variable must be updated to change the angles.

1
2
3
4 rt vide -
5
6
7

L

Programming Instruction Recommendations for Teacher Preparation

In the current analysis, most activities used an automated information
processing concept. In the most frequent category, the two automation con-
cepts were variables and for loops. Many activities also used an event, but
in most cases the event was when the program was run, so that concept will
not be discussed as a common automation concept. Variables allowed for
a level of abstraction, a common CT concept, which enabled a value to be
calculated or called throughout a program. They were used more frequently
in math and science activities, likely due to the familiarity of variables in
those fields, even though programming variables are conceptually different
than variables in math or science. Forloops allowed for processes to be re-
peated with no additional effort, drawing upon the strengths of a computer.
In this way, loops were frequently used to reduce sustained effort in cyclical
activities, such as for young students learning about patterns.

These concepts are basic from a programming perspective, but they
provide an entry point to thinking about the computer as a tool for auto-
mation. In addition, these concepts are analogous to concepts that students
and teachers already understand. Even before students learn about variables
in math or science, they learn about abstractions. For example, they learn

Levels of Programming 195

that dogs, cats, and fish are all animals, and variables in activities for young
students are often used in this way, as an abstract category for a concrete
value (e.g., animal = dog, animal = cat, or animal = fish). In the case of
loops, students know how to repeat a procedure and recognize that if they
can articulate the procedure as an algorithm, then the computer can repeat
it instead. Other automation concepts that are familiar outside of computing
are conditionals for making decisions, arithmetic operators or calculating
numbers, and relational operators for comparing values, but they were used
less frequently in our database of activities.

This finding has interesting implications for one of our expected out-
comes—to identify which concepts are most frequently used in integration
activities and, thus, should be prioritized in teacher professional develop-
ment. Because many of the most frequently used concepts were basic from
a computing perspective, perhaps teachers need instruction in only basic
concepts to apply integrated computing activities in their classrooms. Fur-
ther, in terms of differences among disciplines, activities tended to include
computing concepts that have analogs in the discipline, such as variables
and arithmetic operators in math. Within disciplines, it could be particularly
worthwhile to explore the differences between these concepts in each do-
main (e.g., how is a variable in science different than a variable in CS) be-
cause they are likely to be used in an integration activity.

Conditionals and arithmetic and relational operators were expected by
the authors to be more frequent than in 25-30% of activities. /f~then con-
ditionals are analogous to decision trees, which are applicable to any disci-
pline, but perhaps are more appropriate at higher levels of complexity than
is common for integrated computing activities. For example, in Physics,
learners often need to select an appropriate formula based on available val-
ues. While all possible formulas could be represented in a program with a
conditional to select between them, that type of application would be some-
what complex. The complexity might also explain why arithmetic and rela-
tional operators were not used. Even less frequently used (about 17%) were
if-else conditionals and while loops, which should be no more conceptually
inaccessible than their if-then conditional and for loop counterparts.

Perhaps one direction for the design of integrated computing activities,
then, is as end-of-unit projects that require a higher level of complexity than
the activities we reviewed. A project like this would encourage students to
consolidate all that they have learned about a topic into an algorithm, or par-
allel algorithms, that explicitly define the components and the relationships
among them. This consolidation would serve disciplinary learning objec-
tives (i.e., summarizing knowledge) and programming learning objectives

196 Margulieux, Parker, Cetin Uzun, and Cohen

(i.e., learning to automate information processing). In addition, because stu-
dents have already been introduced to the disciplinary concepts, they might
be better suited to learning new programming concepts than learning them
concurrently. The use of block-based languages might be particularly appro-
priate for an assignment like this because students would be able to search
and implement various programming concepts that would be useful. This
kind of project is commonly seen on ScratchEd, but more teacher support
documentation, like lesson plans, would help broaden their use.

While functions can be used for automation, we argue that functions, as
used in integrated computing activities, are different than other automation
concepts. Though they were used in about a third of activities, they were
often defined and used exactly once. This use pattern contradicts functions’
intended purpose—to be used multiple times throughout a program to limit
redundancy. Further, only half of these cases used a parameter, which would
make the function operate differently than the same code outside of a func-
tion. Functions are a core component of computer science because they are
used multiple times in an application, and they use parameters to handle
variations of processes. However, this functionality is currently not used in
the paradigm of integrated computing activities. Within the current para-
digm, functions seem to be added, in the opinion of the authors, to introduce
the concept of functions but outside of a context in which the usefulness of
functions can be demonstrated. Thus, it often adds an unnecessary level of
complexity that might be prone to confusing students and teachers. That hy-
pothesis would need to be addressed with future empirical work.

