
Improving Out-of-Distribution Generalization of Learned Dynamics by
Learning Pseudometrics and Constraint Manifolds

Yating Lin1, Glen Chou2, and Dmitry Berenson1

Abstract— We propose a method for improving the predic-
tion accuracy of learned robot dynamics models on out-of-
distribution (OOD) states. We achieve this by leveraging two key
sources of structure often present in robot dynamics: 1) sparsity,
i.e., some components of the state may not affect the dynamics,
and 2) physical limits on the set of possible motions, in the form
of nonholonomic constraints. Crucially, we do not assume this
structure is known a priori, and instead learn it from data. We
use contrastive learning to obtain a distance pseudometric that
uncovers the sparsity pattern in the dynamics, and use it to
reduce the input space when learning the dynamics. We then
learn the unknown constraint manifold by approximating the
normal space of possible motions from the data, which we use to
train a Gaussian process (GP) representation of the constraint
manifold. We evaluate our approach on a physical differential-
drive robot and a simulated quadrotor, showing improved
prediction accuracy on OOD data relative to baselines.

I. INTRODUCTION

A key component of the robot autonomy stack is the
dynamics model, which predicts how the robot state changes
given the current state and control. Since the dynamics of
many systems are difficult to hand-model, a popular choice
is to learn them from data using, e.g., neural networks (NNs)
[1] or Gaussian processes (GPs) [2]. This learned model is
then used for planning and control. A key assumption for
these models to work well is that the training data is drawn
in an independently and identically distributed (i.i.d.) fashion
from the same distribution where the model will be deployed.
This is often violated in robotics, where we may need to visit
states and controls that are significantly different from the
training data, referred to as out-of-distribution (OOD) inputs
[3]. In OOD domains, the model accuracy can degrade and
hamper the robot’s performance, revealing a critical need for
learned dynamics that generalize better on OOD inputs.

To work towards this goal, we explore two insights: that
many robots 1) have sparse dynamics, i.e., not all state
variables affect the dynamics, and 2) satisfy nonholonomic
constraints arising from physics and design, e.g., a car cannot
translate sideways. Enforcing that our learned model con-
forms to this information can improve accuracy, as naı̈vely-
trained dynamics may predict highly non-physical behavior,
especially in OOD domains. However, without copious a
priori knowledge, it is difficult to know what sparsity pattern
and constraints to prescribe. Moreover, idealized sparsity
and hand-coded constraints can fail to hold due to hardware
imperfections, or if the robot undergoes faults.

This work was supported in part by the Office of Naval Re-
search Grant N00014-21-1-2118 and NSF grants IIS-1750489, IIS-
2113401, and IIS-2220876. 1University of Michigan {yatinlin,
dmitryb}@umich.edu 2Massachusetts Institute of Technology,
gchou@mit.edu

<latexit sha1_base64="iY9A/v0z9TZSgcIk8CuK5uqX9Jc=">AAAB9XicbVDJSgNBEK2JW4xb1KOXxiB4ijOi0YsQ9OIxglkgM4aeTk/SpGehu0YJQ/7DiwdFvPov3vwbO8tBEx8UPN6roqqen0ih0ba/rdzS8srqWn69sLG5tb1T3N1r6DhVjNdZLGPV8qnmUkS8jgIlbyWK09CXvOkPbsZ+85ErLeLoHocJ90Lai0QgGEUjPbjY50jJFXETcVLpFEt22Z6ALBJnRkowQ61T/HK7MUtDHiGTVOu2YyfoZVShYJKPCm6qeULZgPZ429CIhlx72eTqETkySpcEsTIVIZmovycyGmo9DH3TGVLs63lvLP7ntVMMLr1MREmKPGLTRUEqCcZkHAHpCsUZyqEhlClhbiWsTxVlaIIqmBCc+ZcXSeO07FTK53dnper1LI48HMAhHIMDF1CFW6hBHRgoeIZXeLOerBfr3fqYtuas2cw+/IH1+QMURZGZ</latexit>

✓ =
⇡/6

<latexit sha1_base64="9ULzC7c4p27G+BB7S42/9sSao9E=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdJb3HXrniVt0ZyF/i5aQCOeq98me3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JklT4JY2VLGjJTf05kNNJ6HAW2M6JmqBe9qfif10lNeOlnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb78lzRPqt559ez2tFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzduXI3p</latexit>px

<latexit sha1_base64="6i8s+4ObKFcSOgbNQTAUdBkynJs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9Ib98oVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZvbg/r9Ru8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QNv4I3q</latexit>py

<latexit sha1_base64="keW6BK7plyvAeMH9Qkj3tz4hjN8=">AAACjnicbVFNb9QwEHXCV9nyEeDIxWKFtBVVlFS0IBCiAg69IBWp21barFaOM9k16ziRPUG7svxz+EPc+Dc46R5KtyPZenozz29mnDdSGEySv0F45+69+w92Hg52Hz1+8jR69vzc1K3mMOa1rPVlzgxIoWCMAiVcNhpYlUu4yJdfu/zFL9BG1OoM1w1MKzZXohScoadm0e+sgNJr+5dswfRyrgGUs3qeO5vE+zSJD7vLDTKEFW7V9ayubKPrn26WVQwXnEmbLRjS727krqm8NShkzq7oG9oXlKPVPm33sm8gkdEzd7vFnptFwyRO+qDbIN2AIdnE6Sz6kxU1byvvxyUzZpImDU4t0yi4BD9La6BhfOk7mnioWAVmantnR197pqBlrf1RSHv2usKyyph1lfvKblxzM9eRt+UmLZbvp1aopkVQ/MqobCXFmnZ/QwuhgaNce8C4Fr5XyhdMM47+Bwd+CenNkbfB+UGcHsWHP94Oj79s1rFDXpJXZERS8o4ckxNySsaEB7tBGnwIPoZReBR+Cj9flYbBRvOC/BfhyT/ZD8mN</latexit>

projM̂(x+ f̂(x, u)�T)

Projection
on learned
constraint

<latexit sha1_base64="CbF68LGKoTpmO+zBp/4QqzhAK1A=">AAAB+3icbVDLSsNAFJ3UV62vWJdugkVwVRLxtSy6cVnBPqANZTK5bYdOHszcSEvIr7hxoYhbf8Sdf+M0zUJbD1w4nHPv3LnHiwVXaNvfRmltfWNzq7xd2dnd2z8wD6ttFSWSQYtFIpJdjyoQPIQWchTQjSXQwBPQ8SZ3c7/zBFLxKHzEWQxuQEchH3JGUUsDs9pHmGL+TirBz9JpNjBrdt3OYa0SpyA1UqA5ML/6fsSSAEJkgirVc+wY3ZRK5ExAVuknCmLKJnQEPU1DGoBy03xnZp1qxbeGkdQVopWrvydSGig1CzzdGVAcq2VvLv7n9RIc3rgpD+MEIWSLRcNEWBhZ8yAsn0tgKGaaUCa5/qvFxlRShjquig7BWT55lbTP685V/fLhota4LeIok2NyQs6IQ65Jg9yTJmkRRqbkmbySNyMzXox342PRWjKKmSPyB8bnD1YWlUw=</latexit> x

