L-FUNCTIONS IN ARITHMETIC STATISTICS

ALINA BUCUR

Arithmetic statistics is the study of number-theoretic objects in aggregates, rather than
in isolation. This study takes many different forms, but in this paper we will concentrate on
(some) instances where the behavior of L-functions plays an important role.

Perhaps the best known result in arithmetic statistics where L-functions determine what
happens is the Prime Number Theorem. It states that, as X — oo,

(1) #{p < X;p prime} ~ Li(x), where Li(z) = /oo dt
2

logt
While L-functions are not mentioned at all in the statement, the proof of Hadamard and de
la Vallée Poussin is based on the analytic properties of the Riemann’s zeta function

((s) = Z% H (1 —p_s)_l for Re(s) > 1

pprime
and its connection with prime numbers given by the Fuler product.

Some typical questions in arithmetic statistics are the following. What is the probability
that a random integer is squarefree? or is prime? How many points with integer coordinates
are there on an elliptic curve defined over Q7 How many number fields of degree d are there
with discriminant of absolute value at most X7 What does the class group of a random
quadratic field look like? Many aspects of the subject are well-understood, but many more
remain the subject of conjectures, like the Cohen-Lenstra heuristics or Malle’s conjecture.

Our starting point is the theme of rational points on curves defined over finite fields,
which is the subject of the Serre’s book [54]. It is its publication that was celebrated
during the 2021 conference organized by Alp Bassa, Joan-Carles Lario, Elisa Lorenzo Garcia,
Christophe Ritzenthaler and René Schoof and that led to the publication of this volume. We
are concerned with the following question.

Question 2. What can we say about the number of F,-points on a curve C' as either the
base field F, varies and/or the curve C' varies?

The goal of this paper it to provide an overview of the current state of knowledge about
the subject in three different directions, which all lead to questions in arithmetic statistics
and are related to the behavior of L-functions. The first direction will be the geometric
direction where we look at the moduli space of curves of genus g for a fixed g and let the
number of elements in the field F, grow to infinity. The second direction is the arithmetic
direction where we start with a fixed curves defined over the rationals and reduce it modulo
larger and larger primes. Finally, we will discuss the probabilistic situation, where we fix the
field F, and look at curves of genus g where g grows to infinity.
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1. SETUP AND NOTATION

Denote by F, the finite field with ¢ elements (necessarily ¢ is a prime power) and by C' a
smooth, complete, geometrically irreducible projective curve of genus g defined over F,. We
are trying to understand how #C(F,) varies as C' varies and/or as g varies.

Each such curve has a zeta function that is defined as

Co(s) = exp (Z wq—mﬁ '

Perhaps the most significant fact that allows one to make progress on this question are
the Weil Conjectures, formulated by André Weil in 1949 [58]. Weil himself proved [57] his
conjectures for curves. Thus we know that for a curve C

Ce(s) = Zc(q™)

where Zo(u) is a rational function of u of the form

Pe(u)
(1 —u)(1 —qu)
The numerator Po(u) is a polynomial of degree 2¢, and its zeros have absolute value ¢~
This last assertion is the equivalent of the Riemann hypothesis in this context. Moreover,

we know that the number of F-points of C' is related to the trace of the Frobenius operator
associated to the curve C' via the relation

(3) #C(F,) = g+ 1 — Trace(Frobc)

and that the eigenvalues of Frobe are the reciprocals of the the zeros of Zo(u).

The next big leap in our understanding came from Appendix A of Serre’s book Abelian
(-adic representations and elliptic curves [48] published in 1968. In it, Serre uses the Peter-
Weyl theorem from representation theory and shows how equidistribution results follow from
analytic properties of (certain) L-functions, namely from their analytic continuation. The
use the analytic properties of L-functions to get results about the distributions of arithmetic
objects of interest goes as far back as the proof of the Prime Number Theorem by Hadamard
and de la Vallée-Poussin. In that case, the asymptotic (1) is obtained from the meromorphic
continuation of the Riemann zeta function ((s) and its nonvanishing on the line Re(s) =
1, except for the pole at s = 1. Similarly, the Chebotarev density theorem follows from
the analytic properties of certain Artin L-functions that can be viewed as associated to
representations of some finite groups. This point of view was generalized by Serre to compact
groups.

Let G be a compact group and denote by Conj(G) the space of conjugacy classes of G.
Let (z,),ex be a countable family in Conj(G). Let p be an irreducible representation of G
with character x. Define the L-function associated to p as

Zc(u) =

1/2

1
Lis.p) = Ull det (1 — p(z,)Nv—9)

where v — Nuv is a function from the set ¥ to the integers that will be made more precise

later.
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Since the determinant is invariant under conjugation, the above expression depends only
on the character y so we can also write

L(s, x) = L(s p)-
Namely in [48] he proves the following two results. We will make three assumptions about
the function v — Nv, namely

e The function Nv takes values in Z>o;

e The (Euler) product

1
H 1—Nov—s

vEY

converges absolutely for Re(s) > 1, has meromorphic continuation to Re(s) > 1, and
has no zeros and no poles on the line Re(s) = 1 except for a simple pole at s = 1;

e The infinite product L(s, p) = L(s, x) converges absolutely for Re(s) > 1, has mero-
morphic continuation to Re(s) > 1, and has no zeros and no poles on the line
Re(s) = 1 except for possibly a pole at s = 1.

In [48], Serre proves the following two results.

Theorem 4 (Serre). Under these conditions,
(1)
X

YN < X1V~
#{v € ¥;Nv < X} Tog X

(2)

> o) =iy o (g )

Nv<X

where ¢(x) denotes the order of the pole of L(s,p) at s = 1.

As usual, f(X) = o(g(X)) means that limy % = 0 and we take ¢(x) to be negative
if L(s,p) has a zero at s = 1. Note that the same way the Riemann hypothesis would give
a power-saving error term in the Prime Number Theorem, the Riemann hypothesis (or a
suitable zero-free region) for the function L(s,y) would give a power saving in the error

term in Theorem 4.
Theorem 5 (Serre). If in addition there ezists a constant M > 0 such that
#{veX;Nv=X} < M forall X,

then (x,)yex are equidistributed with respect to the normalized Haar measure on the com-
pact group G if and only if L(s,x) is holomorphic and nonzero at s = 1 for all nontrivial

wrreducible characters x of G.
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2. GEOMETRIC SITUATION

For this section, C' will be a curve of genus g, with ¢ fixed, defined over IF,. We want to
understand how #C'(F,) varies as we let ¢ — oco. In view of the relation (3), this would follow
from understanding the distribution of the zeros of the zeta function Z(u) associated to the
curve C, but understanding the distribution of the zeros would be strictly more information
than just understanding #C'(F,).

