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Abstract
We consider the impact of trading fees on the profits of arbitrageurs trading against an

automated marker marker (AMM) or, equivalently, on the adverse selection incurred by liquidity
providers due to arbitrage. We extend the model of Milionis et al. [2022] for a general class
of two asset AMMs to both introduce fees and discrete Poisson block generation times. In our
setting, we are able to compute the expected instantaneous rate of arbitrage profit in closed
form. When the fees are low, in the fast block asymptotic regime, the impact of fees takes a
particularly simple form: fees simply scale down arbitrage profits by the fraction of time that
an arriving arbitrageur finds a profitable trade.

1. Introduction

For automated market makers (AMMs), the primary cost incurred by liquidity providers (LPs)
is adverse selection. Adverse selection arises from the fact that agents (“arbitrageurs”) with an
informational advantage, in the form of knowledge of current market prices, can exploit stale
prices on the AMM versus prices on other markets such as centralized exchanges. Because trades
between arbitrageurs and the AMM are zero sum, any arbitrage profits will be realized as losses
to the AMM LPs. Milionis et al. [2022] quantify these costs through a metric called loss-versus-
rebalancing (LVR). They establish that LVR can be simultaneously interpreted as: (1) arbitrage
profits due to stale AMM prices; (2) the loss incurred by LPs relative to a trading strategy (the
“rebalancing strategy”) that holds the same risky positions as the pool, but that trades at market
prices rather than AMM prices; and (3) the value of the lost optionality when an LP commits
upfront to a particular liquidity demand curve. They develop formulas for LVR in closed form, and
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show theoretically and empirically that, once market risk is hedged, the profit-and-loss (P&L) of
an LP reduces to trading fee income minus LVR. In this way, LVR isolates the costs of liquidity
provision.

Despite its benefits, LVR su�ers from a significant flaw: it is derived under the simplification that
arbitrageurs do not pay trading fees. In practice, however, trading fees pose a significant friction
and limit arbitrage profits. The main contribution of the present work is to develop a tractable
model for arbitrage profits in the presence of trading fees. We are able to obtain general formulas
for arbitrageur profits in this setting. We establish that arbitrage profits in the presence of fees
are roughly equivalent to the arbitrage profits in the frictionless case (i.e., LVR), but scaled down
to adjust for the fraction of time where the AMM price di�ers from the market price significantly
enough that arbitrageurs can make profits even in the presence of fees. That is, the introduction
of fees can be viewed as a rescaling of time.

Our goal is to introduce fees and understand how they impact arbitrageur behavior. As a
starting point, one could directly introduce fees into the model of Milionis et al. [2022], where prices
follow a geometric Brownian motion and arbitrageurs continuously monitor the AMM. However,
this approach su�ers a major pathology: when arbitrageurs monitor the market continuously in the
presence of even negligible non-zero fees, the arbitrage profits are zero! Intuitively, when there are
no fees, every instantaneous price movement provides a profitable arbitrage opportunity. With fees,
this is true only for movements outside a (fee-dependent) “no-trade region” around the AMM price
which, with continuous monitoring, then results in an immediate repositioning of that region. One
can show that the fraction of time for which this happens is zero, with the market price inside the
no-trade region at all other times. This is analogous to the fact that, in continuous time, a reflected
random walk spends almost none of its time at the boundaries. In reality, however, arbitrageurs
cannot continuously monitor and trade against the AMM. For example, for an AMM implemented
on a blockchain, the arbitrageurs can only act at the discrete times at which blocks are generated.
Thus, in order to understand arbitrage profits in the presence of fees, it is critical to model the
discreteness of block generation.

1.1. Model

Our starting point is the model of Milionis et al. [2022], where arbitrageurs continuously monitor
an AMM to trade a risky asset versus the numéraire, and the risky asset price follows geometric
Brownian motion parameterized by volatility ‡ > 0. However, we assume that the AMM has a
trading fee “ Ø 0, and that arbitrageurs arrive to trade on the AMM at discrete times according to
the arrivals of a Poisson process with rate ⁄ > 0. The Poisson process is a natural choice because
of its memoryless nature and standard usage throughout continuous time finance. It is natural to
assume arrival times correspond to block generation times, since the arbitrageurs can only trade
at instances where block are generated, so the parameter ⁄ should be calibrated so that the mean
interarrival time �t , ⁄≠1 corresponds to the mean interblock time.

When an arbitrageur arrives, they seek to make a trade that myopically maximizes their im-
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mediate profit. Arbitrageurs trade myopically because of competition. If they choose to forgo
immediate profit but instead wait for a larger mispricing, they risk losing the profitable trading
opportunity to the next arbitrageur. If the AMM price net of fees is below (respectively, above) the
market price, the arbitrageur will buy (sell) from the pool and sell (buy) at the market. They will
do so until the net marginal price of the AMM equals the market price. We describe these dynamics
in terms of a mispricing process that is the di�erence between the AMM and market log-prices. At
each arrival time, a myopic arbitrageur will trade in a way such that the pool mispricing to jumps
to the nearest point in band around zero mispricing. The width of the band is determined by the
fee “. We call this band the no-trade region, since if the arbitrageur arrives and the mispricing is
already in the band, there is no profitable trade possible. At all non-arrival times, the mispricing
is a di�usion, driven by the geometric Brownian motion governing market prices.

1.2. Results

In our setting, the mispricing process is a Markovian jump-di�usion process. Our first result is to
establish that this process is ergodic, and to identify its steady state distribution in closed form.
Under this distribution, the probability that an arbitrageur arrives and can make a profitable trade,
i.e., the fraction of time that the mispricing process is outside the no-trade region in steady state,
is given by

Ptrade ,
1

1 +
Ô

2⁄“/‡
¸ ˚˙ ˝

,÷

.

This can also be interpreted as the long run fraction of blocks that contain an arbitrage trade.
Ptrade has intuitive structure in that it is a function of the composite parameter ÷ , “/(‡


⁄≠1/2),

the fee measured as a multiple of the typical (one standard deviation) movement of returns over
half the average interarrival time. When ÷ is large (e.g., high fee, low volatility, or frequent blocks),
the width of the no-fee region is large relative to typical interarrival price moves, so the mispricing
process is less likely to exit the no-trade region in between arrivals, and Ptrade ¥ ÷≠1.

Given the steady state distribution of the pool mispricing, we can quantify the arbitrage profits.
Denote by ARBT the cumulative arbitrage profits over the time interval [0, T ]. We compute the
expected instantaneous rate of arbitrage profit ARB , limT æ0 E[ARBT ]/T , where the expectation is
over the steady state distribution of mispricing. We derive a semi-closed form expression (involving
an expectation) for ARB. For specific cases, such as geometric mean or constant product market
makers, this expectation can be evaluated resulting in an explicit closed form.

