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DYNAMICAL COMPLEXITY
AND
CONTROLLED OPERATOR K-THEORY

by
E. GUENTHER, R. WILLETT & G. YU

lAbstract. — In this paper, we introduce a property of topological dynamical systems
that we call finite dynamical complexity. For systems with this property, one canin
principle compute the K-theory of the associated crossed product CP-algebra by
splitting it up into simpler pieces and using the methods of controlled K-theory. The
main part of the paper illustrates this idea by giving a new proof of the Baum-Connes
conjecture for actions with finite dynamical complexity.

We have tried to keep the paper as self-contained as possible: we hope the main part
will be accessible to someone with the equivalent of a first course in operator K-theory. In
particular, we do not assume prior knowledge of controlled K-theory, and use a new and
concrete model for the Baum-Connes conjecture with coeficients that requires ng
bivariant K-theory to set up.

Résumé. (Complexité dynamique et K-théorie contrélée). — Nous introduisons une
nouvelle propriété des systemes dynamiques topologiques, que nous appelons com-
plexité dynamique finie. Les produits-croisés de CP-algébres associés aux systémes
dynamiques ayant cette propriété peuvent étre décomposés en parties plus simples,
ce qui permet de calculer leurs groupes de K-théorie, via des méthodes de K-théorie
controlée.

Dans cet article, nous illustrons cette idée en donnant une nouvelle preuve de la
conjecture de Baum-Connes pour les actions de complexité dynamique finie. Nous
avons essayé de rendre I'article aussi indépendant du reste de la littérature que pos-
sible, afin qu’il reste accessible pour quelqgu’un n’ayant suivi qu’un premier cours de
K-théorie opératorielle. En particulier, nous ne supposons aucune connaissance préa-
lable de la K-théorie contrdlée, et nous utilisons un nouveau modele concret pour la
conjecture de Baum-Connes a coeficients qui n’utilise pas la K-théorie bivariante de
Kasparov.

©__Astérisque 451, SMF 2024
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CHAPTER 1

INTRODUCTION

Throughout this paper, the symbol ‘T X’ will mean that I' is a countable discrete
group, X is a compact Hausdorff space, and I acts on X by homeomorphisms. We
will abbreviate this information by saying that ‘I & X is an action’.

Our work here is based around a new property for actions, which we call finite dy-
namical complexity. This is partly inspired by the geometric notion of finite decompo-
sition complexity, introduced by the first and third authors together with Tessera (8],
and by the notion of dynamic asymptotic dimension, which was introduced by the
current authors in earlier work [10].

The precise definition of finite dynamical complexity requires groupoid language
to state; rather than get into details here, we just give an idea and refer the reader
to Definition 3.14 (see also Definition A.4) for the precise version. Roughly, then, we
say an action I = X decomposes over some collection C of ‘dynamical systems’ (more
precisely, étale groupoids) if it can be ‘locally cut into two pieces’, each of which is
in C.The action I mX has finite dynamical complexity if it is contained in the smallest
class Cthat is: closed under decompositions; and contains all dynamical systems that
are ‘essentially finite’ (more precisely, have compact closure inside the ambient étale
groupoid).

This definition allows the K-theory groups Kg(C(X) B, ') to be computed, at
least in principle: the idea is that one can often compute the K-theory of essen-
tially finite pieces using classical (‘commutative’) techniques from algebraic topology
and the theory of type | CP-algebras, then use generalized (‘controlled’ [19]) Mayer-
Vietoris arguments to reassemble this into the K-theory of the whole crossed prod-uct
C(X) @ I. Strikingly, the C2-algebras C(X) B, I to which these methods apply are
often simple; thus one has no hope of applying classical Mayer-Vietoris techniques, as
these require the presence of non-trivial ideals. This strategy works particularly well
when one is trying to show vanishing of certain K-theory groups.

To illustrate this strategy for computing K-theory, the main part of this papen
applies the idea above to the Baum-Connes conjecture for an action I & X with finite
dynamical complexity. This conjecture (a special case of the Baum-Connes conjecture
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2 CHAPTER 1. INTRODUCTION

for [ with coeficients [4]) posits that a particular assembly map
(1.1) HiKKEP(r, C(X)) > Ka(C(X) B 1)

is an isomorphism; here the domain is a topologically defined group associated to the
action, and the codomain is the operator K-theory of the reduced crossed product
CP-algebra C(X)E, T, an analytically defined object. The existence of such an isomor-
phism relating two quite different aspects of the action has important consequences
for both: for example, it has consequences for Novikov-type conjectures associated to
I, and implies the existence of various tools to better understand the K-theory of the
crossed product.

The main part of the paper proves the following result, which is inspired in part by
the third author’s work [38] on the coarse Baum-Connes conjecture for spaces with
finite asymptotic dimension, the first and third authors’ work with Tessera on the
bounded Borel conjecture for spaces with finite decomposition complexity [8], and
the work of all three authors on dynamic asymptotic dimension [10].

Theorem 1.1. — Let I =X be an action with finite dynamical complexity, where X is a
second countable compact space. Then the Baum-Connes conjecture holds for I with
coeficients in C(X).

Our proof of Theorem 1.1 starts by replacing the problem of proving that u as in
line (1.1) above is an isomorphism with the problem of showing that the K-theory of a
certain obstruction CP-algebra A (T X) vanishes. For this obstruction C?-algebra
one can apply the strategy for computing K-theory outlined above, and show that it is
indeed zero.

The hypotheses of Theorem 1.1 cover many interesting actions: we refer the reader
to our companion paper [10], particularly the introduction, for a discussion of the case
of finite dynamic asymptotic dimension. We suspect that finite dynamic dimension
implies finite dynamical complexity, but did not seriously pursue that problem.

Relating the above to the literature, we should note that Theorem 1.1 is implied
by earlier work: indeed, it follows from work of Tu [31] on the Baum-Connes conjec
ture for amenable groupoids and the fact (Theorem A.3 below) that finite dynamical
complexity of a groupoid implies amenability. Some of the key tools in Tu’s proof are
the Dirac-dual-Dirac method of Kasparov [16], the work of Higson and Kasparov on
the Baum-Connes conjecture for a-T-menable groups [11], and Le Gall’s groupoid-
equivariant bivariant K-theory [18]. As already hinted at above, our proof is quite
different: it gives a direct way of understanding the group Kg(C(X) B, ') that uses
much less machinery.

Our motivations for giving a new proof of Theorem 1.1 are fourfold. First, we want
to illustrate the controlled methods for computing K-theory as already mentioned
above. Second, we want to make the Baum-Connes theory more direct so that it might
be adapted to computations of K-theory for much more general classes of C?-algebras
with an eye on the Kiinneth theorem and UCT problem as pursued in [20, 34] and [36]
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CHAPTER 1. INTRODUCTION 3

respectively. Third, we want to make techniques from the Baum-Connes theory more
algebraic, so as to highlight and strengthen interactions with the Farrell-Jones theoryin
algebraic topology [2, 3]. Fourth, the proof is fairly self-contained: we have tried to
make it accessible to a reader who has understood an introduction to C?-algebra K-
theory at the level of [27] or [32].

On this fourth point, we hope that the paper can be read without prior knowledge of
Baum-Connes theory, groupoids, controlled K-theory, or even crossed product CZ-al-
gebras. This makes the proof more elementary than most existing proofs of special
cases of the Baum-Connes conjecture. In order to do this, we introduce a direct geo-
metric / combinatorial reformulation of the Baum-Connes conjecture; we show that it
agrees with the traditional one using Kasparov’s KK-theory [4] in an appendix.
Using these elementary methods also has the advantage that Theorem 1.1 remains
true (correctly interpreted) if one drops the second countability assumption on X.

To conclude this introduction, we should note that this paper only just starts the
study of finite dynamical complexity and its relation to other properties. We ask
several open questions in A.14 through A.19 below: some of these might be dificult,
but we suspect some are quite accessible.

Outline of the paper. — Section 2 builds a concrete model for the Baum-Connes as-
sembly map for an action I & X based on the localization algebras used by the third
author to give a model for the coarse Baum-Connes assembly map [37]. Section 3
introduces some language from groupoid theory that will be useful in carrying out
various decompositions, and which is crucial for the definition of finite dynamical com-
plexity given at the end of that section. Section 4 gives a self-contained description off
the controlled K-theory groups we will need for the proof, following work of the third
author [38], and of Oyono-Oyono in collaboration with the third author [19]. Section 5
lays out the strategy for proving Theorem 1.1, which is based roughly on the proof of
the coarse Baum-Connes conjecture for spaces with finite asymptotic dimension of
the third author [38], and the work of the first and third authors with Tessera [8] on
the stable Borel conjecture; in particular, it reduces the proof to two technical
propositions. These technical propositions are established in Sections 6 and 7. There
are two appendices, which require a bit more background of the reader. Appendix A
relates our finite dynamical complexity to finite decomposition complexity in the sense
of [8], and to topological amenability [1] as well as asking some questions; this requires
some background in the general theory of étale groupoids. Appendix B identifies oun
model for the Baum-Connes assembly map with one of the standard models using
KK-theory; as such, it requires some background in equivariant KK-theory. The ap-
pendices are included to connect what we have done here to preexisting theory, and
are certainly not needed to understand the rest of the paper.

Acknowledgments. — The authors would like to thank the University of Hawai‘i at

Manoa, the Shanghai Center for Mathematical Sciences, and Texas A&M University
for their hospitality during some of the work on this project. We would also like
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grateful to Suzuki and Vega who (independently) spotted the same fairly serious
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CHAPTER 2

ASSEMBLY MAPS

Throughout this section, T X is an action in our usual sense: ' is a countable
discrete group, X is a compact Hausdorff topological space, and ' acts on X by
homeomorphisms. Our goal in this section is to develop a concrete and elementary
model for the Baum-Connes assembly map for I with coeficients in C(X). The con-
struction is modeled on the localization algebra approach to the coarse Baum-Connes
conjecture of the third author [37].

We will assume throughout that ' is equipped with a proper length function and
the associated right invariant metric as in the next definition.

\Definition 2.1. — A (proper) length function on a group T is a function |- |: T > N
that satisfies the following conditions:

(i) |gl= 0if and only if g = e (where e is the identity element of T);
(i) Ighl < Igl+ [|hl;
(i) 1g7 = lgl;
(iv) foranyr > 0, {g @T ||g| < r} is finite.
Associated to such a length function is a metric defined by d(g, h) := |gh™].

Note that the right action of the group on itself preserves the metric associated to
a length function, and that if the length function is proper, then for any r > 0 there
is a uniform bound on the cardinality of all r-balls. Examples of length functions
and associated metrics are provided by word metrics associated to finite generating
sets, when such exist. Length functions always exist on a countable group, whether
or not it is finitely generated, and the metrics they define are unique up to ‘coarse’
(large-scale) equivalence: see for example [33, Proposition 2.3.3]. Our use of a length
function will only depend on the coarse equivalence class, and therefore fixing one
makes no real difference.

\Definition 2.2. — Let s > 0. The Rips complex of I at scale s, denoted Ps(I'), is the
simplicial complex with vertex set ', and where a finite subset E of I spans a simplex if
and only if

(2.1) d(g,h) < sforall g, h@E.

SOCIETE MATHEMATIQUE DE FRANCE 2024



6 CHAPTER 2. ASSEMBLY MAPS

Points z @ Ps(I') can be written as formal linear combinations
X
z= tgg, el r

where each tg is in [0, 1] and p tg = 1. We equip the space P (') with the 81-metric

X X X
Br
d %gg, Sgg = |tg_5g|.
ga T ga I g@r

The barycentric coordinates on Ps(I') are the continuous functions (tg : Ps() = [0, 1])gm r
indexed by g @I that are uniquely determined by the condition
X

z= tg(z)genr

for all z@Ps(I).

Using the fact that balls of radius s in I are (uniformly) finite, it is straightforward
to check that P () is finite dimensional and locally compact. Note also that the right
translation action of ' on itself extends to a right action of I on P¢(I) by (isometric)
simplicial automorphisms.

We now want to build Hilbert spaces and C%-algebras connected to both the large
scale geometry of I (called ‘Roe algebras’) and the topological structure of Ps(T)
(called ‘localization algebras’).

\Definition 2.3. — For each s 2 0, define

Z,:= X tgg @Ps(I) tg@Qforallglrl
gl r

Note that Z is l-invariant, so the l-action on P,(l') induces a (right) action on
each Z;.

Let £2(Zs) denote the Hilbert space of square-summable functions on Zs. Let 82(X)
denote the Hilbert space of square-summable functions on X. Fix also a separable
infinite dimensional Hilbert space H, and define

Hs 1= 82(Zs) BR2(X) BH BL2(T).
Equip Hs with the unitary I' action defined for g @ T by
Ug :51 6xn6h 962g—1 ngnégh,

where zRZs, x @X, nBH and hBT. When convenient, we will use the canonical
identification

(2.2) Hs = 82(Zs x X, H @82(T))

of Hs with the Hilbert space of square-summable functions from Zs x X to H @82(T).
Note that if s £ s then Ps,(I) identifies equivariantly and isometrically with a
subcomplex of Ps(I), and moreover Zs, B Zs. Hence there are canonical equivariant
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CHAPTER 2. ASSEMBLY MAPS 7

isometric inclusions
(2.3) Hs, B Hs,

which we will use many times below.

Write now K for the compact operators on H @22 (') equipped with the I' ac-tion
by B-automorphisms that is induced by the tensor product of the trivial ac-tion on
H and the (left) regular representation on £2(l). Equip the CP-algebra C (X, Kr)
= C(X) B Kr of continuous functions from X to Kr with the diago-
nal action of I induced by the actions on C(X) and Kr. Note that the canonical
faithful representation of C (X, Kr) on 22(X)BH @€2(l) is covariant for the unitary
representation defined by tensoring the canonical permutation action on £2(X), the
trivial representation on H, and the regular representation on £2(I).

\Definition 2.4. — Let T be a bounded operator on Hs. We may think of T asa Zs
x Zs-indexed matrix T = (Ty,,), where each entry is a bounded operator on £2(X)
H B82(r). We will be interested in the following properties of such T:

(i) T is l-invariant if ugTug =T forall g@T.
(ii) The Rips-propagation of T is the number

r = sup{dp,r)(y,z) | Ty,. = O}.
(iii) The l-propagation of T is the supremum (possibly infinite) of the set
{dr(g, h) | Ty,. = 0 for some y,z B Zs with tg(y) = 0, tn(z) = 0},

where tg, th : Ps(I') = [0, 1] are the barycentric coordinates associated to g and
h as in Definition 2.2 above.

(iv) T is X-locally compact if for all y,z B Zs, the operator Ty, is in the C-subal
gebra C (X, Kr) of the bounded operators on £2(X) BH E2¢2(l), and moreover if
for any compact subset K of P¢(l), the set

{ly,z) BK x K [Ty, = 0}
is finite.

\Remark 2.5. — (This remark relates the definition above to earlier ones in the liter-
ature, and can be safely ignored by readers who do not know the earlier material).
Traditionally in this area (see for example [37]) one defines a suitable length metric on
each Rips complex P(I), and uses only the propagation defined relative to this met-
ric. We have ‘decoupled’ the notion of propagation into the I-propagation (relevant
only for large-scale structure) and the Rips-propagation (relevant only for small scale
structure). The reason for doing this is that in the traditional approach the metrig
depends on the Rips parameter s, and it is convenient for us to have metrics that do
not vary in this way.

\Definition 2.6. — Let C[T X; s] denote the collection of all M-invariant, X-locally]
compact operators on Hs, with finite I-propagation. It is straightforward to check
that C[I 5 X; s] is a @-algebra of bounded operators.

SOCIETE MATHEMATIQUE DE FRANCE 2024



8 CHAPTER 2. ASSEMBLY MAPS

Let C(I = X; s) denote the closure of C[T X; s] with respect to the operator
norm. The CP-algebra C?(T X; s) is called the Roe algebra of [ ® X at scale s.

We will always consider C[T X;s] and CB(T X; s) as concretely represented
on Hs, and equipped with the corresponding operator norm. Elements of C2(T X;s)
can be thought of as matrices (Ty,.)y,zmz, Wwith entries continuous equivariant func-
tions Ty,; : X = Kr in a way that is compatible with the E-algebra structure; we will
frequently use this description below.

\Remark 2.7. — The Roe algebras CZ(I' @X; s) are all isomorphic to the stabilization
of the reduced crossed product C%-algebra C(X) B, I'. We do not need this remark in
the main body of the paper, but include it now as it may help orient some readers. See
Appendix B for a proof.

Note that the Rips-propagation is not relevant to the definition of the Roe algebras;
it is, however, used in a crucial way in the next definition.

\Definition 2.8. — Let C[T X; s] denote the B-algebra of all bounded, uniformly
continuous functions

a:[0,o=) > C[I 2X;s]
such that the l-propagation of a(t) is uniformly finite as t varies, and so that the
Rips-propagation of a(t) tends to zero as t tends to infinity.
Let CZ(T = X;s) denote the completion of C [I = X; s] for the norm

Bal:= sup Ba(t)Bce(r wx;s)-
t@[0, o)

The CP-algebra C(F X; s) is called the localization algebra of [ = X at scale s.

Note that an element a of C3(I = X; s) comes from a unique bounded, uniformly
continuous functions
a:[0,e0) > C*(I mX;s)
(satisfying some additional properties). We will think of C, [T =X; s] and C(I’ =X; s)
as concretely represented on the Hilbert space L2[0, ==) B Hs in the obvious way.
Finally in this section, we come to the definition of the assembly map. First, let

(2.4) € :Ka(CHT ®X;s)) >Ka(CE(T =X;s))

denote the evaluation-at-zero B-homomorphism a = a(0). Assume that so < s. Then
the isometric equivariant inclusion Hs, @ Hs from line (2.3) above induces isometric
inclusions

CB(r mX;s0)BCE(Ir =X;s)
and

CHr mx;so)@C,Hr =X;s)

ASTERISQUE 451



CHAPTER 2. ASSEMBLY MAPS 9

of C"-algebras, and thus we get directed systems (C"(I' _X;s)_, and C"(T -X $)5, Of
C —algebra inclusions. Moreover the evaluation- at zero maps front line (2.4) are
cIearIy compatible with these inclusions, whence we may make the following definition.

\Definition 2.9. — The assembly map for I X is the direct limit
€0 : ILm Ke(CZ(r 2X;s)) > ILm Ke (CB(T ®X;s))
s> oo 5> o0

of the evaluation-at-zero maps from line (2.4) above.

\Remark 2.10. — This map identifies naturally with the Baum-Connes assembly map
for I with coeficients in C(X), whence the name. Analogously to Remark 2.7 above,
we do not need this fact in the main body of the paper, but include it now in case it
is helpful for some readers. See Appendix B for a proof.

Our main goal in this paper is to prove the following theorem.

Theorem 2.11. — Let [ = X be an action with finite dynamical complexity. Then the
assembly map is an isomorphism.

\Remark 2.12. — Thanks to the results of Appendix B, this is the same result as The-
orem 1.1 from the introduction, although without the assumption that X is second
countable. The only reason for including second countability of X in the statement of
Theorem 1.1 is to avoid technical complications that arise in the traditional statement of
the Baum-Connes conjecture with coeficients in a non-separable CP-algebra. As-
suming separability would make no difference for the proof of Theorem 2.11, however)
so we omit the assumption here.

In order to prove this theorem, it is convenient to shift attention to an ‘obstruction
group’.

Definition 2.13. — Let C2,(T X; s) denote the CP-subalgebra of C(r X;s)
consisting of functions a such that a(0) = 0. The C P-algebra C\?( (I = X; s) is called
the obstruction algebra of I = X at scale s.

There is clearly a directed system CL ol X;s) of obstruction algebras. The
following straightforward lemma explams the' terminglogy ‘obstruction algebra’: the
K-theory of these algebras obstructs isomorphism of the assembly map.

Lemma 2.14. — The assembly map of Definition 2.9 is an isomorphism if and only if
S'L”l Ke(CZ o(T®X;s)) = 0.
Proof. — The short exact sequence
0——C2o(Ff @X;s) ——CT BX;s) ——C*I BX;s) ——0

gives rise to six term exact sequence in K-theory. The lemma follows from this, con-
tinuity of K-theory under direct limits, and the fact that a direct limit of an exact
sequence of abelian groups is exact.

O
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10 CHAPTER 2. ASSEMBLY MAPS

Thus in order to prove Theorem 2.11, it sufices to prove that the group in the
statement of Lemma 2.14 vanishes whenever I & X has finite dynamical complexity.
The proof of this occupies the next five sections. We spend the next two sections devel
oping machinery: in Section 3 we introduce some convenient language from groupoid
theory, use this to define useful subalgebras of the obstruction algebras, and introduce
finite dynamical complexity; and in Section 4 we introduce controlled K-theory, which
gives us extra flexibility when performing K-theoretic computations.

Having built this machinery, Section 5 sketches out the strategy of the proof of
Theorem 2.11: the basic idea is to first use a homotopy invariance result to show that
the K-theory of the obstruction algebra associated to an ‘essentially finite’ dynamical
subsystem of T X vanishes; and then to use a Mayer-Vietoris type argument to
show that the class of dynamical subsystems of T X for which the K-theory of
the obstruction algebra vanishes is closed under decomposability. The proofs of the
homotopy invariance result, and of the Mayer-Vietoris type argument are somewhat
technical, and are carried out in Sections 6 and 7 respectively.