<latexit sha1_base64="IF/q7M/oCUnyzI584O35Mdynxrw=">AAACFnicbVDLSgMxFM3UV62vqks3wSJU1DIjvpZFXbis0NZCZyiZNGNDMw+SO9IyzFe48VfcuFDErbjzb0zbWWjrgcDhnPvKcSPBFZjmt5Gbm19YXMovF1ZW19Y3iptbTRXGkrIGDUUoWy5RTPCANYCDYK1IMuK7gt25/auRf/fApOJhUIdhxByf3Afc45SAljrFIxvYAMZzEm2xAEiaDPABtnsEsFceHOJ4375mAgiup51iyayYY+BZYmWkhDLUOsUvuxvS2NdzqSBKtS0zAichEjgVLC3YsWIRoX29ua1pQHymnGR8Tor3tNLFXij1CwCP1d8dCfGVGvqurvQJ9NS0NxL/89oxeBdOwoMoBhbQySIvFhhCPMoId7lkFMRQE0Il17di2iOSUNBJFnQI1vSXZ0nzuGKdVU5vT0rVyyyOPNpBu6iMLHSOqugG1VADUfSIntErejOejBfj3fiYlOaMrGcb/YHx+QNMDJ7K</latexit>

x+ f̂(x, u)�T
Nominal prediction

Fig. 1. Left: Visualization of the constraint manifold M = {x, ẋ |
−ṗx sin(θ) + ṗy cos(θ) = 0} satisfied by the unicycle (17). Right: The
unicycle dynamics are sparse, i.e., the set of possible velocities (red dotted
line) is the same for all x with the same orientation. We learn the sparsity
pattern and constraints (on a physical differential-drive robot), and project
the predictions of our learned dynamics f̂(x, u) to be consistent with them.

In this paper, we strike a middle ground: by learning any
sparsity and constraints from a small dataset, we can use
them to adjust the learned dynamics to be more accurate
than a naı̈ve model, while also avoiding a priori prescription
of structure. In particular, we hypothesize that learned con-
straints can generalize better than learned dynamics in OOD
domains, as they are often defined in a lower-dimensional
space where data-density is easier to achieve. Our method
learns a distance pseudometric that uncovers the sparsity
pattern in the dynamics, which we use to perform dimen-
sionality reduction on the input of the learned dynamics. We
then identify an implicit constraint manifold in the space of
state and state derivatives satisfied by feasible transitions. We
restrict attention to nonholonomic constraints in this work.
Finally, to make predictions, we project the output of our
learned dynamics onto the learned constraint. We contribute:

• a method for contrastive learning of distance pseudo-
metrics to identify sparsity in dynamics and constraints

• a framework for approximate learning of nonholonomic
constraints satisfied by the robot from trajectory data

• a method for improving the accuracy of learned dynam-
ics by projecting its output to satisfy learned constraints

• evaluation on a physical differential-drive robot and
simulated quadrotor, improving accuracy over baselines

II. RELATED WORK
Many methods that use learned dynamics for control [2],

[4] often fail far from training data. Some methods aim to
mitigate this unreliability, e.g., [5], [6] bias planners away
from unreliable model transitions. Other work [7]–[9] plans
safely with learned dynamics by enforcing that the system
remains within a bound of the training data. This bound
explicitly limits model extrapolation; in contrast, our goal is
to use the model far from data, by empirically maintaining
accuracy via sparsification and learned constraints.

Other methods improve OOD generalization of learned dy-
namics via symmetry and physical constraints. For instance,

ar
X

iv
:2

40
3.

12
24

5v
2

 [c
s.R

O
]

20
 M

ar
 2

02
4

rotational symmetry of visual dynamics can be encoded via
data augmentation (e.g., random crops) [10] or equivariant
networks [11]. Other methods improve generalization with
respect to task-irrelevant features of the input data (e.g., [12],
[13]). While similar in motivation, these methods exploit
the structure in image observations. Instead, our method
directly learns structure in the dynamics via a sparsity pattern
and constraints, complementing the above methods. Physics-
informed learning has shown that enforcing Lagrange and
Hamilton’s equations can improve generalization in learning
unconstrained [14]–[16] and constrained dynamics [17]–[19].
In the latter work, the functional form of the constraint is
assumed to be known a priori, with parametric uncertainty.
Our work sits between physics-constrained and unstructured
learning, in that we discover constraints and sparsity directly
from data, without assuming their existence or form a priori.

Finally, our work relates to constraint learning. [20] learns
equality constraints, but is limited to holonomic constraints.
Other methods [21]–[25] learn inequality constraints; but,
unlike ours, require near-optimal demonstrations, and cannot
learn from unstructured trajectory data, which is critical
for dynamics-learning to cheaply improve data-density. The
most similar method [23] uses GPs to learn nonlinear in-
equality constraints, but supervises the GP via constraint gra-
dient data that is hard to obtain for dynamics-learning. Our
focus also differs: instead of safety, we explore how learned
constraints can empirically improve dynamics prediction.

III. PRELIMINARIES AND PROBLEM STATEMENT

Definitions: In this paper, we consider deterministic systems

ẋ = f(x, u), (1)

where f : X × U → X and X ⊆ Rn and U ⊆ Rm are
the state and control space. The trajectories of (1) may im-
plicitly satisfy constraints, e.g., a car cannot instantaneously
move sideways. In this paper, we consider vector-valued
nonholonomic equality constraints, i.e., g(x, ẋ) = 0, which
are implied by (1). Here, g : X×Tx(X) → Rc, where c is the
number of constraints and Tx(X) is an n-dimensional vector
space at every x. We also assume the implicit constraint
g(x, ẋ) = 0 can be approximated as an affine function of ẋ:

G(x)ẋ+ g(x) = 0 ⇐⇒
[
G(x) g(x)

]︸ ︷︷ ︸
.
=Γ(x)

[
ẋ
1

]
= 0, (2)

where

G(x) =


g
(1)
1 (x) · · · g

(1)
n (x)

...
g
(c)
1 (x) · · · g

(c)
n (x)

 ; g(x) =


g
(1)
0 (x)

...
g
(c)
0 (x)

 . (3)

Constraints of the form (2) generalize Pfaffian constraints
[26], which omit the bias terms g

(i)
0 (x), and includes a class

of nonholonomic constraints [26]. These implicit constraints
define a feasible manifold in the space of states/derivatives

M .
= {(x, ẋ) ∈ X × Tx(X) | g(x, ẋ) = 0}. (4)

At a fixed x, we define TxM, of dimension n − c, as
the set of admissible derivatives {ẋ | ∃u ∈ U , f(x, u) =

0 1 2 3 4 5 6 7
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Fig. 2. Example datasets (offline Doff, one instance of noiseless online
Don, and the associated test Dtest) used for training and evaluation for the
unicycle (17) (left) and quadrotor (18) (right). The test data Dtest is far
from the training data D, and can be considered OOD w.r.t. that data (this
is confirmed by decreased prediction accuracy on these inputs; see Sec. V).

ẋ}. Similarly, we define the normal space NxM [27], of
dimension c, as {ẋ | ¬∃u ∈ U , f(x, u) = ẋ}.
Gaussian processes: In this paper, we use Gaussian pro-
cesses (GPs) [28] for dynamics learning (though our method
is also compatible with NNs or other function approxima-
tors). We give a brief overview of GPs below. Consider a
training set D = {xi, yi}Ni=1, where x ∈ Rd and y ∈ R are
the training inputs and labels, and labels y are corrupted with
additive Gaussian noise N (0, σ2). Given test inputs x∗, we
can infer the posterior distribution of test labels using a GP
(see [28] for details).