We further consider an asymptotic analysis in the fast block regime where ⁄ æ Œ (equivalently,
the limit as the mean interblock time �t , ⁄≠1 æ 0). In order to explain our asymptotic results,
we begin with the frictionless base case of Milionis et al. [2022], where there is no fee (“ = 0) and
continuous monitoring (⁄ = Œ). Milionis et al. [2022] establish that the expected instantaneous
rate of arbitrage profit is

LVR , lim
T æ0

E [LVRT ]
T

= ‡2P

2 ◊ yúÕ (P ) . (1)
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Here, P is the current market price, while yú(P ) is the quantity of numéraire held by the pool when
the market price is P , so that yúÕ(P ) is the marginal liquidity of the pool at price P , denominated
in the numéraire. In the presence of fees and discrete monitoring, our rigorous analysis establishes
that as ⁄ æ Œ,

ARB , lim
T æ0

E [ARBT ]
T

= ‡2P

2 ◊ yúÕ (Pe≠“) + yúÕ !
Pe+“

"

2¸ ˚˙ ˝
= y

úÕ (P ) + O(“2) for “ small

◊ 1
1 +

Ô
2⁄“/‡

¸ ˚˙ ˝
=Ptrade

+o
1Ô

⁄≠1
2

. (2)

Equations (1) and (2) di�er in two ways. First, (1) involves the marginal liquidity yúÕ(P ) at the
current price P , while (2) averages the marginal liquidity at the endpoints of the no-trade interval
of prices [Pe≠“ , Pe+“ ]. This di�erence is minor if the fee “ is small. The second di�erence, which
is major, is that arbitrage profits in (2) are scaled down relative to (1) by precisely the factor
Ptrade. In other words, if the fee is low, in the fast block regime we can view the impact of the fee
on arbitrage profits as scaling down LVR by the fraction of time that an arriving arbitrageur can
profitably trade: ARB ¥ LVR ◊ Ptrade.

Focusing on the dependence on problem parameters, when “ > 0, (2) implies that in the
fast block regime arbitrage profits are proportional to the square root of the mean interblock
time (

Ô
⁄≠1), the cube of the volatility (‡3), and the reciprocal of the fee (“≠1). These scaling

dependencies are consistent with the assertions and simulation results of Nezlobin [2022], who
discusses a similar problem for constant product market makers and a deterministic block generation
process. Equation (2) also highlights an interesting phase transition with the introduction of fees.
Specifically, in the absence of fees (“ = 0), in the fast block regime (⁄ æ Œ), we have the
ARB = LVR + o(1) = �(1), i.e., up to a first order, arbitrage profits per unit time are constant and
do not depend on the interblock time. On the other hand, when there are fees (“ > 0), we have
that ARB = �(

Ô
⁄≠1), arbitrage profits per unit time scale with the square root of the interblock

time.

1.3. Conclusion

This work has broad implications around liquidity provision and the design of automated market
makers. First, the model presented hereby provides a more accurate quantification of LP P&L,
accounting both for arbitrageurs paying trading fees and discrete arbitrageur arrival times. As
such, this model can be used for empirical analyses to evaluate LP performance both ex post

as well as ex ante, when coupled with realized metrics of pool data, such as realized asset price
volatility. Our results also have the potential to better inform AMM design, and in particular,
provide guidance around how to set trading fees in a competitive LP market, in order to balance
LP fee income and LP loss due to arbitrageurs. Finally, the asymptotic regime analysis ⁄ æ Œ
above points to a significant potential mitigator of arbitrage profits: running a chain with lower
mean interblock time �t , ⁄≠1 (essentially, a faster chain), since we show that this e�ectively
reduces arbitrage profit without negatively impacting LP fee income derived from noise trading.
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1.4. Literature Review

There is a rich literature on constant function market makers. Angeris and Chitra [2020] and
Angeris et al. [2021a,b] apply tools from convex analysis (e.g., the pool reserve value function) that
we also use in this paper. In the first paper to decompose the return of an LP into an instantaneous
market risk component and a non-negative, non-decreasing, and predictable component called
“loss-versus-rebalancing” (LVR, pronounced “lever”), Milionis et al. [2022] analyze the frictionless,
continuous-time Black-Scholes setting in the absence of trading fees to show that it is exactly the
adverse selection cost due to the arbitrageurs’ informational advantage to the pool. This work
extends the model of Milionis et al. [2022] to account for arbitrage profits both in the presence of
fees and discrete-time arbitrageur arrivals. Evans et al. [2021] observe that, in the special case of
geometric mean market makers, taking the limit to continuous time while holding the fees “ > 0
fixed and strictly positive yields vanishing arbitrage profits; this is also a special case of our results.
Angeris et al. [2021b] also analyze arbitrage profits, but do not otherwise express them in closed-
form. Black-Scholes-style options pricing models, like the ones developed in this paper, have been
applied to weighted geometric mean market makers over a finite time horizon by Evans [2020],
who also observes that constant product pool values are a super-martingale because of negative
convexity. Clark [2020] replicates the payo� of a constant product market over a finite time horizon
in terms of a static portfolio of European put and call options. Tassy and White [2020] compute
the growth rate of a constant product market maker with fees. Dewey and Newbold [2023] develop
a model of pricing and hedging AMMs with arbitrageurs and noise traders and conjecture that
arbitrageurs induce the same stationary distribution of mispricing that we rigorously develop here.

2. Model

Assets. Fix a filtered probability space
!
�, F , {Ft}tØ0) satisfying the usual assumptions. Consider

two assets: a risky asset x and a numéraire asset y. Working over continuous times t œ R+, assume
that there is observable external market price Pt at each time t. The price Pt evolves exogenously
according to the geometric Brownian motion

dPt

Pt

= µ dt + ‡ dBt, ’ t Ø 0,

with drift µ, volatility ‡ > 0, and where Bt is a Brownian motion.

AMM Pool. We assume that the AMM operates as a constant function market maker (CFMM).
The state of a CFMM pool is characterized by the reserves (x, y) œ R2

+, which describe the current
holdings of the pool in terms of the risky asset and the numéraire, respectively. Define the feasible
set of reserves C according to

C , {(x, y) œ R2
+ : f(x, y) = L},
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x1 ≠ x0

y0 ≠ y1

f(x, y) = L

(x0, y0)

(x1, y1)
x

y

(a) Transitions between any two points on the bonding

curve f(x, y) = L are permitted, if an agent contributes

the di�erence into the pool.

f(x, y) = L

slope = ≠P

!
xú(P ), yú(P )

"

x

y

(b) The pool value optimization problem relates points

on the bonding curve to supporting hyperplanes defined

by prices.

Figure 1: Illustration of a CFMM.

where f : R2
+ æ R is referred to as the bonding function or invariant, and L œ R is a constant. In

other words, the feasible set is a level set of the bonding function. The pool is defined by a smart
contract which allows an agent to transition the pool reserves from the current state (x0, y0) œ C
to any other point (x1, y1) œ C in the feasible set, so long as the agent contributes the di�erence
(x1 ≠ x0, y1 ≠ y0) into the pool, see Figure 1a.

Define the pool value function V : R+ æ R+ by the optimization problem

V (P ) , minimize
(x,y)œR2

+
Px + y

subject to f(x, y) = L.
(3)

The pool value function yields the value of the pool, assuming that the external market price of the
risky asset is given by P , and that arbitrageurs can trade instantaneously trade against the pool
maximizing their profits (and simultaneously minimizing the value of the pool). Geometrically, the
pool value function implicitly defines a reparameterization of the pool state from primal coordinates
(reserves) to dual coordinates (prices); this is illustrated in Figure 1b.

Following Milionis et al. [2022], we assume that the pool value function satisfies:

Assumption 1. (i) An optimal solution
!
xú(P ), yú(P )

"
to the pool value optimization (3) exists

for every P Ø 0.

(ii) The pool value function V (·) is everywhere twice continuously di�erentiable.

(iii) For all t Ø 0,

EQ
5⁄

t

0
xú(Ps)2P 2

s ds
6

< Œ.