ASTERISQUE 451



CHAPTER 3

GROUPOIDS AND DECOMPOSITIONS

Our goal in this section is to show how ‘subgroupoids’ of the action I =X give rise
to C%-subalgebras of the Roe algebras and localization algebras of Section 2. We try
to keep the exposition self-contained: in particular, we do not assume that the reader
has any background in the theory of locally compact groupoids or their C2-algebras.

Throughout this section T X is an action in our usual sense: I is a countable
discrete group and X is a compact space equipped with an action of a I by homeo-
morphisms. We also fix a (proper) length function on I' and associated right-invariant
metric as in Definition 2.1.

\Definition 3.1. — The transformation groupoid associated to I @ X, denoted I @X,
is defined as follows. As a set, [ @ X is equal to

{(gx,g,x)BX xI'x X |gl@T, x@AX}.

The set T @X is equipped with the topology such that the (bijective) projection
F@X =T x X onto the second and third factors is a homeomorphism.
The topological space I' @X is equipped with the following additional structure:

(i) A pair (hy, h,y),(gx, g,x) of elements of T @ X is composable if y = gx. If the
pair is composable, their product is defined by

(hgx, h, gx)(gx, g, x) := (hgx, hg, x).
(ii) The inverse of an element (gx, g, x) of I @X is defined by
(gx,8,x)7" 1= (x,87%, gx).
(iii) The units are the elements of the open and closed subspace
(r@x)© .= {(x,e,x) BT @X |[xBX}
of T @X.

We can now discuss the algebra of supports of elements in the Roe algebra. For

this, recall from Definitions 2.4 and 2.6 that we can think of an operator Tin C?(T

X;s) as a matrix (Ty,z)y,zmz, indexed by Zs with entries continuous
functions Ty, : X > Kr.
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12 CHAPTER 3. GROUPOIDS AND DECOMPOSITIONS

\Definition 3.2. — Let s 2 0, and let Ps(I') be the associated Rips complex with
barycentric coordinates tg : Ps(I') = [0,1] as in Definition 2.2. Define the support
of z@ P () to be the finite subset

supp(z) := {g BT |tg(z) = 0}

. ]
of I'. Define the support of T BIC*(T X:'s) to be the subset

(gx,gh™!, hx) | therearey,z@Zs with Ty ,(x)= 0
y
r mx and g B supp(y), h B supp(z)

)
supp(T) :=

of T AX.

Note that for T B C[I = X; s], the I-propagation of T as in Definition 2.4 is equal
to the largest value of |k| such that (x, k, y) appears in supp(T) for some x,y B X.

Supports of operators behave well with respect to composition and adjoints; this is
the content of the next lemma. To state it, note that the groupoid operations on '@ X
extend to subsets in natural ways: if A, B BT B@X then we define

Al :={a"! |a@A}
and

AB :={ab |a@A,bEB and (a,b) composable}.

Lemma 3.3. — Let S, T BC?(I = X;s). Then
supp(S?) = supp(S)™* and supp(ST) Bsupp(S)supp(T).

Proof. — As the adjoint of S has matrix entries (S?)y,, = S, the statement about
adjoints is clear. To see the statement about multiplication, say T,SBC T X;s),
and (gx, gh™1, hx) is a point in the support of TS. Then there are y,z @ Zs such that
g @ supp(y), h B supp(z), and (TS)y,.(x) = 0. Hence there is w B Zs with Ty, w(x) =
0, and Sw,z(x) = 0. Say k is any point in supp(w), so we must have that
(gx, gk 1, kx) is in the support of T and (kx, kh™%, hx) is in the support of S. As
(gx,gh™t, hx) = (gx, gk, kx)(kx, kh™%, hx),

this shows that the support of TS is contained in the product of the supports of T
and S.

The lemma implies that subspaces of [ @ X that are closed under the groupo@
operations will give rise to B-subalgebras of C[I ®X; s]. The relevant algebraic notion
is that of a subgroupoid as in the next definition.

\Definition 3.4. — Let T @X be the transformation groupoid associated to the ac-tion
r X . A subgroupoid of TE X is a subset G of @ X closed under the operations in
the following sense:
(i) If (hgx, h,gx) and (gx, g, x) are in G, then so is the composition (hgx, hg, x).
(ii) If (gx, g, x) is in G, then so is its inverse (x, g™, gx).
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(iii) If (gx, g, x) is in G, then so are the units (x, e, x) and (gx, e, gx).
A subgroupoid is equipped with the subspace topology inherited from ' @ X .

The following lemma is now almost clear.

\Lemma 3.5. — Let G be an open subgroupoid of I @ X. Define C[G;s] to be the
subspace of C[I X; s] consisting of all operators T with support contained in a
compact subset of G. Then C[G; s] is a B-subalgebra of C[ & X; s].

Proof. — Lemma 3.3 gives most of this: the only remaining point to check is that a
product of two relatively compact subsets® of G is relatively compact, which we
leave it to the reader (or see for example [10, Lemma 5.2] for a more general statement
and proof). O

Using this lemma, the following definitions make sense.

\Definition 3.6. — Let G be an open subgroupoid of I @ X. Let C_[G; s] denote the
B-subalgebra of C [T X; s] (see Definition 2.8 above) consisting of all a such
that tsupp(a(t)) has compact closure inside G. Let C,0[G;s] denote the ideal
of CL[G; s] consisting of functions such that a(0) = 0.

Let C%(G;s), C%(G; s), and C 2y (G; s) denote the closures of C[G; s], CL[G; s], and
Cio0[G; s] inside CE(I @ X;s), CH(T ®X;s), and CZ (I B X;s) respectively.

Note that operators of finite M-propagation always have support contained in some
compact subset of I @X. Hence if G = T @X then C?(G;s) is just CP(l X;s),
and similarly for the localization and obstruction algebras.

\Remark 3.7. — (This remark may be safely ignored by readers who do not have any
background in groupoids and the associated CP-algebras.) Analogously to Remark 2.7,
for any open subgroupoid G of I BX, the CP-algebra C?(G; s) is Morita equivalent to
the reduced groupoid C%-algebra C2(G); this makes sense, as an open subgroupoid of
IR X is étale so has a canonical Haar system given by counting measures. We only
include this remark as it might help to orient some readers; we will not use it in any
way, or prove it.

Our next goal in this section is to construct filtrations on these C%-algebras in the
sense of the definition below, and discuss how they interact with the subalgebras
coming from groupoids above.

\Definition 3.8. — A filtration on a C%-algebra A is a collection of self-adjoint sub-
spaces (Ar)rs0 of A indexed by the non-negative real numbers that satisfies the fol
lowing properties:

(i) ifri < rp, then A, @ A,,;

(ii) for all r1,r2, we have Ar, - Ar, B A +r,;

(iii) the union = .5 Ay is dense in A.

—%*—Recatthat a subset of a topological space is relatively compact if its closure is compact.
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14 CHAPTER 3. GROUPOIDS AND DECOMPOSITIONS

As the case of the obstruction C?-algebras will be particularly important for us,
we introduce some shorthand notation for that case.

\Definition 3.9. — For an open subgroupoid G of T @X and s > 0, define A*(G) to
be the CP-algebra CLO(G; s). For each r @ [0, =), define

A*(G)r :={a BCLol[G;s] |a(t) has I-propagation at most r for all t},

and define A®(G) := C,0[G; s]. In the special case that G = @ X, we omit it from
the notation and just write A® and A®.

When convenient, we will consider all these C?-algebras as faithfully represented on
the Hilbert space

L2([0, =), Hs) = L2[0, o=) @ 82(Zs) B2(X) B H @82(T).

Lemma 3.10. — For any open subgroupoid G of I @ X and any s > 0, the sub-
sets (AS(G))r>0 define a filtration of AS(G) in the sense of Definition 3.8.

Proof. — An elementa @ A*(G) is in A*(G), if and only if it is in the dense B-subal{
gebra C,0[G; s] and if whenever (gx, g, x) is in supp(a(t)) for some t, we have |g| < r.
The filtration properties follows directly from this, the facts that |gh| < |g||h| and
lgt| = |g|, and Lemma 3.3. 0

Our next goal in this section is to discuss what happens when we take products
of elements from A% and A®*(G) for some G and r. Note first that analogously to the
case of subgroups, one may build a subgroupoid generated by some S BT BX by
iteratively closing under taking compositions, inverses, and units in the sense of parts
(i)-(iii) of Definition 3.4 above. From this, it is straightforward to check that if S is
an open subset of [ @ X, then the subgroupoid it generates is also open: see [10,
Lemma 5.2] for a proof.

\Definition 3.11. — Let r 2 0 and G be an open subgroupoid of I @ X, and H be an
open subgroupoid of G. The expansion of H by r relative to G, denoted H*", is the
open subgroupoid of I @ X generated by

H 2{(gx,g,x)BG |lgl<r, xBH}.
Note that the expansion H*" depends on the ambient groupoid G; we do not
include G in the notation, however, to avoid clutter, and as which groupoid we are

working inside should be clear from context.
We now have two basic lemmas.

Lemma 3.12. — Let G be an open subgroupoid of I @X, and H an open subgroupoid
of G. Let r,s > 0. Then

AS(H) -A3(G) BA®(G) -AS(H) BAS(H*").

Proof. — Immediate from Lemma 3.3. 0
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Lemma 3.13. — For any r1,r2 2 0 and open subgroupoid H of an open subgroupoid G
of T @X, we have that (H*rt)*r2 g H*(ra+r2),

Proof. — Clearly H*"* @H*(r1*r2) 5o it sufices to show that if x is in the unit space of
H*rt and |g| < ra is such that (gx, g, x) is in G, then (gx, g, x) is in H*(r1*r2),
Indeed, as x is in the unit space of H*"t thereis (hx, h,x) @G with h&T, |h|< r1, and
hx BH (). Hence (gx, gh 1, hx) and (hx, h, x) are in H*(r1*"2) and we have

(gx, 8, %) = (gx,gh™", hx)(hx, h,x) BH*{11*2)
as required. O

Finally, we conclude this section with the definition of finite dynamical complexity
and a basic lemma about the property.

\Definition 3.14. — Let I @ X be an action, let G be an open subgroupoid of I @X,
and let C be a set of open subgroupoids of I @X. We say that G is decomposable over
cif for all r > 0 there exists an open cover G(°) = UgEU; of the unit space of G such
that for each i @ {0, 1} the subgroupoid of G generated by

{(gx, g, x) @G |x B Ui, |g|< r}
(i.e., the expansion UiJ'r relative to G of Definition 3.11) is in C.

An open subgroupoid of I @ X (for example, T & X itself) has finite dynamical
complexity if it is contained in the smallest set D of open subgroupoids of [ & X that
contains all relatively compact open subgroupoids; and is closed under decomposabil-
ity @,

We will need a slight variation of this definition.

\Definition 3.15. — Say that an open subgroupoid G of @ X is strongly decomposable
over a set C of open subgroupoids of I @ X if for all r > 0 there exists an open cover|

G(9) = Up @ Uy of the unit space of G such that for each i B {0, 1}, if G; is the
subgroupoid of G generated by

{(gx,g,x)BAG |[xBU;, |g|<r},

then G!" (with expansion taken relative to G) is in C. Let Ds be the smallest class of
open subgroupoids of G that contains the relatively compact open subgroupoids, and
that is closed under strong decomposability.

The following lemma records two basic properties of finite dynamical complexity
that we will need later.

Lemma 3.16. — With notation as above:

(i) if G is an open subgroupoid of I @ X in the class D (respectively Ds), then all
open subgroupoids of G are in D (respectively Ds);
(ii) we have D = Ds.

2. More precisely, we mean ‘upwards closed’: if G decomposes over D, then G is in D.
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Proof. — For part (i), we just look at the case of D; the case of D is similar. Let D’
be the set of all open subgroupoids of I @ X, all of whose open subgroupoids are in
D. Clearly D' @ D, and D' contains all open subgroupoids with compact closure.
To complete the proof of (i), it sufices to show that D’ is closed under
decomposability. Say then G is an open subgroupoid of T@X that decomposes over D'.
Say H is an open subgroupoid of G and r > 0. Let {Ug, U1} be an open cover of G(°!
such that for each i @ {0, 1}, the subgroupoid G; of G generated by
{(gxl g, X) B G |X Ui; |g| < r}

isin D. Let Vi = Ui nH( . Then {Vo, V1} is an open cover of H(9) such that the
(open) subgroupoid H; of H generated by

{(ex,g,x)@H [xBVi, |g|<r}

is contained in Gi. As each G; is in D', this implies that each H; is in D; in other
words, H decomposes over D, and is thus in D as required.

For part (ii), it clearly sufices to prove that D is closed under strong decomposabil-
ity, and that D is closed under decomposability. For the former, say that G strongly
decomposes over D. Then for any r > 0, there is an open cover {Up, U1} of G{°) such
that if G; is generated by

{(ex,g,x)BAG |[xBU;, |g|<r},

then G;'r is in D. However, G; is an open subgroupoid of GT' whence is in D by
part (i). Hence G decomposes over D, and thus is in D as required.

For the other case, say G decomposes over D and let r 2 0. Then there is an open
cover G(9) = Ug @ U; such that the subgroupoid H; of G generated by

{(gx,g,x)BG [xBU;, |g|< 2r}
is in Ds. We claim that if G; is the subgroupoid of G generated by
{(gx,8,x) BG |[x B Ui, [gl=<r},

then Gi+r is an open subgroupoid of Hj; this will sufice to complete the proof by part
(i). Indeed, we have that G " is generated by G; and

(3.1) {(gx, g, x)BG |xBG', |g|< r};

as G; is clearly contained in H;, it sufices to show that the latter set is in H;. Let
then (gx, g, x) be in the set in line (3.1). As x G(io), we have x = ky for some y @ U;,
and k@ T with |k| £ r. Hence we may rewrite

(ex,8,x) = (gky, g ky) = (gky, gk, y)(y, k™, ky);
as y B U; and |gk|, |[k™| £ 2r, the product on the right is in H; and we are done.
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CHAPTER 4

CONTROLLED K-THEORY

In this section we will introduce the main general tool needed for the proof of
Theorem 2.11: controlled K-theory.

Our treatment in this section is based on the detailed development given by Oyono-
Oyono and the third author [19]. Our controlled K-theory groups are, however, both
more general in some ways, and more specific in others, than those of [19]. We thus try to
keep our exposition self-contained; in particular, we assume no background beyond the
basics of CP-algebra K-theory as covered for example in [27] or [32]. Throughout, we
provide references to [19] for comparison purposes, and the reader is encouraged to
look there for a broader picture of the theory.

We now define the controlled K-groups that we need. Compare [19, Section 1.2]
for the following definition.

\Definition 4.1. — Let A be a CP-algebra. A quasi-projection in A is an element p of
A such that p = p? and Bp? - p@ < 1/8. If S is a self-adjoint subspace of A, write
M, (S) for the matrices in My, (A) with all entries coming from S, and Pnl/S(S) for
the collection of quasi-projections in M (S).

Let X = X(1/2,.) be the characteristic function of (1/2, eo]. Then X is continuous
on the spectrum of any quasi-projection, and thus there is a well-defined map

K :PUE(S) > Pa(A), p->x(p),
where P, (A) denotes the projections in M, (A).

\Remark 4.2. — The choice of ‘1/8’ in the above is not important: any positive number
less than 1/4 would do just as well. In some arguments in controlled K-theory, it
is useful to allow the bound on the ‘projection error’ Ep? - plE to change; for this
reason in [19, Section 1.2], what we have called a quasi-projection would be called a
(1/8)-projection. We do not need this extra flexibility, so it is more convenient to just
fix an absolute error bound throughout. Similar remarks apply to quasi-unitaries as
introduced in Definition 4.4 below.
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If A is a C%-algebra we denote its unitization by A.€or a natural number n, let
1, denote the unit of M,(A)€ For the following definition, compare [19, Section 1,
particularly Definition 1.12].

\Definition 4.3. — Let A be a non-unital C?-algebra, and let S be a self-adjoint sub-
space of A. Let ¥ denote the subspace S + C1 of &

Using the inclusions |

g BP,Y(H

n+1

PUE(S)Ep > g
we may define the union
r
PLE(®) = PYE(H).
n=1
Let C([0, 1], &) denote the self-adjoint subspace of the CP-algebra C([0, 1], 4)
consisting of functions with values in S eDefine an equivalence relation on P 1/(‘;(S)I&\N by
(p, m)B(q, n) if there exists a positive integer k and an element h of P 1/S(Q,([O, 1],S)) €
such that ! !
0 0
h(o)y= P and h(1)= 9
0 1n+k 0 Im+k
For (p, m) @ P %./8(95) x N, denote by [p, m] its equivalence class under Bl.
Let now p : M, (S) = M (C) be the restriction to Mn($) of the map induced on

matrices by the canonical unital B-homomorphism p : & - C with kernel A. Finally,
define

KY2(s) := {lp,ml B PY3(Hx N /B | rank(k(p(p))) = m}.

The set KJO/S(S) is equipped with an operation defined by#

0
[, ml+ [g,n]:= ,m+n .
0 ¢
Using standard arguments in K-theory, one sees that Klo/8
with unit [0, 0]: compare [19, Lemmas 1.14 and 1.15].

(S) is an abelian group

We now look at controlled K1 groups. Compare [19, Section 1.2] for the following
definition.

Definition 4.4. — Let A be a unital CE-algebra. A quasi-unitary in A is an element u
of A such that @1 - uu®@ < 1/8 and @1 - uPull< 1/8. If S is a self-adjoint subspace
of A containing the unit, write Unl/S(S) for the collection of quasi-unitaries in M (S).
Note that as @1 - uPuB < 1/8 < 1, uPu is invertible whence there is a well-defined
map
K :UME(S) > Un(A), u->u(uPu)??,

where U, (A) denotes the unitaries in M, (A).
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For the following definition, compare [19, Section 1, particularly Definition 1.12].

\Definition 4.5. — Let A be a non-unital C%-algebra, and let S be a self-adjoint sub-
space of A. Let & denote the unitization of A and let & be the subspace S + C1
of &.

Using the inclusions

UYE(s)Bu > ; 2 AUYE (9

n+1

we may define the union

ul/é(s) := [ ul/E(s).
n=1
Define an equivalence relation on Uﬂs(s‘% by u @ v if there exists an element h of
u 1/8.,(C([O, 1], S))Psuch that h(0) = uand h(1) = v. Foru@ U 1/80(,5),%enote by [u] its
equivalence class under [.
Finally define

KYB(s) := UY/B(8) /@. The

set Kl/s(Sl) is equipped with the operation defined by
n #
u 0

[ul + [v]:= 0 v

Using standard arguments in K-theory, one sees that the operation on Ki/s(s)

makes it into an abelian monoid ! with unit [1]: compare [19, Lemmas 1.14 and
1.16].

\Definition 4.6. — Let A be a CP-algebra and S a self-adjoint subspace of A. Define
KEE(s) := KYB(s)BKME(S).

The (graded, unital, abelian) semigroup K/S(S) is called the controlled K-theory
semigroup of S.

Note that K /8 (S) depends on the embedding of S inside the ambient C?-algebra A;
which embedding is being used will always be obvious, however, so we omit it from
the notation.

Remark 4.7. — If S BT are nested self-adjoint subspaces of a (non-unital) C?-alge-bra
A, then we may consider elements of matrix algebras over S€as elements of matrix
algebras over F. This clearly gives rise to a map on controlled K-theory

(4.1) KEE(s) > K¥3(T)

1. The usual arguments showing K1 (A) has inverses do not apply as they involve multiplying
elements together, and so potentially go outside %

SOCIETE MATHEMATIQUE DE FRANCE 2024
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induced by the inclusion. To avoid clutter, we will not use specific notation for these in-
clusion maps; sometimes we refer to them as ‘subspace-inclusion” maps. We also some-
times abuse terminology and say something like ‘let x and y be elements of K/S(S)
that are equal in K/S(T)'; more precisely, this means that x and y are elements

of K/S(S) that go to the same element of K/S(T) under the map in line (4.1)
above.

For the next definition and lemma, which compares controlled K-theory to the
usual K-theory groups of a CP-algebra, compare [19, Remark 1.18 and surrounding
discussion]. Let Kg(A) := Ko(A) B K1(A) denote the usual (topological) K-theory
group of a CP-algebra A.

\Definition 4.8. — Let A be a non-unital C%-algebra, and let S be a self-adjoint sub-
space of A. Let k be one of the maps from Definition 4.1 and 4.4 (it will be obvious
from context which is meant). Define maps

co: Ky *(S) > Ko(A), o, m] = [x(p)] = [1m]
cr i KLE(S) > Ka(A), [u] = [k(u)]
c:=coBey: KUE(S) > Ka(A).

We call co, c1, and ¢ the comparison maps.

Standard arguments in C%-algebra K-theory show that co, c1 and c are well-defined
unital semigroup homomorphisms. The map c is ‘almost isomorphic’ in the following
sense.

Proposition 4.9. — Let A be a CP-algebra. Let (Si)imi be a collection of self-adjoint
subspaces of A such that the union ~ ;5 Si is dense. Then for any x @ Kg(A) there
exists S; and y K18(Si) such that c(y) = x.

Assume moreover that the collection (Si)im is directed for the partial order given
by inclusion. Then if x,y KlS(S;) are such that c(x) = c(y) there exists S; con-
taining S; such that x and y become equal in Kl/S(Sj) in the sense of Remark 4.7.

In particular, if S is a dense self-adjoint subspace of A, then the comparison map

c: K/S(S) - Kg(A) is an isomorphism.

