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Abstract— This paper studies robotic manipulation of de-
formable, one-dimensional objects (DOOs) like ropes or cables,
which has important potential applications in manufacturing,
agriculture, and surgery. In such environments, the task may
involve threading through or avoiding becoming tangled with
other objects. Grasping with multiple grippers can create closed
loops between the robot and DOO, and if an obstacle lies within
this loop, it may be impossible to reach the goal. However, prior
work has only considered the topology of the DOO in isolation,
ignoring the arms that are manipulating it. Searching over
possible grasps to accomplish the task without considering such
topological information is very inefficient, as many grasps will
not lead to progress on the task due to topological constraints.
Therefore, we propose the GL-signature which categorizes the
topology of these grasp loops and show how it can be used
to guide planning. We perform experiments in simulation on
two DOO manipulation tasks to show that using the GL-
signature is faster and more successful than methods that rely
on local geometry or additional finite-horizon planning. Finally,
we demonstrate using the GL-signature in a real-world dual-
arm cable manipulation task.

I. INTRODUCTION

Manipulation planning for deformable one-dimensional
objects (DOOs) like ropes and cables is challenging due
to the high-dimensional state representation of these objects
and the cost of simulating their motion. Furthermore, most
tasks benefit from multiple arms to control DOO shape and
avoid becoming tangled with the environment. Therefore, the
planner needs to consider the DOO, the arms manipulating
it, and the environment. A task and motion planning (TAMP)
approach to this problem would decompose planning into a
grasp selection problem and a motion planning problem for
the DOO given a specific grasp, as in [1]–[3]. However, the
DOO planning problems are often expensive to solve. To
reduce the space of grasps we need to search, we borrow the
idea of a signature from the field of topology.

To explain what this signature represents, consider how
the robot should grasp the tip of the cable in Figure 1. By
grasping we form a loop, which we call a grasp loop and
show as blue and red dashed lines in Figure 1. It is possible
to grasp either around the left side or the right side of the
frame, but these two grasps are categorically different in that
we cannot smoothly deform from one to the other without
breaking the grasp or the frame. The frame also forms a
loop, called an obstacle loop (S1). When grasping from the
left (red), these two loops are linked, but when grasping from

This work was supported in part by Toyota Research Institute, the Office
of Naval Research Grant N00014-21-1-2118, and NSF grants IIS-1750489,
IIS-2113401, and IIS-2220876.1Department of Robotics, University of
Michigan

Fig. 1: Annotated image of our real world cable threading
setup. The red dashed line shows a grasp loop τ1 that is
linked with the skeleton S1. The blue grasp loop is not linked
with S1. This distinction is captured by the proposed GL-
signature and is used in planning.

the right (blue) they are not. Our key insight is that the robot,
DOO, and environment form a graph of grasp loops and
we can use this graph to construct a signature, GL-signature,
which captures topological information relevant for planning.
To be clear, we do not address knots in the DOO. Our work
is complimentary to work on tying or untying knots [4]–[7].

The main contribution of this paper is the GL-signature
which compactly represents the topological relationship be-
tween the object, the arms manipulating it, and the environ-
ment. We demonstrate that this signature is useful for ma-
nipulation planning with DOOs. In simulation, we show that
methods using the GL-signature outperform baselines and
ablations which search for grasps without using topological
information. Finally, we demonstrate a threading and point
reaching task on a physical robot. Videos and animations can
be found on our Project Website1.

II. RELATED WORK

Topology in Motion Planning: Topology and homotopy
have been used in path planning for flying and driving robots
[8], [9], as well as tethered robots [10]. [10] operates only
in 2D and [11] considers an approximation of homotopy for
3D path planning. [8] introduces a simple-to-compute and
exact signature for characterizing the homotopy of 3D paths
with respect to 3D obstacles with holes in them, called the
h-signature. We build on [8] to define our GL-signature.

Manipulation Planning for Deformable Objects: Prior
work on knot tying and untying has also applied knot theory
to DOO manipulation [4]–[7], [12]–[14]. These methods
use planar crossing representations, which project a curve

1https://sites.google.com/view/doo-manipulation-signature/home

ar
X

iv
:2

40
3.