We refer to
!
xú(P ), yú(P )

"
as the demand curves of the pool for the risky asset and numéraire,

respectively. Assumption 1(i)–(ii) is a su�cient condition for the following:

Lemma 1. For all prices P Ø 0, the pool value function satisfies:
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(i) V (P ) Ø 0.

(ii) V Õ(P ) = xú(P ) Ø 0.

(iii) V ÕÕ(P ) = xúÕ(P ) = ≠PyúÕ(P ) Æ 0.

The proof of Lemma 1 follows from standard arguments in convex analysis; see Milionis et al.
[2022] for details.

Fee Structure. Suppose that (�x, �y) is a feasible trade permitted by the pool invariant, i.e.,
given initial pool reserves (x, y) with f(x, y) = L, we have f(x + �x, y + �y) = L. We assume
that an additional proportional trading fee is paid to the LPs in the pool. The mechanics of this
trading fee are as follows:

1. The fee is paid in the numéraire in proportion to the quantity �y of numéraire that is traded.

2. The fee is realized as a separate cashflow to the LPs.

3. We allow for di�erent fees to be paid when the risky asset is bought from the pool and when
the risky asset is sold to the pool.

4. We denote the fee in units of log price by “+, “≠ > 0. In particular, when the agent purchases
the risky asset from the pool (i.e., �x < 0, �y > 0), the total fee charged is

1
e+“+ ≠ 1

2
|�y|, (4)

while the total fee charged when the agent sells the risky asset to the pool (i.e., �x > 0,
�y < 0 is

!
1 ≠ e≠“≠

"
|�y|. (5)

Example 1. In our notation, a 30 basis point proportional fee on either buys or sales (e.g., as in

Uniswap V2) would correspond to

“+ = log(1 + 0.003) ¥ 0.002995509, “≠ = ≠ log(1 ≠ 0.003) ¥ 0.003004509.

To a first order, “+ ¥ “≠ ¥ 30 (basis points).

3. Arbitrageurs & Pool Dynamics

At any time t Ø 0, define P̃t to be the price of the risky asset implied by pool reserves, i.e., the
reserves are be given by

!
xú(P̃t), yú(P̃t)

"
. Denote by

zt , log Pt/P̃t, (6)

the log mispricing of the pool, so that P̃t = Pte≠zt .
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We imagine that arbitrageurs arrive to trade against the pool at discrete times according to
a Poisson process of rate ⁄ > 0. Here, we imagine that arbitrageurs are continuously monitoring
the market, but can only trade against the pool at discrete times when blocks are generated in a
blockchain. Hence, we will view the arrival process as both equivalently describing the arrival of
arbitrageurs to trade or times of block generation. For a proof-of-work blockchain, Poisson block
generation is a natural assumption [Nakamoto, 2008]. However, modern proof-of-state blockchains
typically generate blocks at deterministic times. In these cases, we will view the Poisson assumption
as an approximation that is necessary for tractability.1 In any case, the mean interarrival time
�t , ⁄≠1 should be calibrated to the mean interblock time in a blockchain.

Denote the arbitrageur arrival times (or block generation times) by 0 < ·1 < ·2 < · · · . When an
arbitrageur arrives at time t = ·i, they can trade against the pool (paying the relevant trading fees)
according to the pool mechanism, and simultaneously, frictionlessly trade on an external market at
the price Pt. We assume that the arbitrageur will trade to myopically maximize their instantaneous
trading profit.2 We ignore any blockchain transaction fees such as “gas”.

The following lemma (with proof in Appendix A) characterizes the myopic behavior of the
arbitrageurs in terms of the demand curves of the pool and the fee structure:

Lemma 2. Suppose that an arbitrageur arrives at time t = ·i, observing external market price Pt,

and implied pool price P̃t≠ or, equivalently, mispricing zt≠. Then, one of the following three cases

applies:

1. If Pt > P̃t≠e+“+ or, equivalently, zt≠ > +“+, the arbitrageur can profitably buy in the pool

and sell on the external market. They will do so until the pool price satisfies P̃t = Pte≠“+ or,

equivalently, zt = +“+. The arbitrageur profits are then

Pt

Ó
xú

1
Pte

≠zt≠
2

≠ xú
1
Pte

≠“+
2Ô

+ e+“+
Ó

yú
1
Pte

≠zt≠
2

≠ yú
1
Pte

≠“+
2Ô

Ø 0.

2. If Pt < P̃t≠e≠“≠ or, equivalently, zt≠ < ≠“≠, the arbitrageur can profitably sell in the pool

and buy the external market. The will do so until the pool price satisfies P̃t = Pte+“≠ or,

equivalently, zt = ≠“≠. The arbitrageur profits are then

Pt

Ó
xú

1
Pte

≠zt≠
2

≠ xú
1
Pte

+“≠
2Ô

+ e≠“≠
Ó

yú
1
Pte

≠zt≠
2

≠ yú
1
Pte

+“≠
2Ô

Ø 0.

3. If P̃t≠e≠“≠ Æ Pt Æ P̃t≠e+“+, then the arbitrageur makes no trade, and P̃t = P̃t≠ or, equiva-

lently, zt = zt≠.

1
As mentioned in Section 1.2, our results have the same scaling dependencies with the assertions and simulation

results of Nezlobin [2022], who discusses a similar problem for constant product market makers and a deterministic

block generation process. This suggests that, at least from the perspective of parametric scaling laws, the choice of

Poisson or deterministic arrivals is not important.
2
Given trading fees, if there was a single, monopolist arbitrageur, this may not be optimal, e.g., it may be

optimal to wait for a large mispricing before trading. However, we assume that there exists a universe of competing

arbitrageurs, and that an arbitrageur that forgoes any immediate profit will lose it to a competitor. Hence, in our

setting, arbitrageurs trade myopically.
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Considering the three cases in Lemma 2, it is easy to see that, at an arbitrageur arrival time
·i, the mispricing process zt evolves according to3

z·i = bound
)
z

·
≠
i

, ≠“≠, +“+
*
, (7)

On the other hand, applying Itô’s lemma to (6), we have that, at other times t > 0, process evolves
according to

dzt =
1
µ ≠ 1

2‡2
2

dt + ‡ dBt. (8)

Combining (7)–(8), for all t Ø 0,

zt =
1
µ ≠ 1

2‡2
2

t + ‡Bt +
ÿ

i: ·iÆt

Ji, Ji , bound
)
z

·
≠
i

, ≠“≠, +“+
*

≠ z
·

≠
i

. (9)

Therefore, the mispricing process zt is a Markovian jump-di�usion process. A possible sample path
of this mispricing process is shown in Figure 2.

Figure 2: Example sample path of the mispricing process zt. The red-colored ticks in the x-axis show
the (Poisson-distributed) times of arbitrageur arrivals.

4. Exact Analysis

We will make the following assumption:

Assumption 2 (Symmetry).
µ = 1

2‡2, “+ = “≠ , “.
3
Define bound{x, u, ¸} , max(min(x, u), ¸).
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Assumption 2 ensures that the mispricing jump-di�usion process, with dynamics given by (7)–
(8), is distributed symmetrically around the z = 0 axis. This assumption will considerably simplify
notation and expressions and is without loss of generality. All of our conclusions downstream can
be derived without this assumption, at the expense of additional algebra. We discuss this in greater
detail in Appendix C, where we also provide a non-symmetric variation of Theorem 1.

