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Arithmetic statistics is the study of number-theoretic objects in aggregates, rather than
in isolation. This study takes many di↵erent forms, but in this paper we will concentrate on
(some) instances where the behavior of L-functions plays an important role.

Perhaps the best known result in arithmetic statistics where L-functions determine what
happens is the Prime Number Theorem. It states that, as X ! 1,

(1) #{p < X; p prime} ⇠ Li(x), where Li(x) =

Z 1

2

dt

log t
.

While L-functions are not mentioned at all in the statement, the proof of Hadamard and de
la Vallée Poussin is based on the analytic properties of the Riemann’s zeta function

⇣(s) =
1X

n=1

1

ns
=

Y

pprime

�
1� p�s

��1
for Re(s) > 1

and its connection with prime numbers given by the Euler product.
Some typical questions in arithmetic statistics are the following. What is the probability

that a random integer is squarefree? or is prime? How many points with integer coordinates
are there on an elliptic curve defined over Q? How many number fields of degree d are there
with discriminant of absolute value at most X? What does the class group of a random
quadratic field look like? Many aspects of the subject are well-understood, but many more
remain the subject of conjectures, like the Cohen-Lenstra heuristics or Malle’s conjecture.

Our starting point is the theme of rational points on curves defined over finite fields,
which is the subject of the Serre’s book [54]. It is its publication that was celebrated
during the 2021 conference organized by Alp Bassa, Joan-Carles Lario, Elisa Lorenzo Garćıa,
Christophe Ritzenthaler and René Schoof and that led to the publication of this volume. We
are concerned with the following question.

Question 2. What can we say about the number of Fq-points on a curve C as either the

base field Fq varies and/or the curve C varies?

The goal of this paper it to provide an overview of the current state of knowledge about
the subject in three di↵erent directions, which all lead to questions in arithmetic statistics
and are related to the behavior of L-functions. The first direction will be the geometric

direction where we look at the moduli space of curves of genus g for a fixed g and let the
number of elements in the field Fq grow to infinity. The second direction is the arithmetic

direction where we start with a fixed curves defined over the rationals and reduce it modulo
larger and larger primes. Finally, we will discuss the probabilistic situation, where we fix the
field Fq and look at curves of genus g where g grows to infinity.
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1. Setup and notation

Denote by Fq the finite field with q elements (necessarily q is a prime power) and by C a
smooth, complete, geometrically irreducible projective curve of genus g defined over Fq. We
are trying to understand how #C(Fq) varies as C varies and/or as q varies.

Each such curve has a zeta function that is defined as

⇣C(s) = exp

 1X

m=1

#C(Fqm)

m
q�ms

!
.

Perhaps the most significant fact that allows one to make progress on this question are
the Weil Conjectures, formulated by André Weil in 1949 [58]. Weil himself proved [57] his
conjectures for curves. Thus we know that for a curve C

⇣C(s) = ZC(q
�s)

where ZC(u) is a rational function of u of the form

ZC(u) =
PC(u)

(1� u)(1� qu)
.

The numerator PC(u) is a polynomial of degree 2g, and its zeros have absolute value q�1/2.
This last assertion is the equivalent of the Riemann hypothesis in this context. Moreover,
we know that the number of Fq-points of C is related to the trace of the Frobenius operator
associated to the curve C via the relation

(3) #C(Fq) = q + 1� Trace(FrobC)

and that the eigenvalues of FrobC are the reciprocals of the the zeros of ZC(u).
The next big leap in our understanding came from Appendix A of Serre’s book Abelian

`-adic representations and elliptic curves [48] published in 1968. In it, Serre uses the Peter-
Weyl theorem from representation theory and shows how equidistribution results follow from
analytic properties of (certain) L-functions, namely from their analytic continuation. The
use the analytic properties of L-functions to get results about the distributions of arithmetic
objects of interest goes as far back as the proof of the Prime Number Theorem by Hadamard
and de la Vallée-Poussin. In that case, the asymptotic (1) is obtained from the meromorphic
continuation of the Riemann zeta function ⇣(s) and its nonvanishing on the line Re(s) =
1, except for the pole at s = 1. Similarly, the Chebotarev density theorem follows from
the analytic properties of certain Artin L-functions that can be viewed as associated to
representations of some finite groups. This point of view was generalized by Serre to compact
groups.

Let G be a compact group and denote by Conj(G) the space of conjugacy classes of G.
Let (xv)v2⌃ be a countable family in Conj(G). Let ⇢ be an irreducible representation of G
with character �. Define the L-function associated to ⇢ as

L(s, ⇢) =
Y

v2⌃

1

det (1� ⇢(xv)Nv�s)

where v 7! Nv is a function from the set ⌃ to the integers that will be made more precise
later.
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Since the determinant is invariant under conjugation, the above expression depends only
on the character � so we can also write

L(s,�) = L(s, ⇢).

Namely in [48] he proves the following two results. We will make three assumptions about
the function v 7! Nv, namely

• The function Nv takes values in Z�2;

• The (Euler) product

Y

v2⌃

1

1� Nv�s

converges absolutely for Re(s) > 1, has meromorphic continuation to Re(s) � 1, and
has no zeros and no poles on the line Re(s) = 1 except for a simple pole at s = 1;

• The infinite product L(s, ⇢) = L(s,�) converges absolutely for Re(s) > 1, has mero-
morphic continuation to Re(s) � 1, and has no zeros and no poles on the line
Re(s) = 1 except for possibly a pole at s = 1.

In [48], Serre proves the following two results.

Theorem 4 (Serre). Under these conditions,

(1)

#{v 2 ⌃; Nv  X} ⇠ X

logX

(2)
X

NvX

�(xv) = c(�)
X

logX
+ o

✓
X

logX

◆
,

where c(�) denotes the order of the pole of L(s, ⇢) at s = 1.

As usual, f(X) = o(g(X)) means that limX!1
f(X)
g(X) = 0 and we take c(�) to be negative

if L(s, ⇢) has a zero at s = 1. Note that the same way the Riemann hypothesis would give
a power-saving error term in the Prime Number Theorem, the Riemann hypothesis (or a
suitable zero-free region) for the function L(s,�) would give a power saving in the error
term in Theorem 4.

Theorem 5 (Serre). If in addition there exists a constant M > 0 such that

#{v 2 ⌃; Nv = X} < M for all X,

then (xv)v2⌃ are equidistributed with respect to the normalized Haar measure on the com-

pact group G if and only if L(s,�) is holomorphic and nonzero at s = 1 for all nontrivial

irreducible characters � of G.
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2. Geometric situation

For this section, C will be a curve of genus g, with g fixed, defined over Fq. We want to
understand how #C(Fq) varies as we let q ! 1. In view of the relation (3), this would follow
from understanding the distribution of the zeros of the zeta function ZC(u) associated to the
curve C, but understanding the distribution of the zeros would be strictly more information
than just understanding #C(Fq).