01
61

1v
1 

 [c
s.R

O
]  

3 
M

ar
 2

02
4

https://sites.google.com/view/doo-manipulation-signature/home


h(τ, S) = 0 h(τ2, S) = [1, 0]
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Fig. 2: (A) Illustration of the h-signature for a loop represent-
ing the robot and DOO (red/blue) and a loop representing an
obstacle (black). (B) Two examples of the h-signature for a
skeleton with two obstacle loops S1 and S2.

into a specified plane and count the sequence and type
of crossings. [5] used this method for robotic knot tying,
and extended this to tying around obstacles by specifying
connections between obstacles and the DOO. However, these
methods do not consider how the manipulator effects the
topology, and fail in some cases with non-planar obstacles.
A method for threading surgical needles was proposed in
[15], but uses floating grippers and does not address planning
for the robots’ arms or obstacles, and is limited to tight-
tolerance insertion tasks. [16]–[20] all address manipulation
planning for DOOs assuming the grasp is fixed, which is
complementary to this work.

Grasping and Regrasping: With rigid grasping, the chal-
lenge is primarily in achieving a stable grasp [21], [22]. With
deformables, the challenge is where to grasp, as studied in
cloth smoothing or folding [23]–[25]. These works use pick-
and-place primitives with a single manipulator, which is too
restrictive for many tasks. In contrast, we use a dual-arm
manipulator and use joint velocities as our action space.
In [26], a dual arm manipulator autonomously dresses a
mannequin. Their method for grasp planning is based on
learned visual models of the garment, and only considers
grasps near keypoints such as the elbow or shoulder. The
methods in [1]–[3] plan grasps on the DOO, but they assume
the rope is planar (flat on a table), use one manipulator, and
do not consider obstacles for the manipulator. [27] describes
a method that produces pick, place, and sliding paths in the
configuration space without explicit task planning. However,
this method does not address underactuated kinodynamic
systems such as DOOs.

III. DEFINING THE GL-SIGNATURE

A. Preliminaries

We primarily use notation that is consistent with [8].
We call a closed one-dimensional curve in 3D a loop. The
environment is assumed to be decomposed into a skeleton
made up of multiple obstacle loops S = {S1, . . . , Sn}. Each
obstacle loop is made up of line segments Si = {s1i , . . . , sni

i }.
In practice, the skeleton can either be specified manually or
computed automatically from a medial axis transform of a
mesh or pointcloud of the environment. The state s = (q, o)
contains the robot state q (joint angles) and the DOO state
o (ordered list of points in R3).

[8] plans paths that are in a given homotopy class or
avoid a certain homotopy class. They compare two paths by
considering the homotopy class of the closed loop τ formed
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Fig. 3: The process of constructing the GL-signature. (C)
There are 2 grasp loops and 3 object loops, so the GL-
signature is a set with two elements, and each element is
a vector of 3 non-negative integers.

by joining the two paths at their shared start and end points.
For a path loop τ and an obstacle loop S , they define the h-
signature h(τ,S ) ∈ Z, which counts the number of times τ
passes through S . The sign of h in this case is determined by
the direction of τ . The h-signature can be extended to a list
of the h-signatures with respect to each obstacle loop in the
skeleton h(τ, S)) = [h(τ,S1), . . . , h(τ,Sn)]. These cases are
illustrated in Figure 2. The equation for computing h(τ,S )

is reproduced from [8]. The point sj
′

i is the point that follows
sji , and r is a point on the loop τ . The integration over τ is
done numerically.

h(τ,S ) =
1

4π

∫
τ

ni∑
j=1

Φ(sji , sj
′

i , r)∆r

Φ(sji , sj
′

i , r) =
1

||d||2
(d× p′

||p′||
− d× p

||p||

)
p = sji − r, p′ = sj

′

i , d =
(sj

′

i − sji )× (p× p′)

||sj′i − sji ||2

(1)

We take this idea but apply it to grasp loops, instead
of paths. Unlike in path planning, where the direction of
τ matters, we only care how or whether loops are linked.
Accordingly, we assert that h is always non-negative.