4.1. Stationary Distribution of the Mispricing Process

The following lemma characterizes the stationary distribution of the mispricing process.4 We defer
the proof of this lemma until Appendix B.

Theorem 1 (Stationary Distribution of Mispricing). The process zt is an ergodic process on R, with

unique invariant distribution fi(·) given by the density

pfi(z) =

Y
____]

____[

fi+ ◊ pexp
÷/“

(z ≠ “) if z > +“,

fi0 ◊ 1
2“

if z œ [≠“, +“],

fi≠ ◊ pexp
÷/“

(≠“ ≠ z) if z < ≠“,

for z œ R. Here, we define the composite parameter ÷ ,
Ô

2⁄“/‡. The probabilities fi≠, fi0, fi+ of

the three segments are given by

fi0 , fi
!
[≠“, +“]

"
= ÷

1 + ÷
, fi+ , fi

!
(+“, +Œ)

"
= fi≠ , fi

!
(≠Œ, ≠“)

"
= 1

2
1

1 + ÷
.

Finally, pexp
÷/“

(x) , (÷/“)e≠(÷/“)x
is the density of an exponential distribution over x Ø 0 with

parameter ÷/“ =
Ô

2⁄/‡.

The stationary distribution is illustrated in Figure 3.

z

pfi(z)

Ã e≠z/‡
Ô

⁄≠1/2Ã e+z/‡
Ô

⁄≠1/2

≠“ +“

Figure 3: The density pfi(z) of the stationary distribution fi(·) of mispricing z.

Under this distribution, the probability that an arbitrageur arrives and can make a profitable
4
Contemporaneous with the present work, Dewey and Newbold [2023] conjecture this stationary distribution.
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�t \ “ 1 bp 5 bp 10 bp 30 bp 100 bp

10 min 96.7% 85.5% 74.7% 49.6% 22.8%
2 min 92.9% 72.5% 56.9% 30.5% 11.6%
12 sec 80.7% 45.6% 29.5% 12.3% 4.0%
2 sec 63.0% 25.4% 14.5% 5.4% 1.7%

50 msec 21.2% 5.1% 2.6% 0.9% 0.3%

Table 1: The probability of trade Ptrade, or, equivalently, the fraction of blocks with contain an arbitrage
trade, given asset price volatility ‡ = 5% (daily), with varying mean interblock times �t , ⁄≠1 and fee
levels “ (in basis points).

trade, i.e., the fraction of time that the mispricing process is outside the no-trade region in steady
state, is given by

Ptrade , fi+ + fi≠ = 1
1 +

Ô
2⁄“/‡

.

Equivalently, Ptrade can be interpreted as the long run fraction of blocks that contain an arbitrage
trade.

Note that Ptrade does not depend on the bonding function or feasible set defining the CFMM
pool; the only pool property relevant is the fee “. Ptrade has intuitive structure in that it is a function
of the composite parameter ÷ , “/(‡


⁄≠1/2), the fee measured as a multiple of the typical (one

standard deviation) movement of returns over half the average interarrival time. When ÷ is large
(e.g., high fee, low volatility, or frequent blocks), the width of the no-fee region is large relative to
typical interarrival price moves, so the mispricing process is less likely to exit the no-trade region
in between arrivals, and Ptrade ¥ ÷≠1. Example calculations of Ptrade are shown in Table 1 for
‡ = 5% (daily) volatility and varying mean interblock times �t , ⁄≠1 and fee levels “, as well as
in Figure 4a.

The following immediate corollary quantifies the magnitude of a typical mispricing. This is
illustrated in Figure 4b.

Corollary 1 (Standard Deviation of Mispricing). Under the invariant distribution fi(·), the standard

deviation of the mispricing is given by

‡z ,
Ò

Efi[z2] =
ı̂ıÙ(1 ≠ Ptrade) ◊ 1

3“2 + Ptrade ◊
I3

“ + ‡Ô
2⁄

42
+ ‡2

2⁄

J

.

4.2. Rate of Arbitrageur Profit

Denote by NT the total number of arbitrageur arrivals in [0, T ]. Suppose an arbitrageur arrives at
time ·i, observing external price P·i and mispricing z

·
≠
i

. From Lemma 2, the arbitrageur profit is
given by

A(P·i , z
·

≠
i

) , A+(P·i , z
·

≠
i

) + A≠(P·i , z
·

≠
i

) Ø 0,

11
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Figure 4: Probability of trade and typical mispricing errors as a function of the fee, with ‡ = 5% (daily)
and mean interblock time �t , ⁄≠1 = 12 (seconds).

where we define

A+(P, z) ,
Ë
P

Ó
xú

1
Pe≠z

2
≠ xú !

Pe≠“
"Ô

+ e+“
Ó

yú
1
Pe≠z

2
≠ yú !

Pe≠“
"ÔÈ

I{z>+“} Ø 0,

A≠(P, z) ,
Ë
P

Ó
xú

1
Pe≠z

2
≠ xú

1
Pe+“

2Ô
+ e≠“

Ó
yú

1
Pe≠z

2
≠ yú

1
Pe+“

2ÔÈ
I{z<≠“} Ø 0.

Similarly, the fees paid by the arbitrageur in this scenarios is given by

F (P·i , z
·

≠
i

) , F+(P·i , z
·

≠
i

) + F≠(P·i , z
·

≠
i

) Ø 0,

where we define

F+(P, z) , ≠
1
e+“ ≠ 1

2 Ë
yú

1
Pe≠z

2
≠ yú

1
Pe≠“

2È
I{z>+“} Ø 0,

F≠(P, z) , +
1
1 ≠ e≠“

2 Ë
yú

1
Pe≠z

2
≠ yú

1
Pe+“

2È
I{z<≠“} Ø 0.

We can write the total arbitrage profit and fees paid over [0, T ] by summing over all arbitrageurs
arriving in that interval, i.e.,

ARBT ,
NTÿ

i=1
A(P·i , z

·
≠
i

), FEET ,
NTÿ

i=1
F (P·i , z

·
≠
i

).

Clearly these are non-negative and monotonically increasing processes. The following theorem

12



characterizes their instantaneous expected rate of growth or intensity:5

Theorem 2 (Rate of Arbitrage Profit and Fees). Define the intensity, or instantaneous rate of arbi-

trage profit, by

ARB , lim
T æ0

E [ARBT ]
T

.

Given initial price P0 = P , and suppose that z0 = z is distributed according to its stationary

distribution fi(·). Then the instantaneous rate of arbitrage profit is given by

ARB = ⁄Efi [A(P, z)] = ⁄Ptrade

Ô
2⁄

‡

⁄ Œ

0

A+(P, x + “) + A≠(P, ≠x ≠ “)
2 e≠

Ô
2⁄x/‡ dx.

Similarly, defining the intensity of the fee process by

FEE , lim
T æ0

E [FEET ]
T

,

we have that

FEE = ⁄Efi [F (P, z)] = ⁄Ptrade

Ô
2⁄

‡

⁄ Œ

0

F+(P, x + “) + F≠(P, ≠x ≠ “)
2 e≠

Ô
2⁄x/‡ dx.

Proof. This result follows from standard properties of Poisson processes. The smoothing formula
[e.g., Theorem 13.5.7, Brémaud, 2020] yields that, for T > 0,

E [ARBT ] = E
S

U
NTÿ

i=1
A(P·i , z

·
≠
i

)

T

V = E
C⁄

T

0
A(Pt, zt≠) dNt

D

= E
C⁄

T

0
A(Pt, zt≠) ◊ ⁄ dt

D

.

