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Abstract

Policy learning utilizing observational data
is pivotal across various domains, with the
objective of learning the optimal treatment
assignment policy while adhering to spe-
cific constraints such as fairness, budget,
and simplicity. This study introduces a
novel positivity-free (stochastic) policy learn-
ing framework designed to address the chal-
lenges posed by the impracticality of the
positivity assumption in real-world scenar-
ios. This framework leverages incremental
propensity score policies to adjust propen-
sity score values instead of assigning fixed
values to treatments. We characterize these
incremental propensity score policies and
establish identification conditions, employ-
ing semiparametric efficiency theory to pro-
pose efficient estimators capable of achiev-
ing rapid convergence rates, even when in-
tegrated with advanced machine learning al-
gorithms. This paper provides a thorough
exploration of the theoretical guarantees as-
sociated with policy learning and validates
the proposed framework’s finite-sample per-
formance through comprehensive numerical
experiments, ensuring the identification of
causal effects from observational data is both
robust and reliable.

1 INTRODUCTION

Over the past decade, methodologies for learning
treatment assignment policies have seen substantial
advancements in fields like biostatistics (Luedtke and
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van der Laan, 2016b; Tsiatis et al., 2019), computer
science (Uehara et al., 2022; Yu et al., 2022), and
econometrics (Athey and Wager, 2021; Jia et al.,
2023). The core objective of data-driven policy learn-
ing is to learn optimal policies that map individual
characteristics to treatment assignments to optimize
some utility or outcome functions. This is crucial for
deriving robust and trustworthy policies in high-stakes
decision-making settings, requiring adherence to stan-
dard causal assumptions: consistency, unconfounded-
ness, and positivity (van der Laan et al., 2011; Imbens
and Rubin, 2015).

Various statistical and machine-learning methods have
been developed to address policy learning tasks. Pop-
ular approaches include model-based methods such as
Q-learning and A-learning (Murphy, 2003; Shi et al.,
2018), and direct model-free policy search methods
such as decision trees and outcome weighted learning
(Zhang et al., 2012; Cui et al., 2017), among others
(Bibaut et al., 2021; Zhou et al., 2023; Zhao and Cui,
2023). Another prevailing line of work concerns het-
erogeneous treatment effects estimation (Wager and
Athey, 2018; Kiinzel et al., 2019; Nie and Wager, 2021;
Kallus and Oprescu, 2023), where the sign of the con-
ditional average treatment effects equivalently deter-
mines the optimal policy.

However, most methods depend heavily on the three
standard causal assumptions to identify causal ef-
fects and optimal policies. Recent progress has been
made to relax the consistency and unconfoundedness
assumptions (Cortez et al., 2022; Kallus and Zhou,
2018), but advancements addressing the violation of
the positivity assumption are scarce. For average
treatment effects estimation, Yang and Ding (2018)
and Branson et al. (2023) provide estimation and
asymptotic inference results for propensity score trim-
ming with binary and continuous treatments, Zhang
et al. (2023) consider a missing-at-random mechanism
without a positivity condition for generalizable and
double robust inference for average treatment effects
under selection bias with decaying overlap, Liu et al.
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(2023) propose the overlap weighted average treatment
effect on the treated under lack of positivity, and Vis-
conti and Zubizarreta (2018) use cardinality matching
to handle limited overlap in observational studies. For
policy evaluation, Khan et al. (2023) provide partial
identification results for off-policy evaluation under
non-parametric Lipschitz smoothness assumptions on
the conditional mean function, and thus avoid assum-
ing either overlap or a well-specified model. In the ma-
chine learning literature, Lawrence et al. (2017) con-
sider counterfactual learning from deterministic ban-
dit logs under lack of sufficient exploration. Gui and
Veitch (2023) use supervised representation learning
to estimate causal effects for text data with apparent
overlap violation. Jin et al. (2022) use pessimism and
generalized empirical Bernstein’s inequality to study
offline policy learning without assuming any uniform
overlap condition. To our knowledge, our work is the
first to consider learning treatment assignment policies
while avoiding the positivity assumption.

This study introduces a novel positivity-free policy
learning framework focusing on dynamic and stochas-
tic policies, which are practical. We propose incre-
mental propensity score policies that shift propensity
scores by an individualized parameter, requiring only
the consistency and unconfoundedness causal assump-
tions. Our approach enhances the concept of incre-
mental intervention effects, as proposed by Kennedy
(2019), adapting it to individual treatment policy con-
texts.

We also use semiparametric theory to characterize the
efficient influence function (Bickel et al., 1993; van der
Laan and Robins, 2003), which serves as the founda-
tion to construct estimators with favorable properties,
such as double/multiple robustness and asymptotically
negligible second-order bias (also called Neyman or-
thogonality in double machine learning (Chernozhukov
et al., 2018) or orthogonal statistical learning (Foster
and Syrgkanis, 2023)). Thus, our proposed estima-
tors can attain fast parametric v/n convergence rates,
even when nuisance parameters are estimated at slower
rates such as n'/* via flexible machine learning algo-
rithms.

Based on the above efficient off-policy evaluation re-
sults, we propose approaches to learning the optimal
policy by maximizing the value function, possibly un-
der application-specific constraints. Several examples
are provided in Section 4, including fairness and re-
source limit. While it remains an open problem to
provide finite sample or asymptotic regret bounds as
Athey and Wager (2021) for stochastic policy learn-
ing with constraints, which is out of the scope of this
article, we establish asymptotic guarantees for our
proposed policy learning methods under alternative

(stronger) conditions.

2 STATISTICAL FRAMEWORK

We first introduce the notations and setup. Let X
denote the p-dimensional vector of covariates that be-
longs to a covariate space X C RP, A € A = {0,1}
denote the binary treatment, ¥ € R denote the out-
come of interest. Without loss of generality, we assume
throughout that larger values of Y are more desirable.
Our observed data structure is O = (X, A,Y). Sup-
pose that our collected random sample (Oq,...,0,)
of size n are independent and identically distributed
(ii.d.) observations of O ~ P, where P denote the
true distribution of the observed data.

Now, we are in the position to introduce different types
of policies or interventions commonly used in the lit-
erature: (i) under static policies, the same treatments
would be applied indiscriminately, while dynamic poli-
cies depend on individual characteristics; (ii) deter-
ministic policies recommend one specific treatment
and stochastic policies output probabilities of prescrib-
ing each treatment level. This article focuses on dy-
namic and stochastic policies, which are more practical
in various settings and have received substantial recent
interest. Typical examples include point exposures
(Dudik et al., 2014), longitudinal studies (Tian, 2008;
Murphy et al., 2001; van der Laan and Petersen, 2007),
natural stochastic policies in reinforcement learning
(Kallus and Uehara, 2020), and particularly interven-
tions that depend on the observational treatment pro-
cess (Munioz and van Der Laan, 2012; Haneuse and
Rotnitzky, 2013; Young et al., 2014); but none of the
existing intervention effects both avoids positivity con-
ditions entirely and is completely nonparametric.

We use the potential outcomes framework (Neyman,
1923; Rubin, 1974) to define causal effects. Let Y (a)
denote the potential outcome had the treatment a been
assigned. A policy d : X — {0,1} is deterministic
if it maps individual characteristics x to a treatment
assignment 0 or 1, and the output of a stochastic policy
d: X — [0,1] is the probability of assigning treatment
1. Let D denote a pre-specified class of policies of
interest, where each policy d € D induces the value
function defined by

V(d) = EY ()] = E[Y (Dd(X) + Y (0)(1 - d(X))]

where Y(d) is the potential outcome under the pol-
icy d. In Remark 1, we briefly review standard (de-
terministic) policy learning methods. In our frame-
work, we focus on dynamic and stochastic policies.
Our goal is to directly search for the optimal policy
d* that maximizes the value function V(d), possibly
under application-specific constraints ¢(d) < 0. See
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Section 4 for detailed examples.