In 1968, Birch [5] begins to answer this question in the case of g = 1. Namely, he computes
the even moments of the Trace(FrobE) as E varies over the elliptic curves defined over a field
Fp with a prime p � 5 number of elements. This paper o↵ers a glimpse of the deep connection
between elliptic curves and modular forms as the Ramanujan ⌧ -function appears in the tenth
moment.

Namely, Birch uses the Selberg trace formula to compute

E(Trace(FrobE)
2) = p2

E(Trace(FrobE)
4) = 2p3 � 3p

E(Trace(FrobE)
6) = 5p4 � 9p2 � 5p

E(Trace(FrobE)
8) = 14p5 � 28p3 � 20p2 � 7p

E(Trace(FrobE)
10) = 42p6 � 90p4 � 75p3 � 35p2 � 9p� ⌧(p)

as well as the general formula

E(Trace(FrobE)
2k) ⇠ (2k)!

k!(k + 1)!
pk+2 as k ! 1.

Then in 1973, Yoshida [62] employs the analytic properties of L-functions of elliptic curves
and their symmetric powers (which he relates to fiber products of E with itself) to prove an
analogue of the Sato-Tate conjecture (see Section 4) in function fields.

The next big step in our quest comes in 1980 when Deligne proves his influential equidis-
tribution theorem in [21] as part of his proof of the Weil Conjectures for general projective
varieties over Fq. Start with a family of smooth proper varieties XT indexed by a finite type
space T over a finite field Fq. Fix a positive integer m and take the m-weight part of the
zeta function of XT . Then there is a group G (the monodromy group of the family) and a
sequence of elements (defined up to conjugation) in G which correspond to the closed points
of the base space such that when one averages (in the correct manner that stamps out the
possible oscillatory behavior) over the Conj(G) the sequence of points will converge weakly
(in distribution) to the measure induced by the Haar measure of G. This will imply that the
factors of the zeta function will have the same distribution as the random matrices in that
group.

Let us make this more precise in the case where the base space is a curve. Let K be the
function field of a curve over Fq and let S be a finite set of places of K. We will denote by
Kur

S the maximal extension of K (inside some fixed algebraic closure) that is unramified at
all places outside S. Let ⇢ be a representation of Gal(Kur

S /K) on the Q`-vector space V with
` not dividing the characteristic of K. The arithmetic monodromy group Garith of ⇢ is defined
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as the Zariski closure of the image of ⇢ in GL(V ). We will think of it as a complex Lie group
via an embedding of Q` into C. Its geometric monodromy group Ggeom is the Zariski closure
of ⇢(Gal(Kur

S /KF̄q)) in GL(V ).
We will assume for simplicity that Ggeom = Garith = G, which allows us to avoid the

aforementioned subtleties in the averaging process. Let � be a maximal compact subgroup
of G and denote by 'v 2 Gal(Kur

S /K) the arithmetic Frobenius (or its conjugacy class) at
each place v /2 S.

Theorem 6 (Deligne). Let ⇢ : Gal(Kur
S /K) ! GL(V ) be an `-adic representation which

is pure of weight 0. Assume that the arithmetic and geometric monodromy groups coincide,

i.e. Ggeom = Garith = G. Then, as v runs over the places of K outside the set S, the conju-

gacy classes ✓(v) in � corresponding to ⇢('v)semisimple
are weakly equidistributed in Conj(�)

with respect to the direct image of normalized Haar measure on �. In particular, for any

nontrivial, irreducible, complex representation ⇤ of � (or of G) and any r 2 Z>0, we have
���������

X

v/2S,deg v|r

(deg v) Trace⇤
�
✓(v)r/(deg v)

�

X

v/2S,deg v|r

deg v

���������

= O

✓
dim⇤

qr/2

◆
.

Serre himself makes use of his ideas in [48] to study in [52] the (normalized) eigenvalues of
the Hecke operator Tp on the space of parabolic modular forms of weight k on the congruence
group �0(N) are asymptotically equidistributed with respect to the measure

µ(x) =
p+ 1

⇡

(4� x2)1/2

2(p+ 2 + p�1 � x2)
dx

on [-2,2] as k +N ! 1 for k even and p - N.
In 1998, Katz and Sarnak published their seminal work [35]. Their starting point is

to use Deligne’s equidistribution theorem to prove that the eigenvalues of the Frobenius
endomorphism associated to the hyperelliptic curves of genus g (where g is fixed) defined
over Fq considered over larger and larger finite extensions of Fq (i.e. Fqm with m ! 1) are
asymptotically distributed like the eigenvalues of random matrices in USp(2g). Here random
means random with respect to the Haar measure. Since the cup pairing imposes a certain
symmetry on the eigenvalues of Frobenius associated to curves in the moduli space Mg of
all curves of genus g, it follows that the hyperelliptic curves are generic in Mg itself.

They also formulated a more general philosophy and proved it in a host of instances.
Namely, they predict that the distribution of eigenvalues of Frobenius for a family of curves
defined over Fq approaches, in the large q limit, like the eigenvalues of some ensemble of
random matrices and that ensemble is dictated by the monodromy group of the family.

3. Probabilistic situation

We will now look at the mirror situation, that is the large genus limit. For this, we will
fix a finite field Fq and study the distribution of #C(Fq) where C is a curve of genus g as
g ! 1.

The case of hyperelliptic curves, or alternatively Z/2Z covers of the projective line P1 over
a field Fq with q odd, was studied by Kurlberg and Rudnick [37] in 2009. The technique used
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by the two authors is to relate the #C(Fq) to sums of the quadratic character associated to
the cover itself. This was later expanded to Z/`Z covers of the projective line P1 over a field
Fq with q ⌘ 1 (mod `) by various authors. In 2010 Bucur, David, Feigon, and Laĺın [10]
looked at certain connected components of the moduli space of all such covers. Then in 2015,
Cheong, Wood, and Zaman [17] employed Kummer theory to study the family y` = f(x)
where f(x) is an `-power free monic polynomial whose degree goes to infinity. The case of
the whole moduli space of Z/`Z covers of the projective line was studied by Bucur, David,
Feigon, Kaplan, Laĺın, Ozman, and Wood [12]. They proved the following result.

Theorem 7 (Bucur, David, Feigon, Kaplan, Laĺın, Ozman, Wood). Let Hg,` be the moduli

space of Z/`Z Galois covers of P1
of genus g. Then, as g ! 1,

|{C 2 Hg,`(Fq) : #C(Fq) = m}|0
|Hg,`(Fq)|0

= Prob (X1 + . . . Xq+1 = m) +O`

✓
1

g

◆
,

where the Xi’s are independent identically distributed random variables such that

Xi =

8
>>>>>>>>>><

>>>>>>>>>>:

0 with probability
(`� 1)q

`(q + `� 1)
,

1 with probability
`� 1

q + `� 1
,

` with probability
q

`(q + `� 1)
.

In the formula, as usual, the
0
notation means that the covers C on the moduli space are

counted with the usual weights 1/#Aut(C).

Note that the special case ` = 2 was proved in [37]. The q+1 random variables corresponds
to the Fq-points of P1 and the proof essentially shows that the number of points in each fiber
of the covering map C ! P1 is independent of what happens in the other fibers. Since Z/`Z
is a simple group, the number of points in each fiber will have to be one of 0, 1 or `.

