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Abstract

Cutting planes are crucial in solving mixed integer linear programs (MILP) as they
facilitate bound improvements on the optimal solution. Modern MILP solvers rely
on a variety of separators to generate a diverse set of cutting planes by invoking
the separators frequently during the solving process. This work identifies that
MILP solvers can be drastically accelerated by appropriately selecting separators
to activate. As the combinatorial separator selection space imposes challenges for
machine learning, we learn to separate by proposing a novel data-driven strategy
to restrict the selection space and a learning-guided algorithm on the restricted
space. Our method predicts instance-aware separator configurations which can
dynamically adapt during the solve, effectively accelerating the open source MILP
solver SCIP by improving the relative solve time up to 72% and 37% on synthetic
and real-world MILP benchmarks. Our work complements recent work on learning
to select cutting planes and highlights the importance of separator management.

1 Introduction

Mixed Integer Linear Programs (MILP) have been widely used in logistics [Demirel et al., [2016],
management [Cheng et al.||2003], and production planning [Floudas and Lin, [2005[]. Modern MILP
solvers typically employ a Branch-and-Cut (B&C) framework that utilizes a Branch-and-Bound
(B&B) tree search procedure to partition the search space. As illustrated in Fig. [I, cutting plane
algorithms are applied within each node of the B&B tree, tightening the Linear Programming (LP)
relaxation of the node and improving the lower bound.

This paper presents a machine learning approach to accelerate MILP solvers. Modern MILP solvers
implement various cutting plane algorithms, also referred to as separators, to generate cutting planes
that tighten the LP solutions. Different separators have varying performance and execution times
depending on the specific MILP instance. Typical solvers use simple heuristics to select separators,
which can limit the ability to exploit commonalities across problem instances. While there is a
growing body of work considering the ‘branch’ and ‘cut’ aspects of B&C |Gasse et al.|[2019], |Labassi
et al.|[2022], Tang et al. [2020], Paulus et al.| [2022], profiling the open-source academic MILP
solver SCIP [Bestuzheva et al.;2021], we find generating cutting planes through separators is a major
contributor to the total solve time, and deactivating unused separators leads to faster solves and fewer
B&B tree nodes. That is, a well-configured separator setup allows the selected cutting planes to more
effectively tighten the LP solution, leading to fewer nodes in the B&B tree.

To our knowledge, the problem of how to leverage machine learning for this critical task of separator
configuration, namely the selection of separators to activate and deactivate during the MILP solving
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Figure 1: Separator Configuration in Branch-and-Cut (B&C). Modern MILP solvers perform
Branch-and-Bound (B&B) tree search to solve MILPs. At each node of the B&B tree, cuts are added
to tighten the Linear Programming (LP) relaxation of the MILP. To generate these cuts, a set of
separators (e.g. Gomory) are invoked to first generate cuts into the cutpool C*. A subset of these cuts
Pk C CF are then selected and added to the LP. The process is repeated for several separation rounds
at each node. While previous works study cut selection from a pre-determined cutpool, this work
focuses on the upstream task of separator configuration to generate a high quality cutpool efficiently.

process has not been considered. Therefore, the goal of this paper is to explore the extent to which
tailoring the separator configuration to the MILP instance in a data-driven manner can accelerate MILP
solvers. The central challenge comes from the high dimensionality of the configuration search space
(induced by the large number of separators and configuration steps), which we address by introducing
a data-driven search space restriction strategy that balances model fitting and generalization. We
further propose a learning-guided algorithm, which is cast into the framework of neural contextual
bandit, as an effective means of optimizing configurations within the reduced search space.

Our contributions can be summarized as

* We identify separator management as a crucial component in B&C, and introduce the
Separator Configuration task for selecting separators to accelerate solving MILPs.

* To overcome the high dimensionality of the configuration task, we propose a data-driven
strategy, directly informed by theoretical analysis, to restrict the search space. We further
design a learning method to tailor instance-aware configurations within the restricted space.

* Extensive computational experiments demonstrate that our method achieves significant
speedup over the competitive MILP solver SCIP on a variety of benchmark MILP datasets
and objectives. Our method further accelerates the state-of-the-art MILP solver Gurobi and
uncovers known facts from literature regarding separator efficacy for different MILP classes.

2 Related Work

The utilization of machine learning in MILP solvers has recently gained considerable attention.
Various components in the B&B algorithm have been explored, including node selection [He et al.|
2014, Song et al.,[2018| |Labassi et al.,[2022], variable selection [Gasse et al., 2019, |Gupta et al., 2020}
Zarpellon et al.|[2021]], branching rule [Khalil et al.| 2016, Gupta et al.,|2020| |Zarpellon et al., 2021}
Scavuzzo et al., 2022], scheduling primal heuristics [Khalil et al., 2017, Hendel et al., 2019, /Chmiela
et al.,[2021]], and deciding whether to apply Dantzig-Wolfe decomposition [Kruber et al.,[2017]].

Our work is closely related to cutting plane selection, which can be achieved through heuristics [Wes-
selmann and Stuhl; 2012, /Amaldi et al.,|2014] or machine learning [Tang et al., {2020, |Paulus et al.}
2022]. The key difference, as shown in Figure[T in Sec.[d] is that these works focus on selecting
cutting planes from a pre-given cutpool generated by the available separators. That is, they consider
the ‘how to cut’ question, whereas we focus on the equally crucial, but much less explored ‘when
(and what separators should we use) to cut’ question |Contardo et al.|[2023], Dey and Molinaro [2018]],
Berthold et al.|[2022]. For example, |[Wesselmann and Stuhl [2012] state that they do not use any
additional scheme to deactivate specific separators. In contrast, our work configures separators to
generate a high-quality cutpool.

Another closely related line of work is on algorithm selection and parameter configurations Xu et al.
[2010,2011], Balcan et al. [2021a,b], Hutter et al.[[2009,2011]. The most relevant works [Xu et al.



[2011]], Balcan et al.|[2021b]] consider portfolio-based algorithm selection by first choosing a subset
of algorithm parameter settings, and then selecting a parameter setting for each problem instance
from the portfolio. We specialize and extend the general framework to separator configuration,
by proposing a novel data-driven subspace restriction strategy, followed by a learning method, to
configure separators for multiple separation rounds. We further present a theoretical analysis that
directly informs our subspace restriction strategy, whereas the generalization guarantees from the
prior work Balcan et al.|[2021b] is not informative for designing the portfolio-construction procedure.

It is common to restrict combinatorial space to improve the quality of solutions in discrete optimization.
Previous research focuses primarily on decomposing large-scale problems, including heuristic works
on Bender decomposition Rahmaniani et al.|[2017]] and column generation Barnhart et al.|[[1998], and
recent learning-based works [Song et al.,|2020} |Li et al., 2021] that train networks to select among a
set of random or heuristic decomposition strategies. Our data-driven action space restriction strategy
is general and could be of interest for a broader set of combinatorial optimization tasks, as well as
other applications such as recommendation systems.

3 MILP Background

Mixed Integer Linear Programming (MILP). A MILP can be written as * = argmin{cTz :
Ax < b, x; € Z VYj € I}, where € R" is the set of n decision variables, A € R™*" and
b € R™ formulate the set of m constraints, and ¢ € R”™ formulates the linear objective function.
I C {1,...,n} defines the integer variables. z* € R™ denotes the optimal solution to the MILP with
an optimal objective value z*.

Branch-and-Cut. State-of-the-art MILP solvers perform branch-and-cut (B&C) to solve MILPs,
where a branch-and-bound (B&B) procedure is used to recursively partition the search space into a
tree. Within each node of the B&B tree, linear programming (LP) relaxations of the MILP are solved
to obtain lower bounds. B&C further invoke Cutting plane algorithms to tighten the LP relaxation.

Cutting Plane Separation. When the optimal solution z7 p to the LP relaxation is not a feasible
solution to the original MILP, the cutting plane methods aim to find valid linear inequalities Tz < w
(cuts) that separate x} p from the convex hull of all feasible solutions of the MILP. Cutting plane
separation happens in rounds, where each round k consists of the following steps (1) solving the
current LP relaxation, (2) calling different separators to generate a set of cuts and add them to the
cutpool Cg, (3) select a subset of cuts P, C Ci, and update the LP with the selected cuts. Detailed
background information on separators in the B&C framework can be found in Appendix [A.T]

4 Problem Formulation

Different separators are designed to exploit different structures of the solution polytope defined by
the MILP instance. The solution polytope also varies at different separation rounds, as changes to
the constraints (e.g. after a branch) lead to different structures and thus different effective separators.
Moreover, multiple separators can combine to exploit more sophisticated structures. The inherently
combinatorial nature of the problem hence presents a challenge in assigning the appropriate separators
to each MILP instances. This work aims to enhance the MILP solving process via intelligent separator
configuration. We formally introduce the separator configuration task as follows.

Definition 1 (Separator Configuration). Suppose the MILP solver implements M different separator
algorithms. Given a set X of N MILP instances (where |X| = N), and a maximum number of
separation rounds R in a MILP solving process, we want to select a configuration s, ,, € {0, 1} for
each instance x € X and separation round 1 < n < R, where the w'”" entry of s,,, equaling one
means we activate the w'” separator in separation round n, and equaling zero means we deactivate
the w'" separator in the corresponding round.

Figure([T]illustrates the separator configuration task and highlights the difference between our task and
the downstream cutting plane selection task in previous works [Tang et al., [2020 |Paulus et al., 2022].

We measure the success of an algorithm for the separator configuration task by the relative time
improvement from SCIP’s default configuration. Denote a proposed configuration policy as 7 :

X — Hle{(), 1}M where for each MILP instance z € X, we have 7(x) = {81, ..., Sz r} as the



proposed configurations. Let ¢ () be the solve time of instance z using the configuration sequence
m(x) and to(x) be the solve time using the default SCIP configuration (both to optimality or a fixed
gap). We evaluate the effectiveness of 7 by the relative time improvement

A(m) :=Egyex[d(m(x),x)] where 6(m(x),x) := (to(x) — tx(x)) /to(x) )

The search space for the separator configuration task is enormous, with a size of N x 2M > SCIP con-
tains M = 17 separators, and a typical solve run yields R > 30, making the task highly challenging.
In the next section, we discuss our data-driven approach to finding high quality configurations.

S Learning to Separate

Two sources of high dimensionality in the search space come from (1) combinatorial number
|O| = 2M of configurations, where each element of O := {0, 1}* is a combination of separators
(e.g., Gomory, Clique) to activate, and (2) a large number of configuration updates that results in the
|O|® factor. We address the first challenge in Sec. by restricting the number of configuration
options, and the second challenge in Sec. 5.2/ by reducing the frequency of configuration updates. The
resulting restricted search space allows efficient learning in Sec. to find high quality customized
configurations for each MILP instance, which we term as instance-aware configurations.

5.1 Configuration space restriction

For simplicity, we first consider a single configuration update such that we apply the same configu-
ration for all separation rounds, and our goal is to learn an instance-aware configuration predictor

f X — O. Thatis,weset s, 1 = ... = S p = f(x) foreach x € X; Sec.@diseusses extensions
to multiple configuration updates. To address the challenge of learning the predictor in the high
dimensional space O, we constrain the predictor f 4 to select from a subset A C O of configurations
with | A| reasonably small, i.e. f4(2) € A Va € X. We design a data-driven strategy, supported by
theoretical rationale, to identify a subspace A for f 4 to achieve high performance.

Preliminary definitions. Let X’ be a class of MILP instances, and K = {z1,....,2x} C X be
a given training set where we can acquire the time improvement {J(s, z;)}i=1. k;sco. The true
performance of f4 on X is A(f4) = Eeecx[0(fa(x),z)], and the empirical counterpart on K is
A(fa) = + Zfil 8(falz;),z;). We further denote the true instance-agnostic performance of
applying a single configuration s € {0, 1} to all MILP instances as §(s) = Excx[d(s, )], and the

empirical counterpart as §(s) = & Zf; d(s, ;). Appendix |A.2.1 details all relevant definitions.

Restriction algorithm. To find a subspace A that optimizes the true performance A( f 4) for the
predictor f4, we employ the following training performance v.s. generalization decomposition:

A(fa) = A(fa) —(A(fa) — A(fa)) 2
training perf. generalization

The first term measures how well f4 performs on the training set /C, while the second term reflects the
generalization gap of f4 to the entire distribution X'. Notably, a similar trade-off exists in standard
supervised learning |Shalev-Shwartz and Ben-David [2014], where regularizations are used to balance
fitting and generalization by implicitly restricting the hypothesis class. Relatedly, in this problem, we
can balance the two terms by explicitly restricting the output space of the predictor. Intuitively, a
larger subspace A can improve training performance (more configuration options to leverage), but
hurt generalization (more options that could perform poorly on unseen instances). This intuition is
formalized next.

First, since the second term in Eq. (2) is unobserved, the following proposition imposes assumptions
that allow us to restrict the configuration space. A detailed proof can be found in Appendix [A.2.2.

Proposition 1. Assume the predictor f A, when evaluated on the entire distribution X', achieves perfect
generalization (i.e., zero generalization gap) with probability 1 — «; with probability «, the predictor
makes mistake and outputs a configuration s € A uniformly at random. Then, the trainset performance
v.s. generalization decomposition can be written as A(fa) = (1 — «)A(fa) + aﬁ Y eca0(8).

4



As 6(s) is also unobservable, we further rely on its empirical counterpart gt (s) (see Appendix|A.2.2
for a discussion of the reduction) and select the subspace A based on the following objective:

(1= )A(fa) + a3 d(s) 3)

a—
‘A| seEA

The impact of the subspace A on these two terms further depends on the nature of f A5 We assume
that the predictor f 4 uses empirical risk minimization (ERM) and performs optimally on the training
set KC, i.e. fREM () = arg max, , (s, 2) Vo € K, hence bypassing the need to train any predictor
for constructing A. The discussion of the ERM assumption’s validity and the extension to predictors
with training error are provided in Appendix [A.2.4](See Lemma 3 for the extension).