2.1 Causal Assumptions

We make the following identification assumptions.
Assumption 1 (Consistency). ¥ =Y (A).

Assumption 2 (Unconfoundedness). 4 L Y(a) | X
fora=0,1.

Assumption 1 is also known as the stable unit treat-
ment value assumption, which says there should be no
multiple versions of the treatment and no interference
between units. Assumption 2 states that there are
no unmeasured confounders so that treatment assign-
ment is as good as random conditional on the covari-
ates X. In this article, we entirely avoid the positivity
assumption which requires that each unit has a posi-
tive probability of receiving both treatment levels, i.e.,
c<Pr(A=1|X) < 1-cfor some constant ¢ > 0.
Remark 1. Standard policy learning methods need all
of Assumptions 1, 2 and the positivity assumption
to identify the value function of deterministic poli-
cies d : X — A by the outcome regression (OR),
inverse probability weighting (IPW) and augmented
IPW (AIPW) formulas:

Vor(d) = E[E[Y | X, A = d(X)]],
{A=d(X)}Y
Pr(A=d(X) | X)} ’
Varpw(d) = E[E[Y | X, A = d(X)]+
A= dX)}(Y —E[Y | X,A= d(X)])}
Pr(A=d(X) | X) ’

Virw(d) = E

thus the optimal policies are given by dfp =
argmaxqep Vor(d), dipw = argmaxqep Virw(d),
and dipw = argmaxgep Varpw(d), possibly under
application-specific constraints. When the positivity
is violated, it is error-prone to rely on the outcome
regression model’s extrapolation, and the IPW and
ATPW estimators would fail due to division by zero.

2.2 Incremental Propensity Score Policies

Kennedy (2019) propose a new class of stochastic
dynamic intervention, called incremental propensity
score interventions, and show that these interventions
are nonparametrically identified without requiring any
positivity restrictions on the propensity scores. Specif-
ically, their proposed intervention replaces the obser-
vational propensity score w(x) = Pr(A=1| X = z)
with a shifted version based on multiplying the odds of
receiving treatment, d7(z)/{0m(z) + 1 — w(x)}, where
the increment parameter § € (0,00) is user-specified
and dictates the extent to which the propensity scores
fluctuate from their actual observational values. Some

motivation and examples, efficiency theory, and esti-
mators for mean outcomes under these interventions
are studied in detail by Kennedy (2019).

We propose a positivity-free (stochastic) policy learn-
ing framework based on the incremental propensity
score interventions.  Specifically, we consider the
stochastic policy d : X — [0,1] that assigns treatment
1 with probability

O(x)m(x)

UA) = @) + 1= n(a)

(1)

where §(z) enables individualized treatment assign-
ment. We note that the choice of d(z) in (1) is
motivated by its interpretability and positivity-free.
In particular, whenever 0 < 7(z) < 1, é(z) =
[d(x)/{1 —d(z)}]/[r(x)/{1 — 7(z)}] is simply an odds
ratio, indicating how the policy changes the odds of
receiving treatment. When positivity is violated, we
have that d(z) = 0 if w(z) = 0, and d(z) = 1 if
m(z) =1.

3 IDENTIFICATION AND
EFFICIENCY THEORY

3.1 Identification

We first give formal identification results for the
value function of incremental propensity score policies,
which require no conditions on the propensity scores.

Proposition 1 (Identification formulas). Under As-
sumptions 1 and 2, the value function V(d) can be
nonparametrically identified by the outcome regression
with incremental propensity score (OR-IPS) formula:

S(X)m(X)pua (X) + {1 = 7(X) o (X)

Vor-1ps(d) = FE
or-1rs(4) [ S(X)m(X) +1—m(X)

(2)
where uo(X) = E[Y | X,A = a],a = 0,1 are the
outcome regression functions or the inverse probability
weighting of incremental propensity score (IPW-IPS)
formula:

Y{5(X)A+1— A} } 3
S(X)r(X)+1-n(X)|

Vipw-1ps(d) = E [

In the potential outcomes framework, under non-
binary policy d, the law of Y (d) is given by: sample
X; compute d(X) and sample A from the Bernoulli
distribution with success probability d(X); set Y (d) =
Y (A). The value of d is then E[Y (d)] = E[Y (1)d(X)+
Y (0)(1 —d(X)]. In Equation (3), Y = Y(A). Proposi-
tion 1 shows that the value function can be identified
by (i) a weighted average of the outcome regression
functions pg, u1, where the weight on p; is given by

|\
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the incremental propensity score d(z) and the weight
on o is 1 — d(x); (ii) inverse probability weighting
where each treated is weighted by the (inverse of the)
propensity score plus some fractional contribution of
its complement, i.e., 7(z) + (1 — 7(z))/dé(x), and un-
treated units are weighted by this same amount, ex-
cept the entire weight is further down-weighted by a
factor of 0(x).

3.2 Efficient Off-policy Evaluation

Despite that simple plug-in OR-IPS and IPW-IPS es-
timators can be easily constructed from (2) and (3),
these estimators will only be /n-consistent when the
outcome regression or propensity score models are cor-
rectly specified. This is usually unrealistic in practice.
We use semiparametric efficiency theory to study the
following statistical functional of P from a nonpara-
metric statistical model M:

§(X)m(X)p (X) + {1 — m(X) }po(X)
S(X)m(X) +1—n(X) ’

U(P) = Ep

and propose efficient estimators based on the efficient
influence function.

Proposition 2 (Semiparametric Efficiency). The ef-
ficient influence function of W(P) is

ASXOLY = (X)) + (1 = ARY — po(X)}

#(P)O) = 5(X)m(X) + 1 — m(X)
L AT (X) + (1 (X))
I(X)m(X)+1—7m(X)
o IO =T}

{0(X)m(X) +1 - m(X)}?

where T(x) = p1(x) — po(x).

By Proposition 2, the one-step bias-corrected estima-
tor is given by

Vo = U(P) + P,¢(P)(0) =

where we estimate P by ]5, and let P, denote the em-
pirical distribution, and £(P)(0) = ¢(P)(O) + ¥(P)
is the uncentered efficient influence function. This es-
timator can converge at fast parametric y/n rates and
attain the efficiency bound, even when the propensity
score 7(x) and outcome regression functions pg, p1 are
modeled flexibly and estimated at rates slower than
\/n, as long as these nuisance functions are estimated
consistently at rates faster than n'/4.  This allows
much more flexible nonparametric methods and mod-
ern machine learning algorithms to be employed.

However, characterizing asymptotic properties of the
estimator (5) requires some empirical process condi-
tions that restrict the flexibility and complexity of the
nuisance estimators; otherwise, we will have overfitting
bias and intractable asymptotic behaviors. See the
asymptotic analysis in Section 5 and proofs thereof. To
accommodate the wide use of modern machine learn-
ing algorithms that usually fail to satisfy the required
empirical process conditions, we apply the cross-fitting
procedure to obtain asymptotically normal and effi-
cient estimators (Zheng and van der Laan, 2010; Cher-
nozhukov et al., 2018). Suppose we randomly split the
data into K folds. Then the cross-fitting estimator is

A LK | X
Fop = =S 0, = — SO P, kE(Py_1)(0), (6
CF K 2 k K}; KE§(Pn—x)(0), (6)

where P, ;. and P, _j denote the empirical measures
on data from the k-fold and excluding the k-fold, re-
spectively. That is, for k£ = 1,..., K, nuisance esti-
mators are constructed excluding the k-fold, and the
value function Uy, is evaluated on the k-th fold; finally,
the cross-fitting estimator is the average of the K value
estimators from K folds.

4 FROM EFFICIENT POLICY
EVALUATION TO LEARNING

In this section, we first present our proposed methods
for policy learning.