Data in Integrated Computing Activities

Only in rare cases did the integration activities include data concepts
more advanced than using variables. While many activities used variables
and gave an output that was either a string or a variable, most activities did
not handle data input, use lists, arrays, spreadsheets, or databases. Data is
used in every discipline in one way or another, so it was surprising that data
concepts were not more prevalent in integration activities.

There are two likely explanations for this trend. The first is that many
of the programs had no user interaction element, so there was no user to in-
put data or require an output. If our activity database had included more us-
er-centric applications, like those created in App Inventor, the result would
likely be different for input and output concepts. The other explanation is
that many block-based languages have very few blocks to support data fea-

Levels of Programming 197

tures. For example, Pencil Code is able to read a spreadsheet or use a list
because it is a hybrid block/text language, but there are no blocks for those
features. Many languages include a block for a list, but not more advanced
data structures. Snap! can be used for more advanced data concepts, but we
could not find activities that used Snap! and met our search criteria.

Our search criteria directly affected this finding, which is not expected
to be replicated in other databases of activities. For example, the Data Sci-
ence curriculum from Bootstrap, which follows a top-down design approach
and uses a text-based language, would clearly include more data concepts.
In the context of rising interest in data science as an area for computing in-
tegration, however, it is important to recognize that block-based languages
are still highly popular for novice programmers. Thus, the limitations of
many block-based languages regarding data have important implications,
especially for importing or exporting data.

CONCLUSION

Computing integration activities are a promising tool to 1) support dis-
ciplinary learning through computing-powered tools, and 2) introduce a
broader range of students to computing by applying it outside of standalone
CS courses. As the CS education community strives to increase computa-
tional literacy globally, the role of integration activities deserves a thor-
ough examination. The goal of this paper was to complement top-down ap-
proaches to design these activities based on concepts taught in introductory
programming courses with a bottom-up analysis of integration activities de-
signed primarily within non-CS disciplines. The current analysis provides a
new perspective of computing integration activities based on the frequency
with which programming concepts were used.

The main finding from the current analysis is that the most frequent
programming concepts used in integration activities do not match program-
ming concepts typically emphasized in introductory programming courses.
While programming courses emphasize concepts that support the automa-
tion of information processing (i.e., variables, operators, loops, conditionals,
and functions), the activities we analyzed emphasized concepts that sup-
ported visualization and animation. Part of this mismatch might be caused
by the use of block-based languages, which are visual in nature and almost
always automatically include a sprite or turtle to program. However, the au-
thors argue that programming visual elements is the easiest connection to
other disciplines without a major paradigm shift, which drives this finding.

198 Margulieux, Parker, Cetin Uzun, and Cohen

This connection might even be behind the popularity of block-based lan-
guages for computing integration activities.

In contrast to visualization concepts, the use of automation concepts
was relatively light in our database of activities. While many activities used
a variable or for loop, these are relatively simple programming concepts.
More advanced concepts like while loops, if-then or if-else conditionals,
functions, parameters, and data structures like lists were all relatively rare.
The authors are not placing a judgment on the frequencies of these concepts
and whether they should be included in integration. However, this finding
does have implications for students who are entering introductory program-
ming courses and how experience with integrated computing activities is
treated as prior knowledge. In addition, it can inform the choices teacher
educators who are infusing computing integration into their own disciplin-
ary curriculum make when preparing their students to use integration activi-
ties in their own practice.

As stated in the methods section, finding computing integration activi-
ties can be difficult, especially from the perspective of a teacher in a non-CS
discipline. One result of our search is creating a new database to central-
ize links to computing integration activities that are designed for teachers
to use. This database includes all activities reviewed in the current analysis
and an option to submit new activities. It categorizes activities based on the
primary discipline, student age, programming language, and minimum time
to complete the activity. Each entry also provides information about the top-
ic being taught, the source, and links to the program and teacher support
materials. The database can be accessed at integratedcomputing.org. We
hope that the community will help us in building a robust database of ac-
tivities for teachers to adopt in their classrooms and support computational
literacy for all learners.

ACKNOWLEDGEMENTS

This work is funded in part by the National Science Foundation under
grant #1941642.