Proof. — We just look at the case of K1: the Ko case is similar. Let [u] be a classin
K1(A). As ; Si is dense in A, for any € > O there is an i Bl and v in a matrix
algebra over the unitization of S; such that Bu - v@ < €. For € suitably small, this
implies that v is a quasi-unitary, and moreover that @ &v)-ul@ < 2, whence [k(v)] = [u]
in K1(A).

The injectivity statement follows on applying a similar argument to homotopies.
Indeed, it sufices to show that any homotopy h in C([0, 1], M,(8)) can be approxi-
mated by a homotopy in C([0, 1], Mn(Si)) for some i. For this, note that density gives
us elements ap,...,am with ax in some M”(?cik) such that the map g : [0,1] > A
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which sends k/m to ax and linearly interpolates between these points is a good ap-
proximant to h. The directedness assumption implies there is some S; that contains all
of Siy, ..., Si,, so g is in C([0, 1], Mn(S;)f. O

The most important examples of subspaces we will use (particularly in the context
of Proposition 4.9) come from filtrations as in Definition 3.8 (see Definition 3.9 and
Lemma 3.10 for examples). It will be convenient to have some additional notation in

the case when A is filtered.

\Definition 4.10. — Let A be a non-unital filtered C®-algebra, and S be a self-adjoint
subspace of A. For each r > 0 and i @ {0, 1, @}, define

KUM8(s) := KYE(s nA,).

Note that in the case that S = A, our notation agrees with that of [19, Section 1.3].
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CHAPTER 5

STRATEGY OF PROOF OF THEOREM ??

In this short section, we set out our strategy for the proof of Theorem 2.11. Our goal
is to reduce the proof to two technical propositions and show how finite dynamical
complexity can be used as an input for these. The two propositions will be proved in
the next two sections.

Throughout this section, T X is an action as usual, and we use the shorthand
notations of Definition 3.9 for the obstruction CZ-algebras and their groupoid versions.

Here are the two technical propositions, which should be thought of as the base
case and inductive step in the proof. The names ‘homotopy invariance’ and ‘Mayer-
Vietoris” will be explained in later sections.

Proposition 5.1 (Homotopy invariance argument). — Let G be an open subgroupoid
of  @X, and assume s > 0 is such that

G @{(gx,g,x)Br@X |l|g|< s}
Then Kg(AS(G)) = 0.

\Proposition 5.2 (Mayer-Vietoris). — Let G be an open subgroupoid of I @ X that isin
the class D of Definition 3.14, and let ro,so =2 0. Then there is s 2 max{ro, so}
depending on rg, sp and G such that the subspace-inclusion map (cf. Remark 4.7)

K% M8 (A% (G)) > K%YB(A%(G))

is the zero map.

Proof of Theorem 2.11. — We need to show that for any sp > 0 and any class
x B Kg(As°) there is s 2 sp such that the subspace-inclusion map

Ka(A%°) > K (A®)

sends x to zero. Proposition 4.9 implies that there is ro 2 0 such that x is in the
image of the comparison map c : K°’1/8(AS°) - Kg(A®°) from Definition 4.8. Propo-
sition 5.2 applied to G = I @ X implies that there is s 2 max{ro, so} such that the

subspace-inclusion map

Kro,l/S(Aso) N Ks,l/S(As)
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is zero. Consider the diagram

Kg(ASe) ————— Kg(A*®)
C C
Kr,1/8(A50) . KSl/S(AS),

where the two horizontal arrows are induced by subspace inclusions, and the two
vertical arrows are comparison maps; it is clear from the definition of the comparison
maps that it commutes. We have that the element x B Kg(A®°) is in the image of the left
comparison map c, and that the bottom horizontal map is zero. Hence the image of x
under the top horizontal map is zero as claimed. O
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HOMOTOPY INVARIANCE

In this section, we prove Proposition 5.1, which we repeat below for the reader’s
convenience.

\Proposition 5.1. — Let G be an open subgroupoid of ' @ X, and assume s > 0 is such
that

GB{(gx,g,x)ATAX |]|g|< s}.
Then Kg(A®(G)) = 0.

The proof is based on a technique of the third author: see for example [38,
Lemma 4.8]. The K-theory of the localization algebra is an (equivariant) generalized
homology theory in an appropriate sense, and the point of the proof is to show
that this homology theory is homotopy invariant. Having done this, the condition on
s in the statement implies that if {(g1x, g, x), ..., (gnX, gn, X)} are elements of G for
some x B X, then {g1,...,8gn} spans a simplex in Ps(I'); hence the relevant space
becomes contractible in an appropriate sense, and so the result follows from
homotopy invariance.

To try to make the proof more palatable, we will separate it into two parts. The
first is purely K-theoretic: it gives a suficient condition for two B-homomorphisms to
induce the same map on K-theory. The second part uses the underlying dynamics tg
build an input to this K-theoretic machine, and completes the proof.

K-theoretic part

We start the K-theoretic part with three basic K-theory lemmas; they are well
known, but we include proofs where we could not find a good reference. Recall first
that if A is a CP-algebra, represented faithfully and non-degenerately on a Hilbert
space H, then the multiplier algebra of A is

M(A) :={bBB(H) |ba, abB A for all a@A};

it is a CP-algebra. The strict topology on M (A) is the topology generated by the
seminorms
b = BEball, b —> Babl
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as a ranges over A. The multiplier algebra and strict topology do not depend on the
choice of H up to canonical isomorphism: see for example [21, Section 3.12].

\Lemma 6.1. — let o : A > C be a @-homomorphism of C?-algebras, and v a partial
isometry in the multiplier algebra of C such that a(a)v®v = a(a) for all a@A. Then the
map

a > va(a)v?
is a B-homomorphism from A to C, and induces the same map as a on the level
of K-theory.

Proof. — See for example [14, Lemma 2 in Section 3]. O

\Lemma 6.2. — Let | be an ideal in a unital CZ-algebra C, and define the double of C
along | to be the CP-algebra

D :={(c1,c2)ACEAC |c1- c2@I}.

Assume that C has trivial K-theory. Then the inclusion t : | = D defined by ¢ = (c, 0)
induces an isomorphism on K-theory, and the inclusion k: I = D defined by ¢ = (c, c)
induces the zero map on K-theory.

Proof. — Note that ((I) is an ideal in D, and D/((1) is isomorphic to C via the second
coordinate projection. Hence L is an isomorphism by the six-term exact sequence. On
the other hand, k factors through the inclusion C = D defined by the same formula
¢ = (c, ¢), and thus kg = 0 on K-theory as Kg(C) = 0. O

Lemma 6.3. — Say a,p : C > D are B-homomorphisms between CP?-algebras with
orthogonal images (this means that a(c1)B(c2) = 0 for all ¢1,c2 B C).

Then a+p is a B-homomorphism from C to D, and as maps on K-theory ag+Ba =
(a+ Ble.

Proof. — Orthogonality of the images of a and B directly implies that o+ B is a
B-homomorphism. For| t @ [0, /2], consider ?he map Vvt iC - M2 (D) define;d by

a(c) O N cos(t) sin(t). 0 0 . cos(t) -sin(t)

0 O -sin(t) cos(t) 0 PB(c) sin(t)  cos(t)

One directly checks that this is a homotopy of B-homomorphisms. Moreover, iden-
tifying Kg(D) with Kg(M32(D)) in the canonical way via the top-left-corner inclu-
sion D> M3 (D), it is straightforward to check that (yo)a=ag + Pz and (v1)z=(a + B)a.

O

Before getting to the main result, we need one more preliminary. First, a definition.

\Definition 6.4. — Let A be a CP-algebra. A stability structure for A consists of a

sequence of isometries (un)#= in M (A) and a topology T on M (A) such that multi

(1

plication is continuous on norm-bounded sets ) with the properties that:

1. For example, the strict topology could be used here, but we will need something a little different.
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(i) Bum = 0forn= m;
(ii) for all al@A,
Yoo
upauf

n=0
T-converges to an element of M (A);
(iii) there is an isometry v B M (A) such that
OX ?] Ko 7]
v upau® V2= upaul.
n=0 n=1

Note that a stable CZ-algebra has a stability structure in a natural way: indeed, if
H is a separable infinite-dimensional Hilbert space, fix isometries u, : H = H with
mutually orthogonal ranges such that | Un converges strongly to the identity;
then un naturally defines a multiplier of A Bl K (H), which acts by un(a @ k) = a
unk on elementary tensors (and similarly for multiplication on the right); then the
isometries (un) together with the strict topology t define a stability structure. This is
the motivation for the terminology.

\Lemma 6.5. — Let A have a stability structure as in Definition 6.4. Then
Ka(M (A)) = 0.

Proof. — Using continuity of multiplication on bounded sets for the t topology,
X<
H:M(A) > M(A), a-> unaufl
n=0

is a B-homomorphism. Let v be the isometry appearing in Definition 6.4. Using
Lemma 6.1, p induces the same map on K-theory as the map a = vu(a)Vv?, i.e., as

*H(a) := X upaul.
n=1
Let u°(a) = uoauf. Then the images of u° and p

pul + ptl = p, whence by Lemma 6.3

K

*1 are orthogonal, and clearly

Mo = pf + 1= W+ e
as maps on K-theory. Hence p# = 0. However, by Lemma 6.1 again, @ is the identity
map on Kg(M (A)).

\Definition 6.6. — Let A be a CP-algebra which is faithfully and non-degenerately
represented on a Hilbert space H, and which is equipped with a stability structure
(un)®=4 and t as in Definition 6.4.

Let vo and v. beisometries on H that conjugate A to itself. We say that vp and v.. are
stably equivalent if there are in addition isometries (vn)n =5 on H that conjugate A
into itself and that satisfy:
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(i) for any a@ A, the sum
X>° ?] 7]
unvnav2uh
n=0
T-converges to an element of M (A);
(ii) forall0< n< oo, vyiavR isin M (A) (where eo+ 1= eo) and the sums
* xe
UnVns1v U and UnVeeV U
n=0

=]
1}
o

T-converge to elements of M (A);
(iii) for any a in A, the difference

X
?] ?]
unvpavaud -

UpnVeocadVeUn n=0 n=0

of elements of M (A) is in A;
(iv) for all a@A

7] 2] 2] 7] 7] 7]
Una(Ve V2 = vie1v2)u?  and Un (Voo VB -
n=0 Vn+1Vn)aUn n=0
are in A.

For readers who know the terminology, compare condition (iii) above to the defi-
nition of a quasi-morphism in the sense of Cuntz [5, Section 17.6].
Here is the main K-theoretic ingredient we need.

Proposition 6.7. — Let A be CZ-algebra faithfully represented on a Hilbert space H
equipped with a stability structure (un) and t. Let vo and ve be stably equivalent
isometries for this representation. Then the homomorphisms

©0, P : A > A

induced by conjugation by vp and ve induce the same map on K-theory.

Proof. — Let

D :={(a,b)BEM(A)EM(A) |[a- bEA}
be the double of M (A) along A as in Lemma 6.2. Note that Lemma 6.5 implies
that Kg(M (A)) = 0, so we may apply the conclusions of Lemma 6.2 to D. Let

n ¥° o
C= (c,d)@D |d= Unveav3ufl for someal@A ,
n=0
which is a C%-subalgebra of D. Define also
Yeo X
wi i= UnVn+1VPUR, Wy :=
n=0 UnVeo Voo Uin
n=0
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(which are elements of M (A) by condition (ii) in Definition 6.6) and set
w:= (wi,w2)BM(A)BM(A).
We claim that w is actually in the multiplier algebra of C.

Indeed, if (c,d) is in C, then dwy = wad = d, so it sufices to show that cw; - d
and wic - d are in A; we focus on wic - d, the other case being similar. We have

wic- d= wi(c- d)+ (wid- d),

whence as c- dB@ A and wy B M (A), it sufices to show that wid- dis in A. There
exists a @ A with

Xe

wid- d= Un(Vns1viveav? - veav? )u?
n=0

= Un(Vne1vh = VeVl Jveaviu?,
n=0

and this is in A by condition (iv) of Definition 6.6, completing the proof of the claim.
Now, provisionally define B-homomorphisms

a,B:A>C

by the formulas

o X X
a(a) := UnVpavpup, UnVe@V_, U,
n=0 n=0
and |
Xx,
B(a) := UnVn+1avil+ 1 &, UnVeoa Voo U,
n=0 n=0

It is clear from our assumptions that oo : A - C is a homomorphism. That B is
a homomorphism and has image in C follows as w is in the multiplier algebra
of C, and as wa(a)w? = B(a) for all a @ A. Moreover, a direct computation gives that
a(a)wPw = a(a), whence a and B induce the same map Kg(A) = Kg(C) by Lemma
6.1. Post-composing with the map Kg(C) - Kg (D) induced by the inclusion of C into
D, it follows that a and B induce the same map Kg(A) = Kg(D).

Let now v @ M (A) be the isometry with the property in Definition 6.4. Then
(v, v) is a multiplier of D; conjugating by (v, v) and applying Lemma 6.1 shows that B
induces the same map Kz(A) = Kg(D) as the B-homomorphismy : A = D defined by

oo oo

I
:
v(a):= X UnVa@VpUup, X UnVee@Ve Up

n=1 n=1
On the other hand, the B-homomorphism § : A > D defined by

§:a > (upveavZul, upveaviud)
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induces the zero map on K-theory (by Lemma 6.2) and has orthogonal image to v/
Hence from Lemma 6.3 the sum € := y + § is a well-defined B-homomorphism that
induces the same map on K-theory as B.
Compiling our discussion so far, we have
(6.1) ap = B= e = ve+ 0p = €
as maps Kg(A) = Kg(D). Let Yo, P : A = D be the B-homomorphisms defined by
Po :a > (uovoaviud,0), and e :a > (uoveaviug,0),
and define T : A > D by |
xq ?] ?] 7] ?] -
{(a) := unvnaviug,  upveaVB .
n=1 n=0
Note that T has orthogonal image to Yo and -, and that
Yo+ T=a and UYe+T=c¢
hence from Lemma 6.3 and line (6.1),

(Vo)a+ o= am= eg= (Peo)a + (a.
Canceling g thus gives that yp and y - induce the same maps on K-theory.
Finally, note that if L : A = D is the map of Lemma 6.2, then
bi(a) = uot(pi(a))ud
for all a@ A and i B {0, e=}. This implies the desired result as Lemmas 6.1 and 6.2

show that conjugation of D by (ug, upg) and t : A > D both induce isomorphisms on
K-theory. O

Dynamical part

We now provide the dynamical input for Proposition 6.7 needed to complete the
proof of Proposition 5.1. Recall that we want to show that Kg(A®*(G)) is zero whenever|
the open subgroupoid G of T @X and number s > 0 satisfy

(6.2) G B{(gx,g,x) BN @X |]g|< s}

For the remainder of the section, fix s and G satisfying these hypotheses.

We will start by building a convenient representation of the CP-algebra A%(G).
For zR@ P (l), recall from Definition 3.2 that supp(z) consists of those g @l spanning the
minimal simplex containing z, and define

Ps(G) := {(z,x) @BPs(T) x X |(gx,g,x)BG forall g@supp(z)}.

Recall from Definition 2.3 that Z, is our fixed dense subset of P(l). Define
Zg :=(Zs x X) NnPs(G) and

He := 82(Zg, H BR2(I)) = 82(Zs) @H BR2(T)
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which is a subspace of Hs = £2(Zs x X, H B282(T)) as described in line (2.2) above. We
have the following lemma; the proof involves essentially the same computations as
Lemma 3.3 above, and is thus omitted.

Lemma 6.8. — The faithful representation of C?(G;s) on Hs restricts to a faithful
representation on Hg.

For the remainder of this section, we will consider CZ(G; s) as faithfully represented
on Hg, and A®(G) := CE((G; s) as faithfully represented on L2([0, e=), Hg) in the
obvious way.

Now, the assumption in line (6.2) implies that if (z,x) @ Ps(G) and supp(z) =
{g1,...,8n}, then{e, g1,...,8n} also spans a simplex A in P¢(l) such that A x {x} is
contained in Ps(G). Hence the family of functions

Fr :Ps(G) > Ps(G), (z,x)>((1-r)z+re,x), 0<r<1
defines a homotopy between the identity map on Ps(G) and the obvious projection
onto the subset {(z, x) BPs(G) |z = e}, which is just a copy of the unit space G(°).

Let m:Zs —> Zs denote the projection onto the first coordinate, and let Z denote

the image of m. Note that Z is countable, whence as H is infinite dimensional we
may find a family {w;,0},az of isometries on H such that P ,mz Wz,0Wa g converges

strongly to the identity. For each z @ Z, let w, : H B & () > H B82(l) be the
isometry defined by w; := wz,0 @ 1g2(p).
Now, for each r @ Q n [0, 1] define
w(r) :8%(Zg) @H BR2(T) > 2(Zg) BH BL2(T)
62,)( Bn-> 6F,(z,x) Blw;n
which is a well-defined isometry by definition of Z; (Definition 2.3 above) and of Zg;

note that the different w(r) have mutually orthogonal ranges as r ranges over QNn|[0, 1]/
For each t @ [0, e=) and n B N B {e=} (we assume N includes zero), define an isometry

Vn(t) : €2(Zg) BH BL2(I) > 82(Zs) BH BR2(r) by

the following prescription. Flrst we define for m&@ N

| w(0) m< n
Vn(m) = w(i(m-n)) m@(n,2n)nN
8 w(1) m > 2n.

Schematically, we thus have

vn(m) = w(0), {, w(O; | w(i), l(ng;z{‘l.‘.”.l, w( l, w(1), \g/L_}_

Now we interpolate between these values by defining for t= m+ s with s & (0, 1),

vn(t) = cos(%s)vn(m) + sin(gs)vn(m + 1).
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It is not dificult to check that the map
[0,20) > B(£%(Z6) BH B*()),  t > va(t)

is norm continuous for each n (and in fact, the family is equicontinuous as n varies),
and that the image consists entirely of isometries. The following schematic may help to
visualize the operators v(t).

n‘6

w(0) S—

- w(1)

n unun u unu unu unu un

Here v, (t) is constantly equal to w(0) in the left triangular region, and constantly
equal to w(1) in the right triangular region. Along each of the horizontal arrows in the
intermediate region, v,(t) interpolates between w(0) and w(1), taking longer and
longer to do so as n increases.

We are now ready to construct isometries as demanded by the definition of stable
equivalence. Define an isometry

Va : L?([0, =), Hg) = L?([0, =°), Hs)
for each n by defining for each £ @ L?([0, =), Hg)
(va&)(t) := va(t)(&(t)).

On the other hand, choose a unitary isomorphism

NP
H H
n=0
and use this tq define isometries un,0 : H = H with mutually orthogonal ranges such
that the sum = unoUfl, 5 converges strongly to the identity operator. Define

(6.3) un : L%([0, =), Hg) = L*([0, =), He)
to be the isometry on
L2([0, o), Hs) = L2[0, =) B8%(Zs) BH BE2(T)

induced by tensoring un,o with the identity on the other factors. We may think of
elements of M (A%(G)) as functions from [0, =) to M (C?(G;s)) (subject to various
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additional conditions, but those are not important here). Thought of like this, let T be
the topology of pointwise strict convergence on M (A%(G)), i.e., a net (m;) converges to
m if and only if (m;(t)) converges to m(t) strictly for all t @ [0, o). It is then not
dificult to see that (un) and T together define a stability structure, where we take the
isometry v needed by the definition to be

X

V= Un+1ul,

n=0

noting that the sum t-converges to an element of M (A*(G)).

Lemma 6.9. — With notation and stability structure as above, the isometries vp andve
are stably equivalent (in the sense of Definition 6.6) with respect to the C®-alge-bra
AS(G).

Proof. — Let a be an element of C,0[G; s], and let T = a(t) for some fixed t @ [0, ==).
The matrix entries (vn(t)Tvn(t)®)y,z(x) of va(t)Tva(t)® will then be a linear combi-
nation of at most four terms of the form

Wi TE, (y).Fr, (2) ()WY

where r1 and r arein Qn[0,1], and |r1—-r2| < 1/m whenever t > 2m. From this de-
scription, it is straightforward to check that the Rips-propagation of vn(t)a(t)va(t)? is at
most the Rips-propagation of a(t) plus min{1, 2/(t - 1)}; and therefore in partic-ular
that vpavn iszin Cio0[G;s]. Condition (i) follows from this estimate on Rips
propagation and equicontinuity of the sequence of maps (t = vn(t)).

To see that vn+1v2 is a multiplier of AS(G), note that operators St := Va1 (t)vn(t)?
on 2(Zg) @ H B 82(r) have matrix entries (St)y,; that act as constant func-
tions X - B(H E&2(r)); that their Rips-propagation tends to zero as t tends
to infinity uniformly in n; and that they have l-propagation at most s for all t.
Condition (ii) follows from this.

Finally, the fact that the operators

X X
UnVpav un - UnVeaV,, U7,
n=0 n=0
as well as
xX° xX°
?] 7] 2l ?] 7] 2l
Una(Ve V2 = vpe1v2)u?  and Un (Voo VB —
n=0 Vn+1Vn)aUn n=0

are in AS(G) for all a@ A*(G) follows from the above discussion and as for any fixed t

and all n> t, vp(t) = Ve (t).
O

Let now
@0, 9= : Ka(A*(G)) > Ka(A*(G))
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be the maps induced on K-theory by conjugation by vo and by ve... Proposition 6.7
and Lemma 6.9 imply that these are the same map. The following two lemmas will
now complete the proof of Proposition 5.1.
\Lemma 6.10. — The map

¢~ : Ka(A*(G)) > Ka(A®(G))
constructed above is the identity map.
Proof. — The map ¢ is given by conjugation by the isometry w(0) (constantly in the
‘localization variable’ t), which is in the multiplier algebra of A%(G). Hence it
induces the identity on K-theory by Lemma 6.1. ]
\Lemma 6.11. — The map

9o : Ka(A*(G)) > Ka(A*(G))
constructed above is the zero map.
Proof. — Let G(°) be the unit space of G, which is an open subgroupoid of [ BX, and

thus AS(G(©)) makes sense. It is straightforward to check that g fits into a
commutative diagram

Po

Ke(A®(G)) Ka(A®(G))

Ka(As(G(0))),

whence it sufices to show that Kg(AsS(G(°))) = 0.