B. Computing the GL-signature

The GL-signature is composed of the h-signatures h(τ, S)
of grasp loops τ formed by the robot and DOO. The grasp
loops are constructed based on a graphical model of the
state where vertices are the robot base, its grippers, and
attach points, and edges are paths between them. Attach
points are used to represent locations on the DOO which
are fixed relative to the robot (e.g. plugged into the wall
or tethered to the robot itself). Figure 3 illustrates how
the graph construction step works. The robot base vertex
is connected to all gripper and attach vertices because it
connects to the grippers directly (via the robot geometry)
and the attach points indirectly (via the environment). Edges
connect grippers/attach points to one another if they are
adjacent on the DOO. In Figure 3, the vertices (g1, g2) are
adjacent, as are (g2, a1), but (g1, a1) are not.

From this graph, we extract all cycles of 3 vertices which
contain a gripper, and convert each cycle to a grasp loop
τ . We consider only length-3 cycles containing a gripper in
our signature because these contain the relevant information
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Fig. 4: Example scenes and their GL values. The dashed blue
and red lines are grasp loops, and the solid black lines are
obstacle loops. (B.3) The blue grasp loop is omitted from the
signature, as described in Section III-B. The purple sphere
shows the goal region.

for planning how to manipulate the DOO. Including longer
cycles would add redundant information. Likewise, cycles
not containing a gripper are omitted for compactness, since
we assume that attach points cannot be changed by the
planner. To make a grasp loop from a cycle, we concatenate
the 3D paths represented by the cycles’ edges. This requires
a skeletonized representation of the robot geometry, which
can be constructed from the kinematic tree and the origins
of the links, as well as the points representing the DOO. A
path between the robot base and an attach point ((b, a1) in
Figure 3) can be chosen arbitrarily, as long as it is the same
for all states.

For each grasp loop τi, we compute the associated h-
signature h(τi, S). The GL-signature of the state, denoted
GL(s), is the multiset of the h-signatures of each grasp loop.
In a multiset the order does not matter, but elements may
repeat. The number of repetitions of an element is called its
multiplicity. Two multisets are equivalent if their elements
and multiplicities are equal. Preserving repetitions in the GL-
signature allows us to represent multiple grasp loops that go
through the same obstacle loop.

This may result in a grasp loop τ containing two grippers
for which h(τ, S) = 0 (i.e. not linked S). The blue dashed
grasp loop shown in Figure 4 B.3 shows this. Releasing
one of the grippers does not categorically change what we
can do with the object, and neither would grasping with
an additional gripper right next to two already grasping.
Therefore, if there is a cycle with h(τ, S) = 0 containing

two grippers, one of the grippers is removed from the graph
and the process restarts from the cycle extraction step.

C. Computational Complexity

The complexity of computing the GL-signature can be
written in Big-O notation based on the number of skeletons
ns, line segments in the skeleton ls, arms and/or attach points
na, and the length of the arms and/or DOO la. Due to the
rules of construction defined above, in the worst case where
all arms are grasping, the graph of grasps loops is a fan
graph (F1,na

) [28]. In the base case of na = 2, the graph
has 3 vertices and one cycle of length 3. Adding another
vertex adds one cycle, so in the worst case na arms/attach
points create na − 1 loops. Each cycle (loop) is compared
with each skeleton, and the number of comparisons scales
linearly with both the number of line segments and the length
of the loop, giving a total complexity of O

(
(na− 1)nslsla

)
.

Our Python implementation, using the NetworkX library [29]
for computing the GL-signature for a state, takes ≤10ms in
the Untangling and Threading environments.

IV. DOO MANIPULATION WITH GL-SIGNATURE

A. Problem Statement

In this section, we define the DOO manipulation problem
which our proposed planning method addresses. In our
experiments, the robot has two 7-dof arms attached to a 2-dof
torso with parallel-jaw grippers, but the GL-signature can be
applied to other robot morphologies. We assume we have a
complete geometric model and skeleton of the environment.
When manipulating with the current grasp, the action space is
joint velocities q̇. We describe points on the DOO primarily
by their location l ∈ [0, 1], where l = 0 is one end of the
DOO and l = 1 is the other. Each location also corresponds
to a point p(l) ∈ R3. Grasps are represented by a vector
of locations l = [l1, l2], one for each gripper. A set of grasp
locations l must also be paired with a collision-free motion of
the robot to the new grasp locations, which may be reachable
by many distinct joint configurations.