Eq. (3) then sheds light on how to construct a good A under the ERM assumption: an ideal subset A
allows fE¥BM to have (1) high training performance A(f5EM), obtained when some configuration
in A achieves good performance for any MILP instance in a training set, and (2) low generalization
gap, achieved when each configuration in A has good performance across MILP instances in a
test set, which we approximate with the average instance-agnostic performance on the training set

TAT 2_sea 0(s). In fact, a larger or more diverse subspace A results in better A(FERM), as the
ERM predictor can leverage more configuration options to improve the training set performance.
Meanwhile, it may also lower ﬁ Y osca 5(s) which harms generalization, as we may include some

configurations that perform poorly on most MILP instances but well on a small subset. The following

proposition (proven in Appendix |A.2.3) formalizes the diminishing marginal returns of f#M s

training performance with respect to A, which enables an efficient algorithm to construct A:
Proposition 2. The empirical performance of the ERM predictor A(fFEM) is monotone submodular,
and a greedy strategy where we include the configuration that achieves the greatest marginal improve-

ment arg max,¢ (o 11\ 4 A( f&%) — A(fFBM) at each iteration is a (1 — 1/e)-approximation

algorithm for constructing the subspace A that optimizes A (f57M).

To balance the two terms in Eq. (3), we couple the greedy selection strategy with a filtering criterion
that eliminates configurations with poor instance-agnostic performance to construct the subspace A.
Due to the high computational cost of calculating the marginal improvement for all 2 configurations,
we first sample a large set S of configurations, which we use to construct the subspace A. Then, at
each iteration, we expand the current set A with the configuration that produces the best marginal
improvement in training performance, but only considering configurations s € S whose empirical

instance-agnostic performance is greater than a threshold, i.e. d(s) > b. The extra filtering procedure
enables us to improve the second term with small concessions in the first term. We continue the
process while monitoring the two opposing terms, and terminate with a reasonably small A that
balances the trade-off. The detailed algorithm and discussions of the filtering and termination
procedure are provided in Appendix

5.2 Configuration update restriction

Learning to update configurations at each separation round is challenging due to cascading errors from
a large number of updates. Instead, we periodically update the configuration at a few intermediate
rounds and hold it fixed between updates: we perform k& < R updates at rounds {n; }9?:1 with
1 < nj; <R, and set Szn; = o = Sznyyi—1 foreachl < j < kandx € X. Fig.E(Left) in
Appendix |A.4] shows an example of the configuration update restriction with k& = 2 and R = 6,
where we also discuss the trade-off of k in approximation v.s. estimation. We empirically find a small
number of updates can already yield a decent time improvement (we set & = 2 in Experiment Sec. [6)).

We use a forward training algorithm Ross and Bagnell [2010] to learn the configuration policy
7k x — Hf:l{o, 1}M. The algorithm decomposes the sequential task into k single configuration
update tasks 7(¥) = {fim}k _  where each fJ, : X — {0,1}M is a separate network for the
j-th configuration update. As illustrated in Fig[7 (Right) of Appendix at each iteration, we
fix the weights of the trained networks for earlier updates { f;’qﬁ }f;:ll, and train the network fg for

the j*" update. The detailed algorithm is provided in Alg. |Z of Appendix We incorporate the
configuration space restriction in Sec. by constraining each network f; to select configurations
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Figure 2: (a) Our triplet graph encoding of the MILP instance (the context) and the separator
configuration (the arm / action). (b) Our neural architecture fy. It involves three graph convolutions,
an attention block for the separator nodes, and global poolings to extract the final score for reward
prediction. We show the dimensionality of a tensor in gray if it is different from the previous size.

from a subset A C O, such that fg () € Aforall x € X. This reduces the search space from
N x 2M*E o N x |A| x k, significantly easing the learning process. Notably, we construct the
subspace A once at the initial update for computational efficiency benefits, as it yields comparable

performances to constructing a new subspace for each update. Further details and discussions can be
found in Appendix|A.7.2

5.3 Neural UCB algorithm

Given the restricted configuration space A, we frame each configuration update as a contextual bandit
problem with A arms (configurations). Conditional on the context (a MILP instance « € X'), each
arm s € A has a reward (time improvement (s, x)). We employ the neural UCB algorithm |Zhou

et al. [2020] to efficiently train a network f7,(x,s) : X x A — R to estimate the reward, where the
confidence bound estimation is enabled by the small size of A. We provide the complete training
procedure in Alg. [3 of Appendix[A.5] At each training epoch ¢, we randomly sample P instances
from X. For each instance, we sample D configurations based on the upper confidence bound

ucb(z, s), which combines a reward point estimate fgt,l (z,s) and a confidence bound estimate.

The confidence bound estimate incorporates the gradient Vg fgt,l (z, s) and a normalizing matrix
Z;—1 only feasible to obtain when the number of arms is small. We run the MILP solver on each
of the P x D pairs of instance-configuration and observe the reward labels. Lastly, we add all

instance-configuration-reward tuples {x, s, 7} px p to the data buffer and retrain the network fg At
test time, we select the configuration with the highest predicted reward s}, ; = argmax,¢ 4 for(x,5)

or the highest UCB score s}, ; = arg max,¢ 4 uch(z, s), based on validation performance, at each
update step n;. We provide further details on the inference strategy in Appendix|A.6.1.

Context encoding. We encode the context for each MILP instance x and separator configuration s
as a triplet graph with three types of nodes in the graph: variable nodes V, constraint nodes C, and
separator nodes S. The variable and constraint nodes (V, C) appear in the previous works Gasse et al.
[2019], [Paulus et al. [2022]. We follow Paulus et al. [2022] to use the same input features for V and
C, and construct edges between them such that a variable node V; is connected to a constraint node
C, if the variable appears in the constraint with the weight corresponds to the coefficient A;; # 0.
The separator nodes S are unique to our problem. We represent each configuration s by M separator
nodes; each node Sy has M + 1 dimensional input features, representing whether the separator
is activated (the first dimension), and which separator it is (one-hot M -dimensional vector). We
connect each separator node with all variable and constraint nodes, all with a weight of 1 for complete
pairwise message passing. We provide detailed descriptions of the input features in Appendix [A.5]

Neural architecture fy. We extend the architecture in [Paulus et al.|[2022] for our network fy(x, ) :
X x 8§ — R. The architecture, as illustrated in Fig. [2, involves a Graph Convolutional Network
(GCN) Kipf and Welling [2017], an attention block on the hidden embeddings of the separator
nodes |Shi et al.| [2021], and a global pooling to output a single score for reward prediction. It
first embeds C, V, and S input features into hidden representations, and performs message passing
following the directions of V—+C—V, S—V—S, and S—C—S. Then, the S nodes pass through an
attention module to emphasize the task of the separator configuration. Lastly, since we require the



Table 1: Tang et al. and Ecole. Absolute solve time of SCIP default, and the median (higher the
better) and standard deviation (in parentheses) of relative time improvement of different methods.

Tang Ecole

Method Bin. Pack. Max. Cut Pack. Comb. Auc. Indep. Set Fac. Loc.

Default Ti 0.076s 1.77s 8.82s 2.73s 8.21s 61.1s
cfaultTime (s)  11315)  (0.56s)  (25.465) (4.433) (114.15s)  (55.37s)

Default 0% 0% 0% 0% 0% 0%

Houristi Rand 234%  -1084%  -91% -48.6% 5% -33.3%
Ba";‘gf&; andom (153.8%) (1682%) (127.8%)  (159.0%)  (161.4%) (157.2%)
P 13.9% 2.7% 6.6% 12.3% 18.0% 24.7%

rune (27.0%)  (262%)  (45.0%) (24.2%) (242%)  (47.9%)

o Inst. Agnostic 33.7% 69.8% 20.1% 60.1% 57.8% 11.5%
Heu‘rlirssﬁc Configuration  (36.6%)  (10.5%)  (38.0%) (27.6%) (29.5%)  (21.8%)
Variants  Random within  26.9% 68.0% 18.8% 58.1% 57.4% 17.7%
Restr. Subspace  (33.6%)  (11.0%)  (38.7%) (28.7%) (75.8%)  (33.0%)

Ours L2s 42.3% 71.9% 28.5% 66.2% 72.4% 29.4%
Learned cp (G42%) (113%) (393%)  (262%)  (27.8%) (39.6%)

model to output a single score (in contrary to Paulus et al.| [2022] which outputs a score for each
cut node), we perform a global mean pooling on each of the C, V, and S hidden embeddings to
obtain three embedding vectors, concatenate them into a single vector, and finally use a multilayer
perceptron (MLP) to map the vector into a scalar.

Clipped Reward Label. To account for variations in MILP solve time, we perform [ MILP solver runs
for each configuration-instance pair (s, ) and take the average time improvement as the unclipped
reward label. Additionally, if a certain configuration s takes significantly longer solve time than SCIP
default on a MILP instance z, we terminate the MILP solver run when the relative time improvement
is less than a predefined threshold rp;, < 0 to expedite data collection, and assign a clipped reward
label of r!P(s,2) = (32,_, ; max{6 (s, z), 7min})/l. Reward clipping also simplifies learning by
obviating the need to accurately fit the exact value of extreme negative improvements, which may
skew the network’s prediction. As long as the prediction’s sign is right, we will not select such a
configuration with a negative predicted value during testing.

Loss function £. We use a Lo loss between the prediction fo (x, s) and the clipped reward label 7°!iP:

L(fo(w,5),7) = (folx,s) —r'P)? ©)

6 Experiments and Analysis

We divide the experiment section into two main parts. First, we evaluate our method on standard
MILP benchmarks from [Tang et al. [2020] and Ecole |Prouvost et al.|[2020], where the number of
variables and constraints range from 60 to 10, 000. We conduct detailed ablation studies to validate
the design choices made for our method. Second, we examine the efficacy of our method by applying
it to large-scale real-world MILP benchmarks, including the MIPLIB |Gleixner et al.|[2021], NN
Verification Nair et al. [2020], and Load Balancing in the ML4CO challenges |Gasse et al.|[2022],
where the number of variables and constraints reaches up to 65, 000. We omit certain MILP classes
from the benchmarks with excessively short solve times, few generated cutting planes, or small
dataset sizes. Appendix |A.6.5 provides a detailed description of the datasets.

6.1 Setup

Evaluation Metric. As we aim to accelerate SCIP solving through separator configuration, we
evaluate our learned configuration by the relative time improvement from SCIP default, defined in
Eq. (I), when both are solved to optimality (for standard instances) or a fixed gap (for large-scale
instances) as described in Appendix We report the median and standard deviation across all
test instances, and defer mean and interquartile mean to Appendix as they yield similar results.



Table 2: Detailed ablations of different components in our L2Sep algorithm. Learning with neural
UCB in the restricted config. space and performing & = 2 config. updates achieves the best result.

Config. Space Config. Update Neural Ours:
Restriction Restriction Contextual Bandit L2Sep
Ablation No Greed Supervise w/ Restr. +
Method  Rest.  Resw =1 k=3 ? wa)  egreedy ol UcB
Bin. Pack. 18.6% 35.8% 40.4% 44.2% 40.2% 36.3% 42.3%
(1253%) (35.6%) (42.3%) (324%) (19.7%) (32.3%) (34.2%)
Pack. 19.6% 18.4% 23.8% 27.8% 24.0% 25.1% 28.5%
61.1%) (49.8%) (B8.1%) (B8.1%) (44.1%) (44.3%) (39.3%)
Indep. Set 38.6% 68.5% 70.2% 69.7% 68.7% 64.1% 72.4%
23.5%) (28.1%) (38.6%) (29.1%) (33.9%) (48.7%) (27.8%)
Fac. Loc. 15.5% 27.1% 20.1% 29.7% 31.0% 28.1% 29.4%

(121.2%) (38.7%) (37.8%) (29.8%) (41.5%) (23.6%) (39.6%)

ML Setup. We train the networks with ADAM [Kingma and Ba, 2014] under a learning rate of 1073,
The reward label collection is performed via multi-processing with 48 CPU processes. As in previous
works [Tang et al.,[2020, Paulus et al.| 2022, Wang et al.,|2023], we train separate models for each
MILP class. By default, we generate a training set XCg,,,4;; of 100 instances for configuration space
restriction, another training set Cjqrge 0of 800 for predictor network training, a validation set of 100
instances, and a test set of 100 instances for each class Appendix provides full details of the
setup.

Baselines. To our knowledge, our separator configuration task has not been explored in previous
research. We design the following baselines to assess the effectiveness of our proposed methods:
(1) Default, where we run SCIP with the default parameters; (2) Random, where for each MILP
instance x, we randomly sample a configuration s € {0, l}M ; (3) Prune, where we first run SCIP
default on the /Cg,,,411, and then at test time, we deactivate separators whose generated cutting planes
are never applied to any instances in [Cg;pq07-

Proposed Methods. We evaluate the performances of our complete method and its sub-components:
(1) Ours (L2Sep), where we perform k = 2 instance-aware configuration updates per MILP instance
(Sec.[5.2). We use forward training to learn predictors via the neural UCB algorithm (Sec. [5.3) within
the restricted configuration subspace A (Sec.|5.1). (2) Instance Agnostic Configuration, where we

select a single configuration § with the best instance-agnostic performance 6(5) on Kgyy,q from the
initial large subset .S for our space restriction algorithm (|.S| = 2000); 5 is included in A. (3) Random
within Restricted Subspace, where for each MILP instance, we select a random configuration within
A. The latter two sub-components assess the quality of the restricted subspace and the benefit of
learning instance-aware configurations. Further details can be found in Appendix [A.6.T.

6.2 Standard MILP Benchmarks with Detailed Ablations

Performance. Table|1|presents the relative time improvement of different methods over SCIP default,
on the datasets of Tang et al. and Ecole. Our method demonstrates a substantial speed up from
SCIP default across all MILP classes, with a relative time improvement ranging from 25% to 70%.
In contrast, the random baseline performs poorly, demonstrating that separator configuration is a
nontrivial task. Meanwhile, although the pruning baseline generally outperforms SCIP default, its
time improvement is significantly less than ours, confirming the efficacy of our proposed algorithm.
Notably, both of our two heuristic sub-components achieve impressive speed-up from SCIP default,
indicating the high quality of our restricted subspace (and a configuration within) to accelerate SCIP;
additionally, our complete learning method outperforms the sub-components on all MILP classes,
further underscoring the advantages of learning for instance-aware configurations.