Say now that a is an element of AS(G(®)) and t @ [0, =), y, z @ Ps(l), and x B X are
such that a(t)y,.(x) = 0. Then by the condition that the support of a(t) is contained in
G(9) (compare Definitions 3.2 and 3.6 above), we must have that for all g @ supp(y) and
all h @ supp(z), (gx,gh™t, hx) is in G{9). This forces gh~! to be the identity element
of I and thus g = h. As this happens for all g @ supp(y) and h & supp(z), this forces
supp(y) and supp(z) to both reduce to a single element of I', and moreover that these
elements are necessarily the same. In particular, a(t) has zero Rips-propagation for all
t.

Now, let un : L%([0, e=), Hg) = L?([0, ==), Hg) be the isometries constructed in
line (6.3) above. For each n B N and element a of A%(G(?)), define al™ to be the
function (
aft- n) t=2n

aM(t) =
t< n
in As(G(9)). Define
X>o ?|
a:AS(G) >A5(G), a>  upalMul.
n=0
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As every element of AS(G!9)) has zero Rips-propagation and satisfies a(0) = 0, ais a
well-defined B-homomorphism. It thus induces a map on K-theory

az : Ka(A*(G'?))) > Ka(A*(G!)).

However, if L : AS(G(?)) > AS(G(9)) is the identity map, then a straightforward ho-
motopy using uniform continuity of each element of AS(G(?)) shows that ag + 1z = ag
and we are done. ]
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CHAPTER 7

MAYER-VIETORIS

In this section, we prove Proposition 5.2, which we repeat below for the reader’s
convenience.

\Proposition 5.2. — Let G be an open subgroupoid of I @ X that is in the class D of
Definition 3.14, and let ro, so 2 0. Then there is s 2 max{ro, so} (depending on rg, sg
and G) such that the subspace-inclusion map (cf. Remark 4.7)

K M8 (A% (G)) > K%YB(A%(G))

is the zero map.

As in Section 6, we first build an abstract K-theoretic machine, and then use the
dynamical assumptions to produce ingredients for that machine.

K-theoretic part

We start with a technical lemma about when elements of controlled K-groups are
zero: compare [19, Section 1.6]. The proof is in large part the same as that of [19,
Proposition 1.31], but as our set up and precise statement are a little different, and tg
keep things self-contained, we give a complete proof here.

Before stating the lemma, we recall some notation from Section 4, and introduce
some more. Let A be a non-unital C?-algebra and S @ A a self-adjoint subspace. Let A
& the unitization of A, and let S béthe subspace of A spghned by S and the unit. Then

K:PE(S) > Pn(A), P> X1/2,=1(P)
is the map from quasi-projection% in I\/In(ﬁ to projections in My (/) of Definition 4.1.
Similarly,

k:UM8(8) > Un(M®), u->u(ulu)??
is the map from quasi-unitaries in M, (%) to unitaries in M, (/&) of Definition 4.4. For
each m & N, define

S™:=span{ai---am @A |a;BS foralli@{1,..., m}}.

e e
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We will also need some notation for standard matrices. Given m B N, we will write
‘1’ for the m x m identity matrix and ‘O, for the m x m zero matrix. We will adopt
the shorthand ‘diag(...)’ for a diagonal matrix with given entries: for example

a 0 0
?| ?|
diag(a, b, 0) = O b 0.
0 0O

Lemma 7.1. — For any € > 0 there are constants L = L(e) 2 0 and M = M (€) @ N with
the following properties. Let A be a non-unital C%-algebra and S B A a self-adjoint
subspace.
(i) Sayl@Nand(p,n)@P 1|/8(59><N is such that the class [p, n] is zero in K1/08(S).
Then there exist ki, ko @ N and a homotopy h : [0, 1] = Pj+k, +k, (A9 with
h(O) = diag(Okl, K(p)l 1kz) and h(l) = diag(Okl, O"n' 1n+k2 )'
such that there is an L-Lipschitz map he : [0, 1] > Mk, +k, (BV) with

sup Bhe(t) - h(t)B < e
t2[0,1]

(ii) Say I @ N, and u U1|/8(59 is such that the class [u] is zero in Kl/ls(S). Then

there is k@ N and a homotopy h : [0,1] & U+« (A9 with
h(0) = diag(k(u),1x) and h(1)= (1), 1k)
such that there is an L-Lipschitz map he : [0,1] & M+« (M) such that
sup Bhe(t) - h(t)B < e.

t2[0,1]

To summarize the idea, if a cycle for K/S(S) represents the zero class, then this
can be witnessed by a homotopy that is well-controlled, both with respect to how fast it
goes, and with respect to the subspace of M (A) € passes through.

Proof. — We look first at the case of Kg. Let (p, n) P|1/8(9) x N satisfy the hy-
potheses of the lemma. Unwrapping the definitions, this is equivalent to saying that
there exist j1, j2, j3s @ N and an element {pt}ta[0,1] of P|+1j/f+n+jz+j3 (C([0, 1], S8) such

that
po = diag(p, 0j;, On, 1j,, 0]3) and pi = diag(0i, 0j, 1n, 1j,, Ojs)-

As [0, 1] is compact, there are 0= top < --- < ty = 1 such that

(7.1) Bpt, - pt,_, @< 1/12 foralli®@{1,...,N}.

Set m= j1+ jo+ j3+ n+ |. We will first define a Lipschitz homotopy between
diag(po, 1mn, Omn) and  diag(Omn, p1, 1mn)

by concatenating the steps below.
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(i) Perform a rotation homotopy between

diag(po, 1mn, Omn) and diag(po, ilm, Om, o 1m, o,T)_
N copies of (1,“,0m )
(ii) Let |
cos(mt/2) -—sin(mt/2)
r(t) = M c),
© sin(mt/2)  cos(mt/2) 2m(C)

where each entry represents the corresponding scalar times 1m. For i @{1,..., N},
in the i-th ‘block’ diag(1m, Om) appearing in the above apply the homotopy
! !

1., - ) . 3
m~ Py O +r(t) pi. O r(t)
0 0 0 O

t->

between diag(1m, Om) and diag(l - pt,, pt;) to get a homotopy between
diag(po, I1m, Om, ..., Im, Om)
and diag(po, Im = Pti, Ptss Im = Py, Ptos---» 1= Ptu, Ptu)-
(iii) For each i @ {1,...,N}, use a straight line homotopy between 1, - pt, and
1m - pt,_, in each appropriate entry to build a homotopy between
diag(po, 1m = Pt;, Pty, Im = Pty, Ptyy -+, 1= Py, Pty)
and diag(po, Im = Pte, Ptss Im = Pti, Ptas---» 1= Pty-1, Pty )-
(iv) Using a similar homotopy to step (ii), and that po = p¢,, build a homotopy
between
diag(po, Im = Pto, Pty, Im = Py, Proy -y 1= Py, Pry)
and diag(Om, 1m, ..., 0m, 1m, pt,)-

(v) Finally, recall that pt, = p1 and use another rotation homotopy between
diag(Om, 1m,...,0m, 1m,p1) and diag(Omn, p1, Imn)

to complete the proof of the claim.

Write {qt}mio,17 for the homotopy arrived at by concatenating the steps above; it is
straightforward to check that this homotopy is Lipschitz for some universal Lipschitz
constant. Note also that all of the matrices from steps (i)-(v) above have entries
from &, so this homotopy has image in My 2n+1) (5.

We claim that Bg2 - qiB < 5/24 for all t. Indeed, for all t associated to steps (i),
(ii), (iv), and (v) we clearly have that Bg2 - q:@ < 1/8, so the only thing to be checked
is the straight line homotopy in step (iii). For this, using the bound in line (7.1) it
sufices to show that if p,q are two quasi-projections with Bp - gq& < 1/12, then for
any t &[0, 1],

B((1- t)p+ tg)? - ((1- t)p+ tq)B < 5/24.
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Computing,
((1- tp+ ta)® - ((1- t)p+ tq)
= (1- 1)(p*- p) - (1- Otp(p- q) - (1~ titala - p) + ta® - q).
As [BIpR and Blq@ are both bounded above by 2, this gives
B((1- t)p+ tq)? - ((1- t)p+ tq)B< (1- t)(1/8)+ t(1- t)(1/6) + t(1- t)(1/6) + t(1/8)
< 1/8+ 2/24 = 5/24

as claimed.

Hence the spectrum of every g: is bounded away from 1/2, and thus defining
h(t) := k(qt) makes sense. Fix a sequence of real-valued polynomials (fi) converging
uniformly to X(1/2,-~] on the spectrum of every g:. As f; is a polynomial and t - gt is
Lipschitz and bounded, t = fi(q:) is Lipschitz for each i, with some LipschitZ
constant depending only on the fixed choice of f;, and on the Lipschitz constant of
- gt It moreover takes image in My 2n+1)(SMid, where M is the degree of fi. It
follows from all of this that we may take he(t) := fi(qt) for some suitably large i, and
this will have all the right properties.

We now turn to the case of K1. Let [u] satisfy the hypotheses, so there exist j B N
and a homotopy {ut}ia[o,1] in U,i/jg(C([O, 1], 9) such that

uo = diag(u, 1;) and ui1= diag(1,1;).
Setm= 1+ j.let0= tp< ---< ty = 1 be such that
(7.2) Blut, - ut,_,B< 1/32 foralli@{1,...,N}.
We will define a Lipschitz homotopy between

diag(uo, 12mn) and diag(ui, 1amn).

by concatenating the homotopies below.

(i) Connect

diag(uo, 12mn) = diag(uo, ilm_,{NZ,_lT, 1mn)

and diag(uo, Ut ut,, ..., Gt jue,, 1mn)

by the straight line homotopy between the it" copy of 1, and UiUt;-
(ii) Use a rotation homotopy between

diag(lm,uf ,..., 4t ,1mn) and diag(8t ..., Ut , 1m, 1mn
), to produce a homotopy between
diag(uo, u? ug,, ..., Gt uty, Imn)

= diag(lm, uf ,..., Gt , Imn)diag(uo, U, ..., Uty, I1mn)
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and
A
dlag(utluo, Up,Uty,«vo, Uy Uty_y, Uty Imn )
. .
= dlag(utl, s Uy, Im, I )diag(uo, Ut,, ..., Uty, Imn).

(iii) Use another straight line homotopy between each uf u:,_, and 1, to build a
homotopy between

diag(u? uo, ¢t ,ut,, ..., Gt ue, ., uty, Imn)
and diag(J[m, .
s

N

’ ln}r Uty , lmN )

(iv) Finally, one more rotation homotopy connects

diag(ill{.z.,_lrp, Uiy, Imn) and diag(ui, 1amn),
N

where we used that ut, = uj.

Write {vt}im[0,1] for the homotopy resulting from concatenating the above homo-
topies; it is straightforward to check that this homotopy is Lipschitz for some universal
Lipschitz constant, and that each v; is a matrix in Mm(2N+1)(S€?).

We claim that for each t,

(7.3) BV vi- 1B< 7/8 and Bve - 1@< 7/8.

For t associated to step (iv), this is immediate. For t associated to step (ii), this follows
from the fact that if v and w are quasi-unitaries, then their product satisfies

B(vw)(vw)? - 1@< Bv(ww? - 1IVEE+ BvW? - 13
< (1+ 1/8)(1/8) + (1/8)
< 7/8

and similarly B(vw)®(vw) - 18 < 7/8. For t associated to steps (i) and (iii), we first
claim that if §,e @ (0, 1) and Au- vE < ¢, and Buu?- 1B < § and BuPu- 1@< §, then

(7.4) Bvwf - 18< 6+ 4e and BEVPv- 1< §+ 4e.
Indeed, using that BuB < v 1+ 6,
Bvw? - 18 < Bvw? - ud@+ 6 < avE @7 - uPE+ Bv- ul B'E+ 6
< (Vm+ €)e + (Vm)e+ §< &6+ 4,

and the other estimate is similar. Now, looking at step (i), we have that all elements
appearing in the homotopy are within 1/8 of diag(uo, 12mn), so applying the estimatein
line (7.4) with 6 = € = 1/8 establishes the estimate in line (7.3). On the other hand)
looking at step (iii), we first note that forany i @{1,...,N},

Buf ur_, - 1@< B B By, - ug,_, B+ Bl ug, -

| O J—
1B< 1+ 1/8(1/32) + 1/8 < 3/16.
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Hence every element in the homotopy in step (iii) is within 3/16 of
diag(lmn, Uty, 1mn).

Applying the estimate in line (7.4) with 6 = 1/8 and € = 3/16 then again gives the
estimate in line (7.3), and we are done with the claim.

It follows in particular that (v?v¢)~1/2 makes sense for all t, and thus we may
define h(t) := k(vt). Moreover, there is a sequence (f;) of real-valued polynomials
that converges uniformly to the function t = t™1/2 on the spectrum of each vtvt.
Analogously to the case of Ko, we may now take he(t) := vtfi(vvt) for some suitably
large i (depending on €); this has all the right properties. ]

Our main K-theoretic goal is a sort of controlled Mayer-Vietoris sequence. Let us
first recall the relevant classical Mayer-Vietoris sequence in operator K-theory: see

for example [14, Section 3] or [35, Proposition 2.7.15] for more details.

Proposition 7.2. — Let A be a C%-algebra, and let | and J be ideals in A such that

A = | + J. Then there is a functorial six-term exact sequence
Ko(l nJ) _— Ko(l)BKo(J) — Ko(A)
3 3
K1(A) Ki(l)BK1(J) — Ka(l nJ).
The maps

Ki(l nJ) >Ki(l)RBKi(J)
are of the form x = (x, —x) (where we abuse notation by writing x both for an element
of Ki(l nJ), and its image in Ki(l) and K;(J)), and the maps
Ki(l)BKi(J) =2 Ki(A)

are of the form (x,y) = x + y (with a similar abuse of notation).

The maps above labeled ‘0’ can also be described explicitly (they are connected
to the index and exponential maps of the usual six-term exact sequence), but we will
not need this.

We will need some notation and an appropriate excisiveness condition for our
controlled Mayer-Vietoris sequence.

\Definition 7.3. — Let K = K(22(N)), and A be a C%-algebra. Let A B K denote the
spatial tensor product of A and K ; using the canonical orthonormal basis on 22(N), we
think of elements of A @ K as N-by-N matrices with entries from A. For a subspace S of
A, let S B K denote the subspace of A B K consisting of matrices with all entriesin S.
In particular, if A is filtered as in Definition 3.8, then we may define (ARBK ), :=

A BK . It is straightforward to check that this definition induces a filtration on AR K .
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\Definition 7.4. — Let A be a filtered C®-algebra, and | be a CP-ideal in A equipped

with its own filtration. We say that | is a filtered ideal Wof A if for anyr > 0,1, @A,
and if forany r,s> 0, As - I Bl - As Bl lsur.

\Remark 7.5. — For our applications, the special case where | = A as a C%-algebra, but
where | and A do not have the same filtration, turns out to be particularly
important.

\Definition 7.6. — Let (1*,]“; A”)ym qbe an indexed set of triples, where each A® is a
filtered C%-algebra, and each |* and J “ is a filtered ideal in A”. Give each stabilization
AYBK, IYRAK andJ® @K the filtration from Definition 7.3 (note that I1® B K and
J® B K are also filtered ideals in A® BK with these definitions).

The collection (1%, 1¥; A®)ur qof pairs of ideals and CP-algebras containing them
is uniformly excisive if for any ro,mo = 0 and € > 0, therearer > ro, m > 0, and
6 > 0 such that:

(i) foranyw @ Qandany al@ (A“BK ), of norm at most mo, there exist elements b

B(IBK) and cB (JY B K ), of norm at most m such that Bla-(b+c)@ < ¢;
(ii) foranywBQandany aB 1 BK nJ® @K such that

d(a,(I1®BK)r,)< 8 and d(a,(J°BK))< b
there exists bR I BAK NJr®REAK such thatBa- bEI< e
Note that (ii) implies that for any w, the family of subspaces (|* BK N J* BK)rx0

defines a filtration of I“ B K NnJ® B K; we equip each I“ B K nJ¥ B K with this
filtration.

Note that condition (i) above is a controlled analogue of the condition ‘A = | + J’
from Proposition 7.2, while condition (ii) is a controlled analogue of the fact that ifa
A is close to both | and J, then there is an element of | nJ that is close to a(this can
be shown using approximate units).

We are now ready for our controlled Mayer-Vietoris theorem. See [20, Sections 2
and 3] for related ‘controlled Mayer-Vietoris sequences’, approached in a somewhat
different way.

\Proposition 7.7. — Let (1°,J%; A”)wa obe a uniformly excisive collection, where the
algebras and ideals are all non-unital. Then for any ro > 0 there are r1,ry 2 ro with

the following property. For each w and each x Kr’l/S(A“’) there is an element
de(x) BKEYE(1@ nyw)
such that if d.(x) = O then there exist

yEKZYE(®) and zBK'ZFYVEQ@)

1. This is a more general notion than the filtrations on ideals used by Oyono-Oyono and the third
author in [19, Subsection 3.1].
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such that
x=vy+z in KZYEA®)
(where as usual we abuse notation by omitting explicit notation for subspace-inclusion
maps).
Moreover, the ‘boundary map’ 0. has the following naturality property. Let
(K®, L®; B®)em o be another uniformly excisive collection, where the algebras and
ideals are non-unital. Assume moreover that there is a map m : ® = Q and for

each 8@ O an inclusion A™(®) @ B® such that for each r > 0 we have that A™®) @B, 1" m(8)
ErKr , 1) @ g L,. Letdro be given, and let r1 be as in the statement above for both

uniformly excisive families ¥\ Then the diagram

Krfl/S(An(G)) % Kr'1/8(|n(e) n (o))

K /%(B0) —2— KR M3(K® n1°),

where the vertical maps are subspace inclusions, commutes.

The subscript in ‘4.’ stands for ‘controlled’: d. is a controlled analogue of the usual
Mayer-Vietoris boundary map in K-theory. It will be crucial for our applications that
the numbers rg, r1, ro appearing in the above are all independent of the index w.

Proof. — Let A be a set equipped with a map t: A = Q. Let K denote the com-pact
operators on ¢2(N) and let aa AT B denote the CP-algebra of bounded, A+
indexed sequences where the Ath element comes from A™(*) @ k. With notation as

in Definitlon 7.3, define

)
An = (aa) A™M B thereis r 2 0 with ax A”(i‘) Bk forallA ,
AR A

which is a B-subalgebra of Q}\ JATM Bk, and let An be its CP-algebraic closure.
Define also ! A to be
n
(arn) @A thereis r = 0 with ax I"(r") Bk forall A

and similarly for Jo. The definition of a filtered ideal (see Definition 7.4 above) implies
that I o and Ja are B-ideals in Ax, whence their closures |5 and J o are CZ-ideals in
An. Moreover, the uniform excisiveness assumption implies that Ay = 1o + Ja.

2. We may assume the same r; works for both families at once by combining them into a single
family and applying the first part.
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Hence (see for example [14, Section 3]) there is a six-term exact Mayer-Vietoris se-
quence

(7.5) Ko(ln nJa) ——Ko(In) BKo(JA) ————Ko(An)
[¢] e]
Ki(Apn) ———Ka(Ia) BK1(JA) ——Ka(Ia NnJa).

From now on, we will focus on the case of Ko; the case of K1 is essentially the
same. Define
A= {(w,x) [wBQ, x BK'SYE(A®)}
equipped with the map m : A = Q that sends an element to its first coordinate. For
each A = (w, x) @A choose a pair

(pr, M) BPL/B(A2 ) x N

ma
for some m) @ N (see Definition 4.1 for notation) such that x = [pj, na]. Identifying
Mum, (A®) with the C?-subalgebra of A¥ B K consisting of N x N matrices that are
only non-zero in the first my x my square in the top left corner, we get a well-defined
element @ := (pa)am aof Ax. With k as in Definition 4.1, the formal difference

= [(k(pa))ae A = [(1n,)re A

defines an element of Ko (AA), and so the Mayer-Vietoris sequence of line (7.5) gives an
element 0 (®) in K1 (IaNnJa). We may represent 0 (®) as a A-indexed collection (ux)aa »
where each uy is a unitary in a matrix algebra over the unitization of 1™} n ™) On
the other hand, by definition of Ix and Jo and by the uniform excisiveness condition
there is r; > 0 (which we may assume is at least ro) and a A-tuple (va)am awith each
Vi in some matrix algebra over the space spanned by 1" q ) 3hd the unit, and so
that Buy - vaB < 1/20. From this estimate, one checks that gach vy'fs a quasi-unitary
as in Definition 4.4 and thus defines a class [va] B K™Y/ (11N q J=(M)) For each A =
(w, x) @), define 1

dc(x) 1= vl BK YV HE(19 nJw),

We now look at what happens when d¢(x) = 0. Let A" @ A be the subset of all
(w, x) @ A such that d.(x) = 0 in K”’l/i(ln“‘) n J™A)) . Define a new element®’
Ko(Aa) by setting the A'" component equal to [k(pa)] - [1n,] if A B A', and equal
to 0 otherwise.