The goal of the manipulation is to bring a keypoint lk
on the DOO to a goal region with position pgoal and radius
dgoal. This is a useful skill for plugging in cables, or for
using tools with an attached cable or hose, and more complex
tasks like cable harnessing can be described as a sequence of
these point reaching goals. Additionally, one can specify a
desired GL-signature for the goal GLgoal. This type of DOO
manipulation is complementary to tying or untying knots,
which has been addressed in prior work [5]–[7].

B. DOO Point Reaching Method

Algorithm 1 describes our method for point reaching tasks.
This algorithm serves to demonstrate the utility of the GL-
signature in planning. It uses cost functions that are designed
for our robot and our scenarios, and these functions may
need to be modified for other applications. Given the current
grasp, we use MPPI [30] to find an action q̇ that minimizes
the goal cost Cgoal, shown in Eq. (2). MPPI runs until the
goal is reached or progress stops. If progress stops, we plan



Algorithm 1 DOO Point Reaching with the GL-signature

1: procedure POINTREACHING(s, nx, lk, pgoal, dgoal)
2: for i < imax do
3: q̇ =MPPI(s, pgoal, Cgoal)
4: s = f(q̇) ▷ Execute and get state
5: if ||pgoal − p(lk)|| < dgoal then
6: break
7: if trapped then
8: d0 = min(|l0 − lk|) ▷ Initial geodesic
9: l∗ = PlanGrasp(s, nx, Cgrasp, lk,B)

10: d∗ = min(|l∗ − lk|)
11: if d∗ ≥ d0 then ▷ Unable to grasp closer
12: Add GL(s) to B
13: l∗ = PlanGrasp(s, nx, Cgrasp, lk,B)
14: ExecuteGraspChange(l∗)

and execute a grasp change, and resume running MPPI. This
process is repeated until the goal is reached (trial success)
or for imax iterations (trial failure). For both MPPI and grasp
planning, we model the dynamics of the robot, rope, and
obstacles in MuJoCo [31].

The method for determining if MPPI is trapped, called
trap detection, is adapted from [32]. Trap detection operates
on a window of recent joint configurations q1, . . . , qT , and
computes the average one-step state difference q̄ = qT−q1

T
and keeps a running maximum of this value q̄+ over the
trial. MPPI is considered trapped when the ratio q̄

q̄+ is below
a threshold (0.2-0.3 in our experiments).

The goal cost used for MPPI is shown in Equation (2),
where the state s is used to compute the grasp locations l,
grasping state 1g , keypoint position p(lk), grasp positions
p(l), and number of contacts ncon.

Cgoal(s, q̇) = ||p(lk)− pgoal||+ α1

na∑
i=1

1g,i||p(li)− pgoal||+

α2
√
ncon + α3||q̇||

(2)

The first term in Eq. 2 brings the keypoint p(lk) towards
the goal pgoal. The second term provides a reward for moving
any grippers which are grasping towards the goal. na is the
number of arms, 1g is a binary vector (1g,i ∈ 1g) indicating
which grippers are grasping, and li ∈ l are the current grasp
locations. This term is useful when the DOO is slack and
the keypoint cannot be pulled directly (See Figure 4 C).
The third term penalizes collision between the robot and
environment, based on the number of contacts ncon reported
by the dynamics. Finally, the fourth term penalizes high joint
velocities to encourage smooth motion. The hyperparameters
α1,2,3 were selected to prioritize collision avoidance first,
then bringing the keypoint to the goal.

In PlanGrasp we sample nx grasps (≈50) and choose the
best one. Grasps are sampled by first choosing a strategy
for each gripper. The possible strategies are STAY, GRASP,
MOVE, or RELEASE. STAY means the gripper does not
change its grasp, or remains not grasping. GRASP means

the gripper is not grasping and should create a new grasp.
MOVE means the gripper is currently grasping, but should
move to a new grasp location. RELEASE means the gripper
is currently grasping and should release. For the GRASP or
MOVE strategies, we sample a location l ∈ [0, 1]. At least
one gripper must be grasping. For each candidate grasp,
we simulate release and grasp dynamics using MuJoCo.
Modeling grasping using friction and caging is challenging,
so we instead use equality constraints between the rope and
the grippers that are grasping. MoveIt [33] is used to find
collision-free paths to move the grippers to desired grasp
locations. The result is a candidate state s and collision free
trajectory for each candidate grasp. We choose the grasp with
the lowest cost according to Eq. 3. With abuse of notation,
we say the candidate state s, change in state ∆s, and grasp
state 1g are derived from the candidate grasp locations l.