In 1968, Birch [5] begins to answer this question in the case of ¢ = 1. Namely, he computes
the even moments of the Trace(Frobg) as F varies over the elliptic curves defined over a field
[F, with a prime p > 5 number of elements. This paper offers a glimpse of the deep connection
between elliptic curves and modular forms as the Ramanujan 7-function appears in the tenth
moment.

Namely, Birch uses the Selberg trace formula to compute

E(Trace(Frobz)?)
E(Trace(Frobg)*) =
(Trace(Froby)®) = 5p* — 9p* — 5p
E(Trace(Froby)®) = 14p5 — 28p3 —20p* — Tp
E(Trace(Frobg)™) =

as well as the general formula

2k)!
E(Trace(Frobg)*) ~ (2F) )‘kar2 as k — 0o.

El(k+1

Then in 1973, Yoshida [62] employs the analytic properties of L-functions of elliptic curves
and their symmetric powers (which he relates to fiber products of F with itself) to prove an
analogue of the Sato-Tate conjecture (see Section 4) in function fields.

The next big step in our quest comes in 1980 when Deligne proves his influential equidis-
tribution theorem in [21] as part of his proof of the Weil Conjectures for general projective
varieties over IF,. Start with a family of smooth proper varieties X7 indexed by a finite type
space 1" over a finite field F,. Fix a positive integer m and take the m-weight part of the
zeta function of Xp. Then there is a group G (the monodromy group of the family) and a
sequence of elements (defined up to conjugation) in G which correspond to the closed points
of the base space such that when one averages (in the correct manner that stamps out the
possible oscillatory behavior) over the Conj(G) the sequence of points will converge weakly
(in distribution) to the measure induced by the Haar measure of G. This will imply that the
factors of the zeta function will have the same distribution as the random matrices in that
group.

Let us make this more precise in the case where the base space is a curve. Let K be the
function field of a curve over I, and let S be a finite set of places of K. We will denote by
K¢ the maximal extension of K (inside some fixed algebraic closure) that is unramified at
all places outside S. Let p be a representation of Gal(Kg"/K) on the Qg-vector space V' with

¢ not dividing the characteristic of K. The arithmetic monodromy group G of p is defined
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as the Zariski closure of the image of p in GL(V'). We will think of it as a complex Lie group
via an embedding of Q, into C. Its geometric monodromy group Ggeom is the Zariski closure
of p(Gal(K¥"/KTF,)) in GL(V).

We will assume for simplicity that Ggeom = Gaith = G, which allows us to avoid the
aforementioned subtleties in the averaging process. Let I' be a maximal compact subgroup
of G and denote by ¢, € Gal(K¥"/K) the arithmetic Frobenius (or its conjugacy class) at
each place v ¢ S.

Theorem 6 (Deligne). Let p : Gal(K¥ /K) — GL(V) be an (-adic representation which
is pure of weight 0. Assume that the arithmetic and geometric monodromy groups coincide,
i.e. Ggeom = Garith = G. Then, as v runs over the places of K outside the set S, the conju-
gacy classes 0(v) in T corresponding to p(y, )™ S™mPe qre weakly equidistributed in Conj(T")
with respect to the direct image of normalized Haar measure on I'. In particular, for any
nontrivial, irreducible, complex representation A of I' (or of G) and any r € Z~q, we have

Z (degv) Trace A (e(v)r/(degv))
vgS,degv|r Y (M)

Z degv qr?

véS,degv|r

Serre himself makes use of his ideas in [48] to study in [52] the (normalized) eigenvalues of
the Hecke operator T}, on the space of parabolic modular forms of weight k on the congruence
group ['o(NN) are asymptotically equidistributed with respect to the measure

p+1 ( 4 — :1:2)1/2

p(x) = R
T 2(p+2+pt—2a?)

on [-2,2] as k+ N — oo for k even and p{ N.

In 1998, Katz and Sarnak published their seminal work [35]. Their starting point is
to use Deligne’s equidistribution theorem to prove that the eigenvalues of the Frobenius
endomorphism associated to the hyperelliptic curves of genus g (where g is fixed) defined
over F, considered over larger and larger finite extensions of F, (i.e. Fym with m — oco) are
asymptotically distributed like the eigenvalues of random matrices in USp(2g). Here random
means random with respect to the Haar measure. Since the cup pairing imposes a certain
symmetry on the eigenvalues of Frobenius associated to curves in the moduli space M, of
all curves of genus g, it follows that the hyperelliptic curves are generic in M, itself.

They also formulated a more general philosophy and proved it in a host of instances.
Namely, they predict that the distribution of eigenvalues of Frobenius for a family of curves
defined over IF, approaches, in the large ¢ limit, like the eigenvalues of some ensemble of
random matrices and that ensemble is dictated by the monodromy group of the family.

dx

3. PROBABILISTIC SITUATION

We will now look at the mirror situation, that is the large genus limit. For this, we will
fix a finite field F, and study the distribution of #C(F,) where C' is a curve of genus g as
g — 00.

The case of hyperelliptic curves, or alternatively Z/2Z covers of the projective line P! over

a field F, with ¢ odd, was studied by Kurlberg and Rudnick [37] in 2009. The technique used
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by the two authors is to relate the #C(F,) to sums of the quadratic character associated to
the cover itself. This was later expanded to Z/{¢Z covers of the projective line P! over a field
F, with ¢ = 1 (mod ¢) by various authors. In 2010 Bucur, David, Feigon, and Lalin [10]
looked at certain connected components of the moduli space of all such covers. Then in 2015,
Cheong, Wood, and Zaman [17] employed Kummer theory to study the family y* = f(x)
where f(z) is an (-power free monic polynomial whose degree goes to infinity. The case of
the whole moduli space of Z/¢Z covers of the projective line was studied by Bucur, David,
Feigon, Kaplan, Lalin, Ozman, and Wood [12]. They proved the following result.

Theorem 7 (Bucur, David, Feigon, Kaplan, Lalin, Ozman, Wood). Let H,, be the moduli
space of Z./{Z Galois covers of P! of genus g. Then, as g — oo,
{C € Hyu(Fy) : #C(Fy) = m}/
|Hg,€(Fq)|,

1
= Prob (X1 + ... Xgp1 =m) + Oy (5)7

where the X;’s are independent identically distributed random variables such that

(
-1
0 with probability 7 (€= 1)

(q+0—1)

Xi =41 with probability q—l—;Tl’

¢ with probability m

In the formula, as usual, the ' notation means that the covers C' on the moduli space are
counted with the usual weights 1/# Aut(C).