For each A = (w, x) @A’ let va be a quasi-unitary such that d.(x) = [va]. The fact
that [va] is zero in K™Y/ (17 nJm(N)) for each A B A" and Lemma 7.1 together give
a homotopy between a stabilized version of the sequence (k(va))am A and zero in
K1 (la NJa). With 0 the standard boundary map as in diagram (7.5) we thus have that
d(®') = 0in K1(la nJa). Hence by exactness of the Mayer-Vietoris sequence there
are elements B @ Ko (In) and Ko(Ja) such that @ = §+ B in Ko(Aa) (as
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usual, we have suppressed notation for subspace-inclusion maps). Suitably approxi-
mating representatives of § and @ in each component and applying the injectivity part
of Proposition 4.9 gives the desired conclusion.

The naturality property in the second paragraph of the statement follows directly
from the corresponding naturality property for the classical Mayer-Vietoris sequence:
we leave the details to the reader. O

Dynamical part

We now use the dynamical assumptions to produce ingredients for the K-theoretic
machine just built, and thus complete the proof of Proposition 5.2.

First, we define the algebras we will be using. These are subalgebras of our usual
obstruction C?-algebras A® from Definition 3.9, but we will also need to allow ourselves to
change the filtrations involved in order to ‘relax control’ in some sense. This will give
us two different uniformly excisive families in the sense of Definition 7.6: our first task
in this section will be to define these families and establish that they are indeed
uniformly excisive.

\Definition 7.8. — Fix an open subgroupoid G of  @X and a constant so 2 1. Let Q be
the set of all pairs w = (Go, G1) where Gp and G1 are open subgroupoids of G such
that G(© = G'° @ 9, ,Throughout this definition, we work relative to the
subgroupoid G when defining expansions as in Definition 3.11.

For our first family, let w = (Go, G1) @ Q and r 2 0, and define

B 1= A% (Gy)r + A% (G]"), + A% (G nG;T),

and define also [
B“ := Br w
rx0

to be the closure of the union of the family {B% };>0 in the norm topology of A®°.

\Remark 7.9. — \We note that the filtration (B* ),>0 depends on the pair w = (Go, G1),
and not only on the ambient groupoid G. In the main proof, we will choose an appro-
priate pair (Go, G1) based on a given scale r for the original filtration on A® that was
introduced in Definition 3.9. Thus the filtration on A° will be adapted depending on
the scale at which we are working, and the decomposition of G that is appropriate to
that scale.

Define subspaces of B by
19 = A% (G5")r + A (G NGy,
and
J9 1= A(GTT) + A(GTT nGTT),

r 1 (¢} 1
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and define — - L _
= | w

@ w, Y= Je,
r=0 r20
We now come to our second family. Let Q x [sp, o) be the set of all triples
(w,s) = (Go,G1,s), where Go and Gi are open subgroupoids of G and s 2 sgp/
For (Go, G1,s) B Qx [sg, =) and r 2 0, define a subspace B‘*:’S of A* by

BYS 1= A% (GE)r + A% (GM)r + A*(Gy" N GY)sr

and define also e — —
B = B,
rz0
to be the closure of the union of the family {B%'*};>0 in the norm topology of A®.
Define subspaces of BY'* by
|w.s .= Aso(G+r)r + AS(G+r nG+r)sr
0 0 1

r

and
J‘:"SZ= ASO(GIr)r+AS(G6rnG;r)5r
and finally define L L
w,s = t I(A),S J(.u = t J(A),S
r 7 r
r20 r=0
Remark 7.10. — (This remark may be safely ignored by readers who do not know the

earlier work.) Comparing our work in this paper to [8], the second filtration above
plays an analogous role to the relative Rips complex of [8, Appendix A].

Our aim is to show that the definitions above give us two uniformly excisive families
in the sense of Definition 7.6. This requires some preliminaries on ‘partition of unity’
type constructions.

The next definition and lemma will be given in slightly more generality than we
need as this does not complicate the proof, and maybe makes the statements slightly
cleaner.

\Definition 7.11. — Let K be a compact subset of X, let {Uog,...,Un} be a finite
collection of open subsets of X that cover K, and let {@o,..., @n} be a subordinate
partition of unity on K: precisely, each ¢; is a continuous function X - [0, 1] with
support contained in Uj, and for each x @ K we have @o(x) + ---+ @n(x) = 1.

Let s > 0 and recall the definitions of the Rips complex Ps(I'), barycentric co-
ordinates tg : Ps(I') > [0, 1], and Hilbert space Hs := 82(Zs x X, H @¢2(T)) from
Section 2. For i B {0, ..., n}, let M; be the multiplication operator on Hs associated to
the function X

Zs x X =>100,1], (z,x) > tg(z)ei(gx).
gl T

For the next lemma, recall the notion of the support of an operator in C2(I ®X; s)
from Definition 3.2 above.
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\Lemma 7.12. — With notation as in Definition 7.11, the operators M; have the fol-
lowing properties.

(i) Each M; has norm at most one.
(i) If TAC®(r = X;s) satisfies

{x@X |(gx,g,x)Bsupp(T) for some g@AT} BK,

then T = T(Mo+ ---+ My).
(iii) For any T BCE(r X;s) and i @{0,...,n},

[
supp(TMi)) B (gx, g, x)BTEX x0& h - Uj N supp(T).
|h|ss

Proof. — Part (i) follows as each M; is a multiplication operator associated to 4
function with range contained in [0, 1]. For use in the remainder of the proof, note
that for i @{0,...,n}, any TAC®(I =mX;s)andanyy,z@Zs and x @ X,

X
(7.6) (TMi)y,2(x) = Ty,2(x) - th(z)@i(hx).
he T
Hence X
(7.7) T(Mo+ -+ Myp)y,z2(x) = Ty,2(x) - th(z)(po(hx) + ---+ @n(hx)).
he T
Assume now T satisfies the support condition in part (ii). If Ty,2(x) = 0, then clearly

the above is zero. Otherwise, if Ty ;(x) = 0, then (gx, gh™%, hx) B supp(T) for all g
supp(y) and h @ supp(z). In particular, hx @K for all h @ supp(z), and so

X
th(z)(@o(hx) + ---+ @n(hx)) = tn(z) = 1,
he T ha T
using that {@o, ..., @n} is a partition of unity on K; combined with line (7.7), this
gives part (ii).

For part (iii), say (gx, gk, kx) B supp(T M;) for some T B C2(T X;s). Hence
there are y,z @ Zs with g B supp(y), k @ supp(z) and (T Mi)y,z(x) = 0. From ling
(7.6), this implies that Ty,;(x) = 0, whence (gx, gk™!, kx) @ supp(T). On the other
hand, we must also have

th(z)ei(hx) = 0,
he T
whence there is h B supp(z) with @i(hx) = 0, and thus hx isin U;. As h and k are both in
supp(z) and z is in Zs, this forces |kh™| < s. On the other hand, kx = (kh™1)hx is in

(kh=1)U;, which completes the proof.
O
We are now ready to show that the families from Definition 7.8 are uniformly

excisive.

Lemma 7.13. — Fix an open subgroupoid G of '@ X, and sp 2 1. Let Q be the set of]
all pairs (Go, G1) of open subgroupoids of G as in Definition 7.8. Then with notation
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as in that definition, the collections
(1°,09;B®)uma and  (1%°,1%9°;,B**)(w,5)8 also,)

are uniformly excisive.

Proof. — Each subspace B“, of A®® is self-adjoint as it is a sum of subspaces that are
themselves_self-adjoint by Lemma 3.3. It is clear that Br BBr fer ro < r, and the
union 0 Buwis dense in Bw by definition. These observations apply similarly

rz
for B‘;"S, and for I‘r*’, J‘r", I‘r‘"s, and J;*"S. To complete the proof that B¥ is filtered and
1@, J¥ are filtered ideals (and similarly for the s-decorated versions) we must look at
products. Let r1,r2 2 0. First, note that the inclusions

A (GFH)p, - A% (GF2)r, BAS(GH ) Ly, wherei B{0, 1},
Aso(GSrl nG-il‘l)rl .ASO(G(‘;l’Z nG;rz)rz AS(G+O(r1+rZ) nG+:{r1+r2))r1+rz,
and
AS(GE™ NG s -AT(G™ NGT ™) BAS(GT ) nG* ™)) (1, 1r,)s
follow directly from Lemmas 3.3 and 3.12. Similarly,
A% (GE )y, - A (GE")r, BAT (G ) L, nAS(GY ),
and finally, using that A%°(G), B A*(G), for any open G and r 2 0 and that s > sp > 1,
AS(G ), “AS(GE NG ™ )r,s BAS((GTy2 NG [2)" ™ ) 54,
AS((GHZOOG+r21)+rl)(rz+r1)s
AS((GJrorZ)+r1 ﬁ(GJr;|_r2)+r1)(r1+rz)s
AS(G+O(r1+rZ) n G+1(r1+r2))(r1+r2)s

for i @ {0, 1}, where the last step uses Lemma 3.13. Combining the last four displayed
lines completes the check that both B® and B“'* are filtered. Moreover, they show
that | and J ¥ are filtered C®-ideals in B, and similarly for the s-decorated versions.

We now have to check that the collection (1%,J%; B®)wr ais uniformly excisive as
in Definition 7.6, and similarly for the s-decorated versions. For notational simplicity,
we will ignore the copy of the compact operators appearing in Definition 7.6: the
reader can check this makes no real difference to the proof.

Look first at part (i) of the definition. Let U; be the unit space of G} " fori &{0, 1}.
Say a is an element of B/ whence

K :={xBX |(gx,g,x)Bsupp(a(t)) for some t@[0,==),g@AT},

is a compact subset of Up B Uy (see Definitions 3.6 and 3.9 above). Let Mg, M1 be as
in Definition 7.11 with respect to the Rips complex Ps(l'), the compact set K, the
open sets Up and Ui, and some choice of partition of unity {@o, ®1}. From Lemma
7.12 part (i) we have that Mgl £ 1 and BM1R < 1, and from part (ii) that a(t)(Mg
+ Mj) = a(t) for all t. Hence to complete the proof that our algebras
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satisfy part (i) of Definition 7.6, it sufices to show that there exists r 2 0 (which
is allowed to depend on rp and sp, but not on any of the other data) such that for
each w, t > a(t)Mp is in Irw and t = a(t)M1 is in Je . We focus on the case of Mg
and | w; the other case is similar. We claim that in fact r = 2ro+ So works.

Write a = bo+bi+c, whereb; BA®*°(G3™),, and cBA*°(G*;° NG*[°),,. Part (iii)
of Lemma 7.12 implies that for each t @ [0, o=)

supp(bo(t)Mo) B supp(bo(t)) and supp(c(t)Mo) B supp(c(t)),

from which it follows straightforwardly that t > b (§)M pand t > c(t)M grein
Aso (G”"()ro and Aso (G”Oon G”“)ro respectively; moreover, these are subspaces of |
. To;»complete the proof, we check that t = bi(t)Mo is in | . w

Assume that (gx,gh™%, hx) is in the support of bi(t)Mo for some t, and write
T = bi(t) for ease of notation. Then there exist y,z B Ps,(I') with g B supp(y),
h @ supp(z) and (T Mg)y,z(x) = 0. Hence from line (7.6) we must have that Ty,,(x) = 0
and so y, z are actually in Ps,(l) and |gh™]| £ ro < r. Moreover,

tk(z)@o(kx) = 0,
k@ T
whence there is k @ supp(z) such that ¢ {kx) = 0, and in particular, kx is in the unit
space of Ggr" . On the other hand,

(gx,gh™, hx) = (gx, gk, kx)(kx, kh™, hx).
The first factor in the product is in (G*"g)*" G*zrg using that |gk™| < r , that
kx is in the unit space of G*'?, angl Lemma 3.13. The second factor isin (G*ro
)*so [ G*(ro*se) ysing that |kh™| < so, that kx is in the unit spaceof G*'°,
and Lemma 3.13. Hence (gx, gh %, hx) is in G*2°*S°) To summarize,
we have shown at this point that bi(t)Mo has support in G;)(Zr"”“) for all t, and

thus t = b1(t)Mo is in B*°(G;")r as claimed. The s-decorated case can be handled
precisely analogously.

We now look at part (ii) of Definition 7.6. Say ais in both | and J®, and that a is
within § := €/3 of both Ir and Jr . Let ap and a1 be elements of Ir

and Jr respectively which de at most 6 away from a. Define © @

K :={xBX |(gx,g,x)Bsupp(ao(t)) for some t&A[0, =), gAl},
a compact subset of the unit space Ug of G(*)rO . Let Mg be as in Definition 7.11 with
respect to the Rips complex P, ('), the compact set K, and the open cover {Ug} of K.
From Lemma 7.12 parts (i) and (ii) we have that EMoR < 1 and that ag(t)Mo = ao(t)
for all t. Hence for any t @ [0, oo)
Ba(t) - a1(t)Mol
< Ba(t) - ao(t)@+ Bao(t) - a(t)Moll + Ba(t)Mo - a1(t)Mol

< E.
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On the other hand, an argument precisely analogous to the one used above to establish
part (i) of Definition 7.6 shows that a1 (t)Mp is contained in IrwnJw , wherer = 2rg+so,
and we are done. The s-decorated case can again be handled analogously. 0

We need one more preliminary lemma before the proof of Proposition 5.2. The
proof is similar to (and simpler than) the part of the proof of Lemma 7.13 above that
establishes part (i) of Definition 7.6, and is therefore omitted.

Lemma 7.14. — Fix an open subgroupoid G of I @X and sp 2 0. Let ro 2 0. Let G(?)
= Uo @ Uz be an open cover of G9), and for i B {0, 1}, let G; be the subgroupoid of G
generated by

{(gx, 8, x) @G |x B Ui, [g]< ro}.

Then A% (G),, ASO(G+(§2ro+so))2ro+so + ASO(G+1(2r°+SO))2ro+so-

Finally, we are ready for the proof of Proposition 5.2, the last step we need in the
proof of Theorem 2.11.

Proof of Proposition 5.2. — Let B be the class of open subgroupoids G of @ X such
that the conclusion of Proposition 5.2 holds for all open subgroupoids of G, in such a
way that the resulting constant s depends only on G and not on the particular open
subgroupoid under consideration. It will sufice to show that B contains D. For this it
sufices to show that B contains all relatively compact open subgroupoids of T@ X, and
that it is closed under decomposability.
Let then G be an open subgroupoid of I @ X with compact closure, and let ro and

sp be given. As G has compact closure, the number

s1 = max{|g| |(gx, g, x) B G},

is finite. Let s = max{ro, so, s1}; we claim this s has the right property. We have
that A5(G)s = A®(G) and so

K%' /8(A%(G)) = Ka(A%(G))

by Proposition 4.9. Moreover, the group on the right hand side is zero by Proposi-
tion 5.1, and so in particular the map

K% M8 (A%(G)) > K%' /3(A%(G)) = Ka(A®(G))

is certainly zero. Moreover, the same s clearly works for any open subgroupoid of G.
Hence G is in B as required.

Now let G be an open subgroupoid of I @ X that decomposes over B3, and let
ro,so = 0 be given; we may assume that so 2 1. Let r1 = r1(2ro + So,So) 2 ro be
the constant given by Proposition 7.7 with respect to the uniformly excisive families
(19,19;B®)wr aand (1%°,1%%; BY*)(y,s)a a[so,=) from Definition 7.8; we may as-
sume thatr; > 1. Let ro = ra(r1, So) 2 r1 be the constant given by Proposition 7.7 fon
the uniformly excisive collection (195, J%/5; BY/S)(y, o q[se,)- Let G(®) = UgBU1 be
an open cover with the property that if G; is the subgroupoid of G generated by

{(gx,8,x)BG |xBU;, |gl< ro},
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then G'"2 is in the class B (and therefore that G{'* N G"* isin B too, as B is
closed under taking open subgroupoids).

Let the constant s; = s;(rg,Sp, G™ NG;"') 2 max{ry,se} be as in the inductive
hypothesis for the groupoid G;™* n G, *. Finally, let s = s(r2+s1,s1, G, G %) be
as in the inductive hypothesis for both of the groupoids Gi*rz simultaneously (this
is possible, as if s has the right property for some groupoid, then clearly any s’ > ¢

works too). We claim that this s has the right properties.

Let then x be an element of Kr‘l/S(ASO (G)). Using Lemma 7.14 we have a subspace

inclusion map
KB 8 (A% (6)) > KF B (B4 (),

where we have used the notation of Definition 7.8 and written w = (Go, G1) B Q.
Hence we may consider x as an element of Kr°+5°’1/8(B“’(G)). Using Proposition 7.7,

we have a commutative diagram of controlled boundary maps

K2fc+50,1/8(Bw) Oc K

r
-

(1 nJw)

K"o+50,1/8(Bw,51) 9 K1(|w,51 nj“’rsl)_
The definition of the algebras involved implies that the right hand vertical map iden-
tifies with the forget control map
KL (AS(Gy™ nGY")) > K (AS(Gy" nGT")),
which is zero by hypothesis and the fact that r1 > 1. Hence the image of x
in K5 (1951 nJ®:s1) s zero.
We now apply Proposition 7.7 to get
yKrz,l/S(Iw,sl)l ZKrz,l/S(Jw,sl)

such that x = y+ z inside Kr’l/S(B‘*"Sl). Consider the commutative diagram

X K20+so,1/8(Bw)

r2,1/8(jw,s1 r2,1/8(jw,s1 12,1/8 (pw,s;

K (19:51) @K (Jos1) K23 (o)
Kr2+51’1/8(A51(G8r2))Kr2+51'1/8(A51(G+1r2)) Kr2+51,1/E(A51(G))
Ks'l/s(AS(Ggrz))Ks'l/s(Asl(G+1r2)) KS,l/S(AS(G)),

where the horizontal maps are defined by taking sums, and the vertical maps by
inclusion of the various subspaces involved. Note that y and z both go to zero under
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the lower vertical map on the left hand side by inductive hypothesis and the choice of
s. Hence x goes to zero in the bottom right group as it is equal to y + z there, and we
are done for G itself. A precisely analogous argument works for any open
subgroupoid of G, completing the proof. O
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APPENDIX A

FINITE DYNAMICAL COMPLEXITY FOR ETALE GROUPOIDS

Our goals in this appendix are: to relate finite dynamical complexity to finite
decomposition complexity in the sense of Guentner, Tessera, and Yu [8, 9]; to show
that finite dynamical complexity implies topological amenability of the underlying
action; and to collect together several open questions. This material is not necessary to
read the main body of the paper, but provides some useful context, and also shows that
many examples of groupoids with finite dynamical complexity exist.

Finite decomposition complexity

We will give a convenient definition of finite decomposition complexity in A.2,
adapted sligh'u‘_.ly from [9, Definition 2.1.3]. This needs some preliminaries. We will
write ‘A = B C’ to mean that a set A is the disjoint union of subsets B and C, and
similarly for unions of more than two subsets. As in [9, Section 2], if Z and {Z;}im| are

subspaces of a metric space X, then the notation
G
Z = Zi

i, r-disjoint

means that Z is the disjoint union of the Z;, and that d(Z;, Z;) > r fori = j.

Definition A.1. — Let X be a metric spac (with finite-valued metric). A collection
of subsets Y is a disjoint family if no two elements of Y intersect. Given a disjoint
family Y, we associate a metric space X , by taking the underlying set to be
G
XY = Y,
Y &y

and equipping Xy with the (possibly infinite-valued) metric
dvy(x,y) x,yBY forsomeY BY

dy(x,y) :=
v (% y) oo otherwise

(in words, the metric agrees with that from Y on each ‘component’ subset Y B Y,
and sets the distance between distinct ‘components’ to be infinity).
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Finally, for r > 0 the Y -neighborhood of a subset Z of Xy is defined to be
Nry(Z):={yBXy |dy(y,z) < r for some zBZ}.

\Definition A.2. — Let X be a metric space (with finite-valued metric). A disjoint
family Y of subspaces of X is uniformly bounded if supy @, diam(Y ) is finite.

Let Cbe a collection of disjoint families of subspaces of X. A disjoint family of sub-
spaces Y is decomposable over Cif for all r > 0 there exist disjoint families zp,z1 B ¢
such that for all Y @Y there exists a decomposition

Y = YolBY1

and further decompositions G
Y = Yij
jBly,i, 2r-disjoint
such that for each @ {0, 1} and j Bly,i, N y(Yij) is in z;.

Define D m to be the smallest collection of disjoint families of subspaces of X that:
contains the uniformly bounded disjoint families; and is closed under decomposability.
The metric space X has finite decomposition complexity if the singleton family {X } is
contained in Dpy.

Using the discussion in [9, 3.1.3], it is not too dificult to see that the above defi-
nition is equivalent to [9, Definition 2.1.3].
Here is the first main goal of this appendix.

Theorem A.3. — Let I be a countable discrete group, equipped as usual with a metric
arising from a proper length function. Then the following are equivalent:

(i) T has finite decomposition complexity;
(ii) the canonical action of [' on its Stone-Cech compactification has finite dynamical
complexity in the sense of Definition 3.14.

We will actually prove this in a little more generality, more because this makes
the proof more conceptual than because we want the generality for its own sake.
Throughout the rest of this section, then, we will work in the context of étale V)
groupoids: our conventions here match those of [6, Section 5.6], so in particular we
will write G for an étale groupoid, G(©) for its unit space, s, r : G = G{9) for the source
and range maps, and for x B G(?), G4 and G* denote s 1(x) and r~1(x) respectively. A
pair of elements (g, h) @ G x G is composable if s(g) = r(h), and their product or
composition is then written gh.