This process relies on a positive-definite kernel k(x, x)
with hyper-parameters Θ = {σ1, l1, ..., σd, ld}. Here, σi, li
are the variances and length-scales of dimension i, which
can be learned by maximizing the log marginal likelihood
of D. For multi-dimensional labels y, we model each output
dimension independently with a scalar-output GP, which we
refer to as independent GPs (IGPs).
Problem statement: We assume the dynamics (1) and con-
straint (4) are unknown, but that we are given a dataset D
generated by the system. We divide the dataset D into offline
(online) datasets Doff (Don). Doff = {ξ(n)xu , ξ̇(n)}Nn=1 contains
N state-control trajectories ξ

(n)
xu

.
= (x

(n)
1 , u

(n)
1 , . . . , x

(n)
T),

each sampled at T time indices, and corresponding deriva-
tives ξ̇(n) .

= (ẋ
(n)
1 , . . . , ẋ

(n)
T) collected offline. During online

deployment, we execute one control trajectory uon(t) and
collect the data observed online at regular time instants,
which constitutes the online dataset Don = (ξon

xu, ξ̇
on).

Using D, we train a dynamics model ẋ = f̂(x, u). Inputs
far from D are referred to as out of distribution (OOD). Our
goal is to improve prediction accuracy on states that are OOD
with respect to D; we refer to these inputs as Dtest. See Fig.
2 for examples of Doff, Don, and Dtest used in Sec. V.

IV. METHOD

Our method is shown in Fig. 3. We first learn nominal
GP dynamics, where the GP input space is sparsified by a
learned pseudometric (Sec. IV-A). Next, we learn a sparsified
GP for the constraints (Sec. IV-B), using approximate data
(Sec. IV-B.2). Finally, we predict by projecting the nominal
dynamics onto the learned constraint (Sec. IV-C).

A. Learning sparse dynamics

We describe a framework for obtaining a pseudometric
via contrastive learning (Sec. IV-A.1), how to specialize the

Offline
data .

Online
data .

Train dynamics distance
metric (Sec. 4.A.2)

Train input-reduced
dynamics (Sec. 4.A.3)

Learned dynamics Constraint
projection (Sec. 4.C)

<latexit sha1_base64="UrdNRDwS25tObsPdPo4JkfHnu2Y=">AAACFHicbVDJSgNBEO2JW4xb1KOXxiAkKGFG3I5BL16ECGaBzDD0dHqSNj0L3TWSMOQjvPgrXjwo4tWDN//GznLQxAdNP96roqqeFwuuwDS/jczC4tLySnY1t7a+sbmV396pqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOH1rkZ+44FJxaPwDgYxcwLSCbnPKQEtuflDG1gfZJDGMrofunZAoEuJSO0uAXwzLI5/v9g/SkolN18wy+YYeJ5YU1JAU1Td/JfdjmgSsBCoIEq1LDMGJyUSOBVsmLMTxWJCe6TDWpqGJGDKScdHDfGBVtrYj6R+IeCx+rsjJYFSg8DTlaOl1aw3Ev/zWgn4F07KwzgBFtLJID8RGCI8Sgi3uWQUxEATQiXXu2LaJZJQ0DnmdAjW7MnzpH5cts7Kp7cnhcrlNI4s2kP7qIgsdI4q6BpVUQ1R9Iie0St6M56MF+Pd+JiUZoxpzy76A+PzB6VcnoM=</latexit>

projM̂(f̂(x, u))

Construct .
(Sec. 4.B.2)

<latexit sha1_base64="Jsusf+/T739EWHlCuXNQc2deXQw=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkoivpZFXbisYB/QhDCZTtqhk0mYuRFLiBt/xY0LRdz6F+78G6dtFtp64MLhnHu5954g4UyBbX8bpYXFpeWV8mplbX1jc8vc3mmpOJWENknMY9kJsKKcCdoEBpx2EklxFHDaDoZXY799T6VisbiDUUK9CPcFCxnBoCXf3HMjDAOCeXad+y7QB5BRFodh7ptVu2ZPYM0TpyBVVKDhm19uLyZpRAUQjpXqOnYCXoYlMMJpXnFTRRNMhrhPu5oKHFHlZZMPcutQKz0rjKUuAdZE/T2R4UipURTozvG9atYbi/953RTCCy9jIkmBCjJdFKbcgtgax2H1mKQE+EgTTCTTt1pkgCUmoEOr6BCc2ZfnSeu45pzVTm9PqvXLIo4y2kcH6Ag56BzV0Q1qoCYi6BE9o1f0ZjwZL8a78TFtLRnFzC76A+PzB551l6k=</latexit>Do↵

<latexit sha1_base64="15V2F7E0qYO39OPGMKpkh1H9c3A=">AAACAHicbVDLSsNAFJ34rPUVdeHCTbAIrkoivpZFXbisYB/QhDCZTtqhk0mYuRFLyMZfceNCEbd+hjv/xkmbhbYeuHA4517uvSdIOFNg29/GwuLS8spqZa26vrG5tW3u7LZVnEpCWyTmsewGWFHOBG0BA067iaQ4CjjtBKPrwu88UKlYLO5hnFAvwgPBQkYwaMk3990Iw5Bgnt3kvgv0EWSUxSL3zZpdtyew5olTkhoq0fTNL7cfkzSiAgjHSvUcOwEvwxIY4TSvuqmiCSYjPKA9TQWOqPKyyQO5daSVvhXGUpcAa6L+nshwpNQ4CnRnca6a9QrxP6+XQnjpZUwkKVBBpovClFsQW0UaVp9JSoCPNcFEMn2rRYZYYgI6s6oOwZl9eZ60T+rOef3s7rTWuCrjqKADdIiOkYMuUAPdoiZqIYJy9Ixe0ZvxZLwY78bHtHXBKGf20B8Ynz/hQJdB</latexit>Don

Learn constraint
distance metric .

(Sec. 4.B.3)

Train input-reduced
constraint .

(Sec. 4.B.4)

Evaluation

Learned constraint
<latexit sha1_base64="KjqI8Ke3XdlOVOzcBcUueOLKyGU=">AAACMHicbZDLSgMxFIYzXmu9jbp0c7AIilJmxNumUHShG0HBqtApJZOmbWjmQnJGWoY+khsfRTcKirj1Kcy0FbwdCPx8/zlJzu/HUmh0nGdrbHxicmo6N5OfnZtfWLSXlq90lCjGKyySkbrxqeZShLyCAiW/iRWngS/5td85zvzrW660iMJL7MW8FtBWKJqCUTSobp94AcU2ozL12hThrA8l8NLuNniNCKELXiAaMLBONrqbX3RriFoZKoEDXr9uF5yiMyj4K9yRKJBRndftB3MXSwIeIpNU66rrxFhLqULBJO/nvUTzmLIObfGqkSENuK6lg4X7sG5IA5qRMidEGNDvEykNtO4FvunM1tO/vQz+51UTbB7WUhHGCfKQDR9qJhIwgiw9aAjFGcqeEZQpYf4KrE0VZWgyzpsQ3N8r/xVXO0V3v7h3sVsoH43iyJFVskY2iEsOSJmcknNSIYzckUfyQl6te+vJerPeh61j1mhmhfwo6+MTOJul9g==</latexit>