Note that the special case ¢ = 2 was proved in [37]. The ¢+1 random variables corresponds
to the F,-points of P! and the proof essentially shows that the number of points in each fiber
of the covering map C' — P! is independent of what happens in the other fibers. Since Z/{(Z
is a simple group, the number of points in each fiber will have to be one of 0,1 or /.

Going beyond the case of simple groups, Wood [59] discussed S covers of P! and Lorenzo
Garcia, Meleleo and Millione [40] discussed the case of biquadratic covers of the projective
line. The latter paper uses a modification of the character sum method from [37], while
Wood relates trigonal curves to cubic extensions of function fields, and then uses the work of
Datskovsky and Wright [20] to count cubic extensions with every possible fiberwise behavior
above each rational point of the base curve.

Theorem 8 (Lorenzo Garcia, Meleleo, Millione). Let B, (F,) be the family of genus g quartic
non-cyclic cover of the projective line IP’Iqu, and consider the following decomposition

Bg (]Fq) = U 8(91792793) (]FQ)

g1+g2+93=g

where By, g,.45)(Fq) denotes the subfamily of curves C € By(Fy) such that the three hyperel-

liptic quotients of C' have genera g1, go and gs.
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If the three genera g1, go, g3 go to infinity, then we have that

H{C € By, g2.95)(Fy) : TI'(FI‘(?bC) = —M}| = Prob ZXj =M
|B(g17g2193)(]FlI)|

where the X; are i.i.d. (identically independently distributed) random variables such that

q+2)
4(g+3)

j=1

(—1  with probability

X, =<1 with probability 4(;%3)

|3 with probability m.
Theorem 9 (Wood). Assume F, has characteristic > 5 and let

Ty={r:C— P': C is a smooth, geometrically integral, genus g curve with 7 degree 3}.

We have
. #{C e Ty(F,) | #C(F
T (N

where the X; are independent identically distributed random variables and

.y
o =k} _ Prob(X; + -+ X1 = k),

(0 with probability o +62q e
L with probability & zig;i(i

2 with probability 6q2+6q+6

. . 2
\3 with probability &Ih‘r’m.

A slightly different approach comes from a geometric sieve introduced by Poonen [46].

Theorem 10 (Poonen). Let X be a quasi-projective subscheme of P™ over F,, Z finite
subscheme of P such that U = X \ (X N Z) is smooth of dimension m. Fiz T C H°(Z,Oy).
Given a homogeneous polynomial f of degree d, let f|z denote the element of H*(Z,Oy) that
on each connected component Z; equals the restriction of xj’df to Z;, where j = j(i) is the
smallest integer 0 < j < n such that the coordinate x; is invertible on Z;. Then

#{f € Sy Hr NU smooth, f\ZET}N H#T
#S4 #H"(Z,0z)

The strategy used by Poonen is based on the fact that one can compute the probability
that Hy is smooth at a closed point P of the subscheme U and if these conditions were
independent we would get that the probability that H; is smooth was their product. For
the proof Poonen uses a sieving argument that separately treats the closed points of X of
low, medium, and high degree (as a function of d) and treat each of the three sets separately.
For the points of low degree (including the points of Z), one proves that the conditions at

each point are indeed independent. Their product gives the main term. For a single point
7

Co(m+1)"" as d — oo.



in the middle range, one similarly shows that singularities manifest with the probability
predicted by the local factor. One no longer has independence of these local conditions, but
they together contribute so little (which is due to the Weil bounds) to the product that they
can be controlled by crude estimates. For the points of high degree, one must use a global
argument since there are too many points to control individually. Poonen introduces the
clever device of writing the f; so as to partially decouple the low-order Taylor coefficients;
one then gets a suitable bound using Bézout’s theorem. This trick is the cause of the explicit
appearance of p in the error term as computed by Bucur, David, Feigon and Lalin in [11]; it
relies on the fact that the derivative of a p-th power vanishes in characteristic p.

Theorem 11 (Bucur, David, Feigon, Lalin). Let X, ..., X241 441 be ¢*+q+1 i.i.d. Bernoulli

random variables taking the value 1 with probability (q+1)/(¢* + ¢+ 1) and the value 0 with

probability ¢*/(¢> + q+1). Then, for 0 <t < ¢*+q+1,

#{F € 55 #Cr(Fy) =t}
I

— Prob(X; 4+ Xppg1 = 1)

X (1 +0 (qt <d*1/3 +(d— 1)z mn(LE]8) o dq—L%J*))) 7
where |-| denotes the integer part.

A generalization of Poonen sieve was developed by Bucur and Kedlaya [14] to study
complete intersections in projective spaces.

Theorem 12 (Bucur-Kedlaya). Let X be a quasiprojective subscheme of dimension m > 0
of the projective space P"* over some finite field F, of characteristic p. Let Z be a finite sub-
scheme of X for which U = X\Z is smooth of dimension m, and define z = dimg, H*(Z, Oy).
For any k-tuple of positive integers d = (dy, . .., dy) we denote Sq = Sq, X - -+ X Sq, (k-tuples
of homogeneous polynomials in n + 1 variables) and for each £ = (f1,..., fr) € Sa, we will
write Hf == Hfl - ﬂka.

Choose an integer k € {1,...,m+1}, 2 < dy < --- < dy, and a subset T of H*(Z, Oz(d)).
Pa ={f € Sqa: HNU is smooth of dimension m — k, and f| € T}.

Then
#Pd #T H ( —kd —kd d
= 1 — g Paesl®) g g R L (g m, k)
#Sd q xeU®°
+ O((dl —z+ 1)—(2k—1)/m + dzlq—ch/max{m-l-l,p})’
where
k—1
7=0

denotes the probability that k randomly chosen vectors in Fj* are linearly independent.

The argument follows the same path as Poonen’s, separating the points into low, medium
and high degree and computing the contribution of each type of points separately. However,
Bucur and Kedlaya get an unexpected average number of points. For instance, for the

intersection of two surfaces of degrees d; and d, in P?, the average number of points will be
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¢*(1+q7")
1 + q72 _ q75
In general, for n — 1 hypersurfaces intersecting in P", the average number of points is

q+1-— <qg+1

1—(1—=q¢™)...(1—q73)
l—gt 4+ ¢ (1—-qg™)...(1—q72)

and it is of size (¢ + 1)(1 4+ O(¢™%)).

More generally, for a random smooth intersection of hypersurfaces of degrees dy, ..., d; in
P", the average number of Fy-rational points tends to ¢ + 1 if £ = 1, but to a limit strictly
less than ¢ 4+ 1 if £ > 1. This can be seen as follows. One would get a limiting average of
exactly ¢+1 if the local condition for smoothness at a point x were that the first-order Taylor
approximations of fi,..., fi had to be linearly independent. For k = 1 (the case in [46])
this is the correct local condition, but for & > 1, this condition is too restrictive when the
sections do not all vanish at z. One possible explanation is that for k£ > 1, the intersection of
the hypersurfaces can be smooth without being geometrically integral. However, we suspect
that this occurs with probability 0 as the d; tend to infinity, and so does not account for
the discrepancy. It will be interesting to understand exactly what is hiding behind this
discrepancy.