Levels of Programming 199

REFERENCES

Aho, A. v. (2012). Computation and computational thinking. The Computer
Journal, 55(7), 832—835.

Armoni, M. (2016). COMPUTING IN SCHOOLS Computer science, compu-
tational thinking, programming, coding: The anomalies of transitivity in
K—12 computer science education. ACM Inroads, 7(4), 24-27.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to
K—12: What is involved and what is the role of the computer sci-
ence education community? ACM Inroads, 2(1), 48-54. https://doi.
org/10.1145/1929887.1929905

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the
2012 Annual Meeting of the American Educational Research Association
(Vol. 1, p. 25).

da Silva, D., Kurtz, F. D., & Paludo Santos, C. (2020). Computational thinking
and TPACK in science education: A southern-Brazil experience. Paradig-
ma, 41(2).

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle
school girls: Can they be used to measure understanding of computer sci-
ence concepts? Computers & Education, 58(1), 240-249.

Denning, P. J. (2017). Remaining trouble spots with computational thinking.
Communications of the ACM, 60(6), 33-39.

DiSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. MIT
Press.

Fields, D. A., Quirke, L., Amely, J., & Maughan, J. (2016). Combining big data
and thick data analyses for understanding youth learning trajectories in a
summer coding camp. In Proceedings of the 47th ACM Technical Sym-
posium on Computing Science Education (pp. 150—155). Association for
Computing Machinery. https://doi.org/10.1145/2839509.284463 1

Franklin, D., Skifstad, G., Rolock, R., Mehrotra, 1., Ding, V., Hansen, A., ..., &
Harlow, D. (2017). Using upper-elementary student performance to under-
stand conceptual sequencing in a blocks-based curriculum. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Ed-
ucation (pp. 231-236). Association for Computing Machinery. https://doi.
org/10.1145/3017680.3017760

Grover, S. (2021, April 13). ‘CTIntegration’: A conceptual framework guiding
design and analysis of integration of computing and computational thinking
into school subjects. https://doi.org/10.35542/0sf.io/eg8n5

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-
based programming: Examining misconceptions of loops, variables, and
Boolean logic. In Proceedings of the 2017 ACM SIGCSE Technical Sympo-
sium on Computer Science Education (pp. 267-272). Association for Com-
puting Machinery. https://doi.org/10.1145/3017680.3017723

200 Margulieux, Parker, Cetin Uzun, and Cohen

Grover, S., & Pea, R. (2013). Computational thinking in K—12: A review of the
state of the field. Educational Researcher, 42(1), 38—43.

Guzdial, M. (2004). Programming environments for novices. Citeseer.

Kale, U., Akcaoglu, M., Cullen, T., Goh, D., Devine, L., Calvert, N., & Grise, K.
(2018). Computational what? Relating computational thinking to teaching.
TechTrends, 62(6), 574-584.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A tax-
onomy of programming environments and languages for novice program-
mers. ACM Computing Surveys (CSUR), 37(2), 83—137.

Koehler, M., & Mishra, P. (2009). What is technological pedagogical content
knowledge (TPACK)? Contemporary Issues in Technology and Teacher
Education, 9(1), 60-70.

Kong, S.-C., & Abelson, H. (2019). Computational thinking education. Springer
Nature.

Kong, S.-C., & Lai, M. (2021). A proposed computational thinking teacher de-
velopment framework for K—12 guided by the TPACK model. Journal of
Computers in Education, 9(3), 379-402. https://doi.org/ 10.1007/s40692-
021-00207-7

Kong, S.-C., Lai, M., & Sun, D. (2020). Teacher development in computational
thinking: Design and learning outcomes of programming concepts, practic-
es and pedagogy. Computers & Education, 151, 103872.

Kopcha, T. J., Neumann, K. L., Ottenbreit-Leftwich, A., & Pitman, E. (2020).
Process over product: The next evolution of our quest for technology in-
tegration. Educational Technology Research and Development, 68(2), 729—
749. https://doi.org/10.1007/s11423-020-09735-y

Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking
across the K-8 curriculum. ACM Inroads, 5(4), 64—71.

Lin, Y., & Weintrop, D. (2021). The landscape of block-based programming:
Characteristics of block-based environments and how they support the tran-
sition to text-based programming. Journal of Computer Languages, 67,
101075.