Here is the definition of finite dynamical complexity for general étale groupoids.

Definition A.4. — Let G be an étale groupoid, let H be an open subgroupoid of G, and
let C be a set of open subgroupoids of G. We say that H is decomposable over Cif for

1. We will always assume our groupoids are locally compact and Hausdorff, and do not repeat
these assumptions.
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any open, relatively compact subset K of H there exists an open cover H (%) = UgBE U1 of
the unit space of H such that for each i @ {0, 1} the subgroupoid of H generated by
{hB@K |s(h)@U;}
isin C.
An open subgroupoid of G (for example, G itself) has finite dynamical complexity
if it is contained in the smallest set Dg of open subgroupoids of G that: contains all
relatively compact open subgroupoids; and is closed under decomposability.

We leave the elementary check that this reduces to Definition 3.14 in the case
that G = T @X for some action I X to the reader: compare [10, Lemma 5.4].

The following basic lemma will also be left to the reader: compare part (i) of
Lemma 3.16 above for the part about groupoids and [9, 3.1.3] for the part about
spaces.

Lemma A.5. — (i) Let G be an étale groupoid, and H an open subgroupoid in the
class Dg of Definition A.4. Then all open subgroupoids of H are also contained in
Dg-

(ii) Let X be a metric space, and let Y be a family of subspaces of X in the class D m of
Definition A.2. Let z be another family of subspaces of X such that eachZ &z
is contained in some element of Y. Then z is also in Dn,.

We will look at a particular class of groupoids arising from discrete metric spaces!
we will assume such metric spaces have bounded geometry meaning that for allr
[0, e=), the cardinality of all r-balls in the space is uniformly bounded. Recall that
we allow our metrics to be infinite valued.

The following groupoids were introduced by Skandalis, Tu, and Yu [29]; see also
[26, Chapter 10].

\Definition A.6. — Let X be a bounded geometry metric space (possibly with infinite-
valued metric), and let B X be its Stone-Cech compactification. For each r &[0, ==), let
Er = {(x,y)BX x X [d(x,y) < r}.

As X is a subspace of B X we may identify E, with a subspace of B X x B X, and take

its closure E;. The coarse groupoid of X is the union

[
G ( X ) .= E r
ra[0,e°)
equipped with the restriction of the pair groupoid operations it inherits as a subset

of BX x BX, and with the weak topology it inherits from the union above(z), when
each E, is given the subspace topology from B X x BX.

2. This means that a subset U of G(X) is defined to be open exactly when U n E is open for
each r @ [0, =0); this is not the same as the subspace topology from B X x BX.
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The groupoids G(X) are locally compact, Hausdorff, étale and o-compact: see [29,
Section 3.2] or [26, Chapter 10]. Moreover, if X = T is a discrete group equipped with a
metric as in Definition 2.1 above, then G (X ) is canonically isomorphic to TR T: see[29,
Proposition 3.4]. Note that if Y is a disjoint family of subspaces of X and Xy is the
associated metric space as in Definition A.1, then G(Xy) identifies naturally with a
(closed and open) subgroupoid of G(X); we will always make this identification in
what follows.

Here then is the theorem we will actually prove. From the comments in the para-
graph above, it implies Theorem A.3.

Theorem A.7. — Let X be a bounded geometry metric space (with finite-valued met-
ric). Then the following are equivalent:

(i) X has finite decomposition complexity;
(ii) the coarse groupoid G(X) has finite dynamical complexity.

Proof. — To show that (i) implies (ii), it will sufice to show that if Y is in D, then
G(Xy) is in Dg. For this, it sufices to show that the collection

(A.1) {Y 1G(Xy) BDg}

of disjoint families of subspaces of X contains the uniformly bounded families, and is
closed under decomposability of metric families: indeed, this implies that the family
in line (A.1) contains D by definition of D, and thus that it contains {X} by
assumption (i); hence G(X) is in Dg, which is the required conclusion.

Say first then that Y is a disjoint family of uniformly bounded subspaces of X, say
all with diameters at most s. Then G(Xy ) is contained in the compact set Es B G(X)
from Definition A.6, whence G(Xy ) has compact closure and is thus in Dg.

To complete the proof of (i) implies (ii), it remains to show that the collection
in line (A.1) is closed under decomposability of disjoint families. Say then that Y is
a disjoint family of subspaces of X that decomposes over the collection of disjoint
families in line (A.1). We will show that G(Xy) decomposes over Dg, which will
sufice to show that Y is in the collection of families in line (A.1). Let then K be an
open, relatively compact subset of G(Xy). As G(X) is the union of the (compact)
open subsets {E}r>0, there is r > 0 with K contained in E;. As in Definition A.2,
there are families Zo, z1 in the set in line (A.1) such that every Y Y admits a
decomposition Y = Yo @Y1 such that each Y; further decomposes as

G
Yi = Yijigly,i, 2r-disjoint

with each r-neighborhood N,y (Yij) in Z. Now, let Y; be the family of sub-
spaces {N; v (Yi;j) |j Blv,i, Y BY}. Let U; be the closure of the set

Yij
Y BY,iBly
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in G(Xy){©), which is a (closed and) open set. Then {Uo, U1} is an open cover
of G(Xy)(® and it is not too dificult to check that the subgroupoid H; of G(Xy)
generated by
{g @G(Xy) [s(g)B Ui, gBK}

is contained in G(Xy, ). As Z;j is in the collection in line (A.1), we have that G(X, ) isin
Dg; moreover, each G(Xy, ) is contained in G(X ). and so G(Xy,) is in Dé by
Lemma A.5, and so each H; is also in Dg by the same lemma again. This com-
pletes the proof that G(Xy ) decomposes over Dg, and thus the proof of (i) implies (ii).

We now show (ii) implies (i). It will be helpful to first introduce some notation. If
H is an open subgroupoid of G(X), let @ be the equivalence relation on X n H(0)
defined by x @y if (x,y) is an element of H, and let Xy be the disjoint family of
equivalence classes for this equivalence relation.

Now, to prove (ii) implies (i), it will sufice to show that if G(Xy) is in Dg, then
Y is in Dm. For this it sufices to show that the collection

(A.2) {H | Xy BDm}

of open subgroupoids of G(X) contains the relatively compact open subgroupoids,
and is closed under decomposability of groupoids: indeed, given this, the collectionin
line (A.2) contains Dg, whence in particular it contains G(X) by assumption (ii);
however, X (x) = {X} so this gives that {X} is in Dm, and so we are done at that
point.

Say first then that H is a relatively compact open subgroupoid of G(X). Then
as the collection {E;}r>0 of (compact) open subsets covers G(X), there must exist
s > 0 with H B Es. This implies that every Y B Xy has diameter at most s, and
thus Xy isin Dy and so H is contained in the collection in line (A.2).

It remains to show that the collection in line (A.2) is closed under decomposability
of groupoids. Let then H be an open subgroupoid of G(X) that decomposes over
the collection in line (A.2). We will aim to show that Xy decomposes over D,
and thus that Xy is in Dy, and so H is in the collection in line (A.2). Let then
r @ [0, ==) be given, and let K be the compact subset E;; of G(X). The definition of
decomposability of H gives us an open cover H(®) = Up B U1 of the unit space of H
such that the subgroupoids H; of G generated by

(A.3) {e @G |s(g)BU;, gBK}

are in the family in line (A.2). Let Xu, = {Xij}jms, be the disjoint family of equiva-
lence classes corresponding to Hi. Let Y be an element of Xy, and for j B Jo define

Yoj := Y NnUg N Xoj
and for j @J1, define
Yij:

(Y nX1j)\ Uo.
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Then we have G G Y
= Yoj Y1j
j@J iny,
"¢z} )
1
=:Yo =y

As H; is generated by the set in line (A.3) with E2, = K, we have that
G
Yi = Yij, igJi, 2r-disjoint
and that each N, y (Yij) is contained in X;j, and thus that each N, v (Yij) is contained in
an element of the disjoint family Xy, . Setting zj = Xy, , we now have that Xy

decomposes over D, and we are done.
O

Amenability

Our second goal in this appendix is to discuss the relationship of finite dynam-ical
complexity to amenability. See [1] for a comprehensive discussion of amenable
groupoids, and [6, Section 5.6] for a self-contained discussion of the étale case (which is
all we will need). In particular, the next definition is a slight variant of [6, Defi-nition
5.6.13] and [1, Proposition 2.2.13]. The only difference between our definition and that
of [6, Definition 5.6.13] is that our assumption (i) is not present in [6, Defi-nition
5.6.13]. It follows, however, from the argument that ‘condition (a) is irrelevant’ in the
proof of [1, Proposition 2.2.13] that this leads to an equivalent definition.

Definition A.8. — A locally compact, Hausdorff, étale groupoid G is amenable if for

all compact K G and all e > 0 there exists a continuous, compactly supported
function p: G = [0, 1] such that:

. P

(i) for all x @G, we have ', xp.(g) <1
(ii) for all k@K, we have |1- gBG, (4) uig)l < e
(iii) for all k@K, we have £8G, (1) [u(g) - wgk)| < e

Our next goal is to prove the following theorem.

Theorem A.9. — Let G be a locally compact, Hausdorff, étale groupoid with finite
dynamical complexity. Then G is amenable.

This result is inspired by [9, Theorem 4.6], part of which states that finite decom-
position complexity for a bounded geometry metric space implies property A in the
sense of [39, Definition 2.1]. As finite decomposition complexity for a bounded geom-
etry metric space is equivalent to finite dynamical complexity for the corresponding
coarse groupoid (Theorem A.7 above), and as property A for a bounded geometry
metric space is equivalent to amenability of the corresponding coarse groupoid ([29,
Theorem 5.3]), Theorem A.9 above is a generalization of the result of [9, Theorem 4.6].
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We now turn to the proof of Theorem A.9. It sufices (as usual!) to show that the
class A of amenable open subgroupoids of any étale groupoid G contains the rela-
tively compact open subgroupoids, and is closed under decomposability. The following
lemma (which is presumably well-known to experts) starts this off.

\Lemma A.10. — Let G be an étale groupoid, and let H be an open subgroupoid of G
with compact closure. Then H is amenable.

\Remark A.11. — In the case H as in Lemma A.10 is o-compact, there is a direct
proof of the lemma using [23, Theorem 2.14]. Indeed, in this theorem Renault shows
that for a o-compact, locally compact, Hausdorff, étale groupoid G (and indeed more
generally), amenability is equivalent to the existence of a sequence (1n : G = [0, =))
of Borel functions such that

(i) for all x B G(©), we have P goc Hn(8) S 1;
(ii) for all x @ G(°), we have goe_Hn(8) > 1;
(iii) for all k@ G, we have €86, 1) [un(g) - un(gk)| = 0.

Now, let H be as in Lemma A.10 and also be o-compact. Define
W:HO >00,1], x> [Hxl ™

It is not dificult to check that the (constant) sequence (1, = W) satisfies the properties
above exactly, so we are done.

Below we give a general proof of Lemma A.10 as some examples that are impor-
tant to us (specifically, the coarse groupoids of Definition A.6) have open, relatively
compact subgroupoids that are not o-compact.

Proof of Lemma A.11. — Let N = sup{|r %(x) nH| |x @ H(®)}. Compactness of H
implies that this is finite. We will proceed by induction on N. In the base case N = 1,
H is just a space and is thus clearly amenable. Assume now that we have proven all
cases up to N - 1, and assume that H has some range fibers with cardinality N, but
none higher. Let U = {x B H(® | |r%(x)] = N}, which is open as H is étale, and
clearly it is invariant for the H acton. Let F = H(%)\ U, which is closed, and let Hy and
He be the respective restrictions of H to U and F. Note that Hf is amenable

by inductive hypothesis. We first claim that Hy is amenable.

Indeed, to see this, let K B Hy beacompactset,ande> 0.Let¢:H (©) 7 [0, 1] be any
compactly supported function that is equal to 1 on r(K) B s(K), and define pu(h)
= Lg(s(h)) for all h @ Hy ; we claim that this has the right properties. We first
claim that p is compactly supported. To see this, note that p is supported in
s 1(supp(¢@)), whence it sufices to show that s 1(E) is compact for any compact
subset E of H'®. For each x H (), choose an open set Vx with compact closure, and
such that s‘l({J/x) can be written as a disjoint union

¢
S_l(Vx) - VX(J)'
j=1
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where s restricts to a homeomorphism s : Vx(” - Vy, and each VX(” has compact
closure; using local compactness, the fact that s is a local homeomorphism and the
fact that each source fiber contains exactly N elements, it is not too dificult to see

(0)

that such ets exist. Now, let x1,...,xn be a finite collection of points of H such

that E 1 Vx;. Then

[n [N
s 1(E) v i)
i=1j=1 '
the set on the right is a finite union of sets with compact closure, so has compact
closure, and the set s™1(E) is closed. It is thus compact, and we have completed the
proof that p is compactly supported.
To complete the proof that p has the properties needed to show amenability, for
each x @ H(O), note now that
X

u(h) = Ni o(x) = ox),

hB(Hy )x hEH*

which is at most one for a general x, and exactly one if x = r(k) for some k@ K. On
the other hand, we have that for each k@ K,

1 X
[u(h) - u(hk)| = N lo(r(k)) - o(s(k))|,
hE(Hy )r (k) h@(Hy ) r (k)
which is exactly zero as ¢ is identically one on r(K) @ s(K). This completes the proof
that Hy is amenable.
Now, consider the commutative diagram of C®-algebras

Oicmax(HU) 7Cmax(H) 7Cax(HF) - 0

0——C# (Hu) P (H) C# (He)

The top row is exact as this always holds for the maximal groupoid C®-algebra (see [1,
Lemma 6.3.2]—the second countability assumption there is unnecessary in the étale
case). The bottom row might not be exact, although all that can go wrong is that the
kernel of the map out of Cr (H) might not equal the image of the map going in.
However, as Hy and H¢ are amenable, the left and right hand vertical arrows are the
identity map ([6, Corollary 5.6.17]); it follows from this and a diagram chase that the
bottom row is in fact exact in this case. Now, as Hy and Hf are amenable, their
reduced C%-algebras are nuclear [6, Theorem 5.6.18]. Finally, an extension of nuclear
CP-algebras is nuclear [6, Proposition 10.1.3], so this implies that C (H) is nuclean
and thus that H is amenable by [6, Theorem 5.6.18] again.

0.

O

We will need the following lemma about the existence of almost invariant partitions
of unity, which can be proved in the same way as [10, Proposition 7.1].
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Lemma A.12. — Let G be an étale groupoid, ¢ a collection of open subgroupoids of G,
and let H be an open subgroupoid of G that decomposes over C. Then for any open)
relatively compact subset K of H and any € > 0 there exists an open cover {Uo, U1} of

H{9) and continuous compactly supported functions ¢; : H(®) > [0,1] with the
following properties.

(i) For each i @{0, 1}, the set
{k@K |s(k)BU;}
generates an open subgroupoid H; of H (whence also of G) in the class C.
(ii) Each @; is supported in U;.

(iii) For all x @H'O), @o(x)+@1(x) £ 1, and for all k B K, @o(r(k))+e1i(r(k)) = 1.
(iv) For any k@K, andi@{0, 1}, |oi(s(k)) - oi(r(k))]| < e.

We are now ready to complete the proof of the Theorem A.9 by showing that the
collection A of amenable open subgroupoids of G is closed under decomposability.

Proof of Theorem A.9. — Let H be an open subgroupoid of G that decomposes
over A, and let K @ H be compact, and € > 0. Using local compactness, expanding K
slightly we may assume that K is in fact open and relatively compact. Let Ug, U1
Ho, H1, and @o, @1 be as in Lemma A.12 for the relatively compact set K and error
estimate €/3. An elementary argument shows that K can be written as Ko @K1, where
each K; is open, and has compact closure inside H;i. For each i, let u; : H; = [0, 1] be
a function as in the definition of amenability, with respect to the compact which is the
closure K; of K;j, and error estimate €/3. Extending by zero outside (the open set)
Hi, we may assume that ; is defined on all of H. Define

WiH 10,1, h - eols(h)ro(h) + ea(s(h))ua(h),
which we claim has the right properties.
Indeed, note first for any x @ H(?),

X X
u(h) = @o(s(h))po(h) + @i(s(h))pi(g)
hah* her*  y X
= @o(x) Ho(h) + @1(x) Ha(h)
hB(Ho)x hB(H1)x
< @o(x) + @1(x) < 1.
On the other hand, for any kB K, 1
-X u(h)=1- X @o(s(h))po(h) + @a(s(h))ui(h)
hBH, (k) hBH, (k) . . ua(h)
= @o(r(k))1- Ho(h) + @1(r(k))1 -
h@(Ho)r (k) hE(H1)r (k)

< @o(r(k))e+ @a(r(k))e = e
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Finally, we note that for any k@ K,
! ) (
X

X X
[u(h) = pu(hk)| < @i(s(h)) [ i(h) = pilhk)| + pi(hk  @i(s(h)) - @i(s hk))|
hBH (k) i=0 hBH (k)
X1 X
= @i(r(k)) [ui(h) = wi(hk)| + pi(hk)|@i(r(k)) = @i(s(k))|
i=0 hE(H;)r ()
X1 X
= @i(r(k)) [uith) = pi(hk)|
i=0 hBE(Hi)r (k)
X1 X
+  |@i(r(k)) - @i(s(k))| ui(hk)
i=0 ha(Hi)r(k)

X 1 2
< cpi(r(k))e +,€-;L= €.i=0
3 3

This completes the proof.

Open questions

To state the following lemma, we recall that if G is an étale groupoid and x B G(9),
then the isotropy group of G at x is

{g @G |r(g) = s(g) = x}.

We then have the following, which provides an easy obstruction to finite dynamical
complexity.

Lemma A.13. — Let G be an étale groupoid with finite dynamical complexity. Then
(3)

all isotropy groups of G are locally finite "™,
Proof. — Let LF be the collection of all open subgroupoids of G whose isotropy
groups are locally finite. It sufices to show that LF contains the relatively compact

open subgroupoids, and is closed under decomposability. We leave the details to the
reader. 0

At this point, we know two obstructions to a groupoid having finite dynamical
complexity: having infinite isotropy, and being non-amenable. The following question
seems particularly interesting. It is closely related to [9, Question 5.1.3], and is a
more general version of the well-known question as to whether finite decomposition
complexity and Yu’s property A are equivalent.

3. Recall that a group I is locally finite of any finite subset of [ generates a finite group.
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Question A.14. — Say G is a principal‘”, amenable, étale groupoid. Must G have
finite dynamical complexity?

The connection to finite decomposition complexity of groups is not completely
clear. The following questions are thus natural.

Question A.15. — If [ @X is a transformation groupoid with finite dynamical com-
plexity (and X compact), must [ have finite decomposition complexity?

By analogy with the case of finite dynamic asymptotic dimension [10, Section 6],
we suspect the answer to the above question is ‘yes’, but did not seriously pursue this.

Question A.16. — If T has finite decomposition complexity, must it admit an action
on the Cantor set with finite dynamical complexity?

Much more ambitiously, we do not see any obvious obstructions to a positive answer
to the following question. While we would be surprised if it has a positive answer in
general, it is also interesting to ask about special classes of groups I' such as nilpotent
groups (compare [30]), free groups, general word hyperbolic groups, or even linear
groups (compare [8, Section 3]).

Question A.17. — If T has finite decomposition complexity, must any free amenable
action of ' have finite dynamical complexity?

Another interesting question, related to our earlier work [10] is as follows.

Question A.18. — Say G is an étale groupoid with finite dynamic asymptotic dimen-
sion. Must G have finite dynamical complexity?

We suspect the answer is ‘yes’, but it is currently not clear. Note that the answer
is clearly yes if the dynamic asymptotic dimension of G is zero or one.

Question A.19. — Say G is an étale groupoid with finite dynamical complexity. What
structural properties must the reduced CP-algebra C(G) have?

Certainly C® (G) must be nuclear by Theorem A.9 and [6, Theorem 5.6.18]. How-
ever, we do not know much beyond this. For example, if Cra (G) is also assumed simple,
one might ask about properties of interest in the classification program such as com-

parison and z-stability (although to avoid examples like those in [7] and thus have
some hope of positive results, one should assume that G(°) is ‘reasonable’, say for
example finite-dimensional, or just a Cantor set).

4. This means that all isotropy groups are trivial; one could also ask what happens when the
isotropy groups are just assumed locally finite.
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APPENDIX B

COMPARISON TO THE BAUM-CONNES ASSEMBLY MAP

The purpose of this appendix is to identify the standard picture of the Baum-
Connes assembly map for I with coeficients in C(X) as discussed in say [4], with oun
picture defined using localization algebras and the evaluation-at-zero map. As it is ng
more complicated and may be useful for other work, we do this in more generality
than necessary for this paper in that we allow C(X) to be replaced by an arbitrary
(separable) I-CP-algebra A.

Of necessity, we assume more of the reader than in the rest of the paper: specifically,
some working knowledge of Hilbert modules (see [17] for background and conventions)
and of equivariant KK-theory (see [16, Section 2] for background and conventions).
On the other hand, it is certainly not necessary to read this appendix to understand
the rest of the paper.

\Definition B.1. — Let T be a countable discrete group, and A a (separable) I-C2-al-
gebra. Let Y be a locally compact metric space, equipped with a proper, co-compact,
and isometric M-action, and fix a compact subset K @Y such that -K = Y. LetHy
be a non-degenerate, covariant representation of Co(Y ) with the property that no
non-zero element of Y acts as a compact operator. Let H be a separable infinite
dimensional Hilbert space equipped with the trivial ' action.