(g+1)—(g+ 1)1 —q¢"™) <q+1,

Theorem 13 (Kurlberg, Wigman). Fiz a prime p. There ezists a sequence of families
{Fi}2, of smooth curves defined over F, with the following properties such that #JF; — oo,
the average number of points

1
M, = Z #C(F,) — oo,
#]:l CeF;
the variance
1 9 )
V= 77, Z (#C(F,) — M;)” — infty

CeF;
and, for all compact intervals I,

#C(F,) — M; H 1 /_22
CeFi:——5;—€l;|=—F= e~ 2dx + o(1)
/2 NG )
{ Vi 27TI

Kurlberg and Wigman used Poonen’s sieve to construct a family of curves for which the
point count statistics over I, becomes Gaussian for p fized. In particular, the average number
of IF,-points tends to infinity.

Another generalization of Poonen’s sieve is formulated by Erman and Wood [25] and deals
with semiample, instead of ample, divisors.

#Fi

as 1 — o0.

Theorem 14 (Erman, Wood). Let X be a smooth projective variety over F,, with a very

ample divisor A and a globally generated divisor E. Let w be the map given by the complete
linear series on E, m: X 1B, par



There exists an ng, depending only on dim X and char(F,), such that for n > ng, the
probability of smoothness for a random D € |nA+ dE| as d — oo is given by the product of
local probabilities taken over the fibers of m:

Prob(D is smooth) = H Prob(D is smooth at all points of =~ (P)).
pPePM
The product on the right converges, is zero only if some factor is zero, and is always non-zero
for n sufficiently large.

Note that the case where A = E is the one studied by Poonen in [46]. When £ is not
very ample, each fiber of m may consist of many points and the fibers may have different
dimensions. Singularity at points of a single fiber of 7 will generally be dependent but the
theorem shows that this is the only dependence as d — oo and we still get independence
between fibers. Erman and Wood use this to compute the distribution of points on certain
curves on Hirzebruch surfaces.

Theorem 15 (Erman, Wood). For fized n > 3 and d — oo, the probability that a curve of
bidegree (n,d) in a Hirzebruch surface X is smooth is

[T =g )1 — g2 ®) = G ()76 (3)7 = (1= DL —a (1~ ¢7).
PePy,

One can also bring the idea of cohomological stability to bear on questions in arithmetic
statistics, as Ellenberg, Venkatesh and Westerland [24] have done to prove some instances
of the Cohen-Lenstra heuristics. They formulate the following principle.

Conjecture 16 (Ellenberg, Venkatesh, Westerland). Assume X, is an algebraic variety over
F, of dimension growing with n. Then the quantity ¢~ "™ X4 X, (F,) should be expected to
approach a limit as n — oo precisely when the varieties X,, have stable homology.

Achter, Erman, Kedlaya, Wood, and Zureick-Brown [1] use this principle to model the
average number of points on a curve of genus g. Let M, denote the fine moduli space of
curves of genus g in the sense of Deligne and Mumford [22]; it is an object in the category
of algebraic stacks over Spec(Z). The set |My(FF,)| of (isomorphism classes of) FF,-rational
points of M, may then be identified with the set of isomorphism classes of smooth, projective,
geometrically connected curves of genus g over F,. To simplify notation, let us further identify
|M,(F,)| with a set consisting of one curve in each isomorphism class. For C' € |My(F,)],
let Aut(C) be the group of automorphisms of C' as a curve over F, (not over an algebraic
closure over F,). We equip |M,(F,)| with the probability measure in which each point x is
weighted proportionally to 1/# Aut(C'). This is well-understood to be the most natural way
to count objects with automorphisms, and matches the weighting of points in the Lefschetz
trace formula for Deligne-Mumford stacks given by Behrend [4]. Assuming cohomological
stability for certain moduli spaces of curves, they prove the following conditional result.

Conjecture 17 (Achter, Erman, Kedlaya, Wood, Zureick-Brown). Put A := A(q¢) =q+ 1+
1/(g—1).
(a) For all nonnegative integers n,
7 —A
lim Prob(#C(F,) =n: C € [My(F,))) = .
g—00 n!
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(b) For all positive integers n,

i B € € ME)) = 3 { 7],

g—00 — 1
where {:‘} denotes a Stirling number of the second kind (i.e., the number of unordered
partitions of {1,...,n} into i disjoint sets).

A review of the high genus situation would not be complete without mentioning the work
of Drinfel’d and Vladut [23]. For any curve of genus g the Weil bounds imply that

(18) q+1—29/q < #C(F,;) <q+1+2g9/q.
Now set
N,(g) = sup{#C(F,); C curve of genus g over F,}.
The Weil bound (18) implies that

Ny(9) < q+1+29/q.
Serre [54, Theorem 2.1.1] improved this estimate to

Ny(9) <q+1+g[2v/4q].

Drinfel’d and Vladut [23] improve on it even further in the large genus limit.
Theorem 19 (Drinfel’d, Vladut).
Ny(9)

lim sup —2
g—o0

<+Vq—1
This result has a very different flavor, as it uses linear programming.

4. ARITHMETIC SITUATION

For E an elliptic curve over a number field K and p a prime ideal of K at which E has
good reduction, let a, = a,(E) be the Frobenius trace of E at p, so that Norm(p) + 1 — a,
is the number of rational points on the reduction of £ modulo p. Then define the Frobenius
angle 6, = 6,(E) € [0, 7] by the formula

1 — a,(E)T 4 Norm(p)T? = (1 — Norm(p)/2e*T)(1 — Norm(p)'/2e=T).
Let pst denote the Sato-Tate measure, so that
T 9 .
pst(f) = / “sin®0f(0) db.
0
For I an interval, let §; denote the characteristic function. The Sato-Tate conjecture, for-

mulated originally for elliptic curves in the 1960s, states the following.

Conjecture 20 (Sato-Tate). Let E be an elliptic curve over a number field K without
complex multiplication. Let N denote the absolute conductor of E. Then for any closed
subinterval I of [0, 7],

Z 01(6p) ~ pgr(l) Li(x).