Cgrasp(l) = 1feasible + 1B(s) + 1GL
(s,GLgoal)+

1g · |l− lk|+ β1∆s
(3)

The first term in Eq 3 assigns a large penalty (e.g. 100)
if no collision-free path to the grasp was found. The next
two terms assign a large penalty based on the GL-signature
of candidate state, either for matching a blocklisted signa-
ture (second term) or for not matching the goal signature
(third term). The fourth term encourages grasping near the
keypoint, based on the geodesic distance for any grasping
grippers. The final term penalizes the change in robot and
DOO state. This results in shorter and faster grasps and is
weighted by β1 to be the least important term. The large
penalties dominate the keypoint and state-change terms.

We use a blocklist of GL-signature’s to avoid retrying
topological configurations in which we have failed to reach
the goal. Specifically, we blocklist the current GL-signature
if the planner cannot find a grasp with lower geodesic cost
(4th term in Eq (3)) than the current grasp (Alg 1 lines 8-12).
In other words, we do not blocklist if it is possible to grasp
closer to the keypoint. This avoids blocklisting the current
GL-signature in the case that progress halts, not because of
topological constraints, but because the grasp is too far away
from the keypoint to control it. This is inspired by the idea
of diminishing rigidity [34], which says that the control over
a point on a deformable object decreases as the geodesic
distance to the gripper increases. In the case of multiple
grippers, the initial grasp locations l0 or new grasp locations
l∗ may be a list of locations, in which case we use the min
when computing the geodesic distance.

V. APPLICATIONS

We now describe how the above framework can be applied
or adapted to DOO manipulation in three different environ-
ments, Pulling, Untangling, and Threading. We use a horizon
of H = 15 in MPPI.

A. Pulling Environment

The Pulling environment contains a large hose attached
to a wall. The scene is depicted in Figure 4 C. The robot
is initially not grasping the hose, and the head of the hose



Method Success Wall Time (m) Sim Time (m)
GL-signature (ours) 22/25 12 (5) 1.4 (1.1)

Always Blocklist 22/25 14 (7) 1.3 (1.0)
No GL-signature 10/25 20 (10) 2.0 (1.3)

TAMP50 15/25 142 (116) 2.4 (1.7)
TAMP5 9/25 34 (22) 1.8 (1.2)

TABLE I: Results in the Untangle environment. Times in
minutes are for the completion of the task, where Sim Time
does not include planning time. Standard deviations are given
in parentheses.

is out of the robot’s reach. The goal region, shown as a
purple sphere, is near the base of the robot on the floor.
This environment requires regrasping to bring the head of
the hose to the goal, and demonstrates the behavior of the
general method in the case where there are no skeletons, and
no changes in the GL-signature.

When applying Alg 1 in this environment, the robot
initially chooses a grasp as far down the DOO as it can
reach, due to the geodesic cost term in Equation 3. Then,
the gripper pulls towards the goal due to the second term
in the MPPI cost (2). This brings more of the DOO within
reach. When the gripper reaches the goal, the cost cannot be
decreased and the controller slows to a stop. At this point,
trap detection triggers regrasp planning. Since the DOO is
now closer, a plan is found that reaches closer to the tip
(lk = 1) than before. Because the grasp is closer to the tip,
the current GL-signature is not blocklisted. This repeats until
the grasp is close enough to the tip that it can be brought
to the goal region. In the Pulling environment, our method
succeeded in 25/25 trials, where each trial differs in the initial
DOO configuration and the random seed used for sampling
in planning.

B. Untangling Environment

The Untangle environment resembles a computer rack with
a cable that needs to be plugged in. The scene is depicted in
Figure 4 A. One end of the DOO is fixed to the environment
(e.g. plugged in elsewhere), and the robot is initially grasping
some other location on the DOO. The robot often needs to
regrasp several times in order to reach the goal. Unlike in
the Pulling environment, the GL-signature can take on many
different values depending on the configuration of the DOO
and the grasp configuration. This demonstrates the utility
of the GL-signature in planning when there is no goal GL-
signature.