We note that the high standard deviation, exhibited in all methods including SCIP default and also
observed in the recent studies |Wang et al.|[2023], is reasonable due to instance heterogeneity, as the
standard deviation is calculated based on the time improvements across instances within each MILP
dataset.



Table 3: Real-world MILPs. Absolute solve time of SCIP default, and the median (higher the better)
and standard deviation (in parentheses) of relative time improvement of different methods.

Heuristic Baselinses Ours Heuristic Variants Ours Learned
Default Inst. Agnostic  Random within

Methods Times (s) Default - Random Prune Configuration  Restr. Subspace L2Sep
25.08s -149.1%  4.8% 5.5% 1.9% 12.9%

MIPLIB 57055 0% (1497%) (107.6%)  (71.5%) (74.9%) (73.1%)
e 31.42s -3000%  31.5% 31.4% 30.7% 37.5%

NN Verification 551400 0% (15030 (36.3%) (38.3%) (G4.1%) (33.9%)
Load Balanci 31.86s 0% 300.1%  21.1% 10.4% 10.0% 21.2%

oad Balancing 7 o7y) © (1295%) (150.8%) (8.5%) (31.5%) (20.3%)

Ablations. In Table[2] we further conduct comprehensive ablation studies to assess the effectiveness
of our learning method. The ablations are performed on four representative MILP classes in Ecole
and Tang, covering a wide range of problem sizes and solve times. Appendix [A.7]provides detailed
descriptions as well as additional ablation results. We aim to answer the following questions: (i)
Does the restricted config. space improve learning performance? (ii) How does the performance vary
with fewer or more updates? (iii) Does the use of neural UCB lead to efficient predictor learning?

(i) Configuration space restriction (Sec. |5_1]) We train our configuration predictors to select within
a restricted subspace A constructed by a greedy strategy coupled with a filtering criterion. To evaluate
the importance of the space restriction in learning high quality predictors, we perform an ablation study
where we train the predictors to select within (1) the unrestricted space O = {0,1} (No Restr.),
and (2) a same-sized subspace A’ constructed solely by the greedy strategy without filtering (Greedy
Restr.). The restricted search space substantially enhances the learned predictors when compared to
No Restr., improving the median performance and lowering the standard deviation. We also observe
the benefit of the filtering criterion when compared to Greedy Restr.. The filtering criterion excludes
configurations with subpar instance-agnostic performance from entering the restricted configuration
space, improving model generalization as demonstrated in our theoretical analysis.

(i) Configuration update restriction (Sec. [5.2). We apply the forward training algorithm (Sec.|5.2)
to perform two configuration updates (k = 2) for each MILP instance. To examine the impact of
fewer or more updates, we conduct an ablation study where we (1) performed a single update at round
n1 = 0 (k = 1), and (2) added an additional third update at a later round ngz (k = 3). The results
show that while a single update yields decent time improvement, adding the second update leads to
further time savings. Meanwhile, we observe little improvement from the third update (k = 3). We
speculate that this is because the performance improvement primarily occurs during the early stages
of a solve, and holding a fixed configuration for longer may be advantageous by making the solve
process more stable. We leave further investigation of more configuration updates as a future work.

(iii) Neural UCB algorithm (Sec. [5.3). Our method employs the online neural UCB algorithm
to improve training efficiency for configuration predictors. We present the ablation (1) where we
train the predictor using an offline regression dataset whose size is four times as ours while training
the model until convergence (Supervise (x4)); we conduct an additional ablation (2) where we
train the predictor using neural contextual bandit with e-greedy exploration strategy (e-greedy). Our
model performs comparably to Supervise (x4) while using significantly fewer data, highlighting
the importance of the contextual bandit for improving training efficiency by collecting increasingly
higher quality datasets online. The ablation results with e-greedy further confirm the benefit of the
confidence bound estimation in neural UCB for more efficient contextual bandit exploration.

6.3 Large-scale Real-world MILP Benchmarks

The real-world datasets of MIPLIB, NN Verification, and Load Balancing present significant chal-
lenges due to the vast number of variables and constraints (on the order of 10%), including nonstandard
constraint types that MILP separators are not designed to handle. MIPLIB imposes a further challenge
of dataset heterogeneity, as it contains a diverse set of instances from various application domains.
Prior research [Turner et al.|[2022] struggles to learn effectively on MIPLIB due to this heterogeneity,
and a recent study |Wang et al.|[2023] attempts to learn cutting plane selection over two homogeneous
subsets (with 20 and 40 instances each). In contrast, we attempt to learn separator configuration



Table 4: Gurobi as the MILP Solver. Absolute solve time of Gurobi default, and the median (higher
the better) and standard deviation (in parentheses) of relative time improvement of different methods.

Heuristic Baselinses Ours Heuristic Variants Ours Learned
Default Inst. Agnostic  Random within

Methods Times (s) Default  Random Configuration  Restr. Subspace L2Sep
0.087s 18.6% 35.1% 37.3% 45.4%

Max. Cut 0515 9% 4o0%)  (35.8%) (48.0%) (38.4%)
Pack 4.048s 0% 15.5% 22.9% 24.3% 30.6%

ack. (3.2169) © (28.2%) (39.4%) (32.2%) (29.6%)
1.687s -10.7% 3.1% 5.1% 12.6%

Comb. Auc. 3596y 0% (60.1%) (65.3%) (84.2%) (63.5%)
Fac. L 27.872s 09 13.4% 40.6% 40.2% 56.7%

ac. Lo (14.733s) 0 (46.0%) (48.1%) (46.8%) (35.7%)

across a larger MIPLIB subset that includes 443 of the 1065 instances in the original set, while
carefully preserving the heterogeneity of the dataset. We provide our subset curation procedure in

Appendix[A.6.5.

Main Results. Table[3|presents the relative time improvement of various methods over SCIP default,
on the large-scale real-world datasets. Again, our complete method displays a substantial speed
up from SCIP default with a relative time improvement ranging from 12% to 37%. Our method
also improves from our heuristic sub-components, further indicating the efficacy of our learning
component on the challenging datasets. In contrast, the random baseline fails to improve from SCIP
default, while the pruning baseline, despite having a reasonable median performance, suffers from
a high standard deviation due to poor performance on many instances (See Appendix for
IQM and mean results). Our results show the effectiveness of our learning method in improving the
efficiency of practical applications that involve large-scale MILP optimization.

Although not a perfect comparison, for reference, we attempt to contextualize our result by examining
the time improvement in the most comparable setting we found, which we provide comparison details
in Appendix[A.8.2} the learning method for cutting plane selection in[Paulus et al.| [2022] achieves a
median relative time improvement of 11.67% on the NN Verification dataset, and that in[Wang et al.
[2023] obtains a 3% and 1% improvement in the solve time on two small homogeneous MIPLIB
subsets. While the comparison is far from perfect, our learning method for separator configuration
achieves much higher time improvements of 37.5% on NN Verification and 12.9% on MIPLIB.

6.4 Interpretation Analysis: L.2Sep Recovers Effective Separators from Literature

Bin Packing: It is known that instances with few bins approximate the Knapsack problem (Clique
cuts are known to be effective Boland et al.|[2012]), and that instances with many bins approximate
Bipartite Matching (Flowcover cuts can be useful [Van Vyve| [2011]). We analyze the separators
activated by L2Sep when we gradually decrease the number of bins, and observe that the prevalence
of selected Clique and Flowcover cuts increased and decreased, respectively. This is illustrated in
Fig[§|in Appendix[A.8.3.

Other MILP Classes: We provide visualizations and interpretations for other MILP classes in
Appendix [A.8.3] Notably, Clique is known to be effective for Indep. SetDey and Molinaro| [2018];
L2Sep recovers this fact by frequently selecting configurations that activate Clique. Meanwhile,
L2Sep discovers the instance heterogeneity of MIPLIB, resulting in a more dispersed distribution of
selected configurations.

6.5 State-of-the-art MILP Solver Gurobi

We apply our method L2Sep with Gurobi, which contains a larger set of 21 separators. As Gurobi is
closed-source, we cannot change configurations after the solving process starts, so we only consider
one stage of separator configuration (k = 1). As seen from Table 4, L2Sep achieves significant
relative time improvements over the Gurobi default, with gains ranging from 12% to 56%. This result
confirms the efficacy of L2Sep as an automatic instance-aware separator configuration method.

10



6.6 Additional Results

In Appendix [A.8.5]and[A.8.4] we further demonstrate (1) Separator Configuration has immediate and
multi-step effects in the B&C Process. For instance, even though L2Sep does not modify branching,
the branching solve time is reduced. (2) L2Sep is effective under an alternative objective, achieving
15%-68% relative gap improvements under fixed time limits.

7 Conclusion

This work identifies the opportunity of managing separators to improve MILP solvers, and further for-
mulates and designs a learning-based method for doing so. We design a data-driven strategy, supported
by theoretical analysis, to restrict the combinatorial space of separator configurations, and overall find
that our learning method is able to improve the relative solve time (over the default solver) from 12%
to 72% across a range of MILP benchmarks. In future work, we plan to apply our algorithm to more
challenging MILP problems, particularly those that cannot be solved to optimality. We also aim to
learn more fine-grained controls by increasing the frequency of separation configuration updates. Our
algorithm is highly versatile, and we plan to investigate its potential to manage aspects of the MILP
solvers, and further integrate with previous works on cutting plane selection. Our code is publicly
available at https://github.com/mit-wu-lab/learning-to-configure-separators. We
believe that our learning framework can be a powerful technique to enhance MILP solvers.
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A.1 MILP and Branch-and-Cut Background

Mixed Integer Linear Programming (MILP). A MILP can be written as
¥ =argmin{cTz: Az <b, z; €Z Vje I} 3)

where z € R" is a set of n decision variables, A € R™*™ and b € R™ formulate a set of m
constraints, and ¢ € R™ formulates the linear objective function. I C {1, ...,n} defines the variables
that are required to be integral. z* € R™ denotes the optimal solution to the MILP with an optimal
objective value z*.

Branch-and-Cut. State-of-the-art MILP solvers perform branch-and-cut (B&C) to solve MILPs,
where a branch-and-bound (B&B) procedure is used to recursively partition the search space into a
tree. Within each node of the B&B tree, linear programming (LP) relaxations of Eq. [5]are solved to
obtain lower bounds to the MILP. Specifically, a LP relaxation of Eq. (5) can be written as

xjp =argmin{cTz: Az < b, z € R"} ©)

where 7 » € R™ denotes the optimal solution to the LP with an optimal objective value 2} , such
that z7 p < 2%,

Cutting Plane Separation. Each node of the B&B tree uses cutting plane algorithms to tighten the
LP relaxation. When z7  in Eq. @) does not satisfy (23 p); € Z Vj € I, it is not a feasible solution
to the original MILP. The cutting plane methods aim to find valid linear inequalities Tz < w (cuts)
that separate 2}  from the convex hull of all feasible solutions of the MILP. Namely, a cut satisfies
vTx7 p > w, and vTx < w for each feasible solution x to the MILP. Adding cuts into the LP tightens
the relaxation, leading to a better lower bound to the MILP.

Cutting plane separation happens in rounds, where each separation round k consists of the following
steps (1) solving the current LP relaxation, (2) if separation conditions are satisfied, calling different
separators to generate a set of cuts and add them to the cutpool Cg, (3) select a subset of cuts P, C Cy,
and update the LP with the selected cuts.

Typical MILP solvers, such as SCIP [Bestuzheva et al., 2021] and Gurobi [Gurobi Optimization|
LLC, 2023, maintain a set of separators such as Gomory [Balas et al. [1996] and Flow cover |Gu et al.
[1999] to generate cuts. Each separator in SCIP has a priority and a frequency attribute, and once
invoked, generates a set of cuts that are added to the cutpool Cy. The frequency decides the depth
level of the B&B tree node in which the separator is invoked (typically the root node and all other
nodes with depth divisible by some constant d). The priority decides the order of the separators to be
invoked; in each separation round, separators are invoked with a descending priority order until a
predefined maximal number of cuts max.,.s are generated. Separators with low priority may not be
invoked during a separation round. By default, the priorities and frequency attributes in SCIP are a
set of predefined values that remain unchanged for all MILP instances.

Benefits of the CutPool C;.. MILP solvers do not directly add all cuts generated by the separators to
the MILP, as adding a large number of cuts increases the MILP size and slows down the solver. Instead,
a cutpool Cy, is used as an intermediate buffer to hold a diverse set of cuts generated by a variety of
separators. The cutting plane selector can then compare the cuts in the cutpool and select the most
effective ones for the current stage of the MILP solve. Thus, well-designed separator configurations
can not only expedite cutting plane generation by deactivating time consuming separators, but can
also yield a superior quality cutpool C; that may in turn enhance the performance of cutting plane
selection P}, that leads to a further reduction the MILP solve time.