M̂ = {x, ẋ | Ĝ(x)ẋ+ ĝ(x) = 0}

<latexit sha1_base64="3ml6ch6nt/ANqV9NyL5SznZNNV8=">AAAB/3icbVC7SgNBFJ31GeNrVbCxGQxCbMKu+CqjNhYKEcwDkmWZncwmQ2YfzNyVhDWFv2JjoYitv2Hn3zhJttDEAxcO59w7c+/xYsEVWNa3MTe/sLi0nFvJr66tb2yaW9s1FSWSsiqNRCQbHlFM8JBVgYNgjVgyEniC1b3e1civPzCpeBTewyBmTkA6Ifc5JaAl19xttSPADbcFrA8ySG9uL4bF/qFrFqySNQaeJXZGCihDxTW/9EM0CVgIVBClmrYVg5MSCZwKNsy3EsViQnukw5qahiRgyknH+w/xgVba2I+krhDwWP09kZJAqUHg6c6AQFdNeyPxP6+ZgH/upDyME2AhnXzkJwJDhEdh4DaXjIIYaEKo5HpXTLtEEgo6srwOwZ4+eZbUjkr2aenk7rhQvsziyKE9tI+KyEZnqIyuUQVVEUWP6Bm9ojfjyXgx3o2PSeuckc3soD8wPn8ATOCVpg==</latexit>

ẊLMA(x)

<latexit sha1_base64="uLy8eGr0dIdaSvTekuxqbKfdARI=">AAAB9HicbVDLSsNAFL2pr1pfUZduBovgqiTia1l040aoYB/QhjKZTNqhk0mcmRRK6He4caGIWz/GnX/jpM1CWw8MHM65l3vm+AlnSjvOt1VaWV1b3yhvVra2d3b37P2DlopTSWiTxDyWHR8rypmgTc00p51EUhz5nLb90W3ut8dUKhaLRz1JqBfhgWAhI1gbyQv6vQjrIcE8u5/27apTc2ZAy8QtSBUKNPr2Vy+ISRpRoQnHSnVdJ9FehqVmhNNppZcqmmAywgPaNVTgiCovm4WeohOjBCiMpXlCo5n6eyPDkVKTyDeTeUS16OXif1431eG1lzGRpJoKMj8UphzpGOUNoIBJSjSfGIKJZCYrIkMsMdGmp4opwV388jJpndXcy9rFw3m1flPUUYYjOIZTcOEK6nAHDWgCgSd4hld4s8bWi/VufcxHS1axcwh/YH3+AAArkkQ=</latexit>

dM
<latexit sha1_base64="CbUbKhWcTO8d5WA03M6asO8FIIw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ78X9soVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZvbg/r9Ru8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QNAzI3L</latexit>

df

<latexit sha1_base64="l3rYQABF+3zeXZVXZ26Xj/4R8ZM=">AAAB83icbVDLSgNBEJz1GeMr6tHLYBAiSNgVX8egF48RzAOyS5idzCZDZmeXmR4xLPkNLx4U8erPePNvnCR70MSChqKqm+6uMBVcg+t+O0vLK6tr64WN4ubW9s5uaW+/qROjKGvQRCSqHRLNBJesARwEa6eKkTgUrBUObyd+65EpzRP5AKOUBTHpSx5xSsBKvj8ggKPK0yk2J91S2a26U+BF4uWkjHLUu6Uvv5dQEzMJVBCtO56bQpARBZwKNi76RrOU0CHps46lksRMB9n05jE+tkoPR4myJQFP1d8TGYm1HsWh7YwJDPS8NxH/8zoGousg4zI1wCSdLYqMwJDgSQC4xxWjIEaWEKq4vRXTAVGEgo2paEPw5l9eJM2zqndZvbg/L9du8jgK6BAdoQry0BWqoTtURw1EUYqe0St6c4zz4rw7H7PWJSefOUB/4Hz+AGySkKU=</latexit>

f̂(x, u)

<latexit sha1_base64="y2GggUWQnubNtQlTz+Nv1z1lqr0=">AAAB/XicbZDLSsNAFIYn9VbrLV52bgaLUEFKIt6WRRe6rGAv0IYymU7aoZNJmDkRayi+ihsXirj1Pdz5Nk7TLrT6w8DHf87hnPn9WHANjvNl5ebmFxaX8suFldW19Q17c6uuo0RRVqORiFTTJ5oJLlkNOAjWjBUjoS9Ywx9cjuuNO6Y0j+QtDGPmhaQnecApAWN17J12nwC+Kt0fHOIMewY7dtEpO5nwX3CnUERTVTv2Z7sb0SRkEqggWrdcJwYvJQo4FWxUaCeaxYQOSI+1DEoSMu2l2fUjvG+cLg4iZZ4EnLk/J1ISaj0MfdMZEujr2drY/K/WSiA491Iu4wSYpJNFQSIwRHgcBe5yxSiIoQFCFTe3YtonilAwgRVMCO7sl/9C/ajsnpZPbo6LlYtpHHm0i/ZQCbnoDFXQNaqiGqLoAT2hF/RqPVrP1pv1PmnNWdOZbfRL1sc3unCTew==</latexit>

Ĝ(x), ĝ(x)

<latexit sha1_base64="l3rYQABF+3zeXZVXZ26Xj/4R8ZM=">AAAB83icbVDLSgNBEJz1GeMr6tHLYBAiSNgVX8egF48RzAOyS5idzCZDZmeXmR4xLPkNLx4U8erPePNvnCR70MSChqKqm+6uMBVcg+t+O0vLK6tr64WN4ubW9s5uaW+/qROjKGvQRCSqHRLNBJesARwEa6eKkTgUrBUObyd+65EpzRP5AKOUBTHpSx5xSsBKvj8ggKPK0yk2J91S2a26U+BF4uWkjHLUu6Uvv5dQEzMJVBCtO56bQpARBZwKNi76RrOU0CHps46lksRMB9n05jE+tkoPR4myJQFP1d8TGYm1HsWh7YwJDPS8NxH/8zoGousg4zI1wCSdLYqMwJDgSQC4xxWjIEaWEKq4vRXTAVGEgo2paEPw5l9eJM2zqndZvbg/L9du8jgK6BAdoQry0BWqoTtURw1EUYqe0St6c4zz4rw7H7PWJSefOUB/4Hz+AGySkKU=</latexit>

f̂(x, u)
Test data

.
<latexit sha1_base64="s060cM6pmhe1iWL/C0D5rY8LFV8=">AAACAnicbVDJSgNBEO2JW4zbqCfxMhgET2FG3I5BPXiMYBbIDKGnU0ma9Cx014hhGLz4K148KOLVr/Dm39hJ5qCJDwoe71VRVc+PBVdo299GYWFxaXmluFpaW9/Y3DK3dxoqSiSDOotEJFs+VSB4CHXkKKAVS6CBL6DpD6/GfvMepOJReIejGLyA9kPe44yiljrmnhtQHDAq0uus4yI8oAxSBIVZxyzbFXsCa544OSmTHLWO+eV2I5YEECITVKm2Y8fopVQiZwKykpsoiCkb0j60NQ1pAMpLJy9k1qFWulYvkrpCtCbq74mUBkqNAl93jg9Ws95Y/M9rJ9i78FIexglCyKaLeomwMLLGeVhdLoGhGGlCmeT6VosNqKQMdWolHYIz+/I8aRxXnLPK6e1JuXqZx1Ek++SAHBGHnJMquSE1UieMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+AJdvmDg=</latexit>Dtest

Dynamics learning Constraint learning

Fig. 3. Method. Dynamics learning: Given offline data Doff, we learn
a dynamics pseudometric df , which we use to reduce the input space
dimension of the dynamics model f̂(x, u). We train f̂(x, u) on the input-
reduced offline data. Constraint learning: We use approximate normal
space data to learn a constraint distance pseudometric dM, which we
use to reduce the constraint input space. We train the constraint M̂ using
input-reduced offline and online data, paired with the normal space data.
Evaluation: For prediction, we evaluate f̂(x, u) and project it onto M̂.

method to identify the sparsity pattern of the dynamics (Sec.
IV-A.2), and how we use this knowledge to train dynamics
which are sparse in their input space (Sec. IV-A.3).