Norm(p)<z,ptN
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In 1994, Serre [51] gave the ultimate formulation of the Sato-Tate conjecture in terms of
motives. We start by recalling the conjectural properties of motivic L-functions following
Serre [51]. Fix two number fields K, L. Let M be a pure motive of weight w over K with
coefficients in L. For each prime ideal p of K, let G}, be a decomposition subgroup of p inside
the absolute Galois group G, let I, be the inertia subgroup of G,, and let Frob, € G,/I,
be the Frobenius element. The Euler factor of M at p (for the automorphic normalization)
is the function

Ly(s, M) = det(1 — Norm(p) /2 Froby, V,(M)* @, C)~!

for v a finite place of L equipped with an embedding L, — C and V, (M) the v-adic étale
realization of M equipped with its action of G,. It is clear that this definition does not
depend on the choice of Gy; it is conjectured also not to depend on v or the embedding
L, — C, and this is known when M has good reduction at p (which excludes only finitely
many primes).

The ordinary L-function of M is the Euler product L(s, M) = [], Ly(s, M). For each
infinite place co of K, there is also an archimedean Euler factor defined as follows. Put

Tg(s) = 7 %I (s/2), Le(s) =27°n"°T(s).

Form the Betti realization of M at oo and the spaces HP? for p + ¢ = w, and put h?? =
dim H??. Note that complex conjugation takes H?? to H9? and thus acts on H®/>%/2; let
h* and h~ be the dimensions of the positive and negative eigenspaces (both taken to be 0 if
w is odd). Then put

Loo(s, M) =Tg(s)" Tr(s+1)"  J[ Tels+w/2-p"™"

p+q=w,p<q

The completed L-function is then defined as
A(s, M) = N*/2L(s, M) Loo (5, M),

for N the absolute conductor of M (i.e., the norm from K to Q of the conductor ideal of

Conjecture 21 (GRH for motivic L-functions). Let d be the dimension of the fixed subspace
of the motivic Galois group of M(—w/2) (taken to be 0 if w is odd).
(a) The function s?(1 — s)4A(s, M) (which is defined a priori for Re(s) > 1) extends to
an entire function on C of order 1 which does not vanish at s = 0,1. (Recall that an
entire function f : C — C is of order 1 if f(z)e | is bounded for each u > 1.)
(b) Let M* denote the Cartier dual of M. Then there exists e € C with |e| = 1 such that
A(l — s, M) = eA(s, M*) for all s € C.
(¢) The zeroes of A(s, M) all lie on the line Re(s) = 1/2.

In order to state the Sato—Tate conjecture in full generality, a few more definitions are
in order. Let A be an abelian variety defined over a number field K of dimension g > 1
and g4, the f-adic representation attached to A. Let N denote the absolute norm of the
conductor of A, which we will call the absolute conductor of A. For a nonzero prime ideal p
of the ring of integers of K not dividing N/, let a, := a,(A) denote the trace of 04 ¢(Frob,),
where Frob, is a Frobenius element at p. The Hasse-Weil bound asserts that the normalized

trace @, := a,(N(p))~1/? lies on the interval [—2g, 2g] where N(p) is the absolute norm of p.
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Following Serre [53, Chap. 8| one defines the Sato—Tate group of A, denoted ST(A),
in the following manner. Let G%* denote the Zariski closure of the image of the (-adic

representation g4, which we may naturally see as lying in GSp,,(Q,). Denote by Gy™™ the

intersection of GZ** with Sp,, /Q;,. Fix an isomorphism ¢: @, ~ C and denote by Gy™™ the

base change G;” xq,, C. The Sato-Tate group ST(A) is a maximal compact subgroup of
the group of C-points of Gz’bzar.
Fix an embedding & < C. The Mumford-Tate group MT(A) is the smallest algebraic

subgroup G of GL(H;(Ac,Q)) over Q such that G(R) contains h(C*), where
h: C — Endr(H,(Ac,R))

is the complex structure on the 2g-dimensional real vector space H;(Ac,R) obtained by
identifying it with the tangent space of A at the identity. The Hodge group Hg(A) is the
intersection of MT(A) with Sp,, /Q. Let G770 (vesp. Gp”™°) denote the identity component

of GZ (resp. G,*™).

Conjecture 22 (Mumford-Tate conjecture). There is an isomorphism G2 ~ MT(A) xq
Qq. Equivalently, we have G;’ZM’O ~ Hg(A) xg Qy.

It follows from the definition that ST(A) has a faithful unitary symplectic representation
0: ST(A) — GL(V). Here V a 2g-dimensional C-vector space, which we call the standard
representation of ST(A). Via this representation, we regard ST(A) as a compact real Lie
subgroup of USp(2g).

Let u be the pushforward of the Haar measure of ST(A) on [—2g, 2g] via the trace map.
We refer to [53, §8.1.3, §8.4.3] for properties and the structure of this measure. It admits
a decomposition p = pud + o where 4 is a finite sum of Dirac measures and pcom
is a measure having a continuous, integrable, and even C* density function with respect to
the Lebesgue measure outside a finite number of points. Note that if ST(A) happens to be
connected, then pd¢ is trivial (see [53, §8.4.3.3]).

As before, 0; denotes the characteristic function of a subinterval I of [—2g,2g]. Together
with the prime number theorem, the Sato—Tate conjecture predicts that

(23) > 61(@) ~ p(I)Li(r)  asz— o0,
N(p)<z

Following Theorem 4, one sees that (23) is implied by the conjectural nonvanishing and
analyticity on the right halfplane Re(s) > 1 of the (normalized) L-function L(s, y) for every
nontrivial irreducible character x of ST(A).

Even though we have such a general formulation of the Sato-Tate conjecture, one has to
do a nontrivial amount of work to precisely formulate which groups can appear for abelian
varieties of a given dimension. For instance, in the case of elliptic curves (dimension 1), one
gets only three possible distributions: pgr that comes from SU(2) in the case of non-CM
elliptic curves, the measure coming from SO(2) in the case of elliptic curves with complex
multiplication over K itself, and the measure coming from the normalizer of SO(2) inside
SU(2) in the case of elliptic curves with complex multiplication over an extension of K. But
for abelian surfaces (dimension 2), Fité, Kedlaya, Rotger and Sutherland [27] showed that

there are exactly 52 possibilities in general, 34 of which occur for elliptic curves defined over
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Q. In dimension 3, the situation is even more complicated. Fité, Kedlaya, and Sutherland
28] showed that there are 410 possible Sato-Tate groups for abelian three-folds.

The Sato-Tate conjecture is now known unconditionally when K is totally real, thanks
to Barnet-Lamb, Gee, Geraghty, Harris, and Taylor [3] and Clozel, Harris, and Taylor [18].
The function field is due to Yoshida [62]. At the heart of the proof of Taylor et al. is the
use of Serre’s method formulated in [48] to reduce the asymptotic statement to a question of
meromorphic continuation and correct analytic properties for all L(s, Sym” E), k> 0, most
essentially potential automorphy.