Cutpool has an additional advantage of storing previously generated cuts for future separation rounds
and branch-and-cut tree nodes, thereby saving time by reducing the number of calls to expensive
separators |Achterberg [2007]. As a consequence, configuring separators at a separation round can
have both an immediate and long-term impact on the branch-and-bound process due to the presence
of the cutpool.
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A.2 Configuration Space Restriction: Proofs and Discussions

A.2.1 Preliminary definitions

Table 5: Definition table for key terms used in the paper, including the true and empirical performance
of instance-aware predictor and instance-agnostic configuration, and the optimal and empirical risk
minimizing (ERM) predictor and configuration on both the original space and the restricted subspace.
The relative time improvement § is defined in Eq. (1) of the main paper. We consider a single
configuration update per MILP instance, as in Sec[5.1]of the main paper. The unrestricted space is
denoted as O = {0, 1},

Instance-aware predictor Instance-agnostic configuration
Perf. <
Ve A= E 5(/(@).0) (5) = & [3(s,2)
Optimal function f% — {0,1}M s.t. config. s, € {0,1}M
Action fo(x) = argmax 6(s, z) Vo € X s.t. s = argmax d(s)
True (unobserved) s€{0,1}M s€{0,1}M
X
Optimal
Subspace-  function f3 — A C {0,1} s.t. config. s € A C {0,1}M
restricted  f% () = argmax (s, ) Vo € X s.t. 8% = argmax d(s)
Action s€EA sEA
(unobserved)
Perf. A K 2 K
Mo AU = % X 8(f @) ) = & 2 d(s.)
ERM predictor f5EM - X — {0,1}M s.t. config. 3E#M € {0,1}M
Action FERM (1) = arg max 6(s, z) Va € K. st. SERM — gro max (s
Empirical  (observed) fo™" (@) 35%071}M (5,2) © se%o,l}M (s)
K
ERM
Subspace- predictor FERM . x 5 AC{0,1}M st config. 357 e A C {0, 1M
restricted FERM (1) = arg max 6(s,z) Yz € K. s.t. ERM = arg max §(s)
Action s€A s€A
(observed)

True performance. Let X’ be a class of MILP instances. Let f : X — {0, 1}* be a configuration
function. The true performance of f is defined as A(f) = E [6(f(x),z)].
zeX

The optimal configuration function f} — {0,1}M is f4(z) = argmaxd(s,z) Vo € X,
s€O
and the optimal subspace-restricted configuration function f5 — A C {0,1}M is fi(z) =
argmaxd(s,z) Vo € X.
sEA

During training, we do not have access to the optimal configuration function nor the time improvement
for all configurations and MILP instances in X. Instead, we are given a set of training instances /C,
from which we can collect the time improvements for different configurations by calling the MILP
solver, to learn a configuration predictor. We define the predictor’s empirical performance on the
training instances as follows.

Empirical performance. Let f : X — {0,1}™ be a configuration predictor. Let K =
{z1,...,xKx} be a set of training MILP instances. The empirical performance of f on K is

R K
A(f) = % ;Mf(%)#%)-

Given a subspace A C {0, l}M , an empirical risk minimization (ERM) configuration predictor
fEBRM . X — A selects the best configuration within A for each instance in the training set K, i.e.

FERM (1) = arg max & (s, x) Vo € K. Thatis, f57M (z) coincides with f% on K.
sEA
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Figure 3: An illustration of the difference between the optimal instance-aware function f*, which
maps each MILP instance to a (possibly different) configuration that maximizes the time improvement,
and the optimal instance-agnostic configuration s*, which is a single configuration that achieves
the highest average time improvement across the instances.

Instance-agnostic performance. For each configuration s € {0, 1}*, We further denote the true
instance-agnostic performance of applying the same s to all MILP instances as 0(s) = E [d(s, z)],
zeX

and the corresponding empirical instance-agnostic performance as gt(s) =+ > 6(s, ).
i=1
The optimal and ERM instance-agnostic configuration is defined as s, = arg max 6:(s) and SERM =
s€
arg rgax gt(s), and the optimal and ERM instance-agnostic configuration on a restricted subspace
s€
A C {0,1}M is similarly defined as s%, = argmaxd;(s) and s5FM = argmax o, (s). Tablei
provides a list of all related concepts, and Figs.elﬁ illustrates the difference i)eefween the optima
instance-aware function and the optimal instance-agnostic configuration.
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A.2.2  Proof of Proposition 1

Proposition 1. Assume that a configuration predictor f4, when evaluated on the entire distribution
X, achieves perfect generalization (i.e., zero generalization gap) with probability 1 — «. With
probability «, the predictor makes mistakes and outputs a configuration s € A uniformly at random.
Then, the trainset performance v.s. generalization decomposition can be written as

A(fa) = (1= a)A(fa) + oﬁ 3 5(s) ™
sEA

Proof. By definition, we have A(f4) = E [6(f(z),x)]. From the assumption, we have

reX
_ A(fa) with probability o
A(fa) = Y E [6(s,z)] =4 X (s) with probability 1 — o ®)
SEATEX sEA

Hence, from Eq. (2)) of the main paper, we get

A(fa) = A(fa) = (Alfa) - A(fa)

A(fA)—(l—a)-O—a~ <A(fA)_;Z(5(S)) 9)

= (1WA +ag Y 0) m

seEA

Assumption Discussion (Generalization error). The second average instance-agnostic perfor-
mance term is a result of the assumption that the predictor selects a configuration randomly when it
makes a mistake. In practice, the predictor’s performance could be worse. For example, the predictor
may select the configuration with the poorest instance-agnostic performance. In such a scenario, our
algorithm’s filtering strategy (See Alg.[I) that excludes configurations with an average performance

below a threshold 0(s) < b remains highly beneficial: with this strategy, we can ensure that the
performance of all selected configurations, including the worst one, is above the threshold value of
b. Moreover, when deciding the size of the subspace A, we can track the performance of the worst
selected configuration in addition to the average performance across all selected configurations to
account for situations where the predictor’s mistakes lead to worst-case performance.

Assumption Discussions (Empirical instance-agnostic perf.). In Eq. (3) of the main paper, we
approximate the true instance-agnostic performance of each configuration 0(s) by the empirical

counterpart §(s), under the assumption that different configuration s have similar generalization
behavior when we apply each configuration to all instances. We test the generalization of different

configurations by sampling a hold-out validation set V, and compare the performance of 5 (s) evaluated

on the training set g0 (denoted as K smatt (s5)) and on the hold-out set V' (denoted as 6" (s)).

The scatter plots in Fig. |show the instance-agnostic performances for Maximum Cut and Independent
Set on a training set Kg,,,4y; of 100 instances and a hold-out set V of 100 instances. The plotted
configurations are selected from the initial configuration space S (see Alg. [I)) by picking from each

bin in the histogram of the set {§*smaii(s), s € S} to ensure a diverse range of instance-agnostic
performances among the chosen configurations. The darkness and size of each circle (configuration)
in the plot are proportional to the total number of configurations in the corresponding bin, divided by
the number of samples selected from that bin.

The strong linear trend y = x observed in each scatter plot, along with the perfect alignment of
configurations excluded by the filtering strategy in Alg. [T (represented by circles in the bottom
left corner split by the black dotted lines) validate our approximation of the true instance-agnostic
performance with the empirical counterpart.

Notably, while we observe a strong linear trend in all the MILP classes we consider, there may still
be challenging MILP classes where this linear trend does not hold. In other words, there may exist
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Figure 4: Instance-agnostic performance of configuration samples on the training set §*smat (s) and

hold-out set 6 (s) for Maximum Cut and Independent Set. The dashed orange line indicates the line
of equality (y = x). The darkness and size of each circle (configuration) in the plot are proportional
to the total number of configurations in the corresponding bin, divided by the number of samples
selected from that bin. The horizontal and vertical black dotted lines indicate our choice of filtering
threshold b in Alg. |1, Respectively, 38% and 58% of all configurations in the initial configuration
space S surpass the filtering threshold and are considered as candidates for the final subspace A.

certain MILP classes where configurations that perform well on a training set may fail to generalize
to the unseen test set. In such cases, we can modify our Alg.[T to incorporate an additional holdout

set V, and filter configurations based on the performance on the hold out set 6" () instead of on the
training set §%smatt (s5) (See Line 16 in Alg. §(s) = ¢%smaii(s) in our default algorithm, but can be

replaced by 0¥ (s)). In this way, we can more accurately capture the generalization behavior of each
configuration, although this modification would increase the number of MILP solver calls required to
collect the validation performances, which our reduction to solely monitor training performances

glcsma,u (5) avoids.
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A.2.3 Proof of Proposition 2

Proposition 2. (Submodularity of A(f' ERM) and the greedy approximation algorithm). The

empirical performance of the ERM predictor A( fERM ) is a monotone increasing and submodular
function in A, and a greedy strategy where we 1nclude the configuration that achieves the greatest
marginal improvement arg max e ¢ 134\ 4 A( Ef{]‘ﬂ) A(fERM) at each iteration is a (1 — 1/e)-

approximation algorithm for constructing the subspace A that optimizes A(f§7M).

Proof of monotonicity. By definition, we have A(fFM) = L E S(FREM (1), ;) on a restricted
i=1
subspace A. According to the ERM rule, for each instance z; € M we have §(fEEM (z,),z;) =
max §(s, ). We note that §(f57M (x;), z;) is a monotone increasing function in A for each z;, since
s€A

if B C C, then §(fERM (x;), x;) < 6(f, ER]M(l‘l) ;) due to the monotonicity of the max operator
on the set. Averaging across all instances, A( fERM ) is hence a monotone increasing function in A.

Intuition for submodularity. Adding a configuration s to a set of configurations A improves

S(f E&M} (2), ;) from &( fFEM (), ;) (positive marginal improvement) if s performs better than
all configurations in A on the MILP instance x;. Intuitively speaking, with a larger subspace A, it is
less likely for s to improve the performance, because there are more competing choices in A that
make it more difficult for s to perform the best. Hence, we get a smaller marginal improvement
when adding a configuration s to a larger set of configurations for each instance, therefore making
the empirical performance A(fERM) averaged across all instances submodular in A. We provide a
rigorous proof of submodularity below.

Proof of submodularity. Let B C C C O = {0,1} and s € O \ C. We want to show

A(FERNLY = A(FERM) = A(FERM) — A(FERM) (10)
We have
A K ~
A(FEEIS) — A(FE™M) Z FESE (i), 23) — 6(FE™M (), 1) (11)

We can split the set M = {1, ...,z } into two nonoverlapping subsets M and M where

¢ Vz € My, some configuration s’ € B performs at least as good as s. That is, f gg{M}(az) =

argmax §(s’,z) € B, and hence

s’€BU{s}
S(fFESM (), 2) = 6(FE™M (2),2) > 6(s, ) (12)
* Vx € M, the configuration s performs better than all configurations in B. That is,
fgf{M}( r) = argmax 6(s’, x) = s, and hence
s’€eBU{s}
S(FESA (@), ) = 6(s,x) > 6(fF "M (x), 2) (13)
Then, from Eq. (TT)), we have
.~ , 1 N
A(FESEY) = AFE™) = 2= 3 [8(s,2) = 0(FE™ (), )] (14)
reEM;y
Now consider
K ~
A(FEEL) — A(FER™M) Z FES @), @) = 6(FETM (2:), )] (15)

We have the following nonoverlapping cases

22



* V& € My, due to monotonicity of A(f¥M) in A and the fact that B C C, we have,
extending from Eq. (12)),

S(fERM (x),2) = 6(fFE™ (2),2) > 6(s, ) (16)

and hence some configuration s' € C performs at least as good as s.
* VY € M, we further split into two nonoverlapping cases:

(1) s performs better than all configurations in C. That is, fCu{ s}(7) = s and

S(fES (@), 2) = 6(s,2) > §(FERM (), 2) > 6(FFM (), 2) (17)
(i) some configuration in C'\ B performs better than s. That is, f Ef{]\ﬁ( r) € C'\ Band
S(FESY (@), 2) = 8(FEM (2), 2) = 8(s,2) = 6(f5"™ (2), 2) (18)

where the last inequality is from Eq. (I3).
We let M1 = M1 U Mo where M1 and M5 corresponds to (i) and (ii).

‘We thus have
AGERS) - AGE™Y = = S [6(sw) — 0(E™ (@), )]
TEM11C M,
<o Y s w) - (M @), )
z€M11CM;, (19)
<= 3 s~ 0(7E M @), )
rEM;y

= A(fEIL) — ATE™)

where the second inequality is due to the monotonicity of ( f¥7M (z), z) in A for all z (see Eq. dﬁl}),
the third inequality is due to nonnegativity of the additional terms in My \ M (see Eq. ), and
the last equality is from Eq. (T4).

The greedy approximation algorithm Due to the monotone submodularity of the empirical

performance of the ERM predictor A (f57M), the greedy strategy where we include the configuration

that achieves the greatest marginal improvement arg max A( Ef{]g}) A(fEFRM) at each iteration

s€{0,1}M\ A
is a (1 — 1/e)-approximation algorithm for constructing the subspace A, as proven in previous
work Nemhauser et al. [1978]. W

A.2.4 ERM assumption discussion and relaxation to predictors with training error

Assuming that the predictor fa is the ERM predictor f FERM hat performs optimally on the training
set, we can construct a subspace A prior to learning the actual predictor f4 by replacing the learned
predictor’s prediction with the ERM selection rule. This assumption is reasonable because during
training, we optimize the predictor with the empirical performance A( fa) as the objective, which
aligns with the objective of the ERM predictor (where ERM obtains the optimal solution). To account
for potential training errors, we can relax the ERM assumption with the following lemma, from which
we achieve a trade-off similar to Eq. (3) of the main paper, balancing the ERM performance and a
generalization term with a higher weight on the latter (see Eq. (24)). Our Alg. [T|hence still applies.

Lemma 3. Assume that a predictor f4, when trained on /C, achieves optimal training performance
(i.e., ERM fEEM) with probability 1 — 3. With probability 3, the predictor makes mistakes and
outputs a configuration s € A uniformly at random. Then, combining with the assumption in
Proposition 1 (See Appendix|A.2.2), the trainset performance v.s. generalization decomposition can
be written as

A(Fa) = (1= a)(1 = HAGER) + (1 - )8 Y a6 +ary S de) @O

sEA sEA
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o K
Proof. By definition, A(f4) = % > 6(f(x;), ;). Following the similar proof structure as Proposi-

tion 1, we have

o A(fEFRM) with probability
A ED S 6(s,0) = 1" §(s)  with probability 1 — 3 @D
sEA T i=1 o=y
Hence, we get
A(fa) = (- BAGE) + 5 250 -
SGA

Before we further proceed in the proof, we discuss an additional trade-off when constructing the
subspace A based on the empirical performance on the training set A(f4). While adding more

configurations to A may improve the empirical performance of the ERM predictor f FERM some of
these configurations may have low instance-agnostic performance and only perform well on a small
subset of the training instances. Incorporating such configurations into A may lead to the selection
of poor configurations when training error occurs, resulting in a decrease in the performance on the
training set A (fa)- Hence, to construct a subspace A that can result in the high empirical performance
of the imperfect predictor, we also need to balance the size and diversity of A (measured by the
empirical performance of the ERM predictor on A, the first term), and the average configuration
quality in A (measured by the average instance-agnostic empirical performance, the second term).