As discussed in Section 2, given a pre-specified pol-
icy class D (e.g., linear decision rules), we propose
estimating the optimal treatment assignment rule d
that solves (i) d = argmaxgep V(d), where V(d)
is a value function estimator by OR-IPS (2), IPW-
IPS (3), one-step (5) or cross-fitting (6); or (ii)
d = argmaxgep V(d) subject to é(d) < ¢, when an
application-specific constraint ¢(d) < ¢ is imposed, and
¢(d) is a constraint estimator which usually needs to
be studied on a case-by-case basis.

We first review important examples of policy learning
that fit into our framework.

Vanilla direct policy search. The first example is
what most existing work on policy learning has focused
on, primarily for deterministic policies with a binary
treatment. When the policy class is unrestricted, the
optimal treatment assignment rule depends on the sign
of the conditional average treatment effect for each in-
dividual unit, which cannot be extended to stochastic
policies. Our proposed optimal incremental propensity
score policies maximize the value function.

Fair policy learning. In many decision-making
scenarios, such as hiring, recommendation systems,
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and criminal justice, concerns have been raised re-
garding the fairness of decisions from the learning
process (Chzhen et al., 2020). Let S € S denote
the sensitive attribute. For randomized predictions
f: X xS — A(A), popular fairness criteria include
(i) demographic parity (DP) (Calders et al., 2009):
E[f(X,S) | S = s = E[f(X,S) | S = §],Vs,s €
S, which says that f(X,S) is independent from S,
or (ii) equal opportunity (EO) (Hardt et al., 2016):
E[f(X.8) | S = 5,4 = a] = E[f(X,S) | S = &/, A =
al,Vs,s" € S,a € A, which requires equal true positive
and true negative rates. Following the same spirit, we
consider fair policy learning tasks as the constrained
optimization problem:

j <
max V(d), subject to m(d) < b,

where m(d) is either the DP or EO metrics, which can
be estimated by

1/2
. T d(X0)I{Si=s O
mDP(d) = (ZSES (ZZ?:I I{Si{:s} : - = n ) ) )

or

1/2
. - SR dX)I{Si=s,Ai=1} S d(X){Ai=1}) 2
fgo(d) = <Zse$< ST TS AT S AT ) > .

and b is a pre-specified tuning parameter.

Resource-limited policy learning. In many real-
world applications, the proportion of individuals who
can receive the treatment is a priori limited due to
a budget or a capacity constraint. So we consider
the resource-limited policy learning tasks as the con-
strained optimization problem:

max V' (d), subject to E[d] <,
deD

where b is the pre-specified budget or capacity.

Protect the vulnerable. Since the optimal policy
is typically defined as the maximizer of the expected
potential outcome over the entire population, such
a policy may be suboptimal or even detrimental to
certain disadvantaged subgroups. Fang et al. (2022)
propose the fairness-oriented optimal policy learning
framework:

max V(d), subject to Q. (Y (d)) > b,

where Q,(Y(d)) = inf{t Fyt) > 7} is
the 7-th quantile of Y'(d), Fy(4 denotes the cu-
mulative distribution function of Y(d), and b is a
pre-specified protection threshold. Note that the
quantile function can be estimated by Q,(Y(d)) =
argmingn~ 'Y | ¢;(d)p,(Yi — q), where pr(u) =
u(t — I{u < 0}) is the quantile loss function, and
ci(d) = Ayd(X;) + (1 — Ay)(1 — d(X3)).

Other examples in the literature include the counter-
factual no-harm criterion by the principal stratifica-
tion method (Li et al., 2023), (weakly) NP-hard knap-
sack problem (Luedtke and van der Laan, 2016a), and
instrumental variable methods (Qiu et al., 2021).

5 ASYMPTOTIC ANALYSIS OF
POLICY EVALUATION AND
LEARNING

In this section, we first characterize the asymptotic dis-
tributions of our proposed one-step estimator (5) and
the cross-fitted estimator (6) for off-policy evaluation.

Theorem 1. Assume the following conditions hold:
@) l17@@) = (@), X llita = pallz, = 0p(n="/2) for
a = 0,1; (ii) ¢(P) belongs to a Donsker class; (iii)
|Y[ and [0(X)| are bounded in probability. For the
one-step estimator, we have that \/n(¥os — V(P)) —
N(0, E[¢?%).

Theorem 2. Assume the following conditions hold:
@) 17(z) = 7(@)llz, X llfta = pallze = 0p(n="/%) for
a=0,1; (i) |Y| and |6(X)| are bounded in probability.
For the cross-fitting estimator, we have that \/n(Vcr—
U(P)) = N(0, E[¢?%).

Condition (i) of Theorems 1 and 2 is commonly as-
sumed such that the second-order remainder term
is 0p(1) (Kennedy, 2022). Condition (ii) of Theo-
rems 1 ensures the centered empirical process term
is 0,(1). Condition (iii) of Theorems 1 and condition
(ii) of Theorems 2 are mild regularity conditions. The
asymptotic variance of the one-step estimator can be
consistently estimated by + 3" | ¢? (P)(0;), and the
asymptotic variance of the cross-fitting estimator can
be consistently estimated by - Zle Pk *(P_1)(O).

Next, we prove asymptotic guarantees for the following
generic off-policy learning problem:

. _ S <
max V(d), subject to é(d) < ¢,

where V(d) is a value estimator of our proposed incre-
mental propensity score policies, é(d) is an estimate of
the constraint, and c¢ is a pre-specified criterion.

Consider a parametric policy class D(H) indexed by
n € H, where H is a compact set. Let n* denote the
true Euclidean parameter indexing the optimal policy.
To simplify the notation, for d(z;n) € D(H), we define
V(n) = V(d(z;n)) and c(n) = c(d(z;n)).

Theorem 3. Assume the following conditions hold:
(i) d(z;m) is a continuously differentiable and convex
function with respect to n; (ii) f/(n) and ¢(n) converge
to V(n) and c(n) at rates /n. We have that (i) V(7)) —
V(") = Op(n="2); (i) V() = V() = Op(n="/?).
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Theorem 4. Assume the following conditions hold:
(i) D is a Glivenko—Cantelli class; (ii) #(x) and fiq(z)
are uniformly consistent estimators of w(x) and pq(x)
for a =0,1; (iii) Vd € D, m € (0,1), it follows that
md € D. We have that (i) V(d) — V(d) = 0,(1); (ii)
V(d) = V(d) = op(1).

Theorem 3 and 4 follow a well-known canvas in the
stochastic off-policy learning literature (Shapiro, 1991;
Li et al., 2023). Theorem 3 (i) establishes that the re-
gret of the learned policy attains the convergence rate
of n=Y2 and (ii) shows that V(7)) is a \/n-consistent
estimator of the optimal value function for paramet-
ric and convex policy classes under mild assumptions.
Theorem 4 (i) establishes that the regret of the learned
policy vanishes, and (ii) shows V(7)) is still a consistent
estimator for GC classes.

6 EXPERIMENTS

In this section, we conduct extensive experiments to
evaluate the performance of our proposed positivity-
free policy learning methods by comparison with stan-
dard policy learning methods. Replication code is
available at GitHub.

6.1 Simulation

We consider the fair policy learning task under the
demographic parity constraint and simulate

S ~ Bernoulli(0.5), (X1, X2, X3) ~ Uniform(0, 1),

A ~ Bernoulli(expit(—1 — X; + 1.5X2 — 0.25X3 — 3.15)),

Y (0) ~ N{20(1 + X1 — X2 + X3 + exp (X2)),20%},
Y (1) ~ N{20(1 + X1 — X2 + X3 + exp (X2))+
25(3 — 5X1 +2X2 — 3X3 + 5),20°},

where expit : © — 1/(1 + exp(—z)). We let S de-
note the sensitive attribute and X7, Xo, X3 the com-
mon non-sensitive attributes. The treatment assign-
ment mechanism yields variable propensity scores that
can degrade the performance of weighting-based esti-
mators in standard policy learning methods. Specifi-
cally, half propensity scores are smaller than 0.06. For
standard methods, we consider the policy class of lin-
ear rules Dipear = {d(s,z) = I{(1,s,21,22,23)8 >
0} : B € RS |Bll2 = 1}. For the incremen-
tal propensity score policies, we consider the class
DIPS = {d(s, l‘) = 6(57 €T ﬁ)ﬂ-(sa .13)/{(5(8, €T, B)TF(S, x) +
1—m(s,z)} : B € R}, which is indexed by (s, z; 3) =
exp {(1,s,x1,x2,23)8}.