1) Contrastive learning of pseudometrics: We discuss a
framework for learning pseudometrics, and specialize it in
Sec. IV-A.2 and IV-B.3 to dynamics and constraint learning.
Pseudometrics are distance metrics without the restriction
that unique elements of the input space have nonzero dis-
tance, i.e., for all z, z′, z′′ ∈ Z , a pseudometric d : Z×Z →
R≥0 satisfies: 1) d(z, z) = 0, 2) d(z, z′) = d(z′, z), and 3)
d(z, z′′) ≤ d(z, z′) + d(z′, z′′) [29]. For a generic dataset
D = {zi}Zi=1, zi ∈ Z , we parameterize a pseudometric
dθ : Z × Z → R≥0 with parameters Pθ ∈ S(n+m)×(n+m)

+ ,
where S+ is the space of positive semi-definite matrices,

dθ(z1, z2) = (z1 − z2)
⊤Pθ(z1 − z2), (5)

In general, we can search over input-dependent metrics (i.e.,
Pθ is a function of z); for simplicity, we restrict attention to
the case where Pθ is constant. To learn the pseudometric
dθ(·, ·), we use contrastive learning [30]. In the context
of metric learning, contrastive learning takes positive and
negative pairs as inputs. Here, positive pairs are close in the
output space and are above a distance threshold in the input
space, and negative pairs are all others (see Sec. IV-A.2).
Contrastive learning encourages dθ(·, ·) to evaluate to small
(large) values for positive (negative) pairs. We specifically
use the popular InfoNCE loss [31], defined as

Lcon = −Ez∼D

[
log

exp(sim(z, zp))∑Nb
k=1 exp(sim(z, znk))

]
(6)

where (z, zp) is a positive pair, (z, znk) is one of Nb negative
pairs, and sim(·, ·) is a similarity metric (we use cosine sim-
ilarity, commonly used in contrastive learning [32], which is
a discriminative distance metric in high-dimensional spaces),

sim(z, z′) =
zTPθz

′

√
z⊤Pθz

√
z′⊤Pθz′

(7)

Then, we can train such a pseudometric by minimizing Lcon.
2) Learning a pseudometric for sparsifying the dynam-

ics: We employ the framework of Sec. IV-A.1 to learn
a pseudometric that extracts the sparsity pattern of (1)
from data. Consider a pseudometric that assigns distances
between (x, u) and (x′, u′) to be small (large) if they have
(dis)similar derivatives f(x, u) and f(x′, u′). Then, if the

dynamics are invariant along any directions v, i.e., f(x, u) =
f(x + αv, u), ∀α ∈ R, an ideal pseudometric would assign
d((x, u), (x + αv, u)) = 0. For a pseudometric of the form
(5), we can recover these directions v as the eigenvectors
of Pθ corresponding to zero eigenvalues. When Pθ is diag-
onal (as in the results), each eigenvector corresponds to a
specific dimension of the input. We discuss how to use this
knowledge for dynamics learning in Sec. IV-A.3. To actually
obtain such a pseudometric, we can leverage the contrastive
learning framework of Sec. IV-A.1. In particular, we select
the input z as the state-control space (x, u). We define
the positive pair corresponding to (xi, ui) as (xi∗ , ui∗),
where i∗ = argminj∈D ∥f(xi, ui) − f(xj , uj)∥ such that
∥(xi, ui)−(xi∗, ui∗)∥ ≥ ϵ1. Negative pairs are selected as the
other non-minimum pairs in the batch. Training the dynamics
pseudometric df is done by minimizing (6).

3) Learning the sparse dynamics model: By following
Sec. IV-A.2, we can obtain a pseudometric that sets distances
along invariant directions to zero. For diagonal Pθ, we can
drop out input dimensions corresponding to diagonal entries
equal to zero when learning the dynamics. We refer to the
reduced input as (xred, u); note that we only reduce the input,
not the output, which remains in Rn. If we have noisy data
or an imperfect pseudometric, we can drop out inputs if the
diagonal entries in Pθ lie below some threshold. Intuitively,
this performs principal component analysis on the input data,
removing input “features” that are not predictive for the
dynamics. If the removed states globally do not affect the
dynamics (reasonable for smooth systems with enough data),
we can expect the reduced model to generalize better in OOD
scenarios, as it has fewer inputs upon which to be OOD. We
show in Sec. V that this reduction improves predictions in
practice. Similar logic applies for non-diagonal Pθ, e.g., we
can eigen-decompose Pθ, rotate the data using the eigen-
basis, and remove dimensions of the rotated data with small
eigenvalues. We learn the sparsified dynamics with a GP on
the reduced space, where the data (xi, ui, f(xi, ui)) is used
to train an IGP by maximizing log-likelihood, giving the
learned model

ẋ = f̂(xred, u). (8)

We make predictions via the posterior mean of the GP.

B. Learning the constraint manifold

We describe our method for learning the constraint man-
ifold (4). First, we detail our constraint formulation (Sec.
IV-B.1) and discuss challenges in identifying the constraints
from finite data. We discuss how to overcome these chal-
lenges using synthetic data (Sec. IV-B.2), and how we can
improve generalization of the learned constraint by learning
a constraint pseudometric (Sec. IV-B.3). Finally, given this,
we show how to learn the constraint manifold (Sec. IV-B.4).

1) Constraint formulation: As discussed in Sec. III, we
assume the unknown constraint can be represented as in
(2) as an affine function of ẋ. Thus, the constraint learning
problem reduces to learning Γ : X → Rc×n+1. For systems
of interest, c < n, and controls can be taken to generate

state derivatives ẋ which satisfy (2). In principle, to recover
Γ(x), we can apply different control actions ui at a fixed
state x until we obtain n−c linearly independent augmented
derivatives {[f(x, ui)

⊤ 1]}n−c
i=1 . For concreteness, we denote

the concatenation of these vectors as Ẋ(x) ∈ R(n−c)×(n+1):

Ẋ(x) =

[
f(x, u1) · · · f(x, un−c)

1 · · · 1

]⊤

. (9)

Then, we can compute a basis for the null space of Ẋ(x) to
recover G(x), g(x). However, it is difficult to reset the state
of a robot with non-trivial dynamics in a way that different
actions can be taken at the exact same x. Thus, we propose a
method to approximate G(x) and g(x) using synthetic data.