Now, combining with the proof of Proposition 1, we hence have
A(fa) = A(Fa) = (Afa) = A(4)
- 1 -
= (1= @)A(fa) + a7 3 5(s)

s€A
) 1 N 1 _ (23)
~(1-a) ((1 — HAFE) + 55 Y 5<s>> Fag 3 5Gs)
sEA sEA
(1 - )1 = HAFE™) + (1 - )y 3 5(6) + oy Y b(s)
seA s€EA

Then, following Eq. (E) of the main paper, we replace §(s) (unobservable) by 5 (s) and arrive at the
following objective to select the subspace A:

A(fa) = (1= a)(1 = B)A(FEHM) + (a +

g L 66

seA

Zé , where v = a+ 8 — af.

sEA

(24)

— A ERM

Comparing the above with Eq. where we assume the predictor performs ERM perfectly with no
training error, we arrive at the same trade-off between the empirical performance of the ERM predictor
fEEM in the subspace A (which is monotone submodular in A), and the average instance-agnostic
performance of all configurations s € A, with a lower weight on the first term and a higher weight on
the second term due to training error (v > «). Hence, our algorithm that couples a greedy strategy
with the filtering criterion naturally applies to this relaxed scenario. The greedy strategy can still
select configuration based on the ERM predictor, as the training error from the new predictor is
absorbed in the second term. Due to the increase weight on the second term, we would increase
the threshold b, which we design as a hyperparameter in Alg. [1, to more aggressively filter out

configuration s with a low instance-agnostic performance given by §(s) < b. We leave it as future

work to analyze more complicated predictors f /. that incorporate other smoothness assumptions and
to adapt the construction algorithm based on the performance of such predictors.

24



R RN - U R .

15

16
17
18
19
20
21

A.3 Configuration Space Restriction: Algorithm
A.3.1 Algorithm

The algorithm for our data-driven configuration space restriction in Sec.[5.1]is presented in Alg.

Algorithm 1: Configuration_Space_Restriction

Input: MILP training set K411, the unrestricted configuration space O = {0, l}M, number of
initial configuration samples | S|, size of the restricted configuration space | A
instance-agnostic performance threshold b

Output: The restricted configuration space A

S < large subset of O by sampling |S| configurations from O  // See description below

/I construct the relative time improvement table

T < zeros(|S|, |Ksmait])

for Configuration s; in S do

for Instance x; in Kgpqu do
/1 Solve instance x; with configuration s; with the MILP solver
jlj 4"5(517Ij)

end for

end for

/I construct the restricted configuration space

Ae{}

for Choice i = 1: |1Al do

/ greedy based on marginal improvement in instance-aware perf. (see Table |

S+ argmaXA( E&{%,X) — A(fFREM X))
seS\A

// filtering based on instance-agnostic perf. of individual configuration (see Table l
if 9(s) > b then

| A+ Au{z}
else

| S8\ {x}
end if
end for

’

On Line 1, we use the following two strategies to sample the large initial configuration subset S C O:

1. Near Zero: we include all configurations that activate at most 3 separators, which results in
a subset S, of size Z?:o (Af) = Z?:o (11,7) — 834.
2. Near Best Random: we first sample 500 configurations uniformly at random from O and
find the configuration &' in the sample with the hhest empirical instance-agnostic perfor-
S

mance 6(s) on the training set K41 (see Table[5). Then, we include (1) all configurations
that have at most 3 separator different from §’, resulting in a subset Sa; of size 834, and (2)
all configurations whose set of activated separators is a subset of the activated separators in
§', resulting in another subset Soo whose size depends on the number of activated separators
in 5’ and ranges from 63 to 1023 for all MILP classes considered in this paper.

Combining all samples from above, we obtain a large initial configuration subset S with |\S| ~ 2000.

The Near Best Random strategy is designed to bootstrap high quality samples around the high
quality configuration §’ obtained from random search. The subset Sy increases sample diversity by
perturbing 5’ within a Hamming distance of 3, and S5 is designed based on the intuition that it may
be possible to deactivate more separators from §’, as some activated separators in §' may be useful
for certain MILP instances but not for the others. The Near Zero strategy is designed based on the
intuition that it may be beneficial to maintain a small set of activated separators, as it reduces the time
to invoke separator algorithms (although at the cost of reducing the quality of the generated cuts).
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A.3.2 Algorithm discussions: filtering and subspace size

When employing our filtering strategy, a higher (more aggressive) threshold 5 (s) < bwith larger b
leads to a higher average empirical instance-agnostic performance (second term ﬁ Y scad(s)in
Eq. (3) of the main paper), which measures generalizability of the instance-aware predictor, but it
also incurs a decrease in the empirical performance for the instance-aware ERM predictor (first term
A(f4) in Eq. ), which measures the training performance of the instance-aware predictor).

In Figure|5} we plot the behavior of these two terms across different threshold values of b (ignoring the
weight of ), using the Ky, training set of Independent Set and Load Balancing. The size of the
subspace A is fixed at | A| = 15 for Independent Set and |A| = 25 for Load Balancing, which equals
the size of our chosen subspace in L2Sep that is constructed with filtering threshold v°“"* = 0.4 for
Independent Set and b°“"* = —0.1 for Load Balancing. The subspaces are constructed by our Alg. |l
that combines a greedy strategy with the filtering criterion.
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Figure 5: Training set performance (1°*) and generalization (2"%) terms in Eq. (3)) of the main paper
for subspaces constructed using Alg. [l with varying thresholds b. The vertical dotted black lines
indicate our chosen threshold.

An effective approach for choosing the threshold, as supported by our theoretical analysis in Sec.[5.T
of the main paper, is to find a value b that yields a substantial improvement in the generalization term
(2"%), while simultaneously maintaining a high training set performance term (1°%). Our selection of
b°¥"$ = 0.4 for Independent Set and b°“"® = —0.1 for Load Balancing satisfies this criterion.

In Figure [6, we further plot the two terms during the intermediate construction process of Alg. [T
where the subspace A is expanded by adding a configuration at each iteration. The plot shows the
behavior of the two terms through the construction process for a set of thresholds b (as specified in
the legend), when evaluated on the same Ks,,,,;; training dataset.
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Figure 6: Training set performance (1°%) and generalization (2"?) terms in Eq. (E) for intermediate
subspaces constructed using Alg]1|across a set of thresholds b. The vertical dotted black lines indicate
our chosen subspace size. The asterisks (*) in the legend indicate our choice of b.

Once again, our choice of the threshold b allows a notable improvement in the second generalization
term (2"?%), while maintaining a high level of performance in the first training set performance term
(1%%). This trend persists throughout each step of our iterative algorithm. We choose the size of the
subspace |A| (the termination criterion of our algorithm) when | 4| is reasonably small, while both
terms stabilize and at values that offer a favorable trade-off between the two terms.

26



AW D=

MILP x Forward Training
Periodic Config. Update 7 ; ® Model 1

—:l

Exhaustive Config. Update MILP X MILP X
[ o e RN Model 2
Separation l\
1 2 3 4 5 6 A

Round N e e mmmm e

Figure 7: Forward training. (Left) The periodic update scheme where the configuration is updated at
different separation rounds (n; = 1 and no = 4 in the illustration) and held constant between updates
(c.f. exhaustive update at each of the R = 6 rounds). (Right) The forward training algorithm that
sequentially learn the & networks { f4% }k ., whose output spaces are constrained to the subspace A,
for periodic configuration update. The MILP input to fZ is denoted as 7 as it includes both the initial
MILP z and newly added cuts. Different shades of green represent different selected configurations.

A.4 Configuration Update Restriction
A.4.1 Forward training algorithm

Alg. [2| presents our forward training procedure that trains & predictor networks to perform k configu-
ration updates for each MILP instance. As illustrated i 1n FlgE when training the j*" network, we

freeze the weights of the pre-trained networks { ng} 1 and use them to update the configurations

at separation rounds {nm}fn:l. Then, we learn the ;' network fg0 using neural UCB to update
the configuration at separation round n;, and we hold the configuration constant until the solver
terminates (at optimality or a fixed gap) to collect the terminal reward. We do not use intermediate
rewards as both the optimality gap and solve time vary at an intermediate round, making it difficult to
construct an integrated reward to compare different configurations.

Algorithm 2: Forward_Training

Input: MILP training set Kiarge, number of configuration update steps &, configuration predictor

networks { feo 1k 1, separation rounds {n; } ?:1’ training epochs 7', number of MILP
instances P per epoch, number of samples to collect reward labels per epoch D, UCB
scaling factor -, configuration subspace A

Output: Trained regression networks { f;, }%
for Updatej = 1: k do

Freeze the weight of { f}7 |-

ng < Neural_UCB (Iclargey f907 {feT}m 1 {nm}m I, P,D,~, A)
end for

j=1

A.4.2 Trade-off discussion for different k’s

Let 7*() and 7*(*) be the optimal configuration policies when we perform R and k < R updates,
and let 7(%) and 7#(*) be the corresponding learned policies. Due to cascading errors over the long
horizon, the learning task for 7 (%) is more challenging than for 7 (*); on the other hand, the optimal
policy 7*(*) performs worse than 7*(#) due to the action space restriction. Hence, the frequency k
trades off approximation (for 7*(*) ~ 7*(%)) and estimation (for #(*) ~ 7*(¥)) with more frequent
updates (larger k) improves the approximation error while less frequent updates (smaller k) improves
the estimation error.

Recent theoretical work by Metelli et al.|[2020] investigates the impact of action persistence, namely
repeating an action for a fixed number of decision steps, for infinite horizon discounted MDPs. They
provide a theoretical bound on the approximation error in terms of the differences in the optimal
Q-value with and without action persistence (which corresponds to the Q-value of 7*(B) and 7*(k)
in our setting). The resulting bound is a function of the discount factor, action hold length, and the
discrepancy between the transition kernel with and without action persistence. The approximation
error is agnostic to the specific learning algorithm, and hence the analysis can be adapted to our

27



1
2

3

® N & s

10
11

12

13
14

15

16
17
18
19
20

setting by extending it to the finite horizon MPD scenario. They further use fitted Q-iteration to learn
the policies and establish a theoretical bound on the estimation error in terms of the differences in the
Q-value of the learned policies with and without action persistence. In contrast, our learned policies
7#(F) and 7(¥) are trained via the forward training algorithm. While it is not the focus of our paper,
we note a possible future research to extend their theoretical analysis of the estimation error to the
forward training algorithm, and compare the theoretical bounds on approximation and estimation to
analyze the trade-off associated with the configuration update frequency k.

A.5 Neural UCB Algorithm
A.5.1 Training algorithm

The Neural UCB algorithm [Zhou et al. [2020] that we employ to train each configuration predictor
network is presented in Alg. [3]

Algorithm 3: Neural_UCB

Input: MILP training set K;q4;qe, predictor network at the current separation round fgo, trained

predictor networks at previous separatlon rounds { f e } current separation round 7,

m= 1’
previous separation rounds {nm}m 1> training epochs 7', number of MILP instances P
per epoch, number of samples to collect reward labels per epoch D, UCB scaling factor 7,
UCB regularization parameter A, configuration subspace A

Output: Trained predictor network ng

Initialize B < an empty training data buffer

Initialize Zy < /\I|9‘><|9|

for Epocht=1: T do

Initialize B! «+ B!~1

for P iterations do

Sample instance x from Ky ge

/I sampling D configurations with UCB to balance exploration and exploitation

for Configuration s in A do

Compute Ut,s <~ fgtfl (l‘, 31) + ’7\/v0.fgt71 (l‘, S)TZt__11v0fgt71 (l‘, 5)
end for
Let S < D samples without replacement ~ softmazsca(Uys)
Compute Z, <+ Zs—1 + Y Vofde 1(x,8)Vofl, ,(z,5)

sin S

/I Collect the reward label for each configuration
for Sample i = 1: D do

Regression Label r; <— Run the MILP solver for the mstance x: use { f; fmyt o

update configurations at separation rounds {nm}
s; at separation round 7
end for
H+1
Bt « B*U{x,s;, 7 )i
end for
fge < Train f7,_, with the updated buffer B*
end for

T 1, and update conﬁguratlon to

A.5.2 Input features

Paulus et al. [2022] design a comprehensive set of input features for variable and constraint nodes
(extended from |Gasse et al. [2019] for their cut selection task), resulting in V. € R™*!7 and
C € R™*34 where m and n are the number of constraints and variables in the MILP instance x.
We note that the constraint nodes include the initial constraints from the MILP x as well as the
newly added cuts. We adopt their input features and provide a detailed description of the features in
Table @for completeness of the paper. Meanwhile, we set the separator nodes (unique to our task) as

Ix1 where M is the number of separators in the MILP solver, and each separator node Sy,
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has a single dimensional binary feature indicating whether the separator is activated (1) or deactivated

0).

For edge weights, we similarly follow Paulus et al. [2022] and |Gasse et al. [2019] to connect each
variable-constraint node pair if the variable appears in a constraint, and set the edge weight to be
the corresponding nonzero coefficient. Meanwhile, we connect all separator-variable and separator-
constraint node pairs with a weight of 1, which results in a complete pairwise message passing
between each separator-variable and separator-constraint pair in the Graph Convolution Network |Kipf
and Welling|[2017]]. As we lack reliable prior knowledge of the weight for the separator-variable and
separator-constraint pair, we do not provide initial weight information and instead directly use the
graph convolution mechanism to automatically learn the similarity between each pair.

Table 6: Description of input features for variable and constraint nodes Paulus et al. [2022].