We evaluate Alg 1 on this task, and compare to an ablation
that omits the two terms using the GL-signature from Eq
3. We call this method No GL-signature. This often results
in greedy re-grasping of the keypoint. We also evaluate
a version called Always Blocklist, where we blocklist the
current GL-signature every time a trap is detected. Finally, we
compare our proposed method to a method inspired by task
and motion planning (TAMP), where H additional steps of
MPPI are simulated for each candidate grasp during planning
and the final goal cost is used in place of cost terms relying
on the GL-signature. We test two versions of this method
with H = 5 and H = 50. Success rates and trial times are
shown in Table I. Trials vary in the initial configuration of

Algorithm 2 DOO Threading with the GL-signature

1: procedure THREADING(s, pgoal, nx,GL1, . . . ,GLN )
2: j = 1 ▷ Threading subgoal index
3: for i < imax do
4: if j < N then ▷ threading subgoals
5: q̇ =MPPI(s,GLj , Cgoal)
6: s = f(q̇) ▷ Execute and get state
7: if disc penetrated then
8: l∗ = PlanGrasp(s, nx, Cgrasp, 1,B)
9: if GL(l

∗) == GLj then
10: ExecuteGraspChange(l∗)
11: if trapped then
12: l∗ = PlanGrasp(s, nx, Cgrasp, l − 0.05,B)
13: ExecuteGraspChange(l∗)
14: if GL(s) == GLj then
15: j = j + 1 ▷ next subgoal
16: else ▷ final point reaching
17: q̇ =MPPI(s, pgoal, Cgoal)
18: s = f(q̇) ▷ Execute and get state
19: if pgoal − p(lk) < dgoal then
20: break

the robot, grasp location, DOO configuration, in the size of
the computer rack, and in the location of the goal.

Methods using the GL-signature have the highest success
rates and are faster than alternatives. Always Blocklist has
an equivalent success rate as the full proposed method, but
prematurely abandons grasps that would lead to reaching
the goal. Our method and the Always Blocklist method each
failed in 3 trials by trying too many unsuccessful grasps
before imax was reached. The No GL-signature ablation
and both TAMP methods usually fail by greedily trying to
grasp the keypoint. Without a very long horizon or the GL-
signature, the planner often grasps with configurations that
make reaching the goal impossible. The longer horizon used
in H = 50 helps alleviate this issue but is insufficient in
many cases while also causing a 10x increase in planning
time.

C. Threading Environment

In the Threading environment, the objective is for the
robot to thread the DOO through a series of fixtures in a
specified order (e.g. “fixture 1, then fixture 2, then fixture
3”), after which it should bring the keypoint to a goal region.
The threading is described by a series of goal signatures
GL1, . . . ,GLN . This skill could be applied to installing cable
harnesses in a car or electrical wiring in a building. One
end of the DOO is fixed to the environment, and the robot
is initially grasping some other location on the DOO. This
environment is depicted in Figure 4 B.

The method is detailed in Alg 2, and key differences to
Alg 1 are highlighted in green. In MPC, the GL-signature is
used in the same way as in Alg 1, but the goal cost has been
changed to match the new task. Additionally, we use the
GL-signature to ensure certain goal signatures at each stage
of threading. To reach a threading subgoal, we augment the



Method Success Wall Time (m) Sim Time (m)
GL-signature 42/50 8 (2) 1.3 (0.4)

TAMP5 21/50 17 (3) 1.3 (0.6)
Wang et al. [15] 12/50 8 (3) 1.0 (0.8)

TABLE II: Results on the Threading task.

goal cost (Eq (2)) with the magnetic-field cost proposed in
[15]. This uses the formula

∑ni

j=1 Φ(s
j
i , sj

′

i , r) from Equation
(1) for the direction of the magnetic field, but where r is
the keypoint of the DOO. This causes the keypoint to follow
virtual magnetic field lines through the fixture in the specified
direction.