The more refined Lang-Trotter conjecture [39] formulated in 1976 generated interest in
refined error terms in the Sato-Tate conjecture. The relevant (though not necessarily most
famous) part of the Lang-Trotter conjecture states the following.

Conjecture 24 (Lang, Trotter). Let E be an elliptic curve defined over Q without complex
multiplication, and let K be an imaginary quadratic extension of Q. For each prime p, denote
E, the reduction of E at p.

There is an explicit constant Cg x > 0 such that, as X — 00,

X1/2
log X

Unfortunately we do not have any power saving error terms in the Sato-Tate conjecture, as
the present methods would require us to have a zero-free region inside the critical strip for the
L-functions involved. In 1985, V.K. Murty [45] studied the implications of the generalized
Riemann Hypothesis to this conjecture by employing Serre’s method for a certain family of
L-functions.

#{p < X : p prime, E has good reduction at p,Endg (E,) ®z Q = K} ~ Cp

Theorem 25 (Murty). Let E be an elliptic curve over a number field K without complex
multiplication. Let N denote the absolute conductor of E. Assume that L(s, Sym” E) satisfies
the generalized Riemann Hypothesis (Conjecture 21) for all k > 0. Then for any closed
subinterval I of [0, 7],

Y. 61(6y) = pse(I) Li(x) + O([K : QY2 (log(Na))"/?).

Norm(p)<z,ptN

Murty’s proof is based on a result of Vinogradov [56, Lemma 12| about Fourier series ap-
proximations of the characteristic function of an interval. Using a different optimization in
Vinogradov’s result, Bucur and Kedlaya [15] are able to give a quantitative answer to a clas-
sical question about the arithmetic of elliptic curves. Let F; and EF5 be nonisogenous elliptic
curves over K neither having complex multiplication. The isogeny theorem of Faltings [26]
implies that there exists a prime ideal p of K at which E;, F5 both have good reduction and
have distinct Frobenius traces. In particular, for any fixed prime ¢, there exists a prime ideal
p of K at which the Frobenius traces of Fy, Fy differ modulo ¢. Assuming the generalized
Riemann hypothesis (Conjecture 21) for Artin L-functions, one can use the effective form of
the Chebotarev density theorem (as suggested by Serre in [49]) to show the least norm of
such a prime ideal is

O((log N)?*(loglog 2N)?)
for some fixed b > 0. Assuming the generalized Riemann Hypothesis for L-functions of the

form L(s,Sym™ F; ® Sym" FEy), Bucur and Kedlaya use the effective form of the generalized
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Sato-Tate conjecture for the abelian surface F; X Fs to obtain a similar bound for the
least norm of a prime ideal at which the Frobenius traces of Fy, Fs have opposite sign
(Theorem 26). In both cases, the optimal bound is most likely closer to O(log N), but by
analogy with the problem of finding the least quadratic nonresidue modulo N, it is unlikely
that one can do better than O((log N)?) using L-function methods.

Theorem 26 (Bucur, Kedlaya). Let Ei, Ey be two Q-nonisogenous elliptic curves over a
number field K, neither having complex multiplication. Let N be the product of the absolute
conductors of Ey and Ey. For each prime ideal p of K not dividing N, let 0,02, be the
Frobenius angles of Ey, Ey at p. Assume that the L-functions L(s,Sym' By ® Sym’ E,) for
i,7=0,1,... all satisfy the generalized Riemann Hypothesis (Conjecture 21). Then for any
closed subintervals Iy, Iy of [0, ],

Y 00010 (02p) = psr(I)pst(Ly) Lix) + O([K : QY°2"/%(log(Nx))'/%).

Norm(p)<z,ptN
The following estimate follows immediately,

Theorem 27 (Bucur, Kedlaya). With hypotheses and notation as in Theorem 26, there
exists a prime ideal p not dividing N with Norm(p) = O([K : Q]*(log N)?(loglog 2N)?) such
that a,(Ey) and ay(Ey) are nonzero and of opposite sign.

Remark 28. Theorem 27, which distinguishes two Frobenius traces using their archimedean
behavior, should be compared with similar results which distinguish the traces using their
mod-¢ behavior for some prime ¢. For example, in [49, §8.3, Théoreme 21], Serre shows that
there exists a prime ideal p not dividing N with Norm(p) = O((log N)?(loglog 2N )'?) such
that a,(E;) and a,(E>) differ modulo some auxiliary prime /.

Both this argument and Theorem 27 give upper bounds on the norm of a prime ideal p
for which a,(E;) and a,(E») differ. However, Serre has subsequently remarked [50, p. 715,
note 632.6] that by replacing the mod-¢ argument with an /-adic argument, one can improve

these bounds to O((log N)?).

Theorem 29 (Serre). Let I' be a group, let £ be a prime number, let r be a positive integer,
and let py, po : I' — GL.(Z;) be two homomorphisms with distinct traces. Then there exist a
finite quotient G of I' and a nonempty subset C' of G with the following properties.

(a) The order of G is at most (2~ — 1.
(b) For any vy € I' whose image in G belongs to C, Trace(pi(7y)) # Trace(p2(7y))-

Corollary 30 (Serre). Assume the Riemann hypothesis (Congecture 21) for Artin L-functions.
Then there exists a prime ideal p not dividing N with Norm(p) = O((log N)?) such that

ap(Er) # ap(Es).

The framework of the generalized Sato—Tate conjecture includes many additional questions
about distinguishing L-functions, a number of which have been considered previously. For
instance, Goldfeld and Hoffstein [31] established an upper bound on the first distinguishing
coefficient for a pair of holomorphic Hecke newforms, by an argument similar to ours but with
a milder analytic hypothesis (the Riemann hypothesis for the Rankin-Selberg convolutions
of the two forms with themselves and each other). Sengupta [47] carried out the analogous
analysis with the Fourier coefficients replaced by normalized Hecke eigenvalues (this only

makes a difference when the weights are distinct). The analogue of Serre’s argument for
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modular forms was given by R. Murty [44] and subsequently extended to Siegel modular
forms by Ghitza [29] for Fourier coefficients and Ghitza and Sayer [30] for Hecke eigenvalues.

Bucur, Fité and Kedlaya [13] proved a similar result for abelian varieties, not just elliptic
curves.