Applying Tonelli’s theorem and the fundamental theorem of calculus,

lim
T æ0

E [ARBT ]
T

= lim
T æ0

⁄

T

⁄
T

0
E [A(Pt, zt≠)] dt = ⁄E [A(P0, z0≠)] ,

and the result then follows from Theorem 1. The same argument applies to the intensity of the fee
process. ⌅

4.3. Example: Constant Product Market Maker

Theorem 2 provides an exact, semi-analytic closed form expression for the rate of arbitrage profit, in
terms of a certain Laplace transfrom of the functions {A±(P, ·)}. This expression can be evaluated
as an explicit closed form for many CFMMs. For example, consider the case of constant product
market makers:

Corollary 2. Consider a constant product market maker, with invariant f(x, y) , Ô
xy = L. Under

5
Mathematically, ARB is the intensity of the compensator for the monotonically increasing jump process ARBT

at time T = 0, similarly FEE is the intensity of the compensator for FEET .
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the assumptions of Theorem 2, the intensity per dollar value in the pool is given by
6

ARB
V (P ) =

Y
___]

___[

‡2

8 ◊ Ptrade ◊ e+“/2 + e≠“/2

2
1
1 ≠ ‡2/(8⁄)

2 if ‡2/8 < ⁄,

+Œ otherwise.

where the quantities on the right side do not depend on the value of P0 = P .

The proof of Corollary 2 is deferred until Appendix D. Under the normalization of Corollary 2,
where the intensity of arbitrage profits is normalized relative the pool value, the resulting quantity
does not depend on the price. The same property will hold for the more general class of geometric
mean market makers; this is analogous to the property that LVR is proportional to pool value for
this class [Milionis et al., 2022].

As a comparison point, for a constant product market maker, Milionis et al. [2022] establish
that

LVR , lim
T æ0

E [LVRT ]
T

= ‡2

8 ◊ V (P ),

so that, when ‡2/8 < ⁄,

ARB = LVR ◊ Ptrade ◊ e+“/2 + e≠“/2

2¸ ˚˙ ˝
¥1+O(“2)

◊ 1
1 ≠ ‡2/(8⁄)
¸ ˚˙ ˝

¥1+O(⁄≠1)

.

Therefore, when fees are small (“ æ 0) and the block rate is high (⁄ æ Œ), we have the approxi-
mation

ARB ¥ LVR ◊ Ptrade. (10)

In Figure 5b, we see that for typical parameter values this approximation is extremely accurate,
with a relative error of less that 10≠5.

5. Asymptotic Analysis

In this section, we consider a fast block regime, where ⁄ æ Œ. In this setting, block are generated
very quickly, or, equivalently, the interblock time �t , ⁄≠1 æ 0 is very small.

Theorem 3. Define

Ā(P, x) , A+(P, x + “) + A≠(P, ≠x ≠ “)
2 Ø 0.

6
Note that there are infinite expected arbitrage profits if ⁄ < ‡2/8. This is a consequence of the interaction of

the lognormal returns and the exponential interblock time. When blocks arrive very slowly, the interblock return can

have large tails. This regime is not practically relevant, however. In particular, if ‡ = 5% (daily), then this occurs

when the mean interblock time satisfies �t , ⁄≠1 > 8/‡2
= 3200 (days).
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Figure 5: The constant product market maker case, with ‡ = 5% (daily) and mean interblock time
�t , ⁄≠1 = 12 (seconds).

Assume that, for each P > 0, Ā(P, ·) is twice continuously di�erentiable, and that there exists A0

and c (possibly depending on P ) such that

ˆxxĀ(P, x) Æ A0ecx, ’ x Ø 0. (11)

Consider the fast block regime where ⁄ æ Œ. Then,

ARB = ‡2P

2 ◊ yúÕ (Pe≠“) + yúÕ !
Pe+“

"

2 ◊ Ptrade + o
1Ô

⁄≠1
2

. (12)

Theorem 4. Define

F̄ (P, x) , F+(P, x + “) + F≠(P, ≠x ≠ “)
2 Ø 0.

Assume that, for each P > 0, F̄ (P, ·) is continuously di�erentiable, and that there exists F0 and c

(possibly depending on P ) such that

ˆxF̄ (P, x) Æ F0ecx, ’ x Ø 0. (13)

Consider the fast block regime where ⁄ æ Œ. Then, the instantaneous rate of fees (defined similarly

to Theorem 2) is

FEE = ‡2P

2 ◊ (1 ≠ e≠“)yúÕ (Pe≠“) + (e+“ ≠ 1)yúÕ !
Pe+“

"

2“
◊ (1 ≠ Ptrade) + o (1) . (14)
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The proofs of Theorems 3 and 4 are deferred to Appendix E. Equation (11) is a mild technical
condition bounding the convexity of the arbitrage profit as a function of the mispricing. Theorem 3
provides theoretical justification for the discussion in Section 1.2 comparing (1)–(2): we have that,
for arbitrary AMMs satisfying the technical condition of (11), ARB ¥ LVR◊Ptrade when the fee “ is
small in the fast block regime. Additionally, for arbitrary AMMs satisfying the technical condition
of (13), the instantaneous rate of fees is shown by Equation (14) to be FEE ¥ LVR ◊ (1 ≠ Ptrade)
when the fee “ is small in the fast block regime. The last two results mean that, conditioned on
the fee “ being small in the fast block regime, ARB + FEE ¥ LVR, which can be interpreted as
LVR being split among fees and arbitrage profits, according to Ptrade. In particular, as the blocks
become more and more frequent (for a fixed fee “), LVR switches from arbitrage profits to fees,
where it is eventually consumed.

Equation (12) also highlights the dependence of arbitrage profits on the problem parameters.
In the regime where volatility ‡ is large, the fee “ is small, and the block rate ⁄ is high, we have
that Ptrade ¥ ÷≠1 = ‡


⁄≠1/2/“. This implies that arbitrage profits are proportional to the square

root of the mean interblock time (
Ô

⁄≠1), the cube of the volatility (‡3), and the reciprocal of the
fee (“≠1).

6. Pricing Accuracy vs. Arbitrage Profits

Rao and Shah [2023] suggest a trade-o� for AMM designers between pricing accuracy, measured
by the standard deviation of mispricing ‡z, and the arbitrage profits. Setting fees that are low
ensures accurate prices, but results in high arbitrage profits, while setting fees that are high has
the opposite e�ect.

In our setting, we can crisply and analytically quantify this trade-o�. Namely, the standard
deviation of mispricing can be computed by Corollary 1, while the arbitrage profits can be computed
by Theorem 2 (exactly) or Theorem 3 (asymptotically).