We estimate the outcome regression model p(s, ) and
the propensity score 7 (s, z) using the generalized ran-
dom forests (Athey et al., 2019) implemented in the R
package grf. The constrained optimization problems

are solved by the derivative-free linear approximations
algorithm (Powell, 1994), implemented in the R pack-
age nloptr. The sample size is n = 1000, and the
demographic parity threshold is 7 = 0.01. Note that
the policy learning approach where the optimal pol-
icy is directly determined by the conditional average
treatment effects cannot fit into our stochastic policy
learning framework since it fails to satisfy the con-
straint such as fairness.

We compare the true values of the estimated optimal
policies using test data with sample size N = 10°.
On the test data where the counterfactual outcomes
are known, we use the same derivative-free linear ap-
proximations algorithm and solve the constrained op-
timization problem to approximate the true optimal
value. Simulation results of 100 Monte Carlo repeti-
tion are reported in Figure la. When some estimated
propensity scores are exactly 0, the IPW and AIPW
estimators would fail, and NA is returned. The OR
estimator can wrongly extrapolate. Three standard
methods IPW, OR, and ATPW have the worst perfor-
mance. The IPW-IPS estimator also has large vari-
ability, which is similarly reported in Kennedy (2019).
The OR-IPS and efficient one-step estimators achieve
the best performance with the highest value.

We also observe the presence of lower outliers for all
the methods when subjected to positivity violation.
This indicates a degree of instability in the derivative-
free linear approximations algorithm employed in our
stochastic policy learning tasks. Addressing this is-
sue, we acknowledge the need for future research to
develop more robust optimization algorithms tailored
specifically to our proposed methods.

Additional simulation results are given in Section G
of the Supplementary Material. Specifically, we illus-
trate that our proposed policy learning methods have
comparable performance when there is no positivity
violation, and also illustrate the better performance of
our proposed methods when using parametric models.

6.2 Data Application

We illustrate our proposed methods using semi-
synthetic data from the Fairlearn open source
project (Weerts et al., 2023). Additional information
on our data analysis is provided in Section H of the
Supplementary Material.

The Diabetes dataset represents ten years (1999-2008)
of clinical care at 130 US hospitals and integrated
delivery networks (Strack et al., 2014), and contains
hospital records of patients diagnosed with diabetes
who underwent laboratory tests and medications and
stayed up to 14 days. Our application aims to learn
the optimal policy for prescribing diabetic medication
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Figure 1: Performance of optimal policies under three
standard methods (IPW, OR, AIPW) and our pro-
posed three methods (IPW-IPS, OR-IPS, One-step).
The blue line is the (approximate) true optimal value.

by maximizing the expected outcome under the demo-
graphic parity constraint. The sensitive attribute is
race, and we assess the positivity violation from the ob-
servation that many of the estimated propensity scores
are very close to 0.

We include 7 baseline covariates: race, gender,
age, time_in hospital (number of days between
admission and discharge), num_-lab_procedures
(number of lab tests performed during the en-
counter), nummedications (number of distinct
generic names administered during the encounter)
and number_diagnoses (number of diagnoses). Un-
der positivity violation, we are unable to identify
the value function, e.g. relying on the outcome
regression’s extrapolation to learn the counterfactual
outcomes on test data. Thus the potential outcomes
are simulated as follows: Y (0) ~ N{20(1 + gender —

age + time_in hospital + num_lab_procedures +
num medications + num medications? +
exp (number diagnoses)),20%}, and Y(1) ~
N{20(1 + gender — age + time_in hospital -+
num_lab_procedures + num-medications +
num medications?+exp (number_diagnoses))+25(3—
dage + 2time_in hospital — Jnum medications +
race),20%}. The estimation setup and policy classes
are the same as previous simulations. The constrained
optimization problems are solved by the derivative-
free linear approximations algorithm, implemented
in the R package nloptr. We run 50 repetitions;
each time we randomly select 500 patients as training
data to learn the optimal policy and 2000 patients
as test data to evaluate the performance. Empirical
results are reported in Figure 1b. When the positivity
violation is severer, the IPW estimator has extremely
large variability, and we also observe that our pro-
posed methods perform consistently better than the
standard methods.

7 DISCUSSION

This article proposes a general positivity-free stochas-
tic policy learning framework using observational data,
possibly subject to application-specific constraints.
There are several interesting directions for future re-
search. It is relevant to extend our methods to the
more general case with multiple time points for treat-
ment assignment, multiple treatment levels, or high-
dimensional models (Wei et al., 2023; Sarvet et al.,
2023), where positivity is even more likely to be vio-
lated. The incremental propensity score approach can
also be extended to account for common issues such as
covariate shift (Zhao et al., 2023; Lei et al., 2023), cen-
soring and dropout (Cui et al., 2023), and truncation
by death (Chu et al., 2023).

Acknowledgements

Pan Zhao and Julie Josse are supported in part by
the French National Research Agency ANR-16-IDEX-
0006. Shu Yang is partially supported by NSF SES
2242776, NIH 1R01AG066883 and 1RO1ES031651.

References

Susan Athey and Stefan Wager. Policy learning with
observational data. FEconometrica, 89(1):133-161,
2021.

Susan Athey, Julie Tibshirani, and Stefan Wager. Gen-
eralized random forests. The Annals of Statistics,
47(2):1148 — 1178, 2019. doi: 10.1214/18-A0S1709.
URL https://doi.org/10.1214/18-A0S1709.

Aurélien Bibaut, Nathan Kallus, Maria Di-


https://doi.org/10.1214/18-AOS1709

Positivity-free Policy Learning with Observational Data

makopoulou, Antoine Chambaz, and Mark van
Der Laan. Risk minimization from adaptively
collected data: Guarantees for supervised and
policy learning. Advances in neural information
processing systems, 34:19261-19273, 2021.

Peter J Bickel, Chris AJ Klaassen, Peter J Bickel,
Ya’acov Ritov, J Klaassen, Jon A Wellner, and
YA’Acov Ritov. Efficient and adaptive estimation

for semiparametric models, volume 4. Springer,
1993.

Zach Branson, Edward H Kennedy, Sivaraman Balakr-
ishnan, and Larry Wasserman. Causal effect estima-
tion after propensity score trimming with continu-
ous treatments. arXiw preprint arXiv:2309.00706,
2023.

Toon Calders, Faisal Kamiran, and Mykola Pech-
enizkiy. Building classifiers with independency con-
straints. In 2009 IEEE international conference on
data mining workshops, pages 13—18. IEEE, 2009.

Victor Chernozhukov, Denis Chetverikov, Mert
Demirer, Esther Duflo, Christian Hansen, Whitney
Newey, and James Robins. Double/debiased ma-
chine learning for treatment and structural param-
eters. The Econometrics Journal, 21(1):C1-C68, 01
2018. ISSN 1368-4221.

Jianing Chu, Shu Yang, and Wenbin Lu. Multiply ro-
bust off-policy evaluation and learning under trun-
cation by death. In Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceed-
ings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pages 6195-6227. PMLR,
23-29 Jul 2023.

Evgenii Chzhen, Christophe Denis, Mohamed Hebiri,
Luca Oneto, and Massimiliano Pontil. Fair regres-
sion with wasserstein barycenters. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing
Systems, volume 33, pages 7321-7331. Curran Asso-
ciates, Inc., 2020.