Going beyond the case of simple groups, Wood [59] discussed S3 covers of P1 and Lorenzo
Garćıa, Meleleo and Millione [40] discussed the case of biquadratic covers of the projective
line. The latter paper uses a modification of the character sum method from [37], while
Wood relates trigonal curves to cubic extensions of function fields, and then uses the work of
Datskovsky and Wright [20] to count cubic extensions with every possible fiberwise behavior
above each rational point of the base curve.

Theorem 8 (Lorenzo Garćıa, Meleleo, Millione). Let Bg(Fq) be the family of genus g quartic

non-cyclic cover of the projective line P1
Fq
, and consider the following decomposition

Bg(Fq) =
[

g1+g2+g3=g

B(g1,g2,g3)(Fq)

where B(g1,g2,g3)(Fq) denotes the subfamily of curves C 2 Bg(Fq) such that the three hyperel-

liptic quotients of C have genera g1, g2 and g3.
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If the three genera g1, g2, g3 go to infinity, then we have that

|{C 2 B(g1,g2,g3)(Fq) : Tr(FrobC) = �M}|0

|B(g1,g2,g3)(Fq)|0
= Prob

 
q+1X

j=1

Xj = M

!

where the Xj are i.i.d. (identically independently distributed) random variables such that

Xi =

8
>>>>>><

>>>>>>:

�1 with probability
3(q+2)
4(q+3)

1 with probability
6

4(q+3)

3 with probability
q

4(q+3) .

Theorem 9 (Wood). Assume Fq has characteristic � 5 and let

Tg := {⇡ : C ! P1;C is a smooth, geometrically integral, genus g curve with ⇡ degree 3}.
We have

lim
g!1

#{C 2 Tg(Fq) | #C(Fq) = k}|
#Tg(Fq)

= Prob(X1 + · · ·+Xq+1 = k),

where the Xi are independent identically distributed random variables and

Xi =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0 with probability
2q2

6q2+6q+6

1 with probability
3q2+6

6q2+6q+6

2 with probability
6q

6q2+6q+6

3 with probability
q2

6q2+6q+6 .

A slightly di↵erent approach comes from a geometric sieve introduced by Poonen [46].

Theorem 10 (Poonen). Let X be a quasi-projective subscheme of Pn
over Fq, Z finite

subscheme of Pn
such that U = X \ (X \Z) is smooth of dimension m. Fix T ⇢ H0(Z,OZ).

Given a homogeneous polynomial f of degree d, let f |Z denote the element of H0(Z,OZ) that
on each connected component Zi equals the restriction of x�d

j f to Zi, where j = j(i) is the

smallest integer 0  j  n such that the coordinate xj is invertible on Zi. Then

#{f 2 Sd;Hf \ U smooth, f |Z 2 T}
#Sd

⇠ #T

#H0(Z,OZ)
⇣U(m+ 1)�1

as d ! 1.

The strategy used by Poonen is based on the fact that one can compute the probability
that Hf is smooth at a closed point P of the subscheme U and if these conditions were
independent we would get that the probability that Hf is smooth was their product. For
the proof Poonen uses a sieving argument that separately treats the closed points of X of
low, medium, and high degree (as a function of d) and treat each of the three sets separately.
For the points of low degree (including the points of Z), one proves that the conditions at
each point are indeed independent. Their product gives the main term. For a single point
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in the middle range, one similarly shows that singularities manifest with the probability
predicted by the local factor. One no longer has independence of these local conditions, but
they together contribute so little (which is due to the Weil bounds) to the product that they
can be controlled by crude estimates. For the points of high degree, one must use a global
argument since there are too many points to control individually. Poonen introduces the
clever device of writing the fi so as to partially decouple the low-order Taylor coe�cients;
one then gets a suitable bound using Bézout’s theorem. This trick is the cause of the explicit
appearance of p in the error term as computed by Bucur, David, Feigon and Laĺın in [11]; it
relies on the fact that the derivative of a p-th power vanishes in characteristic p.

Theorem 11 (Bucur, David, Feigon, Laĺın). Let X1, . . . , Xq2+q+1 be q2+q+1 i.i.d. Bernoulli

random variables taking the value 1 with probability (q+1)/(q2+ q+1) and the value 0 with

probability q2/(q2 + q + 1). Then, for 0  t  q2 + q + 1,

# {F 2 Sns
d ; #CF (Fq) = t}
#Sns

d

= Prob (X1 + · · ·+Xq2+q+1 = t)

⇥
⇣
1 +O

⇣
qt
⇣
d�1/3 + (d� 1)2q�min(b d

pc+1, d3) + dq�b
d�1
p c�1

⌘⌘⌘
,

where b·c denotes the integer part.

A generalization of Poonen sieve was developed by Bucur and Kedlaya [14] to study
complete intersections in projective spaces.

Theorem 12 (Bucur-Kedlaya). Let X be a quasiprojective subscheme of dimension m � 0
of the projective space Pn

over some finite field Fq of characteristic p. Let Z be a finite sub-

scheme of X for which U = X\Z is smooth of dimension m, and define z = dimFq H
0(Z,OZ).

For any k-tuple of positive integers d = (d1, . . . , dk) we denote Sd = Sd1 ⇥ · · ·⇥Sdk (k-tuples
of homogeneous polynomials in n + 1 variables) and for each f = (f1, . . . , fk) 2 Sd, we will

write Hf = Hf1 \ · · · \Hfk .

Choose an integer k 2 {1, . . . ,m+1}, z  d1  · · ·  dk, and a subset T of H0(Z,OZ(d)).

Pd = {f 2 Sd : Hf \ U is smooth of dimension m� k, and f |Z 2 T}.
Then

#Pd

#Sd
=

#T

qz

Y

x2U�

�
1� q�k deg(x) + q�k deg(x)L(qdeg(x),m, k)

�

+O((d1 � z + 1)�(2k�1)/m + dmk q
�d1/max{m+1,p}),

where

L(q,m, k) =
k�1Y

j=0

(1� q�(m�j))

denotes the probability that k randomly chosen vectors in Fm
q are linearly independent.

The argument follows the same path as Poonen’s, separating the points into low, medium
and high degree and computing the contribution of each type of points separately. However,
Bucur and Kedlaya get an unexpected average number of points. For instance, for the
intersection of two surfaces of degrees d1 and d2 in P3, the average number of points will be
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q + 1� q�2(1 + q�1)

1 + q�2 � q�5
< q + 1

In general, for n� 1 hypersurfaces intersecting in Pn, the average number of points is

(q + 1)� (q + 1)(1� q1�n)
1� (1� q�n) . . . (1� q�3)

1� q1�n + q1�n(1� q�n) . . . (1� q�2)
< q + 1,

and it is of size (q + 1)
�
1 +O(q�3)

�
.