2) Approximating the normal space: To estimate Ẋ(x),
we use the learned f̂ as a proxy for f to compute a synthetic
Learned Multi-Action (LMA) dataset, for K ≥ n− c:

ẊLMA(x) =

[
f̂(x, u1) · · · f̂(x, uK)

1 · · · 1

]⊤

. (10)

Given an approximation of Ẋ(x), we can compute its
null space to approximate Γ(x). We do this by applying the
singular value decomposition (SVD) to ẊLMA(x),

ẊLMA(x) = UΣ̂V ⊤ = [U1 U2]

[
Σ̂1 0

0 Σ̂2

] [
V ⊤
1

V ⊤
2

]
, (11)

where Σ2 contains all singular values less than a threshold
ϵ, and V2 is an approximate basis for the null space of
Ẋ(x), i.e., Γ(x) = V ⊤

2 . In general, ϵ should be positive
to handle any approximation error in Ẋ(x) on Γ(x), and
can also be used to identify the number of constraints c.
However, since the SVD is not unique [33], directly using
V2 to represent Γ(x) can cause challenges for learning, as
V2 may not change smoothly with x. While in general, no
smoothly-varying basis exists [34], the following method is
empirically effective. We first convert V ⊤

2 to reduced row
echelon form (rref); and define Γ̃(i)(x) as the ith row of
rref(V ⊤

2 (x)), which smoothly standardizes the basis up to
a sign-change. To keep signs consistent, at a given x, we
find the nearest datapoint xref, and negate the vectors in
rref(V ⊤

2 (x)) if their dot products with rref(V ⊤
2 (xref)) lie

below zero. We call this approximate normal space basis
Γapprox(x), where the ith row is:

Γ(i)
approx(x)

.
=

{
Γ̃(i)(x), if Γ̃(i)(x)Γ̃(i)(xref)

T ≥ 0

−Γ̃(i)(x), if Γ̃(i)(x)Γ̃(i)(xref)
T < 0

(12)

We can then form a dataset {xi,Γapprox(xi)}|D|
i=1 to train a

GP constraint in Sec. IV-B.4. Before training, we discuss how
to learn a pseudometric (similar to Sec. IV-A.2) to reduce the
input space of the constraint, improving generalization.

3) Training the constraint distance pseudometric: For the
learned constraint to be useful in aiding OOD generalization
of the dynamics, the constraints must also be accurate OOD.
To improve generalization as is done in Sec. IV-A.2, we
learn c distance pseudometrics, one for each of the c rows
of Γ(x), with the aim of reducing the input space when
learning the constraint. Here, we take the contrastive learning
framework of Sec. IV-A.1, and let z = x. Denote the distance
pseudometric for to the ith row of Γ(x), Γ(i)(x), as

dM(i)(x, x′) = (x− x′)⊤PM(i)(x− x′), (13)

For each datapoint xi, we select its positive pair as the
point xp

i in D minimizing ∥Γ(i)
approx(xi)−Γ

(i)
approx(x

p
i)∥ satisfied

∥xi−xp
i ∥ ≥ ϵ2. Negative pairs are selected as the remaining

non-minimum states in the batch. We train each pseudometric
by minimizing (6).

4) Learning the constraint on reduced input space:
Similar to Sec. IV-A.3, for each row of Γ(x), we drop out
the inputs that correspond to a zero eigenvalue. We refer
to the reduced input state for row i as xi

red, i = 1, . . . c.
We model each entry of the normal space matrix using an
IGP, where each is a function of its corresponding reduced
input space. Specifically, we follow the framework of Sec.
III, where the training data and labels is comprised of states
xi and approximate normal space bases Γapprox(xi) (see
(12)), respectively, where xi are drawn from the dataset
D described in Sec. III. Using this data, we train an IGP
by maximizing log-likelihood.We call this learned constraint
Γ̂(x) = [Ĝ(x) ĝ(x)], and the corresponding manifold,

M̂ .
= {(x, ẋ) ∈ X × Tx(X) | Ĝ(x)ẋ+ ĝ(x) = 0}, (14)

which is evaluated via the trained GP’s posterior mean.

C. Generating predictions at evaluation time

At runtime, we wish to make predictions with the learned
dynamics ẋpred = f̂(x, u) (8) that conform with the learned
constraint M̂ (14). Since for a fixed x, the constraint (14)
is affine in ẋ, we can project the prediction ẋpred from the
nominal dynamics (8) to be consistent with M̂ by solving:

projM(ẋpred)
.
= argmin

ẋ
∥ẋ− ẋpred∥22

subject to Ĝ(x)ẋ+ ĝ(x) = 0,
(15)

which can be efficiently done online by solving a quadratic
program (QP). We use (15) for prediction in Sec. V.

V. RESULTS

We evaluate our method on a simulated unicycle, physi-
cal differential-drive robot (DDR), and simulated quadrotor.
First, we describe our baselines, ablations, method variants,
and test settings. Our baseline is a standard GP trained on D
(“GP” in Tab. I-III) (i.e., no sparsity or constraint). We refer
to our sparsified GP (i.e., with dropped inputs) as “DGP”.
Our method, which also projects onto the constraint learned
via (11), is “DGP + Approx.”, the ideal version of our full
method (which projects onto the constraint learned via Ẋ(x)
(9)) is “DGP + Ideal”, and an ablation which sparsifies but
does not project is “DGP + None”. “ID” evaluates each
method on in-distribution (ID) test data; “OOD” on OOD
test data. We consider test data as ID if it lies in the support
of the distribution that the offline data was sampled from,
and OOD otherwise. For the OOD experiments, we evaluate
all methods when given both offline and online data, i.e.,
where D = Doff ∪Don. Finally, to show robustness to noise,
we evaluate on OOD data where Doff is noiseless but Don
is corrupted with Gaussian measurement noise N(0, ηI). We
test with η = 0.05 and η = 0.1. All dynamics GPs are trained
using a radial basis function (RBF) kernel. For the corrupted
dataset we also employed low-pass filtering to enhance

None Ideal Approx.

ID GP 4.79 ± 4.17 3.63 ± 2.53 4.05 ± 3.40
DGP 2.96 ± 2.99 2.56 ± 2.21 3.03 ± 3.19

OOD,
η = 0.0

GP 9.08 ± 1.14 7.70 ± 1.01 7.82 ± 1.25
DGP 3.94 ± 0.48 3.51 ± 0.44 3.76 ± 0.71

OOD,
η = .05

GP 43.58 ± 25.27 41.66 ± 26.47 43.42 ± 24.80
DGP 35.52 ± 25.10 33.46 ± 25.90 35.88 ± 25.03

OOD,
η = .10

GP 56.05 ± 37.13 55.41 ± 35.85 54.05± 31.73
DGP 45.44 ± 30.51 44.34 ± 29.79 45.29 ± 28.87

TABLE I
100-STEP PREDICTION ERROR (UNICYCLE). DATA: DON ∪ DOFF .

robustness against high-frequency noise. We simulate with
timestep ∆T = 0.01 for the quadrotor and ∆T = 0.1
otherwise, and report cumulative prediction error,

Lerr =
∑T

t=0 ∥xtrue
t − xpred

t ∥2. (16)

Nonholonomic unicycle (x ∈ R3, u ∈ R2): The dynamics
are ṗxṗy

θ̇

 =

0 cos θ
0 sin θ
1 0

[
ω
v

]
, (17)

where u = (ω, v) are controls (angular, linear velocity), px,
py are the position, and θ is the heading. The unicycle satis-
fies the constraint −ṗx sin(θ) + ṗy cos(θ) = 0, i.e., G(x) =
[− sin(θ) cos(θ) 0] and c = 1. We learn a dynamics
model with input [x, u] = [px, py, θ, ω, v]

⊤ ∈ R5 and output
y = [ṗx, ṗy, θ̇]

⊤ ∈ R3. As the dynamics are only affected by
θ and u, we learn a dynamics pseudometric (5) with zero ϵ1,
giving Pf = diag([0, 0, 1.15, 1.66, 1.63]) (cf. Sec. IV-A.2).
We use Pf to remove px and py from the input when learning
the dynamics (8) . We also learn the constraint pseudometric
(13) with zero ϵ2 , where PM = diag([0, 0., 1.59]). Thus,
we remove px and py from the input when learning the
constraint (14), for which we use an RBF kernel. The offline
dataset Doff contains 20 trajectories, generated by applying
25 random controls in [ω, v] ∈ [−0.2, 0.2]× [0, 1.5], starting
from initial conditions in [px, py, θ] ∈ [−10, 10]2 × [−π

3 ,
π
3].