Define the Hilbert A-module y Ea to be the tensor product

vy Ean:= Hy BABH Be%(I)

(here the tensor products are completed external tensor product of Hilbert modules:
see [17, Chapter 4]). We write elementary tensors in y Ea as

€@a@n@I, EBHy, aBA, nBH, @E(N).

The actions of I on Co(Y ) and A are denoted y and a respectively, and the uni
taries implementing the action of g @ on £2(I') and Hy are denoted by Ag and ug
respectively. We define an action € of [ on y Ea by

€g(§BalnBT) := ug§Bag(a) BnBAgT.
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We write e for the M-action on the CP-algebra L (v Ea) of adjointable operators ony Ea
defined for e By Ep by
(eg(T))(e) := €g(T (eg-1(e)));
note that even though the linear isometries g : y EA = y Ea are not adjointable
operators, we nonetheless have that if T is adjointable, then eg(T) is too.
The A-valued inner product on y Ea is given on elementary tensors by

(€1Ba1 BN B, & BaBnaB) = (€1, &2)N1, N2)(C, G)as az, the
right action of a1 @ A by
(E@aln@l)-a1:= E@aai1@NnAT, and
the left action of f B Co(Y ) by
(B.1) f-(§@aB@nBET)=fEAaBNAL;

if we need notation for this representation, we will denote it by m : Co(Y ) = L (v Ea),
but we will generally omit the t when no confusion is likely to arise.

Denote by K (y Ea) the compact operators on y Ea in the sense of Hilbert module
theory, so in this case K (y Ea) is naturally isomorphicto k (Hy BH B82(T))BA (see[17,
pages 9-10]). We will need the following properties of an adjointable operator T

on y Ea.
(i) T is locally compact if for any f @ Co(Y ), fT and Tf are in the C%-algebra
K (v Ea).
(ii) (The support of T, denoted supp(T), is the complement of the set
(y,z)BY x Y there are f1,f2 B Co(Y ) with f1(y) = 0,f2(y)= 0 )
and f1Tf, =0
The metric propagation of T is the extended real number

sup{d(y, z) | (y, z) Bsupp(T)}.
(iii) The l-propagation of T is the extended real number
sup{|g| |supp(T)nK x gK = @}
(where we recall that K @Y is a fixed compact set satisfying I - K = Y).
(iv) T is T-invariant if (T)= T for all g&T.

The Roe algebra, denoted CP(Y ; A), associated to v Ea is the C%-algebra closure of
the B-algebra of all finite I-propagation, locally compact, l-invariant adjointable op-
erators on y Ea for the norm inherited from L (v Ea). The localization algebra, denoted
C (Y ; A), associated toy Ea is the CP-algebra completion of the B-algebra all bounded,
uniformly continuous functions

a:[0,00) > C¥(Y;A)

such that the l-propagation of a(t) is bounded independently of t, such that the
metric propagation tends to zero as t tends to infinity, and where the norm is given by
supt a(t)c(y SA)-
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Remark B.2. — (i) The exact numerical value of the l-propagation as defined
above depends on the choice of compact set K Y with - K = Y. How-
ever, whether or not the l-propagation of a family of operators is bounded
does not depend on the choice of K, whence the Roe algebras and localization
algebras do not depend on this choice.

(ii) Say Y = P4(l) is a Rips complex of I and set Hy = £2(Zs) as in Definition 2.2.
Say A = C(X). Considering £2(X) as a left A-module, we may form the internal
Hilbert module tensor product of y Ea and £2(X) over A (see [17, Chapter 4]),
and thus get an isomorphism of Hilbert spaces

vy Eala 82(X) £ Hy B2(X)BH B2(T).
The map
Ly Ea) > B(22(F)BHy BH Be3(X)), T > TEa lex)

from the adjointable operators on y Ea to the bounded operators on
22(rf) BHy B H @8%(X) is then an isometric E-homomorphism (see the
discussion on [17, page 42]), and it is not dificult to check that it takes the Roe
algebra C2(Y ; A) onto the Roe algebra C2(I = X; s) as in Definition 2.4. Thus
the two notions agree in this special case.

(iii) Note that if Y = Ps(l), then we may use Hy = 22(Zs) (to avoid silly de-
generacies, we should assume here that s is large enough that Ps(I') is not
zero-dimensional). It is clear then that if s < t, there are isometric inclusions
CB(Ps(I); A) > CB(P(l); A), and similarly for the localization algebras.

Now, there is an evaluation-at-zero map
€0 : Ka(CAY ;A)) > Ka(CP(Y;A))

induced by the obvious underlying B-homomorphism. Our goal here is to relate this
to the Baum-Connes assembly map for I with coeficients in A as in [4, Section 9].

In order to make this precise, let us fix some terminology. A cut-off function forY is
a non-negative valued function ¢ C)%(Y ) such that

clgy)=1
gE T

for all y @Y ; using properness and cocompactness, it is not dificult to see that sucha ¢
exists and we fix one from now on. If as usual y denotes the action of I on Co(Y ), then
the basic projection associated to c is the element

py BCc(l, Co(Y)) B Co(Y )BT
defined by
(8.2) pv (g) := velc)c.
The associated class
[py 1B Ko(Co(Y)BrT) = KKo(C, Co(Y)BT)
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does not depend on the choice of c. The assembly map
m:KKe (Co(Y),A) >Kg(ABT)
is defined as the composition

. N
Y okke(Co(Y)E T, AET) P kKk(C, AR ),

KKe (Co(Y),A)

where the first map is Kasparov’s descent morphism (see [16, Theorem 3.11]), and
the second is Kasparov product with [py B KK(C, Co(Y )&, T).

The assembly maps as defined above are functorial under proper, equivariant, con-
tinuous maps of the space Y appearing on the left hand side. Let ET be a universal '
space for proper actions as in [4, Section 1] and define

KKe (ET, A) := lim KKd& (Co(Y),A),
YRE T

where the limit is over all I-invariant cocompact subspaces of ET. Finally, the Baum-
Connes assembly map is the map
w:KKe (ET, A) >Kg(ABET),

defined as the direct limit of the individual assembly maps defined above.S

We will want to use the following concrete model for ET. Let Xr := 7 (.5 Ps(T)
equipped with 8!-metric; as discussed in [4, Section 2], this is a model for the classi-
fying space ET. Moreover, the individual Rips complexes form a ‘homotopy-cofinal’
system inside the collection of M-cocompact equivariant subsets (ordered by inclu-
sion) of Xr: precisely, we mean that for any cocompact Y B X, the inclusion map is
(equivariantly, properly) homotopic to a map with image in some Ps(I'). Hence the
Baum-Connes assembly map is equivalent to the direct limit of the assembly maps for
the individual Rips complexes, i.e., the Baum-Connes assembly map can be thought
of as a map

M Sll)rr; KKe (Co(Ps(l)), A) > Ka(A B T).

We are now ready to state the main result of this section.

Theorem B.3. — Let I be a countable discrete group, and A a -CP-algebra. LetY be
a locally compact metric space, equipped with a proper, cocompact, and isometric I'-
action. Let

pw:KKe (Co(Y),A) >Ka(ABT)
be the assembly map associated to this data. Then there is a commutative diagram

Y Ka(ABT)

KKa (Co(Y),A)

€0

Ke(CAY ;A)) K(C(L;A)),

where the vertical maps are isomorphisms.
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Moreover, let s < t be non-negative real numbers, and say Ps(l), P¢(l) are the
associated Rips complexes. Then with notation as above, there is a commutative dia-
gram

KKa (Co(Ps()), A) Ka(A B T)

T

KKe (Co(Pe(r)), A) -

€o

Ke(CAPs(); A)) Ka(C®(Ps(); A))

T T

Ke(CHAP(); A)) © Ka(CP(Pe(T); A)).

Here the diagonal maps are induced by the inclusion Ps(l') = P¢(l), together with
Remark B.2 for the Roe algebras and localization algebras. Hence taking the direct
limit as s = o< identifies the Baum-Connes assembly map

e Ii%m KKe (Ps(r),A) > Kg(ABT)
5> oo
with the evaluation-at-zero map

€ lim Kn(CLPs(r); A)) = lim Ka(CP(Ps(T); A)).

In order to explain the proof of Theorem B.3, we will need to define some auxiliary
CP-algebras. The statement in the second part of Theorem B.3 on compatibility with
increasing the Rips parameter is straightforward from the proof of the first part, so we
only give the proof of the first part. Say then that Y, Hy , and A as above are all fixed.

Definition B.4. — Let y Ea be as above, and let C” and C” be shorthand for the
associated Roe algebra and localization algebra. An adjointable operator T on vy Ea is
pseudolocal if for any f BCo(Y ), the commutator [f, T]isin K (v Ea). Let D? denote the
CP-algebra closure of the collection of all finite -propagation, pseudolocal, I-in-
variant adjointable operators on y Ea inside L (y Ea). Let D denote the CP%-algebra
completion of all bounded, uniformly continuous functions

a:[0,o0) > D"

such that the l-propagation of a(t) is uniformly bounded for all t, such that the
metric propagation tends to zero as t tends to infinity, and where the norm is given by
supt Ba(t)BEpe.

Note that C? and C? are ideals in D? and D? respectively.
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We will prove the first part of Theorem B.3 by showing that there is a commutative
diagram

u

(B.3) KK, (Co(Y),A) Ki(A B, T)

(i) (i)

Kiv1(D?/C®) ——Ki(C?)

0
€

(iii)

(iv)

Ki+1(DP/CE) Ki(CP)

such that the arrows labeled by roman numerals are all isomorphisms.

\Remark B.5. — The arrow labeled ‘0’ is the standard boundary map in the K-theory
six-term exact sequence associated to the short exact sequence

0 ce DY p%/c? ——0.

Note that we get for free from this proof that d gives another model for the assembly
map: this is a version with coeficients of the ‘Paschke duality’ model for the (coarse)
Baum-Connes assembly map that is discussed for example in [25] and [12].

We now explain the main steps of the proof, starting with the top square in dia
gram (B.3). The arrow labeled (i) is a form of Paschke duality, and is shown to be an
isomorphism by building on arguments in [13, Chapter 8]; the key technical points
needed in addition are Fell’s trick, Kasparov’s stabilization theorem, and Kasparov’s
Hilbert module version of Voiculescu’s theorem [15]. The arrow labeled (ii) is induced
by a Morita equivalence, which is canonical given the fixed choice of cut-off func-tion
c. The argument that the top square commutes involves a significant amount of
computation, and is based on [25].

For the bottom square, the arrow labeled (iii) is induced by the evaluation-at-zero
map, and the arrow labeled (iv) is the boundary map from the K-theory six-term
exact sequence associated to the short exact sequence

0 cp D} DP/CE ——0.
As we have a commutative diagram
0 cp DY DP/CE ——0
&0 &0 &0
0 o D? D%/Cc? —— 0,

commutativity of the bottom square is immediate from naturality of the six-term
exact sequence and Remark B.5. Our proofs that (iii) and (iv) are isomorphisms are
closely based on arguments from [22] (which were in turn inspired by work of the
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third author [37], although that paper uses quite a different argument); in both cases,
the proofs boil down to clever uses of Eilenberg swindles.

In the next two subsections, we look at the top (‘Paschke duality’) and bottom
(‘Localization algebra’) squares in diagram B.3 separately.

Paschke duality square

Let us set up some conventions for equivariant KK-theory. We will work entirely
in the odd K K and K groups: the even case can be deduced from the odd case by
replacing A with A B Co(R), where Co(R) has the trivial l-action (alternatively, the
even case can be handled directly by arguments analogous to those used below for
the odd case, but is notationally more complicated due to the necessity of dragging
gradings through all the proofs).

Let B, C be (trivially graded) r-C®-algebras. We will write cycles for KK"{B, C)
as quadruples (E, F, B, ®) where E is a Hilbert C-module, F is an adjointable operator
on L(E), B is a l-action on E by bounded linear isometries (not necessarily by ad-
jointable operators, however), and ¢ : B = L(E) is an equivariant B-homomorphism.
Cycles for KK1 (B, C) will analogously be written (E, F, @). See [16, Section 2] for the
precise conditions needed to be satisfied by these cycles.

We will need the following Hilbert module version of Voiculescu’s theorem, due tg
Kasparov [15, Theorem 5]; as the statement is a little technical, we repeat the special
case we need for the reader’s convenience.

Theorem B.6. — Let B be a unital, nuclear, separable C%-algebra, and C a c-unital C?-
algebra. Assume that B is equipped with a unital B-representation B > B(H ) on some
separable infinite dimensional Hilbert space H whose image contains no compact
operators. Let moreover H [ C be the standard Hilbert C-module, and note that there is
a unital inclusion
n:B >B(H) > L(HBEC),

where the map from the bounded operators on H to the adjointable operators on
H B C is defined by amplification (see [17, page 35]).

let @ : B > L(H BC) be a unital B-homomorphism, and consider the sum
@BN:B > L((HBEC)RA(HBEC)). Then there is an adjointable isometryV :H BC >
(HBEC)B(H BC) such that the difference

VEr(b)V - ¢(b)
isin K(H®C) forallb@B.

While Kasparov’s theorem also applies in the presence of a compact group action)
there is unfortunately no general version for non-compact groups. To get around this
issue in the case of proper actions that is relevant for us, we need a version of Fell’s

trick for Hilbert modules that we now discuss.
Let E be an equivariant Hilbert A-module, with T-action B, and recall that the

-action on A is denoted by a. We will denote by 22(M) B £ the usual external tensor
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product of Hilbert modules (see [17, Chapter 4]), equipped with the I action A @
defined as the tensor product of the left regular representation and B, the right action of
A defined by (6g B e) -a := 6g @ea, and the inner product defined by

(bg, B e, bg, B ez) 1= (bg,, Og,)ezry(€1, €2)E .
With this structure, £2(I') B E is again an equivariant Hilbert C-module.

On the other hand, let eg(r) denote the elements of £2(I) with finite support, and
let 83 (M BE denote the algebraic tensor product (over C). Let I act on &,(INEE by the
tensor product A B 1 of the left regular representation and the trivial representation.
Define a right action of A on ¢AT) @ E by the formula (6 Be) -a := §gBeag-1(a), and
define an A-valued inner product by the formula

(0g, B, bg, Bez) 1= (Bg,, Bg,)ez(r)(Bg-1(e1), Bg-1(e2)e
on elementary tensors, and extending. One checks that this is an A-valued innen
product, so completion gives a Hilbert A-module, which we denote by ¢2(T, E). The
action of I moreover extends to an action on ¢2(T, E ), which we still denote by AE1,
and the result is an equivariant Hilbert A-module.
For 6gBe @ 82(NEE, define U(6gEe) := 6g@ag(a). It is straightforward to check
that U extends to an equivariant unitary isomorphism

U:2(NBE =T, E),

of Hilbert A-modules. Using such a U to switch ‘on / off’ the second component of a
M-action of this form is called Fell’s trick.

\Lemma B.7. — Let (E,F, B, @) be a cycle representing some class x I KK{ (Co(Y ), A).
Then there is a (non-canonical) way of associating a new cycle representing x to
(E,F, B, o) that has the following additional properties.

(i) The new cycle has the form (v Ea, F,€, ), where F is a self-adjoint element
of D? and 1t : Co(Y ) > L (v Ea) is as defined in line (B.1) above.

(ii) The process takes: degenerate cycles to compact perturbations of degenerate cy-
cles; unitary equivalences of cycles to compact perturbations of unitary equiva-
lences of cycles; operator homotopies to operator homotopies; and direct sums of
cycles to orthogonal sums of operators.

Proof. — We just give the proof of part (i) above; part (ii) follows from the proof we
give and direct checks.

Recall that y denotes the action of I on Co(Y ), and that c is a fixed choice of cut-
off function for the action of I on Y. Let (E,F, B, ) be a cycle for KK r{CO(Y ), A).
Cutting down to Co(Y ) - E, we may assume that the action of Co(Y ) on E is nonde-
generate (compare [16, Lemma 2.8]). Let Ec denote the equivariant subspace Cc(Y )-E
of £, which is dense by non-degeneracy. Define V : E. > ¢2(I') B E by the formula

X
V ie > bdg@yglcle; ga
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the sum makes sense as properness of the I' action combined with the compact support
conditions on c and e imply that only finitely many terms are non-zero. Computing

gives X X £
2
(Ve,Ve)= (6g, 8n)vg(c)e, yn(cle) = ve(ci)e,e = (e e),
g,h@ r gar
from which it follows that V extends to an isometric linear map V : E>82(MN B E. It is
straightforward to check moreover that V is equivariant, and has an adjoint defined by
VEZ:g;Ee > yg(c)e.

In particular, there is an equivariant submodule E" of ¢2(F)BE such that
V(E)BE Be2(r)BE. Summing our cycle (E,F,B,®) with the degenerate cycle
(E',1,B BA|e, 0) and applying a unitary isomorphism, we may replace our original
cycle by one of the form (82(F) @ E,F,AEB, ¢) (this F and ¢ are not the same as the
original ones, but what exactly they are does not matter at this point; we abuse
notation as the price to pay for not multiplying primes or subscripts).

Conjugating by the unitary appearing in Fell’s trick, we may replace our cycle by
one of the form (82(I, E), F,A@ 1, ¢). Now, ignoring the T actions, Kasparov’s sta-
bilization theorem (see for example [17, Chapter 6]) embeds E as a complemented
submodule of Hy B H B A. Hence we may embed £2(I, E) equivariantly as a comple-
mented submodule of 2(I, Hy BH B A). Adding a degenerate cycle equipped with the
zero action of Co(Y ), we may thus assume that our class is represented by a cycle of the
form

(82(F, Hy BH BA), F, AB 1k, anea, @).

Applying Fell’s trick again, this time ‘in reverse’ then shows that there is a cycle of
the form

(B.4) (v Ea, F, €, 0)
representing the same class. Note from our construction so far that while the action of

Co(Y ) on y Ea need not be non-degenerate, we do at least have that the submodule
@(Co(Y)) *v Ea is complemented.

Now, let Co(Y ) denote the unitization of Co(Y ); abusing notation slightly, write

T[:éo(Y) > B(Hy) = L(vy Ea),
for the unital B-homomorphism extending our fixed m; here the first arrow is the
unital extension of our fixed representation, and the second is amplification. The
C2-algebra Co(Y ) is nuclear, and we assumed that no non-zero element acts as a
compact operator on Hy . Hence (replacing ¢ with its unitization) Theorem B.6 gives
an adjointable isometry
V iyEA—>vyEn
with the property that
VER(f)V - o(f) BK (v En)
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for all f @ Co(Y ).
Unfortunately, V does not need to respect the action of [, but we can rectify this
as follows. Choose a family of equivariant isometries

vg 1 82(M)@H > (M) BH go

with the properties that P g vgv = 1 (convergence in the strong operator topology)
and vfvg = 0 for h = g (such exist by the classical version of Fell’s trick), and
abusing notation, also write vg for the isometries on vy Ea induced by these. Consider|
the submodule E: := @(Cc(Y)) - v Ea of y Ea, which is dense in the complemented
submodule E := @(Co(Y)) - v Ea of vy Ea. Define a map

X
W:E >vEa e->  vge(V)vglcle,
gl T
which makes sense as the compact support conditions on ¢ and E; guarantee that the
sum on the right is finite. Computing, for any e1,e; B E,
X

(Weg, Wey) = (vgeg(V )vgl(cle1, vhen(V )yn(c)ez)
g.h@ 1

X
- (vivgee(V Jvg(cle, en(V yn(c)e)
§(,h r

(eg(V )vg(c)er, en(V Jyn(c)ez)

(eg(VV yg(c)es, vg(c)ez)
gl T

(vg(c?)e1, e2) = (e1,e2).
gl T
Hence W extends to an isometry E = y Ea, which is clearly equivariant. Extending W by
zero on the complement of E, we may consider W as an equivariant partial isometry W
:v Ea > v Ea, and it is straightforward to check (using that WW?2 is the projection onto £
:= @(Co(Y)) - v Ea) that

WO(f)W - o(f) B K (v Ea)
for all f @ Co(Y ). This gives us that
(v En, WEFW, ¢, )

(where F is in the cycle in line (B.4)) is a cycle for KK ;7 (Co(Y ), A) that is equivalent
to our original cycle.

We now have a cycle (v Ea, F, €, 1) on the correct equivariant Co(Y )-A module y Ea.
Replacing the operator F by

ve(c)eg(F )yg(c)
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(the sum converges strictly, as one can see using elements of Cc(Y ) - v Ea as we have
a couple of times already), we get a new cycle which is just a compact perturbation of
the old one, and for which F is equivariant and of finite -propagation. Together with
the other conditions defining a Kasparov cycle, this gives that F is an element of D?.
Finally, replacing F by &(F + F), we may assume that F is self-adjoint and are done.

]
The above lemma now allows us to define the map labeled (i) in Diagram (B.3),
and show it to be an isomorphism.

\Definition B.8. — Define a homomorphism
§:KK'{Co(Y),A) >Ki(D?/C?)

by first representing a class x in KK rl(Co(Y ), A) as a cycle of the form in Lemma B.7;
then note the conditions on a Kasparov cycle imply that the image of zl(l + F)
in D?/C? is a projection p, and define §(x) := [p].

The following proof is based on [13, Theorem 8.4.3]: see the discussion there for
more details.

Corollary B.9. — The map 6 from Definition B.8 above is a well-defined isomorphism.