Theorem 31 (Bucur, Fité, Kedlaya). Let A be an abelian variety defined over the number
field K of dimension g > 1, absolute conductor N, and such that ST(A) is connected. Sup-
pose that the Mumford—Tate conjecture (Conjecture 22) holds for A and that the generalized
Riemann hypothesis (Conjecture 21) holds for L(s,x) for every irreducible character x of
ST(A). Then there exists an € > 0 such that for all subintervals I of [—2g,2g], we have

(52) > i) =) Lite) +0 (L BT

1-4
Norm(p)<z lOg(fL’) :

where the sum runs over primes not dividing N and the implicit constant in the O-notation
depends exclusively on K and g. Moreover, if we write the Lie algebra of ST(A) as g = s X a,
where 5 15 semisimple and a is abelian, then we can take € as

1
TR

where |®T| is the size of the set of positive roots of s and q is the rank of g.

A key ingredient in this work is the construction of a multivariate Vinogradov function; this
is a smooth periodic function, with rapidly decaying Fourier coefficients, and approximating
the characteristic function of the preimage of I by the trace map in the parameter space of a
Cartan subgroup H of ST(A). By identifying the quotient of this space by the action of the
Weyl group with the set of conjugacy classes of ST(A), one can rewrite (a Weyl average of)
the Vinogradov function as a combination of irreducible characters of ST(A). One can use
purely Lie algebra theoretic arguments (most notably Weyl’s character dimension formula
and a result due to Gupta [32, Thm. 3.8] on the boundedness of the inverse of the weight
multiplicity matrix) to show that the coefficients in the character decomposition of the
Vinogradov function also exhibit a rapid decay. The theorem can then be obtained by using
an estimate of V.K. Murty (as presented by the Bucur and Kedlaya [15]) on truncated sums
of an irreducible character x over the prime ideals of K. The implicit constant in the O-
notation depends in principle on the exponents of the Cartan subgroup H. In order to bound
these exponents purely in terms of g, we show that the Mumford-Tate conjecture implies
that H is generated by the Hodge circles contained in it, which is an interesting result in
itself.

An interesting application of this result is a conditional partial answer to a question posed
by Serre [54, Chap. II, Question 6.7] about elliptic curves with maximal number of points
(that realize the Weil bound). Let M (x) denote the number of p not dividing N with norm
up to x for which a, = |24/Norm(p)|, which would ensure that the number of points on
the reduction of E at p attains the maximum possible value. Vaguely formulated, a natural
approach to compute (at least an asymptotic lower bound on) M (z) is to compute the
number of p with norm up to = for which @, lies in a sufficiently small neighborhood I,
of 2g. However, for this idea to succeed, the neighborhood I, should be sufficiently large in

order for the “error term” in (32) to be still dominated by the “main term”, which is now
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multiplied by the tiny quantity p(Z,). This trade-off can be achieved when E is an elliptic
curve with CM.

Corollary 33 (Bucur, Fité, Kedlaya). Let E be an elliptic curve defined over K with poten-
tial CM, that is, such that Eg has CM. Under the generalized Riemann hypothesis (Conjecture
21) for the L-function attached to every power of the Hecke character of E, we have

x

3/4
M(z) < Tog(2)

The notation f =< g for two functions f and g means that f = O(g) and g = O(f). Thus
the corollary also incorporates an upper bound, which requires a more elaborate argument.

Interestingly, James and Pollack [33] proved unconditionally the result conjectured by
Serre using different methods from analytic number theory.

as T — 00.

Theorem 34 (James, Pollack). Let E be an elliptic curve defined over K with potential
CM, that is, such that Eg has CM. Then

3/4

M(z) ~ 2

37 log(x)
Theorem 35 (Bucur, Fité, Kedlaya). Let A (resp. A’) be an abelian variety defined over
K of dimension g (resp. ¢'), and with absolute conductor N (resp. N'). Suppose that the
generalized Riemann hypothesis (Congjecture 21) holds for every irreducible constituent of a
virtual character ¥ of the Sato-Tate group ST(A x A") and that Hom(A, A") = 0. Then there
exists a prime p not dividing NN’ with norm

Norm(p) = O(log(NN')?)

such that ay(A) and ay(A’) are nonzero and of opposite sign. Here, the implicit constant in
the O-notation depends exclusively on K, g, and ¢'.

as r — O0.

Note that this result extends Theorem 27 of Bucur and Kedlaya. Later, that same result
was improved by Chen, Park, and Swaminathan [16, Thm. 1.3] who proved an upper bound
of the form O(log(NN')?) for A and A’ two nonisogenous elliptic curves without CM and
relaxing the generalized Riemann hypothesis to only a handful of symmetric powers of the
two elliptic curves.

There are two aspects of the approach of Chen, Park, and Swaminathan in [16, Thm.
1.3] which we would like to highlight. On the one hand, their method avoids the use of the
effective Sato-Tate conjecture. They replace V.K. Murty’s estimate with one they obtain by
integrating with respect to a kernel introduced by Bach [2]. While V.K. Murty’s estimate
seems to be most adequate to treat density questions, for existence problems Bach’s estimate
seems to provide more accurate answers. On the other hand, the condition a,(A) - a,(A") <
0 is recast as the positivity of a certain polynomial expression in a@,(A) and @,(A’) that
(conveniently weighted) is shown via Bach’s estimate to become eventually positive when
summed over primes in K.

Bucur, Fité and Kedlaya generalized the approach of [16] to obtain a version of Bach’s
estimate valid for general abelian varieties by reinterpreting the polynomial expression in
Gy(A) and @,(A’) alluded to above as the character ¢ of the natural virtual representation

ST(Ax A) -5 GL(VE X a Ve V)e (V) eV V),
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where V' and V’ denote the standard representations of ST(A) and ST(A’). It is easy to see
that if Hom(A, A") = 0, then the multiplicity of the trivial character in v is strictly positive,
which explains the eventual positivity of ¥» when summed over primes in K.

5. FUTURE DIRECTIONS

There are many open problems and directions that still need exploring. The biggest
problem in the field is to find a way of proving equidistribution results over number fields,
either by adapting the methods that were successful in function fields or by deducing them
from the function fields results. The main problem with adapting the function fields method
to number fields is the fact that one has a lot of geometry in the function fields picture (e.g.
the geometric Fourier transform over finite fields) that is missing from the number fields
world. But there are many more attainable goals.

For instance, one can try to better understand N,(g) for small g as done in part I of [54],
especially in the postfaces to Chapters 2 and 4 by Howe and Ritzenthaler. One can ask in
general for better bounds on N,(g), and even computational evidence for what N,(g) should
be in all cases. As the Drinfel’d -V1adut [23] results shows, as g grows we get rather far away
from the Weil bound. It would be interesting to find out what the limsup N,(g)/g really
is, and for which genera it can actually be attained, or how close it can come. In a certain
sense, the quantity N,(g) is related to lower order terms in the distribution of #C(F,) as C
varies over the curves of genus g. Which brings us to another direction to explore, namely
to compute moments of the distribution of #C(F,) as done by Birch [5] for g = 1, but this
time in the fixed ¢, large g situation.