Mayleen Cortez, Matthew Eichhorn, and Christina
Yu. Staggered rollout designs enable causal infer-
ence under interference without network knowledge.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages
7437-7449. Curran Associates, Inc., 2022.

Yifan Cui, Ruoqing Zhu, and Michael Kosorok. Tree
based weighted learning for estimating individual-
ized treatment rules with censored data. Electronic
journal of statistics, 11(2):3927, 2017.

Yifan Cui, Michael R Kosorok, Erik Sverdrup, Ste-
fan Wager, and Ruoqing Zhu. Estimating hetero-
geneous treatment effects with right-censored data
via causal survival forests. Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology, 85
(2):179-211, 2023.

Miroslav Dudik, Dumitru Erhan, John Langford, and
Lihong Li. Doubly robust policy evaluation and op-
timization. Statistical Science, 29:485-511, 2014.

Ethan X Fang, Zhaoran Wang, and Lan Wang.
Fairness-oriented learning for optimal individualized
treatment rules. Journal of the American Statistical
Association, pages 1-14, 2022.

Dylan J Foster and Vasilis Syrgkanis. Orthogonal sta-
tistical learning. The Annals of Statistics, 51(3):
879-908, 2023.

Lin Gui and Victor Veitch. Causal estimation for text
data with (apparent) overlap violations. In Inter-
national Conference on Learning Representations,
2023.

Sebastian Haneuse and Andrea Rotnitzky. Estimation
of the effect of interventions that modify the received
treatment. Statistics in medicine, 32(30):5260-5277,
2013.

Moritz Hardt, Eric Price, and Nati Srebro. Equality
of opportunity in supervised learning. Advances in
neural information processing systems, 29, 2016.

Guido W Imbens and Donald B Rubin. Causal in-
ference in statistics, social, and biomedical sciences.
Cambridge University Press, 2015.

Zeyang Jia, Eli Ben-Michael, and Kosuke Imai.
Bayesian safe policy learning with chance con-
strained optimization: Application to military se-
curity assessment during the vietnam war. arXiv
preprint arXiw:2307.08840, 2023.

Ying Jin, Zhimei Ren, Zhuoran Yang, and Zhaoran
Wang. Policy learning “without” overlap: Pes-
simism and generalized empirical bernstein’s in-
equality. arXiv preprint arXiv:2212.09900, 2022.

Nathan Kallus and Miruna Oprescu. Robust and ag-
nostic learning of conditional distributional treat-
ment effects. In International Conference on Arti-
ficial Intelligence and Statistics, pages 6037—6060.
PMLR, 2023.

Nathan Kallus and Masatoshi Uehara.  Efficient
evaluation of natural stochastic policies in of-

fline reinforcement learning. arXiv preprint
arX1w:2006.03886, 2020.

Nathan Kallus and Angela Zhou. Confounding-robust
policy improvement. Advances in neural informa-
tion processing systems, 31, 2018.



Pan Zhao, Antoine Chambaz, Julie Josse, Shu Yang

Edward H Kennedy. Nonparametric causal effects
based on incremental propensity score interventions.
Journal of the American Statistical Association, 114
(526):645-656, 2019.

Edward H Kennedy. Semiparametric doubly robust
targeted double machine learning: a review. arXiv
preprint arXiv:2203.06469, 2022.

Edward H. Kennedy, Sivaraman Balakrishnan, and
Max G’Sell. Sharp instruments for classifying com-
pliers and generalizing causal effects. The Annals of
Statistics, 48(4):2008 — 2030, 2020.

Samir Khan, Martin Saveski, and Johan Ugander.
Off-policy evaluation beyond overlap: partial iden-
tification through smoothness. arXiv preprint
arXiv:2305.11812, 2023.

Soren R Kiinzel, Jasjeet S Sekhon, Peter J Bickel, and
Bin Yu. Metalearners for estimating heterogeneous
treatment effects using machine learning. Proceed-

ings of the national academy of sciences, 116(10):
4156-4165, 2019.

Carolin Lawrence, Artem Sokolov, and Stefan Riezler.
Counterfactual learning from bandit feedback under
deterministic logging: A case study in statistical ma-
chine translation. arXiv preprint arXiw:1707.09118,
2017.

Lihua Lei, Roshni Sahoo, and Stefan Wager.
icy learning under biased sample selection.
preprint arXiw:2304.11735, 2023.

Haoxuan Li, Chunyuan Zheng, Yixiao Cao, Zhi Geng,
Yue Liu, and Peng Wu. Trustworthy policy learn-
ing under the counterfactual no-harm criterion. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages
20575-20598. PMLR, 23-29 Jul 2023.

Yi Liu, Huiyue Li, Yunji Zhou, and Roland
Matsouaka. Average treatment effect on the
treated, under lack of positivity. arXiv preprint
arXiv:2309.01334, 2023.

Alexander R Luedtke and Mark J van der Laan. Op-
timal individualized treatments in resource-limited
settings. The international journal of biostatistics,
12(1):283-303, 2016a.

Alexander R Luedtke and Mark J van der Laan. Sta-
tistical inference for the mean outcome under a pos-
sibly non-unique optimal treatment strategy. Annals
of statistics, 44(2):713, 2016b.

Ivan Diaz Munoz and Mark van Der Laan. Popula-
tion intervention causal effects based on stochastic
interventions. Biometrics, 68(2):541-549, 2012.

Pol-
arXiv

Susan A Murphy. Optimal dynamic treatment
regimes. Journal of the Royal Statistical Society Se-
ries B: Statistical Methodology, 65(2):331-355, 2003.

Susan A Murphy, Mark J van der Laan, James M
Robins, and Conduct Problems Prevention Research
Group. Marginal mean models for dynamic regimes.
Journal of the American Statistical Association, 96

(456):1410-1423, 2001.

Jersey Neyman. Sur les applications de la théorie
des probabilités aux experiences agricoles: Essai des
principes. Roczniki Nauk Rolniczych, 10(1):1-51,
1923.

Xinkun Nie and Stefan Wager. Quasi-oracle estimation
of heterogeneous treatment effects. Biometrika, 108
(2):299-319, 2021.

Michael JD Powell. A direct search optimization
method that models the objective and constraint
functions by linear interpolation. Springer, 1994.

Hongxiang Qiu, Marco Carone, Ekaterina Sadikova,
Maria Petukhova, Ronald C Kessler, and Alex
Luedtke. Optimal individualized decision rules us-
ing instrumental variable methods. Journal of the
American Statistical Association, 116(533):174-191,
2021.

Donald B Rubin. Estimating causal effects of treat-
ments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

Aaron L. Sarvet, Kerollos N. Wanis, Jessica G. Young,
Roberto Hernandez-Alejandro, and Mats J. Sten-
srud. Longitudinal Incremental Propensity Score
Interventions for Limited Resource Settings. Bio-
metrics, 79(4):3418-3430, 03 2023. ISSN 0006-341X.
doi: 10.1111/biom.13859. URL https://doi.org/
10.1111/biom. 13859.

Jasjeet S Sekhon and Walter R Mebane. Genetic op-
timization using derivatives. Political Analysis, 7:
187-210, 1998.

Alexander Shapiro. Asymptotic analysis of stochastic
programs. Annals of Operations Research, 30:169—
186, 1991.

Chengchun Shi, Ailin Fan, Rui Song, and Wenbin Lu.
High-dimensional A-learning for optimal dynamic
treatment regimes. The Annals of Statistics, 46(3):
925 — 957, 2018.

Beata Strack, Jonathan P DeShazo, Chris Gennings,
Juan L Olmo, Sebastian Ventura, Krzysztof J Cios,
John N Clore, et al. Impact of hbalc measurement
on hospital readmission rates: analysis of 70,000
clinical database patient records. BioMed research
international, 2014, 2014.


https://doi.org/10.1111/biom.13859
https://doi.org/10.1111/biom.13859

Positivity-free Policy Learning with Observational Data

Jin Tian. Identifying dynamic sequential plans. In Pro-
ceedings of the Twenty-Fourth Conference on Uncer-
tainty in Artificial Intelligence, 2008.