Node Type Feature Description
norm coef Objective coefficient, normalized by objective norm
type Type (binary, integer, impl. integer, continuous) one-hot
has 1b Lower bound indicator
has ub Upper bound indicator
norm redcost Reduced cost, normalized by objective norm
Vars solval Solution value
solfrac Solution value fractionality
sol_is_at_Ib Solution value equals lower bound
sol_is_at_ub Solution value equals upper bound
norm_age LP age, normalized by total number of solved LPs
basestat Simplex basis status (lower, basic, upper, zero) one-hot
is_cut Indicator to differentiate cut vs. constraint
type Separator type, one-hot
rank Rank of a row
norm_nnzrs Fraction of nonzero entries
bias Unshifted side normalized by row norm
row_is_at_lhs Row value equals left hand side
row_is_at_rhs Row value equals right hand side
dualsol Dual LP solution of a row, normalized by row and objective norm
basestat Basis status of a row in the LP solution, one-hot
C norm_age Age of row, normalized by total number of solved LPs
ons, . . .
Added norm_plp_creatlon LPs since the row has been crpated, normalized
Cuts norm_intcols Fraction of integral columns in the row

is_integral
is_removable
is_in_lp
violation
rel_violation
obj_par
exp_improv
supp_score
int_support
scip_score

Activity of the row is always integral in a feasible solution
Row is removable from the LP

Row is member of current LP

Violation score of a row

Relative violation score of a row

Objective parallelism score of a row

Expected improvement score of a row

Support score of a row

Integral support score of a row

SCIP score of a row for cut selection
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A.6 Experiment Setups
A.6.1 Proposed method details

Our main result tables (Table1|and Table |3|of the main paper) present our complete method and two
sub-components. We provide details on the implementation of these three methods.

(1) Ours (L2Sep): for each MILP class, we first run Alg. Eto obtain a configuration subspace A.
Then, we run Alg. [2|that uses forward training to learn k& = 2 separate instance-aware configuration
predictors f4 and f7 to perform two configuration updates at separation rounds n; and ns. The
output of the predictors is restricted to the subspace A. We train the predictors using the Neural
UCB Algorithm [3. A summary of our training pipeline is shown in Alg. . At inference time,
we have two selection strategies: we select the configuration with either the highest predicted
reward s} ; = argmax,c 4 fjr (,s) or the highest UCB score s} ; = argmaxc 4 ucb(z, s) for
all predictors j, determined based on validation performance. In our experience, we observe that
selecting configurations based solely on the point estimate ng (z, s) alone can sometimes be overly
deterministic, leading to a limited range of configurations being chosen for most instances. The UCB
score combines the reward point estimate f;T (z, s) with an uncertainty estimate (computed in Line 8
of Alg.[3] where the normalizing matrix Z is from the same epoch as the selected model), and it hence
increases the diversity of the prediction and improves the performance in most scenarios. Given the
selection strategy, for each instance x, we set the configuration to be s} ; at separation rounds 7n;
and s 5 at separation rounds no. We hold the configuration fixed as s}, ; between separation rounds
[n1,n2] and as s}, , from separation round n; until the solving process terminates.

Algorithm 4: Learning_To_Separate (L2Sep)

Input: MILP training set Ky,q11, the unrestricted configuration space O = {0, 1}, number of
initial configuration samples |S], size of the restricted configuration space |A|,
instance-agnostic performance threshold b, MILP training set Kj4yge, number of

configuration update steps k, configuration predictor networks { fgo } ?:1’ separation

rounds {n; }§:17 training epochs 7', number of MILP instances P per epoch, number of

samples to collect reward labels per epoch D, UCB scaling factor vy, UCB regularization
parameter A

Output: Trained regression networks { ng ;?:1
A <+ Configuration_Space_Restriction (KCspnair, O, |S|, |Al,b) 1/ See Alg.
{fir };?:1 < Forward_Training (Kiarge, k, { fo ;?:1, {n; }g?:l, T,P,D,v,\,A) [/ See Alg.

(2) Instance Agnostic Configuration: The first step of Alg.|l|is to sample a large subspace S with
|S| ~ 2000 due to computational infeasiblity to enumerate all {0, 1} configurations (See Ap-
pendix[A.3.T). For each configuration s € .S, we compute its empirical instance-agnostic performance
0(s) = ko7 2 O(s,) and choose the best (ERM) configuration 55 = arg max,¢ g d(s) as

TEK smatl
the instance agnostic configuration. We apply the same 5g to all instances in the given MILP class

to evaluate its performance. Notably, 5§g always appears in the final restricted subspace A, as it is
selected at the first iteration of Alg[I]when the marginal improvement of the instance-aware function
(Line 14) and the instance-agnostic performance (Line 16) coincide.

(3) Random Within Restricted Subspace: Given the subspace A constructed by Alg.[1] we choose
a configuration in the subspace A uniformly at random for each MILP instance.

A.6.2 Parameters

Table[7 and Table [§]present a list of parameters along with their experimental values used by our
L2Sep method in Alg. ]

A.6.3 SCIP interface.

We use a custom version of the SCIP solver (v7.0.2) Bestuzheva et al.|[2021] provided by |Paulus
et al.|[2022] and a custom version of the PySCIPOpt interface (v3.3.0)|[Mabher et al. [2016] to add a
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Table 7: A list of parameters and their values as used in the experiments for our data-driven subspace

restriction Alg. |1}

Tang Bin. Pack.  Max. Cut Pack.
Number of initial config. samples | S| 1795 1795 2691
Size of restricted config. space |A| 30 20 15
Filtering threshold b 0.3 0.6 0.0
Ecole Comb. Auc Indep. Set Fac. Loc.
Number of initial config. samples |S]| 1699 1699 1923
Size of restricted config. space |A| 25 15 20
Filtering threshold b 0.5 0.4 0.0
Real-world MIPLIB NNV Load Bal.
Number of initial config. samples |S]| 2179 2691 1795
Size of restricted config. space |A| 20 20 25
Filtering threshold b -0.17 0.0 -0.1

Table 8: A list of parameters and their values as used in the experiments for our learning Alg. and

Parameter Value
Number of separators M 17
Number of configuration updates k 2
Configuration update round nq 0

Configuration update round ns

5  for Tang instances
8  for Ecole instances
10 for MIPLIB, NNV, Load Balancing

Training epoch T’ 70
Number of MILP instances per epoch P 6
Number of samples to collect reward 3
labels per epoch D

Number of solver runs to collect a reward 3

label for each config.-instance pair /
Reward clipping constant 7y, -1.5
UCB scaling factor vy 0.9375
UCB regularization parameter A 0.001

special separator invoked at the beginning of each separation round to activate and deactivate M = 17
standard separators implemented in SCIP, including aggregation, cgmip, clique, cmir, convexproj,
disjunctive, eccuts, flowcover, gauage, gomory, impliedbounds, intobj, mcf, oddcycle, rapidlearning,
strongcg, zerohalf

A.6.4 Training and evaluation details

Architecture and training hyperparameters. Our network first embeds V € R"*17, C € R™*34,
and S € RM*1 (where n, m, M are the number of variables, constraints, and separators) into hidden
representations of dimension dp;qqe, = 64 with a BatchNorm followed by two (Linear, ReLU)
blocks. Then, our Graph Convolution module |Kipf and Welling [2017]] takes the hidden embeddings
for message passing, following the direction of (V—=C—V, S—V—S§, and S—C—S), with a final
(LayerNorm, ReLU, Linear) block that maintains the dimension dj;44ern. Then, the separator nodes
S pass through a TransformerConv attention module Shi et al.| [2021] with nj,¢.4s = 4 heads and a
dropout rate of 0.1. Lastly, we perform a global mean pooling on each of the C, V, and S hidden
embeddings to obtain three embedding vectors, concatenate them into a single vector, and finally use
a (Linear, ReLU, Linear) block to map the vector into a scalar output. We train with Adam optimizer
with a learning rate of 0.001 and a batch size of 64 for 70 epochs with a total of 180000 gradient

?Detailed descriptions of the separators can be found in https: //www.scipopt.org/doc-7.0.2/html/
group__SEPARATORS . php.
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Table 9: Architecture hyperparameters.

Table 10: Training hyperpa-

Input dimension nx17

nxd, Ve Rmx34 GCN Message V—=C—YV, rameters.

m X d CeR Passing Order $-V=S,

o dé S € RMx1 S—C—S Optimizer Adam

. ' Attention Learning rate 0.001
Output dimension 1 Num. Heads 4 Batch size 64
Embedding Attention Num. of 180000
dimension dy; jgen 64 Dropout 0.1 Gradient Steps
Activation ReLU

steps. All hyperparameters are selected on the validation set and frozen before evaluating on the test
set. Table[9and[I0] provides a list of hyperparameters.

Data split, MILP solver termination criterion, and inference strategy. For all MILP classes
except MIPLIB, we collect a small training set g, of 100 instances for configuration space
restriction, and a large training set K4, g. of 800 instances for predictor network training. We hold
out a validation set and a test set of 100 instances each. For MIPLIB, our curated subset contains 443
instances in total. We split the instances into ICy,q With 30 instances, Kyqrge With 270 instances, a
validation set with 55 instances, and a test set with 88 instances.

For all MILP classes except MIPLIB and Load Balancing, we solve the instances until optimality.
For MIPLIB and Load Balancing, we solve all instances until it reaches a primal-dual gap of 10%.

For Packing and Bin Packing, our best inference selection strategy, chosen based on validation perfor-
mance, is to select the configuration with the highest predicted reward s}, ; = arg max,¢ 4 f7(z,s).
For all other MILP classes, the best inference selection strategy is to select the configuration with the
highest UCB score s}, ; = arg max,, 4 uchb(z, s).

Training and evaluation. We collect data, train, validate and test all methods on a distributed
compute cluster using nodes equipped with 48 Intel AVX512 CPUs. A single Nvidia Volta V100
GPU is used to train all MILP classes except MIPLIB, as the massive number of variables and
constraints (up to 1.4 x 10°) in certain MIPLIB instances poses memory challenges for the GPU
device (with 16GB memory). Our configuration subspace restriction Alg.[T]requires approximately
36 hours, while the training time for Alg. [2]is within 48 hours for all benchmarks including MIPLIB.
In certain cases, the baseline methods take excessively long solve time, making it computationally
expensive to evaluate those methods. During test evaluation, we terminate the solve if the solve
time exceeds three times the SCIP default (which can be up to 20 minutes), resulting in a time
improvement as low as —300%. This time limit is more relaxed than the reward clipping 7y, = —1.5
during training (which corresponds to < —150% time improvement and is applied to improve data
collection efficiency). Notably, the hard stop is not used for our complete learning method (L2Sep),
whose performance improvement from SCIP default remains consistently stable across instances.
Instead, it is primarily used for the random or prune baseline that exhibits very poor performance or
a significantly large standard deviation. Without the time limit, these baselines may exhibit worse
performance than those reported in Table [T) and [3]of the main paper.
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A.6.5 MILP benchmarks

We perform extensive evaluation on the following MILP benchmarks of a variety of different sizes.

Standard: Tang et al. We consider three out of four MILP classes introduced in Tang et al.|[2020]:
Maximum Cut, Packing, and Binary Packing. We follow [Paulus et al. [2022] to only consider the
large size where the number of variables and constraints n, m € [50, 150], as |Paulus et al.|[2022]
observe the small and medium size are too easy for the SCIP solver. We do not consider the Planning
class because the large size is still too small, as SCIP takes less than 0.01s on average to solve the
instances.

We generate large size Tang instances with class specific parameters n = 60 variables, Mesource = 60
constraints for Packing, n = 66 variables, myesource = 132 constraints for Binary Packing, and
Nyertices = 94, Nedges = 134 for Maximum Cut.

Standard: Ecole. We consider three out of four classes of instances from [Prouvost et al.| 2020]:
Combinatorial Auction, Independent Set, and Capacitated Facility Location, where the number of
variables and constraints in the instances n, m € [100, 10000].

We generate Ecole instances with class specific parameters njems = 100, npigs = 500 for Combina-
torial Auction, npeges = 500 for Independent Set, n;ows = 500, Neoumns = 1000 for Set Cover, and
Neustomers = 100, Ngcitiies = 100 for Capacitated Facility Location.

When we use the default parameters in

the Ecole library to generate the Com- Taple 11: Sampling parameter distributions for each In-

binatorial AUCtiOI{ and Indepegdent Set  dependent Set and Combinatorial Auction instance.
dataset we notice that the instance-

aware ERM (optimal) predictor some- Independent Set
times only selects a small number of con-
figurations within each class, resulting
in similar performance as the instance-
agnostic configuration (single configura-

graph_type edge_probability affinity
U ({barabasi_albert,

erdos_renyi}) U([0.005,0.01]) U({2,3,4,5,6})

tion) due to selection homogeneity. De- Combinatorial Auction

SPite I_)Oth resulting in significant relative value_deviation add_item_prob  max_n_sub_bids
time improvements from SCIP default, U([0.25,0.75)) U([0.5,0.75)  U({3,4,5,6,7})
the default parameters cause the instances additivity budget_factor resale factor
within each of these two classes too sim- U([~0.1,0.4]) U([1.25,1.75])  U(]0.35,0.65])

ilar to one another, thereby limiting the
benefits of instance-aware configurations.
To enhance instance diversity, we adjust the parameters for both classes by sampling uniformly
at random from a broad distribution, as presented in Table E for each MILP instance. As many
large-scale real-world MILP problems exhibit significant dataset heterogeneity (for instance, see
MIPLIP below), we believe that our adjusted Ecole datasets better reflect realistic MILP scenarios.

ERM that

We do not report results for Set Cover as we find an instance-agnostic configuration s
deactivates all separators is able to achieve a relative time improvement of 88.6% (IQM: 88.4%, mean:
87.4%, standard deviation 6%) from SCIP default, whereas the default median solve time is 5.96s
(IQM 6.13s, mean: 6.45s, standard deviation 3.17s). Furthermore, on the small training set 411,
we find that the instance-aware empirical performance of the ERM predictor f ERM differs by less
than 1% from the performance of s“#  We experiment with various parameters for the Set Cover
problem, such as the number of rows and columns, density of the constraint matrix, and maximum
objective coefficient, but observe similar outcomes. This implies that separators in the SCIP solver
do not provide significant benefits for the Set Cover class, and therefore, the instance-aware ERM
predictor aligns with the instance-agnostic configuration to deactivate all separators.