When a threading subgoal is reached, and the planner
returns a grasp which does not match GLgoal, we reject it
and continue running MPPI to push the cable further through
the fixture. This happens when there is no feasible grasp
matching GLgoal due to obstacles or reachability issues. Fur-
thermore, we also check GLgoal after executing the grasp to
ensure that any deviations that occurred when executing the
grasp plan do not change the GL-signature. To check when
a threading subgoal is reached, we use the disc penetration
check from [15]. The goal signatures GL1, . . . ,GLN are used
in the grasp planning (3rd term in Eq (3)), but the blocklist
is not (2nd term). Grasp sampling is restricted to alternating
single-gripper grasps, which speeds up grasp planning. The
keypoint location for grasp planning is also restricted to
speed up planning. It is chosen to be the tip (lk = 1) when
a threading subgoal is reached, and further down the DOO
than the current grasp when stuck (lk = l − 0.05).

We compare our proposed method to the TAMP5 method
described previously. In this environment, the TAMP method
often chooses grasps that correctly thread through fixtures
1 and 2, because those grasps allow immediate progress
towards the next subgoal. However, it often grasps incorrectly
on fixture 3, which requires the robot to first reach further
around and results in less immediate progress towards the
next subgoal. We also adapted the method in [15] from a
single floating gripper to our dual arm robot. As in our
method, we use alternating single-gripper grasps. Instead of
the more general trap detection method we use, this baseline
checks the distance between the gripper and the fixture being
threaded. This baseline fails similarly to the TAMP5 method,
but additionally fails when MPPI is trapped but is outside the
distance-to-fixture threshold. Success rates and trial times are
shown in Table II. Trials vary in the initial configuration
of the robot, grasp location, DOO configuration, and in
the positions of the fixtures. In the trials in which our
method failed to complete the task, MPPI reached a joint
configuration with one arm that prevented the other arm
from grasping the DOO at or near the tip, as required by
our method. This means the robot remained stuck until imax

was reached.

D. Real World Threading

We demonstrate a simplified version of the Threading task
in the real world, as depicted in Figure 1. This shows the
applicability of the proposed methods in the presence of
significant calibration, perception, and dynamics modeling

GL = {[1]} GL = {[0]}

Lifting A Box

Drones Transporting Agricultural Tubing

GL = {[0],[0]} GL = {[0]} GL = {[0],[1]}

A.1 A.2
A.3

B.1
B.2

Fig. 5: Additional examples where the GL-signature may
be useful. (A) Drones lifting a large object can be treated
similarly to a multi-armed robot. (B) Dual-arm grasping of
large rigid objects can result in distinct signatures.

errors. We use CDCPD2 [35] to track the DOO and visual
servoing from in-hand cameras to guide grasping. The envi-
ronment geometry is specified manually, and the simulation
dynamics were tuned to match the real world setup as closely
as possible for the particular setup.

VI. DISCUSSION

The planning methods described above are somewhat
specific to their respective tasks, and the tasks represent a
small subset of the domain of rope and cable manipulation.
However, the GL-signature may be useful for other planning
methods and other tasks, as shown in Figure 5. In both of
these examples, we can compute the GL-signature and see
that it categorizes different states in ways that may be useful
for planning.

We use the GL-signature as part of the cost function in
sampling-based MPC, but it could also be used as a con-
straint in RRT or A* planners (similar to [8]). Additionally,
while the signature is composed of integers when all grasp
and obstacle loops are closed, for incomplete loops they
take on real values and have gradients which may be used
in gradient-based planning methods. The GL-signature could
also be used to constrain the topology of shape completion
or scene reconstruction. For example, to ensure that when
reconstructing the shape of a hook, it does not form a closed
loop that would trap the robot arm or DOO.

VII. CONCLUSION

In this paper, we proposed the GL-signature which de-
scribes the topology of closed loops formed by grasping
the DOO with respect to closed loops formed by station-
ary objects in the environment. Our GL-signature builds
on the h-signature proposed in prior work on topological
path planning. Furthermore, we describe an algorithm for
manipulating DOOs that plans grasps based on the proposed
GL-signature. In our experiments, we find that using the GL-
signature improves task success and reduces planning times
compared to a task and motion-planning method. Finally, we
use the method to thread a cable and bring it to a goal region
on a real robot.
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