Proof. — We note first that the equivalence relation on cycles used to defing
K K4 (Co(Y), A) may be taken to be that generated by operator homotopies, addition of
degenerate cycles, and unitary equivalences. Indeed, as already noted there is a
canonical process X
Fow  vg(c)eg(F)ve(c)
gl T

for replacing operators by l-invariant ones. Using this, it is not too dificult to see
that the proof that the equivalence relation on cycles used to define KK1 (B, C) may be
taken to be that generated by operator homotopies, addition of degenerate cycles, and
unitary equivalences in the non-equivariant case [28, Theorem 19] extends to the
equivariant groups KK, (C6(Y ), A) (it is important here that Co(Y ) is a proper '
algebra). The fact that & is well-defined follows from this: operator homotopies give
rise to homotopic projections, unitary equivalences to Murray-von Neumann
equivalent projections, and degenerate cycles to projections vulnerable to an Eilenberg
swindle. Moreover, § is a homomorphism as one can add orthogonal projections.

To see that § is an isomorphism, note that it is surjective as every element
of Kg(D?/C?) can be represented by a projection in D?/C? (as opposed to a matrix
algebra over it), and lifting to D? gives rise to a cycle for KK (Co(Y ), A). It is
injective as the equivalence relations on projections and unitaries defining Kz(D?/C?)
lift to equivalences of Kasparov cycles.

We now recall some more details about the KK-theoretic assembly map O
KK (Co(Y),A) > Ki(ABT).
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We start with a class on the left hand side represented by some cycle (E,F, B, @).
Kasparov [16, 3.7 — 3.11] defines a descent homomorphism

it tKKI (Co(Y),A) >KKi(Co(Y)B T, ABT)
from equivariant K K groups to the non-equivariant K K groups of crossed products as
follows. Define a scalar product on Cc(l, E) with values in C.(I', A) by for each pain
for e1,e2 B C(l, E) defining the function

(e1,e2): T > A
by the formula X
(e1,e2)(g) := an-1 (ei(h), e2(hg)le .

he T
Define a right action of C.(l, A) on Cc)él', E ) by the formula
(e-a)(g):=  e(h)an(a(h™'g)).
hEG

Kasparov shows that the inner product is positive, and thus it makes sense to define E
las the Hilbert AR, N-module defined by simultaneous completion (see [17, pages 4-
5]). The module ER I is equipped with a left action of Co(Y ) B, I defined as the
integrated form of the covariant representation defined by setting

(B(f) -e)(g) := o(f) -e(g), f BCo(Y), e@Cc(l,E), gBT
and the unitary representation of I defined by
(ug -e)(h) := eg(e(g™h)), g hBT, eBC(T, E).

Kasparov shows that this integrates to a representation of Co(Y )&, T, also denoted ¢, §o
EBRT is a Co(Y ) B, F-A B I bimodule. An operator F is defined on E by the formula
(F -e)(g) := F -e(g).

The map jrr is then defined by j[l:e, F,B,0] = [EQT, FEok
The second step in defining the assembly map is to choose a cut-off function c for Y,
and use it to construct a basic projection as in line (B.2) above and thus a class [py]in
Ko(Co(Y )@, T) = KKo(C, Co(Y )@ T). The assembly map is now defined by
0]
WE,F,B, ¢l := [pv] it [E,F,B,0lBKKg(C, ABT),
Co(v)a"r

where ‘Bc,(v)s,r’ denotes Kasparov product over the CZ-algebra Co(Y ) B I'. More
explicitly, one checks directly that this class is represented by the Kasparov cycle

(BW(E BT), dyFfy L)
for KKg(C, A& T), where L : C = L(E BT) is the unital representation given by z

- zpy (in what follows will usually omit the ‘@’@where this is unlikely to cause
confusion). Hence

ulE,F,B,9] = [py (EQAT), py Fdy, 1.

ASTERISQUE 451



PASCHKE DUALITY SQUARE 79

In order to analyze this cycle, it will be extremely convenient to introduce a new
Hilbert A B, I module as follows; the following discussion is inspired by, but a little
different from [25, Lemmas 2.1, 2.2, 2.3 and 3.4]. Let {’,OZ(I') denote the subspace of
finitely supported functions in 82(I'). Write ‘@ for the uncompleted tensor product
over C, and define

Eo:= Hy BA@H @8(f),
which is a dense subspace of y Ea. Equip Ep with the restriction of the M-action €
on y Ea; symbolically, this is given by

€g(§Bal@n@éh) 1= ug§ B oag(a)@n B dgh.
Provisionally define a new inner product on Ep with values in C¢(I', A) B A B, I by
the formula
(€1, €2)g,,(8) 1= (e1, €g(€2)) £4s
and a right action of C. (', A) by
e-b:= Eg-l(e'b(g))r
gl T

where the product ‘e - b(g)’ on the right refers to the A-module structure of y Ea.
Define finally a linear map
(B.5) U:B—>vEART, (Ue)(g):=c-egle).

A direct computation that we leave to the reader shows that for any e, e; B Ep, we
have

(B6) (U €1, UeZ)V g'a r= (elr EZ)EA,-F
and moreover for all e @ Eg and b @ C. (I, A) we have (Ue)-b= U(e-h).
It follows from this that the form ¢, >EA,r is positive semi-definite, and thus simul-

taneous completion as discussed in [17, pages 4-5] gives rise to a Hilbert AR, -module
Eam,r.- Moreover, the map in line (B.5) above extends to an isometric inclusion

U:Eae,r > v EaBT.

Lemma B.10. — The map U : Eap,r = vy EA BT is an adjointable isometry, with
image exactly equal to py - (v EaQIT).

Proof. — An elementary computation shows that the adjoint of U is given for
elBly EART by the formula

X
U% = eg-1(c-e(g));enr
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combined with the formula in line (B.6), we now have that U is an adjointable isom-

etry. Computing, for any ey EABT and g@T X
(UU%e)(g) = c-eg(U%e) = c-¢q €n-1(c-e(h))

he r
X

= CVgh-1(c) - e(h).
h@ T

Making the change of variables k = gh™1, this becomes

UU%e(g) = cvk(cle(k™*g) = (pv -e)(g). kar

In other words, the range projection of U is py, which completes the proof.
O

Now, let E : A B, I = A denote the faithful conditional expectation defined by b
—> b(e), where e here denotes the identity element of I'. Following the discussionin [17)
pages 57-58], this conditional expectation gives rise to a ‘localization’ Hilbert A-
module Eag,r,e defined as the separated completion of Eap,r for the A-valued inner
product defined by

(e1,e2)g™™ 1= E((e1, €2)gy,, . )-
Moreover, there is a B-representation
ne : L(Eag.r) 2> L(Eag,1,E).

defined on the dense subspace of Eap, r,e defined as the image of Eag,r by the formula
ne(T)-e= T -e; as in our case E is faithful, g is isometric.

Lemma B.11. — The localization Eap,r,e identifies naturally with vy Ea: more pre-
cisely, on the dense subspace of these A-modules defined by Ep, the inner products
agree.

Moreover, having made this identification, the B-representation e takes K (Eap, r)
onto CE.

Proof. — The first part is clear from the formulas involved. For the second part, recall
first that K (Eam,r) is generated by operators of the form
Be,e, 1 € > e1(e2, €)gy, s

where e1,e2,e are in Eag,r (or just in the dense subspace Ep). Computing,

X X

Bey e, (e) = €g-1(e1(ez, €2)g,, (8)) = €g-1(e1(e2, €g(e)), g,)-

gE T ga T

Now, let us specialize to the case where ei = §@a;Bni@A6n, fori @{1,2}, ande= g0

al@ln&&n are all given by elementary tensors, which we may regard equally as elements
of vy Ea. The first part combined with the above computation then says

ASTERISQUE 451



PASCHKE DUALITY SQUARE 81

that
X

Tte(Bey e, )e = Ggfl(el(eZIEg(e))v EA)

§( r

=

(N2, NX{&1, ug&2){bh,, dgh)ug-1&1 B aLg-1 (a1a,)a Bn Sg-1h, .0 T

It is straightforward to check that the operator e (e, ,e,) is in C?, and moreover that
linear combinations of such operators are dense in C 2, completing the proof.

At this point, we have that Eag r is an A B r-module, and that the compact
operators on it identify naturally with CZ. To complete the proof that A B, I is
Morita equivalent with C?, it will sufice to show that Eap,r is full. For the sake of
completeness, as well as to ease the subsequent analysis, the next lemma gives a more
precise statement.

To state it, define an C.(l, A)-valued inner product on Ep by the formula

(€1Ba1BniB6n,, & BaxBn2 @6n,)(g) := (§1, §2)(n1, N2){Bg, 8y-1n,) oy, -1 (a1 22).

In other words, identifying ¢,8T) @ A with Cc(l, A) in the natural way, this isHy
H B Cc(l, A) with its natural C(l, A)-valued inner product. Thus it is posi-tive
definite, and completion gives rise to the standard AB-module Hy BHRAR,T.

Lemma B.12. — The map
V:iEp—> Ey, §@aBNBéh > up-1&Bap-1(a)BNnBEE,-1
extends to an isometric isomorphism
V :Eag,r > Hy BH BAE T. In
particular, conjugation by V induces an isomorphism
K(Eap,r) Bk (Hy BH)BA BT,
and combining with Lemma B.11, C? Bk BA @, T.

Proof. — Computing,
(V(€1Ba1@ni@6n,),V(§2@a2 BNz @6h,))ny auman,r(g) =
(up-1§, U_lﬁg)(ﬂl,nz)(5g,5h1h—1>9h1(ah-1(§1)01z(az))=
(8, u™ p&2)(n1,n2)(8g, B n-1)a"an, -1 (32)
= (€, ug"€2)(n1, N2)(Bh,, Bgn, )a"qg(a2)

= (§&1@a1@AN1@6h,, §2Aaz AN2 B 6h,)e,,, (8).

Hence V extends to an isometry from Eag,r into Hy HBEBATE I A standard
computation shows that V is adjointable, with adjoint given on Eg by the same formula as
for V, i.e.,

V(Eanéh) = uhflﬁahfl(a)néhfl.
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Clearly from these formulas V has dense image, and thus extends to a unitary iso-
morphism as claimed.
To complete the statement about the compact operators, note that we now have

K(Eaa,r) DK (Hy BEH BAD T) = B (Hy @H)BK (A B ) D
€ (Hy BH)BAG,T,

where the first isomorphism is conjugation by V, the second is a standard general
isomorphism for external tensor products of Hilbert modules discussed in [17, page 37],
and the third is the standard identification K (B) =BB for any C?-algebra considered as
a Hilbert module over itself as discussed in [17, page 10]. O

We now go back to commutativity of the top square of diagram (B.3). Filling in
some more details, the top square in Diagram (B.3) looks as follows.

K

KK (Co(Y),A) ——KK1(C, AB,T) Ki(ABT)
s
Ki((ABT)BK)
5 ady
Ki(K(Eam,r))

B (e

Ko(D?/C?) K1(C?),

where in the above:

(i) the map labeled 6 is the Paschke duality isomorphism of Corollary B.9;

(ii) the map labeled 9 is the standard boundary map in K-theory;

(iii) the composition of the top two horizontal arrows is the the Baum-Connes as-
sembly map u (we have explicitly included the isomorphism «k);

(iv) the map labeled mg is the map on K-theory induced by the isomorphism of
Lemma B.11;

(v) the map labeled ady is the map on K-theory induced by conjugation by the
unitary isomorphism of Lemma B.12;

(vi) the map labeled s is the stabilization isomorphism in K-theory.

Consider now what happens to a class in KK (Co(Y ), A) as it goes around this
diagram. Using Lemma B.7, we may assume our class is of the form [y Ea, F, €, ],
where F is in D?. As discussed above, the assembly map p along the top row of
diagram (B.3) takes this class to

[py - (v EAQT), py FOv, JBKK1(C, AR, T),

where L is the unit representation of C. Using Lemma B.10, this class is the same
as [Eap,r, UBE U, l]. Lemma B.12 implies that Eap,r is actually a standard module
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over A B [, and thus one of the standard formulations of the isomorphism between
KKg(C, B) and Kg(B) (see [5, 17.5.4 — 17.5.6]) says that this class corresponds to the
image of the projection ,(14 UZF U)eainder the composition

0 : Ko(L(Eam,r)/K(Eap,r)) > Ki(K(Eap,r)) > Ki(ABT),

of the K-theory boundary map and the combination of the isomorphism ady and the
stabilization isomorphism. On the other hand, going around the square to the bottom
right corner in the other direction, our class [y Ea, F, €, 1] goes to the image of the

projection 1(1+ F) in D®/C® under the boundary map
9 :Ko(D?/C®) > K1(CP).

Consider then the commutative diagram of boundary maps

Ko(L (Eag,r)/K(Eazr)) _ > Ki(K(Eag,r))

-1 -1
nE nE

Ko(DB/CE) K1(C?),

o

where the vertical maps are induced by the inverse of me restricted to its image. To
complete the proof, the discussion above implies that it will be enough to show that
the projections

%(1+ UPrU) and n;l(;(l+ F))

in L(Eam,r)/K(Eag,r) are the same. For this the following lemma sufices, so it
completes our analysis of the top sqaure.

\Lemma B.13. — For any F B DP,
ne(UBRU) - F

is in CP.
Proof. — We compute what the operator e (U?FU) does on an element e of 5y Ea.
X X
ne(UPRU )e = UPRUe = €g-1(c(PUe)(g)) = €g-1(cF(Ue)(g))
ga T ga T
X X
= €g-1(cFceg(e)) = Vg-1(c)Fyg-1(cle,
gE T gEr

where the last inequality used F-invariane of F. Hence
ne(UPRU) - F = Vg-1(c)Fyg-1(c) - F.
gl I
To see that this operator is in C?, we must show that it is M-invariant, has finite I'
propagation, and is A-locally compact. The first two of these are clear, as they hold for|
each of the two terms individually. To see that the operator is A locally compact, let f
be an element of Cc(Y ). Let S := {g BT |f -yg-1(c) = 0}, which is finite by

SOCIETE MATHEMATIQUE DE FRANCE 2024



84 APPENDIX B. COMPARISON TO THE BAUM-CONNES ASSEMBLY MAP

properness of the action, and compact supr))<ort of f and c. Then we have

f. Vg-1(c)Fyg-i(c)- F = f - Vg-1(c)Fyg-1(c) - vg-1(c?)F
gl T ghs ghS
X
=f- Vg-l(c)[F: Vg-l(c)] ,

ghls
P
where the first equality uses that = yg-1(c?) = 1. The sum in parentheses is a finite
sum of operators in K (y Ea), so we are done. O

Localization algebra square

In studying the bottom square, it will help to introduce some auxiliary CP-alge-
bras. For a CP-algebra B, let TB denote the C%-algebra of all bounded, uniformly
continuous functions from [0, ==) to B. We then have a commutative diagram of short
exact sequences of CP-algebras.

(B.7) 0 co D? D%/Cc? — 0
0 TCP TDP TDJTC—O
0 cp DP DP/cCP 0.

Here the upper three vertical arrows are all induced by evaluation-at-zero maps, while
the lower three vertical arrows are all induced by simply forgetting the condition on
metric propagation in the definition of Df and CP. As already mentioned, the bottom
square in Diagram (B.3) is induced by the boundary maps from the top and bottom
sequences in Diagram (B.7), and thus automatically commutes, so it remains to show
that the maps labeled (iii) and (iv) in Diagram (B.3) are isomorphisms. Indeed, that
(iii) is an isomorphism follows from Lemmas B.14 and B.15 below, while isomorphism of
(iv) is Lemma B.16 below, so these lemmas complete our analysis of the bottom
square.

Lemma B.14. — (Compare [22, Proposition 3.6].) The upper three vertical maps in
Diagram (B.7) induce isomorphisms on K-theory.

Proof. — Using the six term exact sequence and the five lemma, it sufices to show the
two maps on the left induce isomorphisms on K-theory. For this it sufices to show
the following: if B is a CP-algebra which has a stability structure in the sense of
Definition 6.4, then the evaluation-at-zero map TB - B induces an isomorphism on
K-theory. Using the six term exact sequence again, it sufices to show that if B is any
CP-algebra with a stability structure, then

ToB:={f BTB |f(0) = 0}
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has trivial K-theory. This is what we will now do.

Let (un) be the unitaries in the definition of a stability structure. For an element
b B To(B), extend b to a function b : R = B by setting b(t) = 0 for all t < 0. For
each n, define an inclusion

Mn:ToB = ToB, (unb)(t) = b(t- n).
Then each pn is a B-homomorphism. Moreover, the map
X
M:ToB > ToB, b->
UnMn(b)un
n=0
is a @-homomorphism, as for any fixed t, all but finitely many of the functions pn(b)
take the value zero at t. Conjugating by the isometry

X

V=

Un+1Un

n=0
shows that p induces the same map on K-theory as the map i’ : ToB = ToB defined
by

, X
K (b) = Unun—l(b)U,
n=1
and applying a shift homotopy at each ‘level’ indexed by n (plus using uniform con-

tinuity of b) shows that p' induces the same map on K-theory as p*! : ToB > ToB
defined by

+1 . X
u(b) := UnHnU,.
n=1

Then we clearly have that

= ady,° o+ p*t
as B-homomorphisms (the right hand side is a B-homomorphism as po and p*1 have
orthogonal images: compare Lemma 6.3 above). Note that ady, is just conjugation by
an isometry in the multiplier algebra of ToB, and thus defines the identity on K-theory
(see Lemma 6.1 above). Hence passing to induced maps on K-theory gives

Mo = (adu)e° (Ro)a+ mh' = id+ ua,

and canceling pg gives that the identity map is zero, which gives Kg(To(B)) = 0 ds!
claimed.

Lemma B.15. — (Compare [22, Proposition 2.3].) With notation as in Diagram (B.7)
above, the map DZ/C? - TD?/TC? is an isomorphism of CZ-algebras.

Proof. — We define an inverse map. As the action of [ on Y is proper, arguing asin
[35, Corollary A.2.8] one sees that for each n, there exists a partition of unity {@i n !
Y = [0, 11}imi, , which is l-invariant, sugh that each @i n has compact support of
diameter at most 1/n, and such that iz, @2,(y) = 1 for all y @Y. Define a
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map ® : TD? > D¥ by stip;lating that when t@[n,n+ 1],

X
d(a)(t) :=(n+ 1-t) @Qi,n+1a(t)@ine1 + (t- n) Qine2a(t)@in+2.
iBln+1 iBln+2
Then it is not too dificult to see that @ is a well-defined complete contraction, that
@ descends to a well-defined B-homomorphism on the quotients, and that ®(a(t))
— a(t) BTC? for all aand all t (compare [22, Lemma 2.2]). The result follows from this.

Lemma B.16. — (Compare [22, Proposition 3.5].) The C®-algebra D% has trivia?
K-theory.

Proof. — Again, we use the stability structure (u,)f°= 4 on D coming from a decom-
position of the ‘auxiliary Hilbert space’ H into countably many infinite dimensional
summands. For each n, define a @B-homomorphism p, : D - D by the formula

(un(a))(t) = a(t+ n).
Then we may define p: D? > M (D?) by the formula
X°
n(a) := Unkn(a)uy.
n=0
Note however, that the image actually lands in DP, not its multiplier algebra: the
point is that [pn(a)(t), f] = 0 in norm as n = oo for any f @ Co(Y ) and t & [0, =]/
using the propagation condition (compare the proof of [24, Proposition 5.18]). A
combination of conjugation by an isometry and a homotopy quite analogous to the
argument of Lemma B.14 shows that p induces the same map on K-theory as W.1,
where the latter is defined by the same formula, except that the sum starts at n = 1,
Finally, we have that as maps on K-theory

Mo = (adu,)m° (Ho)a+ Mht = id+ pa,

whence the identity induces the zero map on K-theory, and we are done.
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In this volume, we introduce a property of topological dy-
namical systems that we call finite dynamical complexity. For
systems with this property, one can in principle compute the
K-theory of the associated crossed product CZ-algebra by split-
ting it up into simpler pieces and using the methods of controlled
K-theory. The main part of the paper illustrates this idea by giv-
ing a new proof of the Baum-Connes conjecture for actions with
finite dynamical complexity.

We have tried to keep the paper as self-contained as possi-
ble: we hope the main part will be accessible to someone with the
equivalent of a first course in operator K-theory. In particular,
we do not assume prior knowledge of controlled K-theory, and
use a new and concrete model for the Baum-Connes conjecture
with coeficients that requires no bivariant K-theory to set up.

Nous introduisons une nouvelle propriété des systemes dy-
namiques topologiques, que nous appelons complexité dynamique
finie. Les produits-croisés de CZ-algébres associés aux systémes
dynamiques ayant cette propriété peuvent étre décomposés en
parties plus simples, ce qui permet de calculer leurs groupes de K-
théorie, via des méthodes de K-théorie controlée.

Dans cet article, nous illustrons cette idée en donnant une
nouvelle preuve de la conjecture de Baum-Connes pour les ac-
tions de complexité dynamique finie. Nous avons essayé de ren-
dre I'article aussi indépendant du reste de la littérature que possi-
ble, afin qu’il reste accessible pour quelqu’un n'ayant suivi qu’un
premier cours de K-théorie opératorielle. En particulier, nous ne
supposons aucune connaissance préalable de la K-théorie con-
trolée, et nous utilisons un nouveau modeéle concret pour la con-
jecture de Baum-Connes a coeficients qui n’utilise pas la K-
théorie bivariante de Kasparov.
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