Large-scale: NN Verification. We consider the large-scale neural network verification instances
used in [Paulus et al.|[2022], with a median size (n, m) of the number of variables and constraints
at (7142,6531). This dataset formulates MILPs to verify whether a convolutional neural network

*https://doc.ecole.ai/py/en/stable/reference/instances.html provides a list of adjustable
parameters for each Ecole MILP class.
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is robust to input perturbations on each image in the MNIST dataset. The MILP formulation of the
verification problem can be found in|Gowal et al. [2018]]. We follow [Paulus et al. [2022]] to exclude
all infeasible instances (often trivially solved at presolve) and instances that reach a 1-hour time-limit
in SCIP default mode. Due to differences in the learning tasks (separator configuration for the entire
solve v.s. cut selection at the root node), we further exclude instances that cannot be solved optimally
within 120 seconds, after which 74% of the instances used in [Paulus et al. [2022] remain.

Large-scale: MIPLIB. MIPLIB2017 collection Gleixner et al.|[2021] is a large-scale heteroge-
neous MILP benchmark dataset that contains a curated set of challenging real-world instances from
various application domains. It contains 1065 instances where the number of variables and constraints
(n,m) varies from 30 to 1,429, 098. Previous work [Turner et al.|[2022] finds it very challenging to
learn over MIPLIB due to dataset heterogeneity. A recent work Wang et al.|[2023]] attempts to learn
cutting plane selection over two subsets of similar instances (with 20 and 40 instances each), curated
via instance clustering from two starting instances containing knapsack and set cover constraints.

We attempt to learn over a larger heterogeneity subset of the MIPLIB dataset to solve the separator
configuration task. We adopt a similar dataset pre-filtering procedure as in Turner et al. [2022], where
we discard instances that are infeasible, solved after presolving, or the primal-dual gaps are larger
than 10% after 300 seconds of solve time. It is worth noting that our pre-filtering procedure preserves
the dataset heterogeneity, whereas Wang et al.|[2023] reduces the dataset to homogeneous subsets.
We obtain a subset of 443 instances, which is around 40% of the original MIPLIB dataset.

Large-scale: Load Balancing (ML4CO Challenge). We consider the server load balancing dataset
from Neurips 2021 ML4CO Challenge |Gasse et al. [2022] ﬂ whose average number of variables
and constraints (n,m) is at (64304, 61000). This dataset is inspired by real-world applications in
distributed computing, where the goal is to allocate data workloads to the fewest number of servers
possible while ensuring that the allocation remains resilient to the failure of any worker. This is a
challenging dataset due to the large number of variables and constraints, along with the presence of
nonstandard robust apportionment constraints that separators in MILP solvers may not be specialized
for. No instances from the original load balancing dataset are pre-filtered, as we observe that the
primal-dual gaps for all instances remain within 10% after 300 seconds of solve time.

The ML4CO challenge releases two other datasets: Item Placement and Anonymous. We follow Wang
et al. [2023] and exclude Item Placement since very few cutting planes are generated and used in
the dataset (with an average of less than five candidate cuts on each instance), thereby limiting the
influence of separators on the dataset. Additionally, we exclude Anonymous because the dataset is
restrictively small for effective learning (comprising only 98 train and 20 valid instances).

“More details on the dataset can be found at https://www.ecole.ai/2021/ml4co- competition/
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A.7 Ablation Details

A.7.1 Implementation details of ablation methods

Configuration space restriction (Sec.[5.1):

(1) No Restr.: We do not constraint the output space of the £ = 2 instance-aware predictors, allowing
them to output any configuration in the unrestricted space {0, 1}, Due to the vast number of actions,
it is infeasible to use the neural UCB Alg. [3|as the normalizing matrix Z becomes excessively large,
making it challenging to obtain meaningful confidence bounds as most actions remain unexplored.
Hence, we use the following e-greedy exploration strategy (similar to the e-greedy ablation below):
we first sample a subset of 50 configurations for training efficiency. Then, we iteratively select D
configurations from the subset to collect the reward labels: at each of the D iteration, with probability
€ = 0.1 we select a configuration uniformly at random among the unselected ones in the subset, and
with probability 1 — € we choose the configuration with the highest reward point estimate among
the unselected ones in the subset. At inference time, we sample a subset of 500 configurations for
each MILP instance, and select the configuration with the highest reward point estimate. All the
other settings remain the same as our complete method (L2Sep). This ablation is used to examine the
effectiveness of restricting configuration space in learning better configuration predictors.

(2) Greedy Restr.:

When we run Alg. to obtain the configuration subspace A’, we select configurations solely with the
greedy strategy based on the highest marginal improvement, but we do not filter out configurations
with low instance-agnostic performance (equivalent, we set the filtering threshold b = —oc). The rest
of the learning remains identical to our complete method (L2Sep), but with the predictor’s output
restricted to the greedy subspace A’. This ablation allows us to assess the effectiveness of the filtering
strategy in constructing a superior configuration subspace for learning predictors.

Configuration step restriction (Sec.[5.2):

(1) k = 1: We perform one configuration update for each MILP instance. We use the first config.
predictor f; from our complete method (L2Sep) to set configuration at separation round n .

(2) k = 3: We fix the two configuration predictors f‘9 and f92 from our complete method (L2Sep),
and follow Alg. l_ to train a third configuration predlctor fe at separation round n3 (= 12 for Tang

instances and 20 for Ecole instances). The predictor fe is similarly restricted to the subspace A. At
test time, for each instance x, we follow our complete method to perform two configuration updates
using f4 and f7 until separation round n3. Then, we use f; to update the configuration at separation
round ng and hold it fixed until the solving process terminates.

Neural UCB Algorithm (Sec.[5.3):

(1) Supervise (x4): We exactly follow our complete method (L2Sep), except that we use offline
regression instead of online neural UCB to train the predictors. Offline regression first collects a
large training set of instance-configuration-reward tuples offline (by randomly sampling instance-
configuration pairs and using the MILP solver to obtain the reward labels). The network is then
trained on the fixed training set. In contrast, neural UCB gradually expands the training buffer by
collecting training data online, while using the current trained model to guide exploration (sampling
configurations with high uncertainty) and exploitation (sampling configurations with high predicted
reward). Model training is performed online on the continually updated dataset. Due to the difference
in online v.s. offline nature of the dataset generation and training scheme, one learning method
may require more gradient updates to converge than the other. To attempt at a fair comparison, we
collect x4 more instance-configuration-reward tuples and train the offline network until convergence.
This ablation is used to examine the efficacy of online learning through neural contextual bandit in
improving the training efficiency of predictor networks.

(2) e-greedy: We exactly follow our complete method, except when training the predictors with
the Neural Contextual Bandit algorithm in Alg.[3] we use an e-greedy strategy to iteratively sample
the D configurations: at each of the D iteration, with probability e = 0.1 we select a configuration
uniformly at random among the unselected ones in A, and with probability 1 — ¢, we select the
configuration with the highest reward point estimation among the unselected ones in A. The e-
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greedy strategy does not require confidence bound estimation and has been commonly used in deep
reinforcement learning (such as deep Q Learning Mnih et al. [2015]]) when the action space is large.
This ablation allows us to assess the effectiveness of upper confidence bound (UCB) estimation for
better a exploration-exploitation trade-off in neural contextual bandit.

A.7.2 Additional ablation results and analysis

Ablation: Different configuration subspaces for different configuration update steps

Our complete method (L2Sep) in the main paper constructs the subspace A only once at the initial
update for computational efficiency benefits. We present the ablation where we construct a new
subspace A, at the second update. Specifically, for each MILP instance x € K411, We use the first
trained predictor f(}T to set the initial configuration at separation round n, and hold the configuration
between separation rounds [n1, ns]. At the start of separation round ns, the MILP instance is updated
to &, which combines the original MILP x with the newly added cuts. For ease of explanation,
we let Kgmanr, 2 denote the updated training set of MILP instances where each instance  starts at
separation round ny. We run Alg. Eon Ksmair,2 to select a configuration subspace A, based on the
time improvement when we set the configuration at separation round n, and maintain it until the
solving process terminates. We use the same set of parameters (including filtering threshold b, size of
the subspace |A|, and size of the initial samples |S|) as when we construct A.

We first compare our choice of reusing the previ-

ous subspace A with the ablation method of up-  Taple 12: Comparison of (1) the empirical perf.
dating the subspace to A, by evaluating the two FERM

) . of the instance-aware ERM predictor A(fFRM)
terms in Eq. (3) of the main paper that balances A FERM ] ;
training set performance and generalization: (1) and A(fy™), denoted as A: 1st and Ay: 1st,

the empirical performance of the instance-aware and (2) the aZerage empirical irlstance-agnostic
ERM predictors, A(fEEM) and A(FERM), perf. ;2 0(s) and 7 3 6(s), denoted as
which we denote as A: 1st and As: 1st, and (2) seA s€A2

R . A: 2nd and As: 2nd, on the reused subspace A
the average empirical instance-agnostic perfor-

and the updated subspace As.

mance, 5 3. 5(s) and ﬁ S 4(s), which
s€A s€A2 A:1st  A:2nd  Asg: st As: 2nd

we denote as A: 2nd and As: 2nd, on the up-
dated training set KCgyy,q11,2. The ERM predictors
FERM

Bin. Pack. 63.1% 289%  68.9% 39.3%

A2 and fffé” set the configuration once Pack. 41.2%  5.8% 44.3% 8.2%
at separation round ny by choosing optimally ~ 1ndep- Set  76.1%  53.9%  77.9%  57.8%
within the subspace A and A for each instance Fac.Loc.  37.7%  7.3%  46.7%  13.1%

in the updated training set Kgpq11,2.

Table[12 displays the relevant statistics on the

four ablations MILP classes. We observe an

overall decrease in both terms when we re-use the subspace A instead of using the updated subspace
Ao, although the difference is relatively small. Notably, in the Packing class, the 15 term of the reused
subspace A is higher than that of the updated subspace As. This is because the filtering criterion for
the updated subspace A, excludes certain configurations that enhance the instance-aware performance
of the ERM predictor, but have low instance-agnostic performance. While these configurations pass
the filtering criterion during the initial update, they are subsequently filtered out when we construct
the updated space A, with a slight sacrifice in instance-aware performance.

We further follow our reported method (L2Sep) to train a second configuration predictor fgf using
neural UCB (Alg. [3) within the updated subspace A,. We denote the updated method as L2Sep+.
The performance results on the four ablation benchmarks are reported in Table

We find that our reported model L2Sep (with a single configuration subspace A) exhibits similar
performance as the updated model L2Sep+ (with the subspace A for the first update and an updated
subspace A for the second update), albeit L2Sep+ performing slightly better. This observation
validates our decision to reuse the subspace A for the second configuration update, as it offers
computational efficiency advantages by reducing the number of MILP solver calls during training (by
avoiding a second invocation of Alg[T). We attribute this outcome to (i) the diversity of configurations
within the subspace A, and (ii) the presence of similar characteristics within a solve for the same
MILP instance. Combined, these factors allow the subspace A constructed during the initial update
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Table 13: Performance (median, mean, interquartile mean, and standard deviation) of our method
where we use the same subspace A for both £ = 2 updates (L2Sep) v.s. we update a new subspace
Aj for the second update (L2Sep+).

Bin. Pack. Pack.
Method Median Mean IQM STD Median Mean IQM STD
L2Sep 423% 33.0% 40.5% 342% 285% 17.7% 252% 39.3%

L2Sep+ 431% 341% 41.1% 349% 297% 19.6% 28.1% 38.5%
(New A)

Indep. Set Fac. Loc.
Median Mean IQM STD Median Mean IQM STD
L2Sep 724% 60.1% 69.8% 27.8% 29.4% 182% 27.5% 39.6%

L2Sep+
(New A)

68.7% 61.8% 67.7% 251% 29.8% 23.0% 28.7% 32.1%

to effectively cover the high-performance configurations across various separation rounds.

We also observe that L2Sep+ with the updated subspace A, demonstrates more significant
improvements in mean performance compared to other metrics. We believe this is also because the
instance-agnostic performance of a small number of configurations in the first subspace A may
degrade during the second update step, resulting in subpar performance on a few outlier instances that
negatively impact the mean (see a similar discussion in Appendix [A.8.1). However, by reconstructing
the second subspace Ay, we effectively eliminate those configurations through the second filtering
pass, thereby enhancing the robustness of subspace As to outlier instances. Hence, the choice to
update the second subspace involves a trade-off between computational efficiency and robustness on
the outlier instances, and ultimately, should be decided based on the characteristics of the specific
real-world application when deploying our method.
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A.8 Detailed Experiment Results

A.8.1 Interquartile mean (IQM) and mean statistics

While we report the median and standard deviation in Table[I and[3]of the main paper, we provide
the mean and interquartile mean (IQM) statistics in the following tables[[4] [I5]and[I6] We observe
that the interquartile mean performance closely aligns with the median performance reported in
the main paper. Meanwhile, the mean improvements are lower than the interquartile mean for all
methods. Upon examining the performance of individual instances, we observe that the performance
degradation comes from a small number of outlier instances with negative time improvement; on
the majority of instances, our learning method is able to achieve significant improvement from SCIP
default. Addressing such outlier instances is left as a future work.

Table 14: Tang et al. The IQM and mean of the absolute solve time of SCIP default and relative time
improvement of different methods across the test set (higher the better, best are bold-faced).

Packing Bin. Packing Max. Cut
Method 1QM Mean 1QM Mean QM Mean
Default Time (s) 9.13s 17.75s 0.096s 0.14s 1.77s 1.80s
N Default 0% 0% 0% 0% 0% 0%
gaeg“erlllsrffs Random 102.5%  -117.9%  -1122% -122.4% -143.8% -131.4%
) Prune 6.4% 1.1% 16.5% 17.0% 43% 12.3%
Ours Ié‘gMAngr‘:;gf’ 17.9%  131%  349%  333%  702%  68.7%
Heuristic Rand i
Variants andom Within 5 o/ 1500, 282%  250%  612%  66.6%
Restr. Subspace
Ours
Learn L2Sep 252% 177%  405% 33.0% 71.8%  68.9%

Table 15: Ecole. The IQM and mean of the absolute solve time of SCIP default and relative time
improvement of different methods across the test set (higher the better, best are bold-faced).