More generally, for a random smooth intersection of hypersurfaces of degrees d1, . . . , dk in
Pn, the average number of Fq-rational points tends to q + 1 if k = 1, but to a limit strictly
less than q + 1 if k > 1. This can be seen as follows. One would get a limiting average of
exactly q+1 if the local condition for smoothness at a point x were that the first-order Taylor
approximations of f1, . . . , fk had to be linearly independent. For k = 1 (the case in [46])
this is the correct local condition, but for k > 1, this condition is too restrictive when the
sections do not all vanish at x. One possible explanation is that for k > 1, the intersection of
the hypersurfaces can be smooth without being geometrically integral. However, we suspect
that this occurs with probability 0 as the di tend to infinity, and so does not account for
the discrepancy. It will be interesting to understand exactly what is hiding behind this
discrepancy.

Theorem 13 (Kurlberg, Wigman). Fix a prime p. There exists a sequence of families

{Fi}1i=1 of smooth curves defined over Fp with the following properties such that #Fi ! 1,

the average number of points

Mi :=
1

#Fi

X

C2Fi

#C(Fp) ! 1,

the variance

Vi :=
1

#Fi

X

C2Fi

(#C(Fp)�Mi)
2 ! infty

and, for all compact intervals I,

1

#Fi

�����

(
C 2 Fi :

#C(Fp)�Mi

V 1/2
i

2 I

)����� =
1p
2⇡

Z

I

e�x2/2dx+ o(1),

as i ! 1.

Kurlberg and Wigman used Poonen’s sieve to construct a family of curves for which the
point count statistics over Fp becomes Gaussian for p fixed. In particular, the average number
of Fp-points tends to infinity.

Another generalization of Poonen’s sieve is formulated by Erman and Wood [25] and deals
with semiample, instead of ample, divisors.

Theorem 14 (Erman, Wood). Let X be a smooth projective variety over Fq, with a very

ample divisor A and a globally generated divisor E. Let ⇡ be the map given by the complete

linear series on E, ⇡ : X
|E|�! PM

.
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There exists an n0, depending only on dimX and char(Fq), such that for n � n0, the

probability of smoothness for a random D 2 |nA+ dE| as d ! 1 is given by the product of

local probabilities taken over the fibers of ⇡:

Prob(D is smooth) =
Y

P2PM

Prob(D is smooth at all points of ⇡�1(P )).

The product on the right converges, is zero only if some factor is zero, and is always non-zero

for n su�ciently large.

Note that the case where A = E is the one studied by Poonen in [46]. When E is not
very ample, each fiber of ⇡ may consist of many points and the fibers may have di↵erent
dimensions. Singularity at points of a single fiber of ⇡ will generally be dependent but the
theorem shows that this is the only dependence as d ! 1 and we still get independence
between fibers. Erman and Wood use this to compute the distribution of points on certain
curves on Hirzebruch surfaces.

Theorem 15 (Erman, Wood). For fixed n � 3 and d ! 1, the probability that a curve of

bidegree (n, d) in a Hirzebruch surface X is smooth is
Y

P2P1
Fq

(1� q�2 deg(P ))(1� q�3 deg(P )) = ⇣P1
Fq
(2)�1⇣P1

Fq
(3)�1 = (1� q�1)(1� q�2)2(1� q�3).

One can also bring the idea of cohomological stability to bear on questions in arithmetic
statistics, as Ellenberg, Venkatesh and Westerland [24] have done to prove some instances
of the Cohen-Lenstra heuristics. They formulate the following principle.

Conjecture 16 (Ellenberg, Venkatesh, Westerland). Assume Xn is an algebraic variety over

Fq of dimension growing with n. Then the quantity q� dimXn#Xn(Fq) should be expected to

approach a limit as n ! 1 precisely when the varieties Xn have stable homology.

Achter, Erman, Kedlaya, Wood, and Zureick-Brown [1] use this principle to model the
average number of points on a curve of genus g. Let Mg denote the fine moduli space of
curves of genus g in the sense of Deligne and Mumford [22]; it is an object in the category
of algebraic stacks over Spec(Z). The set |Mg(Fq)| of (isomorphism classes of) Fq-rational
points ofMg may then be identified with the set of isomorphism classes of smooth, projective,
geometrically connected curves of genus g over Fq. To simplify notation, let us further identify
|Mg(Fq)| with a set consisting of one curve in each isomorphism class. For C 2 |Mg(Fq)|,
let Aut(C) be the group of automorphisms of C as a curve over Fq (not over an algebraic
closure over Fq). We equip |Mg(Fq)| with the probability measure in which each point x is
weighted proportionally to 1/#Aut(C). This is well-understood to be the most natural way
to count objects with automorphisms, and matches the weighting of points in the Lefschetz
trace formula for Deligne-Mumford stacks given by Behrend [4]. Assuming cohomological
stability for certain moduli spaces of curves, they prove the following conditional result.

Conjecture 17 (Achter, Erman, Kedlaya, Wood, Zureick-Brown). Put � := �(q) = q+1+
1/(q � 1).

(a) For all nonnegative integers n,

lim
g!1

Prob(#C(Fq) = n : C 2 |Mg(Fq)|) =
�ne��

n!
.
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(b) For all positive integers n,

lim
g!1

E(#C(Fq)
n : C 2 |Mg(Fq))|) =

nX

i=1

⇢
n

i

�
�i,

where
�
n
i

 
denotes a Stirling number of the second kind (i.e., the number of unordered

partitions of {1, . . . , n} into i disjoint sets).

A review of the high genus situation would not be complete without mentioning the work
of Drinfel’d and Vlăduţ [23]. For any curve of genus g the Weil bounds imply that

(18) q + 1� 2g
p
q  #C(Fq)  q + 1 + 2g

p
q.

Now set
Nq(g) = sup{#C(Fq);C curve of genus g over Fq}.

The Weil bound (18) implies that

Nq(g)  q + 1 + 2g
p
q.

Serre [54, Theorem 2.1.1] improved this estimate to

Nq(g)  q + 1 + gb2pqc.
Drinfel’d and Vlăduţ [23] improve on it even further in the large genus limit.

Theorem 19 (Drinfel’d, Vlăduţ).

lim sup
g!1

Nq(g)

g
 p

q � 1.

This result has a very di↵erent flavor, as it uses linear programming.

4. Arithmetic situation

For E an elliptic curve over a number field K and p a prime ideal of K at which E has
good reduction, let ap = ap(E) be the Frobenius trace of E at p, so that Norm(p) + 1 � ap
is the number of rational points on the reduction of E modulo p. Then define the Frobenius
angle ✓p = ✓p(E) 2 [0, ⇡] by the formula

1� ap(E)T +Norm(p)T 2 = (1� Norm(p)1/2ei✓T )(1� Norm(p)1/2e�i✓T ).

Let µST denote the Sato-Tate measure, so that

µST(f) =

Z ⇡

0

2

⇡
sin2 ✓f(✓) d✓.

For I an interval, let �I denote the characteristic function. The Sato-Tate conjecture, for-
mulated originally for elliptic curves in the 1960s, states the following.