Figure 6 illustrates this trade-o� for a constant product market maker, where the arbitrage
profits are computed exactly using Corollary 2. This figure illustrates two bounds in the low fee
regime (“ æ 0). First, as “ æ 0, ARB/V (P ) ø LVR/V (P ) = ‡2/8. In this sense, LVR captures
the worse case loss to arbitrageurs. Second, as “ æ 0, ‡z ¿ ‡

Ô
⁄≠1. The latter quantity is the

standard deviation of log-price changes over the mean interblock time �t , ⁄≠1. This is the
minimal mispricing error forced by the discrete nature of the blockchain.
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A. Proof of Lemma 2

Proof of Lemma 2. We consider Part (1), the others follow by analogy. Suppose the arbitrageur
considers buying from the pool, and selling on the external market at price Pt. Then, the arbitrageur
will face the optimization problem

maximize
�x,�y

Pt�x ≠ e+“+�y

subject to f
1
xú(P̃t≠) ≠ �x, yú(P̃t≠) + �y

2
= L,

�x, �y Ø 0,

where (xú(P̃t≠), yú(P̃t≠)) are the reserves of the pool immediately prior to the arrival of the ar-
bitrageur. Here, the decision variables �x describes the quantity of risky asset purchased by the
arbitrageur, while �y is the amount of numéraire paid. Instead, we can parameterize the decision
through the variables

x , xú(P̃t≠) ≠ �x, y , yú(P̃t≠) + �y,
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which describe the post-trade reserves of the pool. Thus, we can equivalently optimize

minimize
x,y

Pte≠“+x + y

subject to f (x, y) = L,

x Æ xú(P̃t≠), y Ø yú(P̃t≠).
(15)

Comparing to (3) and using the fact that xú(·) is monotonically decreasing while yú(·) is monoton-
ically increasing, it is clear that the solution to (15) is given by

x =

Y
_]

_[

xú
1
Pte≠“+

2
if Pte≠“+ > P̃t≠ ,

xú
1
P̃t≠

2
otherwise,

y =

Y
_]

_[

yú
1
Pte≠“+

2
if Pte≠“+ > P̃t≠ ,

yú
1
P̃t≠

2
otherwise.

Therefore a profitable trade where the arbitrageur purchases from the pool is only possible when
Pt > P̃t≠e+“+ , and the profit is as given in Part (1). ⌅

B. Proof of Theorem 1

Define the infinitesimal generator A by

Af(z) , lim
�tæ0

1
�t

E [f(z�t) ≠ f(z0)| z0 = z] ,

for f : R æ R that is twice continuously di�erentiable. Then, it is easy to verify that

Af(z) = ‡2

2 f ÕÕ(z) + ⁄ [f(+“) ≠ f(z)] I{z>+“} + ⁄ [f(≠“) ≠ f(z)] I{z<≠“}.

Lemma 3. The process zt is ergodic with a unique invariant distribution fi(·) on R, and this distri-

bution is symmetric around z = 0.

Proof. Consider the Lyapunov function V (z) , z2. Then,

AV (z) = ‡2 ≠ ⁄
Ë
z2 ≠ “2

È
I{z /œ(≠“,+“)} Æ ‡2 + ⁄“2 ≠ ⁄V (z),

i.e., this function satisfies the Foster-Lyapunov negative drift condition of Theorem 6.1 of Meyn
and Tweedie [1993]. Hence, the process is ergodic and a unique stationary distribution exists.
This stationary distribution fi(·) must also be symmetric around z = 0. If not, define fĩ(C) ,
fi ({≠z : z œ C}) , for any measurable set C µ R. Since the dynamics (9) are symmetric around
z = 0 by Assumption 2, fĩ(·) must also be an invariant distribution, contradicting uniqueness. ⌅

Proof of Theorem 1. The invariant distribution fi(·) must satisfy

Efi[Af(z)] =
⁄ +Œ

≠Œ
Af(z) fi(dz) = 0, (16)
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for all test functions f : R æ R. We will guess that fi(·) decomposes according to three di�erent
densities over the three regions, and compute the conditional density on each segment via Laplace
transforms using (16).

Define, for – œ R, the test function

f+(z) =

Y
]

[
e≠–(z≠“) if z > +“,

1 ≠ –(z ≠ “) otherwise.

Then, from (16),

0 = Efi[Af+(z)]

= ‡2–2

2 Efi

Ë
e≠–(z≠“)I{z>+“}

È
+ ⁄Efi

Ë1
1 ≠ e≠–(z≠“)

2
I{z>+“}

È
+ ⁄–Efi

Ë
(z + “) I{z<≠“}

È

= ‡2–2

2 Efi

Ë
e≠–(z≠“)I{z>+“}

È
+ ⁄Efi

Ë1
1 ≠ e≠–(z≠“)

2
I{z>+“}

È
≠ ⁄–Efi

Ë
(z ≠ “) I{z>+“}

È
,

where for the last step we use symmetry. Dividing by ⁄fi+ and conditioning,

0 =
A

–2“2

÷2 ≠ 1
B

Efi

Ë
e≠–(z≠“)

--- z > +“
È

+ 1 ≠ –Efi [z ≠ “ | z > +“] .

Then,

Efi

Ë
e≠–(z≠“)

--- z > +“
È

= –Efi [z ≠ “ | z > +“] ≠ 1
–2“2/÷2 ≠ 1

The denominator of this Laplace transform has two real roots, ±÷/“. We can exclude the positive
root since fi(·) is a probability distribution. Then, conditioned on z > +“, z≠“ must be exponential
with parameter ÷/“ =

Ô
2⁄/‡. This establishes that fi(·) is exponential conditioned on z > +“,

and by symmetry, also conditioned on z < ≠“. Note that

Efi [z ≠ “ | z > +“] = “/÷. (17)

Next, consider the test function

f0(z) =

Y
____]

____[

e≠–“ ≠ –e≠–“(z ≠ “) if z > +“,

e≠–z if z œ [≠“, +“],

e–“ ≠ –e–“(z + “) if z < ≠“.

20



Then, from (16),

0 = Efi[Af0(z)]

= ‡2–2

2 Efi

Ë
e≠–zI{zœ[≠“,+“]}

È
+ ⁄–e≠–“Efi

Ë
(z ≠ “)I{z>+“}

È
+ ⁄–e–“Efi

Ë
(z + “) I{z<≠“}

È

= ‡2–2

2 Efi

Ë
e≠–zI{zœ[≠“,+“]}

È
+ ⁄–

1
e≠–“ ≠ e+–“

2
Efi

Ë
(z ≠ “)I{z>+“}

È
,

where for the last step we use symmetry. Dividing by ⁄fi0, conditioning, and using (17),

0 = –2“2

÷2 Efi

#
e≠–z

-- z œ [≠“, +“]
$

+ –“
e≠–“ ≠ e+–“

÷

fi+
fi0

.

Rearranging,

Efi

#
e≠–z

-- z œ [≠“, +“]
$

= ÷

“

e+–“ ≠ e≠–“

–

fi+
fi0

.

Inverting this Laplace transform, conditioned on z œ [≠“, +“], fi(·) is the uniform distribution.
Moreover, we must have

1 = lim
–æ0

Efi

#
e≠–z

-- z œ [≠1, +1]
$

= 2÷fi+/fi0,

so that fi0/fi+ = 2÷. Combining with the fact that fi0 + 2fi+ = 1, the result follows. ⌅

C. Non-Symmetric Analysis

In this section, we consider dropping Assumption 2. The central implication of Assumption 2 is
that the log-price process zt is a driftless Brownian motion. In the absence of Assumption 2, zt is
a Brownian motion with drift, and a separate analysis is required for the stationary distribution.
This is analogous to the two cases for stationary distribution of reflected Brownian motion [e.g.,
Prop. 6.6, Harrison, 2013]. In this section, we will establish the stationary distribution in the non-
symmetric case with drift. Once this result is established, the balance of the results in the paper
can be derived as in the symmetric case.