As formulated by Ritzenthaler during 2021 conference dedicated to [54], it would be nice
to gather heuristic arguments for or against the possibility of always having a maximal curve
of genus g over [, at bounded ”distance” of the Hasse-Weil-Serre bound (independently
of ¢q for a fixed g). Another problem is to find exactly for which g and ¢ one can find a
defect zero curve, for which the Hasse-Weil-Serre bound is sharp. Clearly the number of
g’s for which one can find any such curve (over any finite field) is finite, but can one find
the exact values? And can one find an estimate for the distance between N,(g) and the
Hasse-Weil-Serre bound?

Also regarding the number of points on varieties over finite fields, one knows from work
of Madan and Pal [41] that there exist infinitely many simple abelian varieties defined over
Fy with exactly one Fo-point. Recent work of Kedlaya [36] shows that for every positive
integer m, there exist infinitely many simple abelian varieties over 5 of order m. One can
study a similar question of simple abelian varieties of prescribed order over any finite field
F,. For ¢ > 5 the Weil estimate tells us that, in general, for a given m there are at most
finitely many abelian varieties of order m. For ¢ = 3,4 we know that the same is true if one
restricts to simple abelian varieties. (See for instance [34].) We also know from work of van
Bommel, Costa, Li, Poonen, and Smith [6] that for any given ¢ every sufficiently large m is
the order of some simple abelian variety defined over F,. The question becomes how many
and an asymptotic would be highly interesting. Dealing with prime fields might be a good
first step.

Another clear direction is to obtain statistics for the number of points G-covers of the
projective line over F, for all groups G. This would be a version of Malle’s conjecture

[42, 43] in this context. As we have seen in Section 3, we have results for some groups, e.g.
18



ZJUL, )27 x Z]2Z, Ss. One option is to use Wright’s approach [61] and the results known
so far to settle this question for all finite abelian groups. A more difficult problem is to
compute the distribution of the number of points for some nonabelian groups beyond Ss. A
first example would be D, as this has already been studied in the number field context as in
[19]. A hopeful development in the number field comes from the recent work of Wood that
formulates a nonabelian version of the Cohen-Lenstra heuristics. See [60] for a really nice
exposition and some results in this direction over function fields. One other problem is to
study G-covers of a fixed arbitrary curve over F,, not just the projective line.

If one starts with a curve C' defined over F,, one can look at the multiple (or even all)
point counts #C(F,m) for m > 0. Of course these are not independent of each other. Take
as an example hyperelliptic curves. As shown by Kurlberg and Rudnick [37] (see also [10])
the number of F,-points of such a curve is given by

#C(Fy) =q+1+S(x)

where Y is the quadratic character associated to the double cover C' of P!. Say for instance
that the curve C' has an affine model

y* = f(x)
Then
S = Y x(f(x)
z€P1(Fy)
with
I ae(F))?

xX(@)=¢0 a=0
—1 otherwise.

But when one looks at F-points of C' one finds that all fibers above the F,-points of P!
have 2 points, while half the fibers above the degree 2 points of P* will have 2 points and
half of them no points. Hence once gets, on average, more points than if one looked at all
the curves defined over Fj.. This phenomenon is related to the observation made by Brock
and Granville in [8].

It would be interesting to study the joint distribution of the sequence {#C(Fgm)}, .. It is
unclear what the model for these sequences even is. We know that each term in the sequence
is related to traces of certain random matrices, but then one has the correlations between
the #C(F,m) and #C(F,mn) to take into account, as well as the fact that all these point
counts should be nonnegative integers. Hence once get infinitely many discrete conditions
that cut into the space of random matrices.

When it comes to the Sato-Tate conjecture, one possible goal is a proof of the Sato-Tate
for abelian varieties. Serre’s Theorem 4 and Theorem 5 imply that in order to prove Sato-
Tate in this context one needs the meromorphic continuation and analytic properties for all
irreducible rep of Sp(4). To give an idea of the magnitude of the task, just doing this for the
trivial representation amounts to proving the paramodular conjecture [9].

Conjecture 36 (Brumer, Kramer). Let A be an abelian surface over Q of conductor N such

that Endg(A) = Z. Then there exists a cuspidal Siegel paramodular form f € 552) (IPar2(N))

a newform and eigenform of degree 2, weight 2, and level N, such that L(A,s) = L(f,s).
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Another interesting question is to see if the Sato-Tate distributions are different if one
restricts to Jacobians of curves of genus ¢ instead of looking at all abelian varieties of
dimension g. We know that g > 4 the two spaces are different, but is there a reason for the
distributions to be the same or be different? Even a conjecture in this direction would be
interesting. A problem whose magnitude is only hinted at by [28] is to find all the possible
Sato-Tate groups for abelian varieties of dimension d > 4, or at least count them. Since for
g = 1 we get 3 groups, for g = 2 we get 52 possibilities and for ¢ = 3 we have 410 possibilities,
one suspects this might not be something to be done by hand. One can simplify the problem
and ask only for the connected components of the identity of these groups in each case. We
do know that the numbers in this case are 2 for ¢ = 1, 6 for ¢ = 2, and 14 for ¢ = 3 as
seen in [27, 28]. An estimate for how many possibilities there are for higher g would already
constitute huge progress.

One can use the Sato-Tate conjecture to deduce various statistics for the traces of Frobe-
nius. For instance, I am indebted to the anonymous referee to this paper for suggesting
the following problem. Let C be a a smooth and projective curve defined over QQ of genus
g > 0. Then one can ask if there exits a prime p such that the Frobenius trace a, is strictly
positive. In genus g = 1, the Sato-Tate conjecture implies that in fact there is a positive
density of such primes. By Section 1, the holomorphicity and nonvanishing at R(s) = 1
of the Hasse-Weil L-function L(C,s) would imply the existence of infinitely many primes p
for which a, > 0. (Here we follow Serre’s convention from Theorems 4 and 5 and use the
analytic normalization for L-functions that sets the rightmost pole at s = 1 and such that
functional equation sends s — 1 — s.) This is known for ¢ = 2 thanks to recent work by
Boxer-Calegari-Gee-Pilloni [7]. It is provocative that for genus at least 3 we do not even
know that a single prime p with a, > 0 exists.

Since this paper has to end at some point, we will mention just one more problem, namely
that of ordinary primes. Take an abelian variety X defined over Q and reduce it modulo p.
We say that a prime p is ordinary (for X) if the reduction X, of X modulo p is ordinary.
One would like to show that for each X there are infinitely many ordinary primes. A harder
problem would be to find the density of ordinary primes for a given X.
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