Conjecture 20 (Sato-Tate). Let E be an elliptic curve over a number field K without

complex multiplication. Let N denote the absolute conductor of E. Then for any closed

subinterval I of [0, ⇡], X

Norm(p)x,p-N

�I(✓p) ⇠ µST(I) Li(x).

11



In 1994, Serre [51] gave the ultimate formulation of the Sato-Tate conjecture in terms of
motives. We start by recalling the conjectural properties of motivic L-functions following
Serre [51]. Fix two number fields K,L. Let M be a pure motive of weight w over K with
coe�cients in L. For each prime ideal p of K, let Gp be a decomposition subgroup of p inside
the absolute Galois group GK , let Ip be the inertia subgroup of Gp, and let Frobp 2 Gp/Ip
be the Frobenius element. The Euler factor of M at p (for the automorphic normalization)
is the function

Lp(s,M) = det(1� Norm(p)�s�w/2 Frobp, Vv(M)Ip ⌦Lv C)�1

for v a finite place of L equipped with an embedding Lv ,! C and Vv(M) the v-adic étale
realization of M equipped with its action of Gp. It is clear that this definition does not
depend on the choice of Gp; it is conjectured also not to depend on v or the embedding
Lv ,! C, and this is known when M has good reduction at p (which excludes only finitely
many primes).

The ordinary L-function of M is the Euler product L(s,M) =
Q

p Lp(s,M). For each
infinite place 1 of K, there is also an archimedean Euler factor defined as follows. Put

�R(s) = ⇡�s/2�(s/2), �C(s) = 2�s⇡�s�(s).

Form the Betti realization of M at 1 and the spaces Hp,q for p + q = w, and put hp,q =
dimHp,q. Note that complex conjugation takes Hp,q to Hq,p and thus acts on Hw/2,w/2; let
h+ and h� be the dimensions of the positive and negative eigenspaces (both taken to be 0 if
w is odd). Then put

L1(s,M) = �R(s)
h+
�R(s+ 1)h

� Y

p+q=w,p<q

�C(s+ w/2� p)h
p,q
.

The completed L-function is then defined as

⇤(s,M) = N s/2L(s,M)L1(s,M),

for N the absolute conductor of M (i.e., the norm from K to Q of the conductor ideal of
M).

Conjecture 21 (GRH for motivic L-functions). Let d be the dimension of the fixed subspace

of the motivic Galois group of M(�w/2) (taken to be 0 if w is odd).

(a) The function sd(1� s)d⇤(s,M) (which is defined a priori for Re(s) > 1) extends to

an entire function on C of order 1 which does not vanish at s = 0, 1. (Recall that an
entire function f : C ! C is of order 1 if f(z)e�µ|z|

is bounded for each µ > 1.)
(b) Let M⇤

denote the Cartier dual of M. Then there exists ✏ 2 C with |✏| = 1 such that

⇤(1� s,M) = ✏⇤(s,M⇤) for all s 2 C.
(c) The zeroes of ⇤(s,M) all lie on the line Re(s) = 1/2.

In order to state the Sato–Tate conjecture in full generality, a few more definitions are
in order. Let A be an abelian variety defined over a number field K of dimension g � 1
and %A,` the `-adic representation attached to A. Let N denote the absolute norm of the
conductor of A, which we will call the absolute conductor of A. For a nonzero prime ideal p
of the ring of integers of K not dividing N`, let ap := ap(A) denote the trace of %A,`(Frobp),
where Frobp is a Frobenius element at p. The Hasse-Weil bound asserts that the normalized
trace ap := ap(N(p))�1/2 lies on the interval [�2g, 2g] where N(p) is the absolute norm of p.

12



Following Serre [53, Chap. 8] one defines the Sato–Tate group of A, denoted ST(A),
in the following manner. Let GZar

` denote the Zariski closure of the image of the `-adic
representation %A,`, which we may naturally see as lying in GSp2g(Q`). Denote by G1,Zar

` the

intersection of GZar
` with Sp2g /Q`. Fix an isomorphism ◆ : Q̄` ' C and denote by G1,Zar

`,◆ the

base change G1,Zar
` ⇥Q`,◆ C. The Sato–Tate group ST(A) is a maximal compact subgroup of

the group of C-points of G1,Zar
`,◆ .

Fix an embedding k ,! C. The Mumford–Tate group MT(A) is the smallest algebraic
subgroup G of GL(H1(AC,Q)) over Q such that G(R) contains h(C⇥), where

h : C ! EndR(H1(AC,R))

is the complex structure on the 2g-dimensional real vector space H1(AC,R) obtained by
identifying it with the tangent space of A at the identity. The Hodge group Hg(A) is the
intersection of MT(A) with Sp2g /Q. LetGZar,0

` (resp. G1,Zar,0
` ) denote the identity component

of GZar
` (resp. G1,Zar

` ).

Conjecture 22 (Mumford–Tate conjecture). There is an isomorphism GZar,0
` ' MT(A)⇥Q

Q`. Equivalently, we have G1,Zar,0
` ' Hg(A)⇥Q Q`.

It follows from the definition that ST(A) has a faithful unitary symplectic representation
% : ST(A) ! GL(V ). Here V a 2g-dimensional C-vector space, which we call the standard
representation of ST(A). Via this representation, we regard ST(A) as a compact real Lie
subgroup of USp(2g).

Let µ be the pushforward of the Haar measure of ST(A) on [�2g, 2g] via the trace map.
We refer to [53, §8.1.3, §8.4.3] for properties and the structure of this measure. It admits
a decomposition µ = µdisc + µcont, where µdisc is a finite sum of Dirac measures and µcont

is a measure having a continuous, integrable, and even C1 density function with respect to
the Lebesgue measure outside a finite number of points. Note that if ST(A) happens to be
connected, then µdisc is trivial (see [53, §8.4.3.3]).

As before, �I denotes the characteristic function of a subinterval I of [�2g, 2g]. Together
with the prime number theorem, the Sato–Tate conjecture predicts that

(23)
X

N(p)x

�I(ap) ⇠ µ(I) Li(x) as x ! 1 .

Following Theorem 4, one sees that (23) is implied by the conjectural nonvanishing and
analyticity on the right halfplane Re(s) � 1 of the (normalized) L-function L(s,�) for every
nontrivial irreducible character � of ST(A).

Even though we have such a general formulation of the Sato-Tate conjecture, one has to
do a nontrivial amount of work to precisely formulate which groups can appear for abelian
varieties of a given dimension. For instance, in the case of elliptic curves (dimension 1), one
gets only three possible distributions: µST that comes from SU(2) in the case of non-CM
elliptic curves, the measure coming from SO(2) in the case of elliptic curves with complex
multiplication over K itself, and the measure coming from the normalizer of SO(2) inside
SU(2) in the case of elliptic curves with complex multiplication over an extension of K. But
for abelian surfaces (dimension 2), Fité, Kedlaya, Rotger and Sutherland [27] showed that
there are exactly 52 possibilities in general, 34 of which occur for elliptic curves defined over
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Q. In dimension 3, the situation is even more complicated. Fité, Kedlaya, and Sutherland
[28] showed that there are 410 possible Sato-Tate groups for abelian three-folds.