Anastasios A Tsiatis, Marie Davidian, Shannon T
Holloway, and Eric B Laber. Dynamic treatment
regimes: Statistical methods for precision medicine.
CRC press, 2019.

Masatoshi Uehara, Chengchun Shi, and Nathan
Kallus. A review of off-policy evaluation in reinforce-
ment learning. arXiv preprint arXiw:2212.06355,
2022.

Mark J van der Laan and Maya L Petersen. Causal
effect models for realistic individualized treatment
and intention to treat rules. The international jour-
nal of biostatistics, 3(1), 2007.

Mark J van der Laan and James M Robins. Unified
methods for censored longitudinal data and causal-
ity. Springer, 2003.

Mark J van der Laan, Sherri Rose, et al. Targeted
learning: causal inference for observational and ex-
perimental data, volume 4. Springer, 2011.

Giancarlo Visconti and José R Zubizarreta. Handling
limited overlap in observational studies with cardi-
nality matching. Observational Studies, 4(1):217-
249, 2018.

Stefan Wager and Susan Athey. Estimation and infer-
ence of heterogeneous treatment effects using ran-
dom forests. Journal of the American Statistical
Association, 113(523):1228-1242, 2018.

Hilde Weerts, Miroslav Dudik, Richard Edgar, Adrin
Jalali, Roman Lutz, and Michael Madaio. Fair-
learn: Assessing and improving fairness of ai sys-
tems. Journal of Machine Learning Research, 24
(257):1-8, 2023.

Waverly Wei, Yuqing Zhou, Zeyu Zheng, and Jing-
shen Wang. Inference on the best policies with many

covariates. Journal of Econometrics, page 105460,
2023. ISSN 0304-4076.

Shu Yang and Peng Ding. Asymptotic inference of
causal effects with observational studies trimmed by
the estimated propensity scores. Biometrika, 105
(2):487-493, 03 2018. URL https://doi.org/10.
1093/biomet/asy008.

Jessica G Young, Miguel A Hernan, and James M
Robins. Identification, estimation and approxima-
tion of risk under interventions that depend on the
natural value of treatment using observational data.
Epidemiologic methods, 3(1):1-19, 2014.

Christina Lee Yu, Edoardo M Airoldi, Christian Borgs,
and Jennifer T Chayes. Estimating the total treat-
ment effect in randomized experiments with un-
known network structure. Proceedings of the Na-

tional Academy of Sciences, 119(44):¢2208975119,
2022.

Baqun Zhang, Anastasios A Tsiatis, Eric B Laber, and
Marie Davidian. A robust method for estimating
optimal treatment regimes. Biometrics, 68(4):1010-
1018, 2012.

Yugian Zhang, Abhishek Chakrabortty, and Jelena
Bradic. Semi-supervised causal inference: General-
izable and double robust inference for average treat-
ment effects under selection bias with decaying over-
lap. arXiv preprint arXiv:2305.12789, 2023.

Pan Zhao and Yifan Cui. A semiparametric instru-
mented difference-in-differences approach to policy
learning. arXiv preprint arXiw:2310.09545, 2023.

Pan Zhao, Julie Josse, and Shu Yang. Efficient and
robust transfer learning of optimal individualized
treatment regimes with right-censored survival data.
arXiww preprint arXiv:2301.05491, 2023.

Wenjing Zheng and Mark J. van der Laan. Asymp-
totic theory for cross-validated targeted maximum
likelihood estimation. Working Paper Series Work-
ing Paper 273, U.C. Berkeley Division of Biostatis-
tics, November 2010. URL https://biostats.
bepress.com/ucbbiostat/paper273.

Zhengyuan Zhou, Susan Athey, and Stefan Wager.
Offline multi-action policy learning: Generalization
and optimization. Operations Research, 71(1):148—
183, 2023.


https://doi.org/10.1093/biomet/asy008
https://doi.org/10.1093/biomet/asy008
https://biostats.bepress.com/ucbbiostat/paper273
https://biostats.bepress.com/ucbbiostat/paper273

Pan Zhao, Antoine Chambaz, Julie Josse, Shu Yang

A Proof of Proposition 1

The proof of our identification results is straightforward, following similar arguments in Kennedy (2019). First,
we prove the OR-IPS formula:

[
[
[ElY 1)d(X) ( )( d(X)) | X]]
[
[

5(X ) 1—n(X)
(X>ﬂ1(X)

)+{1 — (X)) }po(X)
(5 X)+1—7T(X>

+
=

=0
s

Next, we prove the IPW-IPS formula:

Y{5(X)A+1— A}
LXX)?T(X) +1- 7T(X)}

T Y A5(X) Y(1— 4)
o (X )m(X)+1—7(X) (5(X)7T(X)+1—7T(X)]
_E Y (1)As(X) n Y(0)(1—A) ]
X)+1—7T(X) O(X)m(X)+1—n(X)
A5(X) Y(0)(1 — A)
= E[ax B+ 1 2x ) S >>(+1w<X>'X”
:E- [(A|X]( ) n E[Y(0)(1 - )|X]]

(X)) X)+1—-7(X) d(X)n(X)+1—7(X)

[ E[A] X]6(X) E[(1-A) | X]
=Y YOS w1 - W(X)}
= E[E[Y(1)d(X) + Y (0)(1 - d(X)) | X]]

— V().

B Proof of Proposition 2

We derive the efficient influence function for the following statistical functional:

S(X)m(X)pa (X) + {1 — 7(X) }puo (X)
(X)m(X)+1—7(X)

U(P) = Ep

For a given distribution P in the nonparametric statistical model M, we let p denote the density of P with respect
to some dominating measure v. For all bounded h € Ly(P), define the parametric submodel p. = (14¢€h)p, which
is valid for small enough ¢ and has score h at € = 0. We would establish that ¥(P) is pathwise differentiable
with respect to M at P with efficient influence function ¢(P) if we have that for any P € M,

— / 6(P)(0)h(0)dP (o).
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We denote m(z) = Ep,[A| X = x], plae(2) = Ep.[Y | X =2, A=a], S = dlogp./0e, and can compute

LS P L6 LS VESER L EL G TS [
g o et
S PUESLESTHESERUER S ES)
+Ep | srmmer T (g +m(ngm0| )]
+Er | s e (b0 =m0 )]
e e ey (0gem0| e )]

Then we need to compute

2 _QW(X)+6EP[SA|X]
aeﬂ—E(X) =0 o Oe 1 +€EP[S | X] e=0
= Ep[SA | X] — n(X)Ep[S | X]
= Ep[S(A— (X)) | X],
and for a = 0,1,
| = 2 palX) + eEpISY | X, A=)
o' T o 1+eBplS|X,A=d |,

= EP[SY | X7A = a} _Ma(X)EP[S | X’A = (l]
= Ep[S(Y — pa(X)) | X, A = a].

Combining the above derivations, we obtain that

o(PY(0) = ALY = (O} + (1= Y — jro(X)} + () m(X)pm1 (X) + {1 = w(X)hyao(X)
X)m(X) +1—-7(X)
S(X)T(X){A—-n(X)}

i {5(X)m(X)+1—7(X)}? —¥(P),

which yields the result.

C Proof of Theorem 1

We first outline the inferential strategy from semiparametric theory. Consider a statistical model M for distri-
butions P, with P denoting the true distribution. Under sufficient smoothness conditions, we have the following
von Mises expansion for ¥(P):

U(P /gb +Rem(P pP),

where ¢(P) is the influence function derived in Section B such that [ ¢(P)(0o)dP(0) = 0, and Rem(P, P) =
O(||P — P||?) is a second-order reminder term that we will analyze later.