Indep. Set Comb. Auction Fac. Location
Method 1QM Mean 1IQM Mean 1QM Mean
Default Time (s) 17.52s  67.18s 2.81s 4.18s 63.58s 77.90s
o Default 0% 0% 0% 0% 0% 0%
Heuristic
Baselines Random -101.5s  -111.5% -132.0% -129.2% -1253% -128.6%
Prune 14.5% 15.0% 12.2% 14.6% 24.2% 14.3%
Inst. Agnostic
Ou.rs. ERM Cgonﬁg. 57.2% 51.5% 60.9% 56.8% 12.4% 10.9%
Heuristic Rand i
Variants ~ Sancom Wit 5 60, 3000, 5929  564%  17.8%  13.7%
Restr. Subspace
Loe‘:ri L2Sep 698% 601%  659%  622%  21.5%  18.2%
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Table 16: Real-world MILPs. The IQM and mean of the absolute solve time of SCIP default
and relative time improvement of different methods across the test set (higher the better, best are
bold-faced).

NN Verif. MIPLIB Load Balancing
Method IQM Mean 1QM Mean IQM Mean
Default Time (s)  33.48s 36.99s 16.32s 45.50s 32.47s 32.92s
o Default 0% 0% 0% 0% 0% 0%
gaes“erllfrics Random -178.0% -154.6% -161.7% -150.1% -300.1% -229.6%
Prune 30.8% 24.4% 5.2% -30.5% -14.7% -71.1%
Inst. Agnostic
Ours ERM Cgonﬁg. 30.2% 25.0% 3.4% -19.1% 11.2% 12.8%
Heuristic Rand hi
Variants ~ RANCOMWIthIN 99 g0 5610, 113%  314%  100%  8.4%
Restr. Subspace
Ours
L L2Sep 34.8% 29.9% 11.9% -8.0% 21.1% 18.6%
earn

A.8.2 Result contextualization

A previous work by [Paulus et al.| [2022] evaluates their learning-based method for cutting plane
selection on the NN Verfication dataset. As shown in Table 3 of their paper, their best model achieves
a median solve time of 20.89s, whereas the default SCIP solver takes a median solve time of 23.65s,
resulting in a median relative speed up of 11.67%. While the comparison is far from perfect, our
method achieves a higher median relative time improvement of 37.5%. We note that it is reasonable
for their reported absolute solve time to be different from ours due to differences in computational
machines. We also perform a rough comparison to the MIPLIB results reported in|Wang et al.[[2023],
which, same as |Paulus et al.|[2022], learns to select cutting planes. In Table 1 of their paper, they
report SCIP default takes 256.58s and 164.61s on average to solve two small homogenous MIPLIB
subsets, whereas their cutting plane selection method improves the solve time to 248.66s and 162.96s,
leading to a 3% and 1% improvement. Although not a perfect comparison, our L2Sep achieves a
higher median time improvement of 12.9% (and an interquartile mean time improvement of 11.9%)
on our larger heterogeneous subset (See Appendix [A.6.5 for a detailed dataset description).
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Figure 8: Bin Packing Interpretation. (Left / Heatmap) Each row is a separator, and each column
is a configuration in our restricted space. Green and yellow cells indicate activated and deactivated
separators by each configuration, respectively. (Middle / Histogram Left Column) The frequency of
each configuration selected by our learned model at the 15¢ and 2¢ config. update on the original test
set with 66 bins. High frequency configurations are marked with red and orange squares, respectively.
The config. indices in the heatmap and the histograms align. (Right / Histogram Right Column) The
frequency of each configuration selected at the 2"¢ config. update (the 1% update has similar results)
when we gradually decrease the number of bins (bottom: 33 bins; top 16 bins). We observe the
prevalence of FlowCover and Clique decreased and increased, respectively.

A.8.3 Interpretation analysis: L2Sep recovers effective separators from literature

In Fig.[8,[0,[I0, and [IT, we provide visualizations of (1) the restricted configuration subspace A, as
shown in the heatmap plots, and (2) the frequency for each configuration to be selected by L2Sep on
the test set, as shown in the histogram plots, for all MILP classes that we study. As described in the
main paper, for Bin Packing, Independent Set, and MIPLIB, the visualization provides meaningful
interpretations that recover known facts from the mathematical programming literature.

Besides the known results, we also observe some intriguing unexpected scenarios from the visu-
alizations. For Independent Set, L2Sep deactivates all separators with a frequency of 20% at the
274 configuration update, whereas all selected configurations at the 1¢ update activate a substantial
amount of separators. It is an interesting question to investigate why it is better to deactivate all
separators for a certain subset of Independent Set instances at later separation rounds.

For Maximum Cut, OddCycle Boros et al. [[1992], Jiinger and Mallach|[2021] and ZeroHalf |(Caprara
and Fischetti [[1996] are known to be effective in the literature. Interestingly, none of the selected
configurations activate ZeroHalf for both configuration updates; OddCycle is also completely deacti-
vated for the 15 update, but is activated with a frequency of 14% at the 2" update. Meanwhile, we
observe that Disjunctive, FlowCover, and Aggregation separators are more frequently selected.

We hope that by providing the visualization results, L2Sep can serve as a driver of future works
on improved (theoretical) polyhedral understanding of different MILP classes, and potentially seed
investigations (empirical and theoretical) for nonstandard, newly-proposed problems (e.g. NN
Verification) where few analyses exists.
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Table 17: Alternative objective (relative gap improvement). Absolute gap of SCIP default under
the fixed time limit, and the mean (lower the better, best are bold-faced) and standard deviation of the
relative gap improvement of different methods with respect to SCIP default.

Methods Pack. Comb. Auc. Indep. Set NNV Load Balancing
Time Limit (s) 4.4s 1.4s 8.2s 16s 16s
Default G 9.1e-4 0.060 0.057 0.50 0.32
crawithap (9 3¢-4) (0.098) (0.059) (0.80) (0.13)
o Ds<f:1P1 0% 0% 0% 0% 0%
Heuristic etault
Baselines Rand -37.1% -27.3% -23.2% -40.3% -48.0%
andom 417%)  (69.1%) (44.1%)  (72.8%) (35.8%)
Ours Inst. Agnostic 11.9% 52.4% 23.5% 33.6% 14.0%
Heuristic Configuration (38.4%) (45.3%) (34.5%) (72.1%) (18.9%)
Variants Random within 10.1% 54.1% 21.6% 24.8% 9.5%
Rest. Subspace  (42.5%)  (45.1%) (33.7%)  (75.9%) (17.6%)
Ours L2S 15.4% 68.8% 29.6 % 36.0% 34.2%
Learned P (40.0%) (38.2%) (34.7%) (68.2%) (27.5%)
v 210 Independent Set ©-10 NN Verification
% —— Primal (L2Sep) % i
> =215 Dual (L2Sep) >-11
e  __ T Primal (SCIP default) | 2
3 200 Dual (SCIP default) 3 -12
e —225 S L 2-13
8-230 5 -14 T T ey,
© — © _qe///"" e Primal (SCIP default)
£ 2 ; £ BE Dual (SCIP default)t
& —24075 0 20 30 40 7% 10 20 30 40 50 60 70
Time (s) Time (s)

Figure 12: Primal-dual bound curves (median and standard error) for L2Sep and SCIP default on
Independent Set and NN Verification. L2Sep can effectively tighten the dual bound faster.

A.8.4 The immediate and multi-step effect of separator configuration in the B&C process

Intelligently configuring separators have both immediate and multi-step effects in the B&C process:

Immediate: Some separators take a long time to run, but generate mostly low-quality cuts that are
ultimately never selected by the downstream cut selector. Deactivating those separators leads to an
immediate time improvement by reducing the time to generate the cut pool.

Multi-step: Improved separator configuration can tighten the dual bound faster through better-
selected cuts; it may also accelerate other B&C components such as branching (e.g. strong branching
requires solving many children LPs and hence may benefit from tighter dual bounds).

The Table 8] presents the total solve time and total separator execution time for our complete method
L2Sep and SCIP default on several MILP classes. We report the median and standard deviation
evaluated on 100 instances for each class. L2Sep significantly reduces the total separator execution
time. Upon closer examination, we find that L2Sep adeptly deactivates expensive yet ineffective
separators while activating effective ones.

In Fig.[I2, we plot the primal-dual bound curves (median and standard error) of L2Sep and SCIP
default on Independent Set and NN Verification. The significantly faster dual bound convergence of
L2Sep demonstrates the multi-step effect of improved separator configurations. We further summarize
the synergistic interaction effects between separator selection and other B&C components (branching,
dual LP) in Table[T9] Notably, even though our method does not modify branching, the branching
solve time is reduced.
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Table 18: Immediate Effect of Separator Configuration. The median (lower the better) and
standard deviation (in parentheses) of the total solve time and total separator execution time for
L2Sep and SCIP default.

Total Separator
Execution Time

Total Separator

Total Solve Time Execution Time

Total Solve Time

(L2Sep) (L2Sep) (SCIP Default) (SCIP Default)
Comb. Auc. 0.65s 0.02s 3.01s 1.39s
(2.36s) (0.054s) (4.60s) (1.14s)
Indep. Set 3.81s 0.35s 13.16s 7.38s
(116.42s) (9.94s) (120.89s) (37.94)
NNV 20.75s 0.16s 34.76s 6.58s
(18.56s) (0.13s) (25.05s) (8.05s)

Table 19: Multi-Step Effect of Separator Configuration. The median (lower the better) and
standard deviation (in parentheses) of strong branching time, pseudocost branching time, and dual LP
time for L2Sep and SCIP Default.

Comb. Auc. Indep. Set NNV
L2Sep SCIP Default L2Sep  SCIP Default L2Sep SCIP Default
Strong 0.31s 0.41s 2.82s 3.92s 6.56s 8.31s
Branching Time (1.15s) (1.79s) (21.44s) (19.68s) (4.06s) (5.55s)
Pseudocost 0.35s 0.45s 3.01s 4.6s 8.18s 9.69s
Branching Time (1.46s) (2.17s) (22.29s) (21.67s) (4.81s) (6.13s)
0.08s 0.18s 0.3s 1.14s 3.67s 5.07s

Dual LPTime ¢ sg0,  (083s)  (73.95s)  (5551s)  (6.52s)  (5.81s)

A.8.5 Alternative objective: relative gap improvement

We analyzed an alternative objective of the relative gap improvement under a fixed time limit.
Let go(z) and g.(z) be the primal-dual gaps of instance x using the SCIP default and another
configuration strategy 7 (x) under a fixed time limit 7. We define the relative gap improvement as
dg(m(x), ) == (go(x) — g=())/(max{go(z), gr(x)} + €). We choose the denominator to avoid
division by zero when the instance is solved to optimality.

As seen from Table[T7, L2Sep achieves a 15%-68% relative gap improvement over SCIP default.
Specifically, the table presents the relative gap improvement (mean and standard deviation) of each
method over SCIP default, along with the fixed time limit for various MILP classes (mostly around
50% of medium SCIP default solve time), and the absolute gap of SCIP default at the time limit. In
Fig.[13] we further plot histograms of the gap distribution on the entire dataset for L2Sep and SCIP
default, where we observe that L2Sep effectively shifts the entire gap distribution to a lower range.
These results demonstrate the effectiveness of our method across different objectives, and its ability
to improve primal-dual gaps for instances that cannot be solved to optimality within the time limit.

Load Balancing Combinatorial Auction
L2Sep 0.7 L2Sep
020 SCIP default | 0.6 SCIP default
0.5
Zo.15 g
g go4
gO.lO' 50_3
. )
0.051 01
0.00 ‘ ‘ \ ol
’ 0.0 0.2 0.4 0.6 0.8 1.0 0.000.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Primal-dual Gap Primal-dual Gap

Figure 13: Distributions of absolute primal-dual gaps of L2Sep and SCIP default on Load Balancing
and Combinatorial Auction. L2Sep is effective under an alternative objective (relative gap improve-
ment).
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A.9 Limitation.

While SCIP default does not require training as it sets pre-defined priorities and frequencies of
separators (the same for all MILP instances), our learning method requires collecting data and fitting
models for each MILP class, which introduces a time overhead. However, such a limitation is inherent
in all learning for MILP methods Tang et al.|[2020], Paulus et al.|[2022], Wang et al.| [2023]], (Gasse
et al.| [2019], as learning methods rely on training models to generalize to unseen test instances.
Following these previous works, we train separate models for different MILP classes, although our
L2Sep method exhibits a significant time improvement on the heterogeneous MIPLIB dataset, which
suggests the possibility of learning an aggregated model for multiple MILP classes to potentially
reduce training time. We leave this as a future work.

In the ablation Sec.[6.2 of the main paper, we observe that learning & = 3 configuration updates offers
limited improvement from our L2Sep method with k£ = 2 updates. While it is beneficial to achieve a
significant time improvement with a small number of updates as it simplifies the learning task and
reduces training time, the optimal policy for finer-grained control should theoretically yield better
performance (smaller approximation error to the optimal policy that allows updates at all separation
rounds). Potential future research would involve exploring the learning of more frequent configuration
updates, possibly by considering advanced reinforcement or imitation learning algorithms.

Another potential limitation of our learning method (as well as all baseline methods mentioned in the
main paper) is that the mean performance tends to be lower than the interquartile mean or median
due to the long solve time on a small set of outlier instances which skew the mean. A potential future
research direction would involve developing techniques to identify these outlier instances, on which
we use SCIP default instead of configuring with learning or heuristics methods.

A.10 Negative Social Impact.

Application of deep learning in discrete optimization may contribute to increased use of computation
for training the models, which would have energy consumption and carbon emissions implications.
The characterization and mitigation of these impacts remain an important area of study.
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