In what follows, we will assume that the drift of the mispricing process with dynamics (7)–(9)
is non-zero, i.e.,

� , µ ≠ 1
2‡2 ”= 0.

Here, the generator takes the form

Af(z) = �f Õ(z) + 1
2‡2f ÕÕ(z) + ⁄ [f(+“+) ≠ f(z)] I{z>+“+} + ⁄ [f(≠“≠) ≠ f(z)] I{z<≠“≠},

Theorem 5. The process zt is an ergodic process on R, with unique invariant distribution fi(·) given
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by the density

pfi(z) =

Y
____]

____[

fi+ ◊ pexp
’+

(z ≠ “+) if z > +“+,

fi0 ◊ ’0e
≠’0x

e
+’0“≠ ≠e

≠’0“+ if z œ [≠“≠, +“+],

fi≠ ◊ pexp
’≠

(≠“≠ ≠ z) if z < ≠“≠,

for z œ R. Here, the parameters are given by

’+ ,
Ô

�2 + 2⁄‡2 ≠ �
‡2 > 0, ’0 , 2�

‡2 , ’≠ ,
Ô

�2 + 2⁄‡2 + �
‡2 > 0.

The probabilities fi≠, fi0, fi+ of the three segments are given by

fi0 ,
;

1 + ’0

5 1
’+

· 1
1 ≠ e≠’0(“++“≠) + 1

’≠
·
3 1

1 ≠ e≠’0(“++“≠) ≠ 1
46<≠1

,

fi+ ,
I

1 + ’+ · ‡2

2� + ’+

A
1

’≠
≠ ‡2

2�

B

e≠’0(“++“≠)
J≠1

,

fi≠ ,
I

1 + ’≠

C
1

’+
+ ‡2

2�
Ó

1 ≠ e≠’0(“++“≠)
ÔD

e’0(“++“≠)+“≠)
J≠1

.

Finally, p’(x) , ’e≠’x
is the density of an exponential distribution over x Ø 0 with parameter ’.

Proof. The proof follows that of Theorem 1.
Upper test function:

f+(z) =

Y
]

[
e≠–(z≠“+) if z > “+,

1 ≠ –(z ≠ “+) otherwise.

0 = Efi[Af+(z)]

= –
1

1
2‡2– ≠ �

2
Efi

Ë
e≠–(z≠“+)I{z>“+}

È
≠ �– (fi0 + fi≠)

+ ⁄Efi

Ë1
1 ≠ e≠–(z≠“+)

2
I{z>“+}

È
+ ⁄–Efi

Ë
(z ≠ “≠) I{z<“≠}

È

Dividing by fi+ and conditioning,

0 = –
1

1
2‡2– ≠ �

2
Efi

Ë
e≠–(z≠“+)

--- z > “+
È

≠ �–
fi0 + fi≠

fi+

+ ⁄Efi

Ë1
1 ≠ e≠–(z≠“+)

2--- z > “+
È

+ ⁄–Efi [z ≠ “≠| z < “≠] fi≠
fi+

=
Ó

–
1

1
2‡2– ≠ �

2
≠ ⁄

Ô
Efi

Ë
e≠–(z≠“+)

--- z > “+
È

≠ �–
fi0 + fi≠

fi+

+ ⁄ + ⁄–Efi [z ≠ “≠| z < “≠] fi≠
fi+

Rearranging,

Efi

Ë
e≠–(z≠“+)

--- z > “+
È

=
�–fi0+fi≠

fi+
≠ ⁄ + ⁄–Efi [“≠ ≠ z| z < “≠] fi≠

fi+
1
2‡2–2 ≠ �– ≠ ⁄
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The denominator has two real roots, only one of which is negative. Then, the conditional distribu-
tion of z ≠ “+ must be exponential, with parameter

’+ = 1
‡2

1
�2 + 2⁄‡2 ≠ �

2
> 0.

Additionally, note that
Efi [z ≠ “+| z > “+] = 1

’+
. (18)

Lower test function:

f≠(z) =

Y
]

[
e≠–(“≠≠z) if z < “≠,

1 + –(z ≠ “≠) otherwise.

By analogous arguments to the above, we have that

Efi

Ë
e≠–(“≠≠z)

--- z < “≠
È

=
≠�–fi0+fi+

fi≠
≠ ⁄ + ⁄–Efi [z ≠ “+| z > “+] fi+

fi≠
1
2‡2–2 + �– ≠ ⁄

,

and therefore, the distribution of “≠ ≠ z, conditioned on z < “≠, is exponential with parameter

’≠ = 1
‡2

1
�2 + 2⁄‡2 + �

2
> 0.

Similarly, note that
Efi [“≠ ≠ z| z < “≠] = 1

’≠
. (19)

Middle test function:

f0(z) =

Y
____]

____[

e≠–“+ ≠ –e≠–“+(z ≠ “+) if z > “+,

e≠–z if z œ [“≠, “+],

e≠–“≠ ≠ –e≠–“≠(z ≠ “≠) if z < “≠.

0 = Efi[Af0(z)]

= –
1

1
2‡2– ≠ �

2
Efi

Ë
e≠–zI{zœ[“≠,“+]}

È

≠ �–
!
e≠–“+fi+ + e≠–“≠fi≠

"

+ ⁄–e≠–“+Efi

Ë
(z ≠ “+)I{z>“+}

È
+ ⁄–e≠–“≠Efi

Ë
(z ≠ “≠) I{z<“≠}

È
.

Dividing by fi0 and conditioning,

0 = –
1

1
2‡2– ≠ �

2
Efi

#
e≠–z

-- z œ [“≠, “+]
$

≠ �–
3

e≠–“+ fi+
fi0

+ e≠–“≠ fi≠
fi0

4

+ ⁄–
3

e≠–“+Efi [z ≠ “+| z > “+] fi+
fi0

≠ e≠–“≠Efi [“≠ ≠ z| z < “≠] fi≠
fi0

4
.
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Rearranging, and using (18) and (19),

Efi

#
e≠–z

-- z œ [“≠, “+]
$

=
�

1
e≠–“+ fi+

fi0
+ e≠–“≠ fi≠

fi0

2
≠ ⁄

1
e≠–“+Efi [z ≠ “+| z > “+] fi+

fi0
≠ e≠–“≠Efi [“≠ ≠ z| z < “≠] fi≠

fi0

2

1
2‡2– ≠ �

=
e≠–“+

1
� ≠ ⁄

’+

2
fi+
fi0

+ e≠–“≠
1
� + ⁄

’≠

2
fi≠
fi0

1
2‡2– ≠ �

=
≠’+ · fi+

fi0
e≠–“+ + ’≠ · fi≠

fi0
e≠–“≠

– ≠ ’0

Inverting this Laplace transform, conditioned on z œ [“≠, “+], fi(·) is the superposition of two
appropriately-centered truncated exponential distributions. Moreover, we must have

1 = lim
–æ0

Efi

#
e≠–z

-- z œ [“≠, “+]
$

=
’+ · fi+

fi0
≠ ’≠ · fi≠

fi0

’0
,

and additionally, since the Laplace transform corresponds to the conditional density for z œ [“≠, “+],
the density

’+ · fi+
fi0

[exp (’0(z ≠ “≠)) u(z ≠ “≠) ≠ exp (’0(z ≠ “+)) u(z ≠ “+)]

≠’0 exp (’0(z ≠ “≠)) u(z ≠ “≠)

must be zero for z > “+, yielding the equation (only if µ ”= ‡2/2)

’+ · fi+
fi0

= (’0)
M

(1 ≠ exp (≠’0(“+ ≠ “≠))) .