Let P be an estimator of P, then we obtain the following one-step estimator of ¥(P):

U =U(P) +/¢>(]5)(o)dP (0)
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where P, is the empirical distribution.

Next, we characterize the asymptotic properties of U. Note that

N N Pt
:{\IJP —szP +/¢>P )(0)dP, (o)
/¢ 0)dP(0) + Rem(P, P) /¢ (0)dP, (o)
/ 6(P)(0)d{Py(0) — P(0)} + Rem(P, P)
— [aP)oap.o) + / [6(P)(0) ~ 6(P)(0) } d{Pa(0) — P(0)) + Rem(P, P).
Therefore, /1 {\1/ - \II(P)} is expressed as the following three terms:
Va{t =)} = v [ o(P)dr. ()
+vin [ {o(P)o) - 6(P)0)} a{Puo) - P(0)}

+ v/nRem(P, P).

By the central limit theorem, /n [ ¢(P)(0)dP, (o) is asymptotically normal with the asymptotic variance given
by E[¢*(P)(0)].

We assume that ¢(P) belongs to a Donsker class, so we have that the centered empirical process
Vit [ {a(P)0) = 6(P)0)} d{Pu0) - PO} = 0,(1).

Finally, we characterize the second-order remainder term:

Rem(P, P) = (P) — ¥(P) + Ep[¢(P)(O)].

We have that

S(X)m(X)pa (X) + {1 — 7(X) ppuo(X)
w(P) = Er [ ()T (X) + 1= 7(X) =
and

Ep[6(P)(0)]
_ B, [A5(X){Y — (X))} + (1= AY — (X))} + 0(X)7(X) a1 (X) + {1 = #(X) }f1o(X)

O(X)m(X)+1—7(X)
R £ T A0 ~ v
Combining the derivations above, we have that
[Rem (P, P)| < Cullfin(X) = i (X) | x [7(X) = m(X)|
+ O fio(X) = po(X)| 2, X [17(X) = 7(X)]|
+ C3|7(X) = (X2,

where Cy, Cy and Cy are O,(1). We assume that ||7(z) — 7(2)||r, = 0p(n=%), and ||jia — ptallz, = 0p(n=1/*)
for a = 0,1. Therefore, we have that v/nRem(P, P) = 0,(1). That is, we conclude that

Vi {¥ —w(P)} - N (0. E[g*(P)(O))).

which completes the proof.
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D Proof of Theorem 2

Essentially, we need to prove that the centered empirical process is 0,(1), when we avoid Donsker conditions by
using the cross-fitting technique. We first review a useful lemma from Kennedy et al. (2020).

Lemma 1. Consider two independent samples O1 = (O1,...,0,) and Oy = (Opt1,...,0nN) drawn from the
distribution P. Let f(0) be a function estimated from Os, and P, the empirical measure over Oy, then we have

(B, ~B)(f ~ 1) = O (w) |

Proof. First note that by conditioning on O, we obtain that

E{P.(f~ /)| O:} =E(f - 1 02) =P(f - f),

and the conditional variance is
var (B, ~B)(f ~ 1) 02} = var{Bo(f — £)|Os} = ~var(f — £102) < |1 = fI/n,

therefore by the Chebyshev’s inequality we have that

P{I( P)(f — f)l_t} EH( P)(f — f>|_t‘02}
1f = f112/n 1f = fI2/m

thus for any € > 0 we can pick t = 1/4/e so that the probability above is no more than e, which yields the
result. O

1
ﬁ7

<

Next, we characterize the asymptotic properties of the cross-fitted estimator Uop. Following similar steps as
Section C, we have that

vi{bor = w(P)} = vir [ o(P)0)iP(0)+ = kfj V(R + i),
where Ry,; = [ {¢(P,k)(o) - ¢(P)(o)} d{P, 1(0) — P(0)}, Ry = Rem(P_y, P).
We note that
Ris = [ {6(P-0)(0) - 6(P)(0)} d{Pas(o) ~ Plo))
— [{eP-00) - )0} d{Pusto) - P}
where £(P)(0) = ¢(P)(0) + U(P), and by Lemma 1, we have that

ViR = 0, (I€(P-i) = €(P) 1. )

Note that
5(15—k)(0) £(P)(0)
MY — (X0} + (1= Y — (X)) ASCOLY — s ()} + (1= )Y — uo(X)}
(X)m(X)+1—7(X) I(X)m(X) +1—-7(X)
L OG0T (X) + (1= 7(X)ho(X) SR (X) + {1~ 7(X)ho(X)
O(X)m(X)+1—n(X) O(X)m(X)+1—n(X)
L &) rEO{A—a(X)} | SX)T(X{A — m(X)}
{(X)n(X)+1—-7(X)}2 {6(X)n(X)+1—nm(X)}?’
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and we assume that |Y| and |§(X)| are bounded in probability. By the triangle and Cauchy-Schwarz inequalities,
we have that

1E(P-1) = (P2 < Cr—lliio,—k(X) = po(X) 2z + Copllfin,—1(X) = p1 (X)) £,
+ G k|7 (X) = 7(X) |,

where Cy_y, Cy_i and O3y, are O,(1). We assume that ||7(z) — 7(x)||z, = op(n~4), and ||fta — ptallr, =
0,(n1/4) for a = 0, 1. Therefore, we have that /nRy1 = 0,(1).

By the same arguments as Section C, we have that /ngRy 2 = 0,(1). That is, we conclude that

Vi {er — W(P)} = N(0. E[$*(P)(O))).

which completes the proof.

E Proof of Theorem 3

In this section, we consider a parametric policy class D(H) indexed by n € H. That is, the off-policy learning
task is given by the following optimization problem:

* 174 ,
0" = argmax V()
subject to  ¢(n) <0,
and the estimated policy is given by
A V ,
7] = arg max (n)
subject to  &(n) < 0.

We first review a useful lemma from Shapiro (1991).

Lemma 2. Let H be a compact subset of R*. Let C(H) denote the set of continuous real-valued functions on
H, with L= C(H) X ---x C(H) the r-dimensional Cartesian product. Let f(n) = (fo,..., fr) € L be a vector of
convez functions. Consider the quantity n* defined as the solution to the following convexr optimization program:

T =argmin fo(n),

subject to f;(n) <0,j=1,...,r.

Assume that Slater’s condition holds, so that there is some n € H for which the inequalities are satisfied and
non-affine inequalities are strictly satisfied, i.e. f;(n) < 0 if f;j(n) is non-affine. Now consider a sequence of
approximating programs, forn =1,2,...:

T = arg min fr0(n),
subject to fn,j(n) <0,5=1,...,m

with fn(n) = (fn,o, .. .,fmr) € L. Assume that r(n) (fn — f) converges in distribution to a random element
W e L for some real-valued function f(n). Then

r(0) (Fuom)(in) = fo(n")) = L.
for a particular random variable L. It follows that fn 0(n)(in) — fo(n*) = Op(1/r(n)).

By Theorem 1 or 2, we have that

Vi (Vi) = V) = <= 30 6v(0sin) +0,(0).
i=1
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and by condition (ii), we have that

Vn (é(n) - Z ¢e(Oi;n) + 0p(1),

%\

where ¢y and ¢. are the influence functions.
By condition (i) and Lemma 2 with r(n) = y/n, we obtain the conclusion (ii).

To prove conclusion (i), note that

where we have that V() — V(7)) = O,(n~?), and V() — V(*) = O,(n~'/?). Hence, we conclude that
V() — V(n*) = Op(n~'/?), which completes the proof.

F Proof of Theorem 4

In this section, we follow similar techniques in Li et al. (2023) and consider the off-policy learning task given by
the following optimization problem:

d* = argmax V(d) = arg max E[((P)(0)],
subject toc(d) = E[¢.(P)(0)] <0,
where D is a Glivenko—Cantelli class, and the estimated optimal policy is given by

. 1~ -
d = arg max V(d) = arg max — ;:1 &(P)(O
I, s
. NS <
subject to é(d) - ;:1 o:(P)(0;) <0

By condition (iii) of Theorems 1 or condition (ii) of Theorems 2, we have that both {£(0;d) : d € D} and
{$c(O;d) : d € D} are GC classes.