For the online dataset Don, we sample an initial state from
[px, py, θ] ∈ [15, 20]2 × [π3 ,

π
2], and roll out by sampling 5

controls in [ω, v] ∈ [−0.2, 0.2] × [0, 1.5], and holding each
for 5 steps, giving 25 total datapoints. Finally, starting from
the end of the online trajectory, we test the 20 × 5 = 100
multi-step prediction error (20 actions, sampled from [ω, v] ∈
[−0.2, 0.2]× [0, 1.5], each held for 5 steps), and generate 5
such trajectories for evaluation. Don is generated 10 times,
each starting from a unique initial state; test data is also
regenerated. See Fig. 2 (left) for Doff, one of Don, and the
associated Dtest. The prediction accuracies, averaged over all
online datasets and test trajectories, are in Table I.

When given both Doff and Don to train the dynamics
and constraint, we see for ID predictions that all method
variants have relatively similar performance, with some small
improvements from DGP and constraint projection. This is
not surprising, as the baseline GP is already quite accurate
and confirms that projection or sparsification does not hurt
performance where data is plentiful. For OOD predictions,
the sparse DGP is uniformly more accurate than the GP
baseline, for all the noise levels tested. When further com-
bining DGP with projection, “DGP + Ideal” performs best
on the noiseless case. There is minor degradation for “DGP

True
None
Ideal
Approximate

True
None
Ideal
Approximate

Unicycle Quadrotor

True
None
Ideal
Approximate

Fig. 4. Some predicted trajectories for the unicycle (left) and quadrotor
(right) on OOD data. The given (noiseless) online data Don is in blue.
“True”: ground truth trajectory. The predicted trajectories are: “None”: GP,
no projection. “Ideal”: DGP, with projection on ideal learned constraint.
“Approximate”: DGP, with projection on approximate learned constraint.

−0.2 0.0 0.2 0.4 0.6

px

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p
y

Dataset (Physical DDR)

Doff
Don
Dtest

0.5 0.6 0.7

px

0.9

1.0

1.1

1.2

p
y

Test-time predictions (Physical DDR)

True

None

Ideal

Approx.

Fig. 5. Hardware diff-drive robot: (left) offline data and one of the online
and associated test datasets; (right) examples of predicted trajectories.

+ Approx.” due to the error in the training data, but it still
is more accurate than the variants with no projection. With
larger magnitudes of measurement noise, DGP still performs
uniformly better than the GP variants, while the improvement
due to projection shrinks for higher noise. This is likely due
to the long prediction horizon in this problem, which makes
it critical to estimate the constraint with high accuracy, which
is more difficult to achieve with noisy data, whereas the
sparsity pattern can be more easily estimated. We visualize
the true and predicted trajectories in Fig. 4 (left). Overall,
these results suggest that both sparsifying and projection can
improve prediction accuracy, in spite of noisy data.
Hardware DDR: To show our method’s robustness to non-
idealized constraints, we evaluate on a physical DDR (cf.
Fig. 1, right), where we assume the same state/control
space as the unicycle and data is collected using a Vicon
mocap system. We learn a dynamics pseudometric Pf =
diag([0, 0.04, 1.72, 0.43, 0.44]) and constraint pseudometric
PM = diag([0, 0, 1.60]) with ϵ1 and ϵ2 set to 0.5, so we
drop out px, py from the input in both cases as their diagonal
values fall below a threshold. We use a cosine kernel when
learning the constraint. The offline dataset Doff contains 10
trajectories, generated by applying 2 random controls from
(w, v) ∈ [−0.2, 0.2] × [0, 0.2] and with initial conditions
from (px, py, θ) ∈ [−0.2, 0.6]× [0.05, 0.6]× [−0.6, 0.8]. For
the online dataset Don, we sample from the same u range,
but with initial conditions from (px, py, θ) ∈ [−0.4, 0.6] ×
[0.4, 1.2]×[−1.5, 1.7]. We generate Don 8 times, and generate
1 associated Dtest per online dataset. See Fig. 5 for the
datasets and predicted trajectories, and Tab. II for predic-
tion accuracies, averaged over all online datasets and test
trajectories. We use both Doff and Don to train the dynamics
and constraint. For the ID range, all methods are comparable;
this is not surprising, as the baseline model is already quite
accurate, moreover supporting that our method does not
degrade predictions near data. With evaluation in the OOD

None Ideal Approx.

ID GP 0.60 ± 8e-4 0.61 ± 1e-7 0.61 ± 8e-4
DGP 0.50 ± 5e-3 0.52 ± 6e-4 0.51 ± 4e-3

OOD,
η = 0.0

GP 1.33 ± 0.62 1.03 ± 0.37 1.04 ± 0.37
DGP 0.75 ± 0.32 0.68 ± 0.27 0.70 ± 0.25

OOD,
η = .05

GP 1.68 ± 0.93 0.90 ± 0.35 0.95 ± 0.33
DGP 1.58 ± 0.78 0.83 ± 0.27 0.90 ± 0.25

OOD,
η = .10

GP 2.15 ± 0.88 1.42 ± 0.57 1.37 ± 0.46
DGP 1.85 ± 0.57 1.38 ± 0.42 1.33 ± 0.34

TABLE II
40-STEP PREDICTION ERROR (HARDWARE DDR). DATA: DON ∪ DOFF .

range, DGP is uniformly more accurate than the GP baseline
(cf. Tab. II), again supporting that sparsity improves OOD
accuracy. Constraint projection further improves prediction
accuracy, where in Tab. II, the “Ideal” column is computed
by projecting onto the unicycle constraint −ṗx sin(θ) +
ṗy cos(θ) = 0. Crucially, as the hardware can violate this
ideal constraint, this shrinks the accuracy gap between the
ideal and approximate projection. Finally, as more noise
is injected into Don, all methods degrade, but DGP with
projection (our full method) remains more accurate than
baselines without sparsity or projection, and for η = 0.10
slightly outperforms the ideal case. Overall, this suggests
that in spite of the approximate data, constraint-learning can
be valuable compared to pre-specifying constraints that may
fail to hold in reality.
Planar quadrotor (x ∈ R6, u ∈ R2): The quadrotor satisfies

ṗx
ṗz
ϕ̇
v̇x
v̇z
ω̇ϕ

 =


vx
vz
ωϕ

0
−g
0

+



0 0
0 0
0 0

− 1
m

sin(ϕ) − 1
m

sin(ϕ)
1
m

cos(ϕ) 1
m

cos(ϕ)
1
J

− 1
J


[
u1

u2

]
, (18)

with positions, px, pz , velocities vx, vz , orientation ϕ, and
angular velocity ωϕ, and m = 0.486, l = 0.25, and J =
0.0383. There are c = 4 constraints, analytically derived as:

Γ(x) =

1 0 0 0 0 0 −vx
0 1 0 0 0 0 −vz
0 0 1 0 0 0 −ωϕ

0 0 0 1 tan(ϕ) 0 g tan(ϕ)

 . (19)