The Sato-Tate conjecture is now known unconditionally when K is totally real, thanks
to Barnet-Lamb, Gee, Geraghty, Harris, and Taylor [3] and Clozel, Harris, and Taylor [18].
The function field is due to Yoshida [62]. At the heart of the proof of Taylor et al. is the
use of Serre’s method formulated in [48] to reduce the asymptotic statement to a question of
meromorphic continuation and correct analytic properties for all L(s, Symk E), k � 0, most
essentially potential automorphy.

The more refined Lang-Trotter conjecture [39] formulated in 1976 generated interest in
refined error terms in the Sato-Tate conjecture. The relevant (though not necessarily most
famous) part of the Lang-Trotter conjecture states the following.

Conjecture 24 (Lang, Trotter). Let E be an elliptic curve defined over Q without complex

multiplication, and let K be an imaginary quadratic extension of Q. For each prime p, denote
Ep the reduction of E at p.

There is an explicit constant CE,K > 0 such that, as X ! 1,

#{p  X : p prime, E has good reduction at p,EndF̄p
(Ep)⌦Z Q = K} ⇠ CE,K

X1/2

logX
.

Unfortunately we do not have any power saving error terms in the Sato-Tate conjecture, as
the present methods would require us to have a zero-free region inside the critical strip for the
L-functions involved. In 1985, V.K. Murty [45] studied the implications of the generalized
Riemann Hypothesis to this conjecture by employing Serre’s method for a certain family of
L-functions.

Theorem 25 (Murty). Let E be an elliptic curve over a number field K without complex

multiplication. Let N denote the absolute conductor of E. Assume that L(s, Symk E) satisfies
the generalized Riemann Hypothesis (Conjecture 21) for all k � 0. Then for any closed

subinterval I of [0, ⇡],
X

Norm(p)x,p-N

�I(✓p) = µST(I) Li(x) +O([K : Q]1/2x3/4(log(Nx))1/2).

Murty’s proof is based on a result of Vinogradov [56, Lemma 12] about Fourier series ap-
proximations of the characteristic function of an interval. Using a di↵erent optimization in
Vinogradov’s result, Bucur and Kedlaya [15] are able to give a quantitative answer to a clas-
sical question about the arithmetic of elliptic curves. Let E1 and E2 be nonisogenous elliptic
curves over K, neither having complex multiplication. The isogeny theorem of Faltings [26]
implies that there exists a prime ideal p of K at which E1, E2 both have good reduction and
have distinct Frobenius traces. In particular, for any fixed prime `, there exists a prime ideal
p of K at which the Frobenius traces of E1, E2 di↵er modulo `. Assuming the generalized
Riemann hypothesis (Conjecture 21) for Artin L-functions, one can use the e↵ective form of
the Chebotarev density theorem (as suggested by Serre in [49]) to show the least norm of
such a prime ideal is

O((logN)2(log log 2N)b)

for some fixed b � 0. Assuming the generalized Riemann Hypothesis for L-functions of the
form L(s, Symm E1 ⌦ Symn E2), Bucur and Kedlaya use the e↵ective form of the generalized
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Sato-Tate conjecture for the abelian surface E1 ⇥K E2 to obtain a similar bound for the
least norm of a prime ideal at which the Frobenius traces of E1, E2 have opposite sign
(Theorem 26). In both cases, the optimal bound is most likely closer to O(logN), but by
analogy with the problem of finding the least quadratic nonresidue modulo N , it is unlikely
that one can do better than O((logN)2) using L-function methods.

Theorem 26 (Bucur, Kedlaya). Let E1, E2 be two Q-nonisogenous elliptic curves over a

number field K, neither having complex multiplication. Let N be the product of the absolute

conductors of E1 and E2. For each prime ideal p of K not dividing N , let ✓1,p, ✓2,p be the

Frobenius angles of E1, E2 at p. Assume that the L-functions L(s, Symi E1 ⌦ Symj E2) for

i, j = 0, 1, . . . all satisfy the generalized Riemann Hypothesis (Conjecture 21). Then for any

closed subintervals I1, I2 of [0, ⇡],
X

Norm(p)x,p-N

�I1(✓1,p)�I2(✓2,p) = µST(I1)µST(I2) Li(x) +O([K : Q]1/3x5/6(log(Nx))1/3).

The following estimate follows immediately,

Theorem 27 (Bucur, Kedlaya). With hypotheses and notation as in Theorem 26, there

exists a prime ideal p not dividing N with Norm(p) = O([K : Q]2(logN)2(log log 2N)2) such
that ap(E1) and ap(E2) are nonzero and of opposite sign.

Remark 28. Theorem 27, which distinguishes two Frobenius traces using their archimedean
behavior, should be compared with similar results which distinguish the traces using their
mod-` behavior for some prime `. For example, in [49, §8.3, Théorème 21], Serre shows that
there exists a prime ideal p not dividing N with Norm(p) = O((logN)2(log log 2N)12) such
that ap(E1) and ap(E2) di↵er modulo some auxiliary prime `.

Both this argument and Theorem 27 give upper bounds on the norm of a prime ideal p
for which ap(E1) and ap(E2) di↵er. However, Serre has subsequently remarked [50, p. 715,
note 632.6] that by replacing the mod-` argument with an `-adic argument, one can improve
these bounds to O((logN)2).

Theorem 29 (Serre). Let � be a group, let ` be a prime number, let r be a positive integer,

and let ⇢1, ⇢2 : � ! GLr(Z`) be two homomorphisms with distinct traces. Then there exist a

finite quotient G of � and a nonempty subset C of G with the following properties.

(a) The order of G is at most `2r
2 � 1.

(b) For any � 2 � whose image in G belongs to C, Trace(⇢1(�)) 6= Trace(⇢2(�)).

Corollary 30 (Serre). Assume the Riemann hypothesis (Conjecture 21) for Artin L-functions.

Then there exists a prime ideal p not dividing N with Norm(p) = O((logN)2) such that

ap(E1) 6= ap(E2).

The framework of the generalized Sato–Tate conjecture includes many additional questions
about distinguishing L-functions, a number of which have been considered previously. For
instance, Goldfeld and Ho↵stein [31] established an upper bound on the first distinguishing
coe�cient for a pair of holomorphic Hecke newforms, by an argument similar to ours but with
a milder analytic hypothesis (the Riemann hypothesis for the Rankin-Selberg convolutions
of the two forms with themselves and each other). Sengupta [47] carried out the analogous
analysis with the Fourier coe�cients replaced by normalized Hecke eigenvalues (this only
makes a di↵erence when the weights are distinct). The analogue of Serre’s argument for
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modular forms was given by R. Murty [44] and subsequently extended to Siegel modular
forms by Ghitza [29] for Fourier coe�cients and Ghitza and Sayer [30] for Hecke eigenvalues.

Bucur, Fité and Kedlaya [13] proved a similar result for abelian varieties, not just elliptic
curves.