To simplify the notation, let we denote D, = {d € D : ¢(d) <0}, and D, . = {d € D : é(d) < 0}. First we note
that the estimation error can be expressed as

V(d)—=V(d) =V + v LB,
where we define

Vit = max B[¢(P)(0)] — max P,&(P)(0),

deD. deD.
V@ = max P&(P)(0) — max Pag(P P)(0),
Ve = = max P, £(P)(0) — ax P.&(P)(0).

We analyze the three terms as follows. We have that
Vél) = maX E[f(P)(O)] — lIiH%X P,&(P)(0)
e c
< maX\E[ (P)(O)] = Pu&(P)(0)]

deD.
= Op(1)7
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and similarly we have that

V{2 = max P,£(P)(0) — max P,£(P)(O)

deD, deD.
< urlrel%}i Pn{f(P)(O) - f(P)(O)}
= o,(1).

To analyze VTES), note that for any d € D, we have that

E[$e(P)(0)] = Page(P)(0)

and E[¢.(P)(0)] — P,¢c(P)(O) converges to 0 uniformly as {¢.(0;d) : d € D} is a GC class, and P, ¢.(P)(0) —
P,¢.(P)(O) converges to 0 uniformly by condition (ii).

Hence, Ve > 0, 3N; € N, such that for all n > Ny, |E[¢.(P)(O)] — Pygc(P P)(0)| < ¢, by which we obtain that,
for all d € D, i.e., E[¢p.(P)(O)] < ¢, we have that P,,¢.(P)(0) < ¢ + €. Therefore, we have that _F.d € Dy, .

As £(P)(0) is uniformly bounded, there exists a constant L > 0 such that for any d;,dy, we have that
[§(P)(03d1) = €(P)(Osdz)| < Lsup |da () = d(x).
S

Thus, Ve > 0, 3N; € N, such that for all n > Ny,

Vi = max Pg(P)(O ) - max Pa&(P)(0)

<£2%XP£( )( )—dEHCliX PE(P )(O)

€
<

c+e€

and similarly, we can obtain that 3N, € N, such that for all n > Ny,

L

b

V> ——1,

c+e€
which in combination implies that AR op(1).
Next, we prove our result (ii) for the regret. Note that
V(d") = V(d) = {V(d") = V(d")} +{V(d") = V(d)} + {V(d) - V(d)}.
We analyze the three terms as follows. By the same argument for proving (i), we have that
V(d*) = V(d) = EIE(P)(0;d")] = P&(P)(0:d") = 0,(1),

V(d) - V(d) = P.&(P)(0;d) - E [5( )(05d)] = 0,(1).

Also by a similar argument, we have that for any d € D and € > 0, ANy € N, for all n > No, ?Ced € Dy ¢, and

V(d*) —V(d)=V(d) -V (cied*) +V <Ci€d*> — V()

and also that for any d € D and € > 0, N3 € N, for all n > N3, C—fredA € Dy, and

V(d) - V(d) >V < ¢ d) V() > —EL,

c+e

so we conclude that V(d*) — V(d) = 0p(1), which completes the proof.
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G Additional simulations

In this section, we present additional simulation results.

G.1 Incremental propensity score policy learning with sufficent overlap

We examine the performance of our proposed methods by comparison with standard policy learning methods,
when sufficient overlap indeed holds. We consider the following data generating process:
(X1, X3) ~ Uniform(0, 1),
(X37X4) NN{(g) ) (0%3 013)}7
A ~ Bernoulli(expit(0.3 — 0.4X; — 0.2X5 — 0.3X35 + 0.1X})),
Y (0) ~ N{20(1 + X; — X5 + X2 + exp (X3)), 20%},
Y (1) ~ N{20(1 + X1 — X5 + X5 + exp (X2)) + 25(3 — 5X; + 2X> — 3X5 + Xy4),20%}.

2

We perform the vanilla direct policy search tasks without constraint. Hence, the optimal policy is simply
d*(x) = I{3 — 5X1 + 2X5 — 3X3 + X4 > 0}. For standard methods, we consider the policy class of linear rules
Diinear = {d(z) = I{(1, 21,72, 73,74)3 > 0} : B € R5,||B]|]2 = 1}. For the incremental propensity score policies,
we consider the class Dips = {d(z) = §(x; B)m(x)/{0(x; B)m(x) + 1 — w(z)} : B € R5}, which is indexed by
0(x; B) = exp {(1, 21, x2, x3,4) B}

We estimate the outcome regression model p(z) and the propensity score m(x) using the generalized random
forests (Athey et al., 2019) implemented in the R package grf. The unconstrained optimization problems are
solved by the genetic algorithm (Sekhon and Mebane, 1998) implemented in the R package rgenoud. The sample
size is n = 2000. We compare the true values of the estimated optimal policies using test data with sample size
N = 10°. The true optimal value is approximated using the test data. Simulation results of 100 Monte Carlo
repetition are reported in Figure 2a.
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(a) Sufficient overlap. (b) Parametric models.

Figure 2: Performance of optimal policies under three standard methods (IPW, OR, AIPW) and our proposed
three methods (IPW-IPS, OR-IPS, One-step). The blue line is the (approximate) true optimal value.

Despite the fact that the true optimal rule is included in the standard policy class of linear rules but not in our
proposed class of incremental propensity score policies, we still observe comparable performance of both classes,
which exemplifies the effectiveness of our proposed methods.

G.2 Incremental propensity score policy learning with parametric models

We examine the performance of our proposed methods by comparison with standard policy learning methods,
when using correctly specified parametric models.
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The simulation setup is the same as in the main paper where the positivity assumption is violated, except that
the sample size n = 500 is smaller and the outcome regression p(s, z) and the propensity score (s, 2) models are
estimated by correctly specified parametric models. Simulation results of 100 Monte Carlo repetition are reported
in Figure 2b. The standard methods IPW, OR, and AIPW have the worst performance. The IPW-IPS estimator
still has large variability, and the OR-IPS and efficient one-step estimators achieve the best performance with
the highest value.

H Diabetes data analysis

In this section, we provide supplementary information on our Diabetes data analysis.

The original dataset is available in the UCI Repository Diabetes 130-US hospitals for years 1999-2008 (Strack
et al., 2014). The Fairlearn open source project (Weerts et al., 2023) provides full dataset pre-processing script
in python on GitHub. We follow these pre-processing steps, and provide the R script.

The dataset contains 101766 patients, and a detailed description of the 25 variables are available at the Fairlearn
project. Originally, the categories of race include “African American”, “Asian”, “Caucasian”, “Hispanic”,
“Other”, “Unknown”, and the categories of age include “30 years or younger”, “30 — 60 years”, “Over 60
years”. We dichotomize them, so the resultant categories of race include “Caucasian” or “Non-Caucasian”, and
the resultant categories of age include “30 years or younger” or “Over 30 years”.

The empirical CDF of estimated propensity scores for the Diabetes data is plotted in Figure 3. Since many of
the propensity scores are close to 0, we conclude that the positivity violation is severe.

Diabetes

0.6 0.8 1.0
|

CDF
0.4

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Estimated propensity scores

Figure 3: Empirical CDF of estimated Diabetes propensity scores.

The missing data are completed by multivariate imputation by chained equations, implemented in the R package
mice.


https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
https://github.com/fairlearn/talks/blob/main/2021_scipy_tutorial/preprocess.py
https://fairlearn.org/v0.8/user_guide/datasets/diabetes_hospital_data.html
https://fairlearn.org/v0.8/user_guide/datasets/diabetes_hospital_data.html
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