Luo, F., Israel, M., & Gane, B. (2022). Elementary computational think-
ing instruction and assessment: A learning trajectory perspective.
ACM Transactions on Computing Education., 22(2), 1-26. https://doi.
org/10.1145/3494579

Luxton-Reilly, A., Albluwi, 1., Becker, B. A., Giannakos, M., Kumar, A. N.,
Ott, L., ..., & Szabo, C. (2018). Introductory programming: a systematic
literature review. In Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Educa-
tion (pp. 55-106). Association for Computing Machinery. https://doi.
org/10.1145/3293881.3295779

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of compu-
tational thinking through programming: What is next for K—12? Computers
in Human Behavior, 41, 51-61.

Levels of Programming 201

Margulieux, L. E., Enderle, P., Junor Clarke, P. A., King, N., Sullivan, C., Zoss,
M., & Many, J. (2022). Integrating computing into preservice teacher
preparation programs across the core: Language, mathematics, and sci-
ence. Journal of Computer Science Integration, 5(1), 1-16. https://doi.
org/10.26716/jcsi.2022.11.15.35

McHugh, M. L. (2012). Interrater reliability: The Kappa statistic. Biochemia
Medica, 22(3), 276-282.

Mouza, C., Yang, H., Pan, Y.-C., Ozden, S. Y., & Pollock, L. (2017). Resetting
educational technology coursework for pre-service teachers: A computa-
tional thinking approach to the development of technological pedagogical
content knowledge (TPACK). Australasian Journal of Educational Tech-
nology, 33(3). https://doi.org/10.14742/ajet.3521

Palts, T., & Pedaste, M. (2020). A model for developing computational thinking
skills. Informatics in Education, 19(1), 113—128.

Papadakis, S., Kalogiannakis, M., Orfanakis, V., & Zaranis, N. (2014). Novice
programming environments. Scratch & app inventor: A first comparison. In
Proceedings of the 2014 Workshop on Interaction Design in Educational
Environments (pp. 1-7). Association for Computing Machinery. https://doi.
org/10.1145/2643604.2643613

Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. Ba-
sic Books.

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2018).
K-8 learning trajectories derived from research literature: sequence, repeti-
tion, conditionals. ACM Inroads, 9(1), 46-55.

Saritepeci, M. (2021). Modelling the effect of TPACK and computational think-
ing on classroom management in technology enriched courses. Zechnology,
Knowledge and Learning, 27(4), 1155-1169.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching.
Educational Researcher, 15(2), 4-14.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computation-
al thinking: A systematic review of empirical studies. Computers & Educa-
tion, 148, 103798.

Waterman, K. P., Goldsmith, L., & Pasquale, M. (2020). Integrating computation-
al thinking into elementary science curriculum: An examination of activities
that support students’ computational thinking in the service of disciplinary
learning. Journal of Science Education and Technology, 29(1), 53—64.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilen-
sky, U. (2016). Defining computational thinking for mathematics and sci-
ence classrooms. Journal of Science Education and Technology, 25(1),
127-147.

Weintrop, D., & Wilensky, U. (2015, June). To block or not to block, that is
the question: Students’ perceptions of blocks-based programming. In Pro-
ceedings of the 14th International Conference on Interaction Design and
Children (pp. 199-208). Association for Computing Machinery. https://doi.
org/10.1145/2771839.2771860

202 Margulieux, Parker, Cetin Uzun, and Cohen

Weintrop, D., & Wilensky, U. (2018). How block-based, text-based, and hybrid
block/text modalities shape novice programming practices. International
Journal of Child-Computer Interaction, 17, 83-92.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering computational lit-
eracy in science classrooms. Communications of the ACM, 57(8), 24-28.
Wing, J. M. (2010). Computational thinking: What and why? The Link. https://
www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-

why

Yadav, A., DeLyser, L. A., Kafai, Y., Guzdial, M., & Goode, J. (2021). Building
and expanding the capacity of schools of education to prepare and support
teachers to teach computer science. In C. Mouza, A. Yadav, & A. Ottenb-
reit-Leftwich (Eds.) Preparing pre-service teachers to teach computer sci-
ence: Models, practices, and policies (pp. 191-204). Information Age Pub-
lishing.

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017). Computational think-
ing in teacher education. In P. J. Rich & C. B. Hodges (Eds). Emerging
research, practice, and policy on computational thinking (pp. 205-220).
Springer.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Com-
putational thinking in elementary and secondary teacher education. ACM
Transactions on Computing Education (TOCE), 14(1), 1-16.

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for
teacher education. Communications of the ACM, 60(4), 55-62. https://doi.
org/10.1145/2994591