Theorem 31 (Bucur, Fité, Kedlaya). Let A be an abelian variety defined over the number

field K of dimension g � 1, absolute conductor N , and such that ST(A) is connected. Sup-

pose that the Mumford–Tate conjecture (Conjecture 22) holds for A and that the generalized

Riemann hypothesis (Conjecture 21) holds for L(s,�) for every irreducible character � of

ST(A). Then there exists an " > 0 such that for all subintervals I of [�2g, 2g], we have

(32)
X

Norm(p)x

�I(ap) = µ(I) Li(x) +O

✓
x1�" log(Nx)2"

log(x)1�4"

◆
,

where the sum runs over primes not dividing N and the implicit constant in the O-notation

depends exclusively on K and g. Moreover, if we write the Lie algebra of ST(A) as g = s⇥a,
where s is semisimple and a is abelian, then we can take " as

"(g) :=
1

2(q + |�+|) ,

where |�+| is the size of the set of positive roots of s and q is the rank of g.

A key ingredient in this work is the construction of a multivariate Vinogradov function; this
is a smooth periodic function, with rapidly decaying Fourier coe�cients, and approximating
the characteristic function of the preimage of I by the trace map in the parameter space of a
Cartan subgroup H of ST(A). By identifying the quotient of this space by the action of the
Weyl group with the set of conjugacy classes of ST(A), one can rewrite (a Weyl average of)
the Vinogradov function as a combination of irreducible characters of ST(A). One can use
purely Lie algebra theoretic arguments (most notably Weyl’s character dimension formula
and a result due to Gupta [32, Thm. 3.8] on the boundedness of the inverse of the weight
multiplicity matrix) to show that the coe�cients in the character decomposition of the
Vinogradov function also exhibit a rapid decay. The theorem can then be obtained by using
an estimate of V.K. Murty (as presented by the Bucur and Kedlaya [15]) on truncated sums
of an irreducible character � over the prime ideals of K. The implicit constant in the O-
notation depends in principle on the exponents of the Cartan subgroup H. In order to bound
these exponents purely in terms of g, we show that the Mumford–Tate conjecture implies
that H is generated by the Hodge circles contained in it, which is an interesting result in
itself.

An interesting application of this result is a conditional partial answer to a question posed
by Serre [54, Chap. II, Question 6.7] about elliptic curves with maximal number of points
(that realize the Weil bound). Let M(x) denote the number of p not dividing N with norm
up to x for which ap = b2

p
Norm(p)c, which would ensure that the number of points on

the reduction of E at p attains the maximum possible value. Vaguely formulated, a natural
approach to compute (at least an asymptotic lower bound on) M(x) is to compute the
number of p with norm up to x for which ap lies in a su�ciently small neighborhood Ix
of 2g. However, for this idea to succeed, the neighborhood Ix should be su�ciently large in
order for the “error term” in (32) to be still dominated by the “main term”, which is now
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multiplied by the tiny quantity µ(Ix). This trade-o↵ can be achieved when E is an elliptic
curve with CM.

Corollary 33 (Bucur, Fité, Kedlaya). Let E be an elliptic curve defined over K with poten-

tial CM, that is, such that EQ has CM. Under the generalized Riemann hypothesis (Conjecture

21) for the L-function attached to every power of the Hecke character of E, we have

M(x) ⇣ x3/4

log(x)
as x ! 1 .

The notation f ⇣ g for two functions f and g means that f = O(g) and g = O(f). Thus
the corollary also incorporates an upper bound, which requires a more elaborate argument.

Interestingly, James and Pollack [33] proved unconditionally the result conjectured by
Serre using di↵erent methods from analytic number theory.

Theorem 34 (James, Pollack). Let E be an elliptic curve defined over K with potential

CM, that is, such that EQ has CM. Then

M(x) ⇠ 2

3⇡

x3/4

log(x)
as x ! 1 .

Theorem 35 (Bucur, Fité, Kedlaya). Let A (resp. A0
) be an abelian variety defined over

K of dimension g (resp. g0), and with absolute conductor N (resp. N 0
). Suppose that the

generalized Riemann hypothesis (Conjecture 21) holds for every irreducible constituent of a

virtual character  of the Sato-Tate group ST(A⇥A0) and that Hom(A,A0) = 0. Then there

exists a prime p not dividing NN 0
with norm

Norm(p) = O(log(NN 0)2)

such that ap(A) and ap(A0) are nonzero and of opposite sign. Here, the implicit constant in

the O-notation depends exclusively on K, g, and g0.

Note that this result extends Theorem 27 of Bucur and Kedlaya. Later, that same result
was improved by Chen, Park, and Swaminathan [16, Thm. 1.3] who proved an upper bound
of the form O(log(NN 0)2) for A and A0 two nonisogenous elliptic curves without CM and
relaxing the generalized Riemann hypothesis to only a handful of symmetric powers of the
two elliptic curves.

There are two aspects of the approach of Chen, Park, and Swaminathan in [16, Thm.
1.3] which we would like to highlight. On the one hand, their method avoids the use of the
e↵ective Sato–Tate conjecture. They replace V.K. Murty’s estimate with one they obtain by
integrating with respect to a kernel introduced by Bach [2]. While V.K. Murty’s estimate
seems to be most adequate to treat density questions, for existence problems Bach’s estimate
seems to provide more accurate answers. On the other hand, the condition ap(A) · ap(A0) <
0 is recast as the positivity of a certain polynomial expression in ap(A) and ap(A0) that
(conveniently weighted) is shown via Bach’s estimate to become eventually positive when
summed over primes in K.

Bucur, Fité and Kedlaya generalized the approach of [16] to obtain a version of Bach’s
estimate valid for general abelian varieties by reinterpreting the polynomial expression in
ap(A) and ap(A0) alluded to above as the character  of the natural virtual representation

ST(A⇥ A0) ! GL((V ��2g � V ⌦ V )⌦ ((V 0)�2g0 � V 0 ⌦ V 0)) ,
17



where V and V 0 denote the standard representations of ST(A) and ST(A0). It is easy to see
that if Hom(A,A0) = 0, then the multiplicity of the trivial character in  is strictly positive,
which explains the eventual positivity of  when summed over primes in K.

5. Future directions

There are many open problems and directions that still need exploring. The biggest
problem in the field is to find a way of proving equidistribution results over number fields,
either by adapting the methods that were successful in function fields or by deducing them
from the function fields results. The main problem with adapting the function fields method
to number fields is the fact that one has a lot of geometry in the function fields picture (e.g.
the geometric Fourier transform over finite fields) that is missing from the number fields
world. But there are many more attainable goals.

For instance, one can try to better understand Nq(g) for small g as done in part I of [54],
especially in the postfaces to Chapters 2 and 4 by Howe and Ritzenthaler. One can ask in
general for better bounds on Nq(g), and even computational evidence for what Nq(g) should
be in all cases. As the Drinfel’d -Vlăduţ [23] results shows, as g grows we get rather far away
from the Weil bound. It would be interesting to find out what the lim supNq(g)/g really
is, and for which genera it can actually be attained, or how close it can come. In a certain
sense, the quantity Nq(g) is related to lower order terms in the distribution of #C(Fq) as C
varies over the curves of genus g. Which brings us to another direction to explore, namely
to compute moments of the distribution of #C(Fq) as done by Birch [5] for g = 1, but this
time in the fixed q, large g situation.