Finally, solving the linear system of equations, combining with the fact that fi0 + fi+ + fi≠ = 1,
yields the result (only if µ ”= ‡2/2)

fi0 = 1
M ;

1 + ’0 ·
5 1

’+
· 1

1 ≠ exp (≠’0(“+ ≠ “≠)) + 1
’≠

·
3 1

1 ≠ exp (≠’0(“+ ≠ “≠)) ≠ 1
46<

fi+ = 1
M I

1 + ’+ · ‡2

2� + ’+

A
1

’≠
≠ ‡2

2�

B

exp (≠’0(“+ ≠ “≠))
J

fi≠ = 1
M I

1 + ’≠

C
1

’+
+ ‡2

2� {1 ≠ exp (≠’0(“+ ≠ “≠))}
D

exp (’0(“+ ≠ “≠) ≠ “≠))
J

.

⌅
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D. Proof of Corollary 2

Proof of Corollary 2. For this pool, we have that

V (P ) = 2L
Ô

P , xú(P ) = L/
Ô

P , yú(P ) = L
Ô

P .

Following from Theorem 2,

ARB
V (P ) = ⁄Efi

5
A+(P, z) + A≠(P, z)

V (P )

6
. (20)

Note that, in this case,

A+(P, z)
V (P ) = 1

2L
Ô

P

Ë
P

Ó
xú

1
Pe≠z

2
≠ xú !

Pe≠“
"Ô

+ e+“
Ó

yú
1
Pe≠z

2
≠ yú !

Pe≠“
"ÔÈ

I{z>+“}

= 1
2

ËÓ
e+z/2 ≠ e+“/2

Ô
+ e+“

Ó
e≠z/2 ≠ e≠“/2

ÔÈ
I{z>+“}

= 1
2e+“/2

Ë
e+(z≠“)/2 ≠ 2 + e≠(z≠“)/2

È
I{z>+“}.

Taking a conditional expectation over z > +“,

Efi

5
A+(P, z)

V (P )

---- z > +“
6

=

Y
]

[

1
2e+“/2

Ë
÷/“

÷/“≠1/2 ≠ 2 + ÷/“

÷/“+1/2

È
if 1/2 < ÷/“,

+Œ otherwise,

=

Y
_]

_[

1
2e+“/2

5 Ô
2⁄/‡Ô

2⁄/‡≠1/2 ≠ 2 +
Ô

2⁄/‡Ô
2⁄/‡+1/2

6
if ‡/

Ô
2⁄ < 2,

+Œ otherwise,

=

Y
]

[

e
+“/2

8⁄/‡2≠1 if ‡2/8 < ⁄,

+Œ otherwise.

For the remainder of the proof, assume that ‡2/8 < ⁄. Taking an unconditional expectation and
multiplying by ⁄,

⁄Efi

5
A+(P, z)

V (P )

6
= fi+ ◊ ⁄Efi

5
A+(P, z)

V (P )

---- z > +“
6

= ‡2

8 ◊ Ptrade ◊ e+“/2

2
1
1 ≠ ‡2/(8⁄)

2 .

Combining with the symmetric case for A≠(P, z)/V (P ), and applying (20), the result follows. ⌅
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E. Proof of Theorems 3 and 4

Proof of Theorem 3. Fix P > 0. Note that, from the definitions of A+(P, ·) and A≠(P, ·), it is
easy to see that

Ā(P, 0) = 0, Ā(P, x) Ø 0, ’ x Ø 0, (21)

ˆxĀ(P, 0) = 0, ˆxĀ(P, x) Ø 0, ’ x Ø 0, (22)

ˆxxĀ(P, 0) = P
yúÕ (Pe≠“) + yúÕ !

Pe+“
"

2 . (23)

Define the Laplace transform

F (s) =
⁄ Œ

0
Ā(P, x)e≠sx dx, (24)

for s œ R. Observe that, from Theorem 2,

ARB = ⁄Ptrade

Ô
2⁄

‡
F

AÔ
2⁄

‡

B

. (25)

Applying the derivative formula for Laplace transforms (integration-by-parts) twice to (24), and
using (21)–(22),

sF (s) = Ā(P, 0)
¸ ˚˙ ˝

=0

+
⁄ Œ

0
e≠sxˆxĀ(P, x) dx,

s2F (s) = ˆxĀ(P, 0)
¸ ˚˙ ˝

=0

+
⁄ Œ

0
e≠sxˆxxĀ(P, x) dx.

Observe that s2F (s) is the Laplace transform of the function ˆxxĀ(P, ·). Then, applying the initial
value theorem for Laplace transforms7 and (23),

lim
sæŒ

s ◊ s2F (s) = lim
xæ0

ˆxxĀ(P, x) = P
yúÕ (Pe≠“) + yúÕ !

Pe+“
"

2 .

Comparing with (25),

P
yúÕ (Pe≠“) + yúÕ !

Pe+“
"

2 = lim
⁄æŒ

AÔ
2⁄

‡

B3
F

AÔ
2⁄

‡

B

= lim
⁄æŒ

ARB
‡2/2 ◊ Ptrade

.

The result follows. ⌅

Proof of Theorem 4. Fix P > 0. Note that, from the definitions of F+(P, ·) and F≠(P, ·), it is
7
This, in turn, relies on the dominated convergence theorem, with the dominating function provided by (11).
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easy to see that

F̄ (P, 0) = 0, F̄ (P, x) Ø 0, ’ x Ø 0, (26)

ˆxF̄ (P, 0) = P
(1 ≠ e≠“)yúÕ (Pe≠“) + (e+“ ≠ 1)yúÕ !

Pe+“
"

2 , ˆxF̄ (P, x) Ø 0, ’ x Ø 0. (27)

Define the Laplace transform

G(s) =
⁄ Œ

0
F̄ (P, x)e≠sx dx, (28)

for s œ R. Observe that,

FEE = ⁄Ptrade

Ô
2⁄

‡
G

AÔ
2⁄

‡

B

. (29)

Applying the derivative formula for Laplace transforms (integration-by-parts) to (28), and using
(26),

sG(s) = F̄ (P, 0)
¸ ˚˙ ˝

=0

+
⁄ Œ

0
e≠sxˆxF̄ (P, x) dx,

Observe that sG(s) is the Laplace transform of the function ˆxF̄ (P, ·). Then, applying the initial
value theorem for Laplace transforms8 and (27), we get that

lim
sæŒ

s2G(s) = lim
xæ0

ˆxF̄ (P, x) = P
(1 ≠ e≠“)yúÕ (Pe≠“) + (e+“ ≠ 1)yúÕ !

Pe+“
"

2 .

Comparing with (29),

P
(1 ≠ e≠“)yúÕ (Pe≠“) + (e+“ ≠ 1)yúÕ !

Pe+“
"

2“
= 1

“
lim

⁄æŒ

AÔ
2⁄

‡

B2
G

AÔ
2⁄

‡

B

= lim
⁄æŒ

FEE
‡2/2 ◊ (1 ≠ Ptrade)

.

The result follows. ⌅

8
This, in turn, relies on the dominated convergence theorem, with the dominating function provided by (13).
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