As formulated by Ritzenthaler during 2021 conference dedicated to [54], it would be nice
to gather heuristic arguments for or against the possibility of always having a maximal curve
of genus g over Fq at bounded ”distance” of the Hasse-Weil-Serre bound (independently
of q for a fixed g). Another problem is to find exactly for which g and q one can find a
defect zero curve, for which the Hasse-Weil-Serre bound is sharp. Clearly the number of
g’s for which one can find any such curve (over any finite field) is finite, but can one find
the exact values? And can one find an estimate for the distance between Nq(g) and the
Hasse-Weil-Serre bound?

Also regarding the number of points on varieties over finite fields, one knows from work
of Madan and Pal [41] that there exist infinitely many simple abelian varieties defined over
F2 with exactly one F2-point. Recent work of Kedlaya [36] shows that for every positive
integer m, there exist infinitely many simple abelian varieties over F2 of order m. One can
study a similar question of simple abelian varieties of prescribed order over any finite field
Fq. For q � 5 the Weil estimate tells us that, in general, for a given m there are at most
finitely many abelian varieties of order m. For q = 3, 4 we know that the same is true if one
restricts to simple abelian varieties. (See for instance [34].) We also know from work of van
Bommel, Costa, Li, Poonen, and Smith [6] that for any given q every su�ciently large m is
the order of some simple abelian variety defined over Fq. The question becomes how many
and an asymptotic would be highly interesting. Dealing with prime fields might be a good
first step.

Another clear direction is to obtain statistics for the number of points G-covers of the
projective line over Fq for all groups G. This would be a version of Malle’s conjecture
[42, 43] in this context. As we have seen in Section 3, we have results for some groups, e.g.
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Z/`Z, Z/2Z⇥Z/2Z, S3. One option is to use Wright’s approach [61] and the results known
so far to settle this question for all finite abelian groups. A more di�cult problem is to
compute the distribution of the number of points for some nonabelian groups beyond S3. A
first example would be D4 as this has already been studied in the number field context as in
[19]. A hopeful development in the number field comes from the recent work of Wood that
formulates a nonabelian version of the Cohen-Lenstra heuristics. See [60] for a really nice
exposition and some results in this direction over function fields. One other problem is to
study G-covers of a fixed arbitrary curve over Fq, not just the projective line.

If one starts with a curve C defined over Fq, one can look at the multiple (or even all)
point counts #C(Fqm) for m > 0. Of course these are not independent of each other. Take
as an example hyperelliptic curves. As shown by Kurlberg and Rudnick [37] (see also [10])
the number of Fq-points of such a curve is given by

#C(Fq) = q + 1 + S(�)

where � is the quadratic character associated to the double cover C of P1. Say for instance
that the curve C has an a�ne model

y2 = f(x).

Then
S(�) =

X

x2P1(Fq)

�(f(x))

with

�(↵) =

8
><

>:

1 ↵ 2 (F⇥
q )

2

0 ↵ = 0

�1 otherwise.

But when one looks at Fq2-points of C one finds that all fibers above the Fq-points of P1

have 2 points, while half the fibers above the degree 2 points of P1 will have 2 points and
half of them no points. Hence once gets, on average, more points than if one looked at all
the curves defined over Fq2 . This phenomenon is related to the observation made by Brock
and Granville in [8].

It would be interesting to study the joint distribution of the sequence {#C(Fqm)}m�1. It is
unclear what the model for these sequences even is. We know that each term in the sequence
is related to traces of certain random matrices, but then one has the correlations between
the #C(Fqm) and #C(Fqmn) to take into account, as well as the fact that all these point
counts should be nonnegative integers. Hence once get infinitely many discrete conditions
that cut into the space of random matrices.

When it comes to the Sato-Tate conjecture, one possible goal is a proof of the Sato-Tate
for abelian varieties. Serre’s Theorem 4 and Theorem 5 imply that in order to prove Sato-
Tate in this context one needs the meromorphic continuation and analytic properties for all
irreducible rep of Sp(4). To give an idea of the magnitude of the task, just doing this for the
trivial representation amounts to proving the paramodular conjecture [9].

Conjecture 36 (Brumer, Kramer). Let A be an abelian surface over Q of conductor N such

that EndQ(A) = Z. Then there exists a cuspidal Siegel paramodular form f 2 S(2)
2 (�para(N)) ,

a newform and eigenform of degree 2, weight 2, and level N, such that L(A, s) = L(f, s).
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Another interesting question is to see if the Sato-Tate distributions are di↵erent if one
restricts to Jacobians of curves of genus g instead of looking at all abelian varieties of
dimension g. We know that g � 4 the two spaces are di↵erent, but is there a reason for the
distributions to be the same or be di↵erent? Even a conjecture in this direction would be
interesting. A problem whose magnitude is only hinted at by [28] is to find all the possible
Sato-Tate groups for abelian varieties of dimension d � 4, or at least count them. Since for
g = 1 we get 3 groups, for g = 2 we get 52 possibilities and for g = 3 we have 410 possibilities,
one suspects this might not be something to be done by hand. One can simplify the problem
and ask only for the connected components of the identity of these groups in each case. We
do know that the numbers in this case are 2 for g = 1, 6 for g = 2, and 14 for g = 3 as
seen in [27, 28]. An estimate for how many possibilities there are for higher g would already
constitute huge progress.

One can use the Sato-Tate conjecture to deduce various statistics for the traces of Frobe-
nius. For instance, I am indebted to the anonymous referee to this paper for suggesting
the following problem. Let C be a a smooth and projective curve defined over Q of genus
g > 0. Then one can ask if there exits a prime p such that the Frobenius trace ap is strictly
positive. In genus g = 1, the Sato-Tate conjecture implies that in fact there is a positive
density of such primes. By Section 1, the holomorphicity and nonvanishing at <(s) = 1
of the Hasse-Weil L-function L(C, s) would imply the existence of infinitely many primes p
for which ap > 0. (Here we follow Serre’s convention from Theorems 4 and 5 and use the
analytic normalization for L-functions that sets the rightmost pole at s = 1 and such that
functional equation sends s ! 1 � s.) This is known for g = 2 thanks to recent work by
Boxer–Calegari–Gee–Pilloni [7]. It is provocative that for genus at least 3 we do not even
know that a single prime p with ap > 0 exists.

Since this paper has to end at some point, we will mention just one more problem, namely
that of ordinary primes. Take an abelian variety X defined over Q and reduce it modulo p.
We say that a prime p is ordinary (for X) if the reduction Xp of X modulo p is ordinary.
One would like to show that for each X there are infinitely many ordinary primes. A harder
problem would be to find the density of ordinary primes for a given X.
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Fq-points on cyclic `-covers of genus g, Int. Math. Res. Not. IMRN 2016, no. 14, 4297–4340.
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