We learn Pf = diag([0, 0, 1.2, 1.4, 1.4, 1.3, 1.1, 1.0]) with
zero ϵ1. Thus, we remove px and pz from the input when
learning the dynamics (8). We also learn c constraint pseudo-
metrics (13) with zero ϵ2, where PM(i) recover the sparsity
patterns of x (PM(i) , i = 1, ..., 4, which only have nonzero
entries on their 4th, 5th, 6th, and 3rd diagonals, respectively).
We use this to drop out the associated inputs when learning
the constraint (14), where we use a linear kernel. The offline
dataset Doff contains 5000 trajectories, generated by applying
2-step random u from [mg

2 , 2.5] × [mg
2 , 2.5], with initial

conditions sampled from [px, py, ϕ, vx, vz, ωϕ] ∈ [−1, 1] ×
[−1, 1]× [−π

3 ,
π
3]× [0, 5]× [−5, 0]× [−π

3 ,
π
3]. For Don, we

sample 5 control actions from the same set, each held for 10
steps, which typically takes the system far from Doff (cf. Fig.
2). We test the 10×10 = 100 multi-step prediction error (10
random actions held for 10 steps each) on 5 such trajectories
(this is Dtest). We regenerate Don and the associated Dtest for
10 initial conditions, and give statistics in Tab. III.

In the ID case, even though the baseline is already
quite accurate, projection onto the ideal and approximate

None Ideal Approx.

ID GP 17.58 ± 16.11 8.75 ± 7.27 10.75 ± 9.99
DGP 9.43 ± 8.25 3.15 ± 2.29 6.20 ± 5.85

OOD,
η = 0.0

GP 87.91 ± 77.34 35.21 ± 29.30 71.64 ± 69.15
DGP 66.93 ± 68.50 23.79 ± 28.19 64.78 ± 72.08

OOD,
η = .05

GP 187.58 ± 92.03 73.21 ± 34.43 113.98 ± 78.24
DGP 156.14 ± 97.32 41.48 ± 37.08 85.36 ± 86.06

OOD,
η = .10

GP 216.14 ± 95.72 93.91 ± 51.90 122.68 ± 73.83
DGP 181.81 ± 104.44 58.85 ± 58.95 90.15 ± 82.83

TABLE III
100-STEP PREDICTION ERROR (QUADROTOR). DATA: DON ∪ DOFF .

constraints both improve performance ≈2-fold. Moreover,
our approximate normal space training data does not overly
degrade accuracy relative to the ideal case, as the “Ideal”
and “Approx.” variants achieve comparable accuracy. On the
other hand, sparsification hurts accuracy slightly, likely since
with more inputs, the model can overfit better ID.

For the OOD case, we shrink the training range to be
[px, py, ϕ, vx, vz, ωϕ] ∈ [−0.5, 0.5]× [−0.5, 0.5]× [−π

4 ,
π
4]×

[0, 2] × [−2, 0] × [−π
3 ,

π
3] and randomly sample initial con-

ditions for the online data from [px, py, ϕ, vx, vz, ωϕ] ∈
[−1, 1]× [−1, 1]× [−π

3 ,
π
3]× [0, 5]× [−5, 0]× [−π

3 ,
π
3], such

that the test data is OOD. In this case, both sparsification and
constraint projection improves accuracy, with projection onto
the ideal constraint improving accuracy ≈3-fold. Moreover,
despite errors in the constraint training data, projection
onto the approximate constraint still leads to improvement
over the no-projection case. As increasing levels of noise
are added to Don, as before, all methods degrade, but our
approach (DGP+Approx.) retains an improvement over “GP
+ None”. In fact, the improvement that “DGP+Approx”
enables over “DGP+None” increases for larger noise; we
hypothesize this is because the nominal dynamics are much
more inaccurate with high noise and thus benefit more from
the approximate projection. We plot example rollouts for the
OOD case in Fig. 4 (right); here, the test data is OOD in
all state dimensions. Compared to the baseline GP (green),
our method’s predictions are more accurate. Overall, these
results suggest that both sparsification and projection onto the
learned constraint improve prediction accuracy, especially in
OOD scenarios, and that the learned constraint generalizes
better here than the learned dynamics.

VI. DISCUSSION AND CONCLUSION

We present a method for improving the OOD accuracy
of dynamics models from data. We do this by learning a
pseudometric to uncover the sparsity in the data and by
approximating the normal space with a GP to estimate the
constraint manifold that the system must evolve on.

While we our method outperforms baselines in our ex-
periments, there are still limitations and future directions
to our work. We wish to scale our approach to higher-
dimensional systems, e.g., deformable objects. For such
complex systems, it may be easier to find state/control-
dependent pseudometrics, rather than the pseudometrics with
constant Pθ that we consider here. We also wish to explore
identification of sparsity in the output space, which can
simplify constraint learning (as Γ(x) is often quite sparse),
and to use our method in MPC.

REFERENCES

[1] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-
free fine-tuning,” in ICRA. IEEE, 2018, pp. 7559–7566.

[2] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in ICML, 2011, pp. 465–472.

[3] Z. Shen, J. Liu, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui,
“Towards out-of-distribution generalization: A survey,” CoRR, vol.
abs/2108.13624, 2021.

[4] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” in NeurIPS, 2018, pp. 4759–4770.

[5] P. Mitrano, D. McConachie, and D. Berenson, “Learning where to
trust unreliable models in an unstructured world for deformable object
manipulation,” Sci. Robotics, vol. 6, no. 54, p. 8170, 2021.

[6] J. Guzzi, R. O. Chavez-Garcia, M. Nava, L. M. Gambardella, and
A. Giusti, “Path planning with local motion estimations,” IEEE
Robotics Autom. Lett., vol. 5, no. 2, pp. 2586–2593, 2020.

[7] C. Knuth, G. Chou, J. Reese, and J. Moore, “Statistical safety and
robustness guarantees for feedback motion planning of unknown
underactuated stochastic systems,” in ICRA, 2023.

[8] C. Knuth, G. Chou, N. Ozay, and D. Berenson, “Planning with
learned dynamics: Probabilistic guarantees on safety and reachability
via lipschitz constants,” IEEE Robotics Autom. Lett., vol. 6, no. 3, pp.
5129–5136, 2021.

[9] G. Chou, N. Ozay, and D. Berenson, “Model error propagation via
learned contraction metrics for safe feedback motion planning of
unknown systems,” in CDC. IEEE, 2021, pp. 3576–3583.

[10] M. Laskin, A. Srinivas, and P. Abbeel, “CURL: contrastive unsuper-
vised representations for reinforcement learning,” in ICML, 2020.

[11] D. Wang, R. Walters, X. Zhu, and R. P. Jr., “Equivariant Q learning
in spatial action spaces,” in CoRL, 2021.

[12] A. Zhang, R. T. McAllister, R. Calandra, Y. Gal, and S. Levine,
“Learning invariant representations for reinforcement learning without
reconstruction,” in ICLR, 2021.

[13] V. Pacelli and A. Majumdar, “Learning task-driven control policies
via information bottlenecks,” in R:SS, 2020.

[14] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks: Using
physics as model prior for deep learning,” in ICLR, 2019.

[15] Y. D. Zhong, B. Dey, and A. Chakraborty, “Symplectic ode-net:
Learning hamiltonian dynamics with control,” in ICLR, 2020.

[16] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural
networks,” in NeurIPS, 2019.

[17] A. R. Geist and S. Trimpe, “Learning constrained dynamics with
gauss’ principle adhering gaussian processes,” in L4DC, 2020.

[18] L. Rath, A. R. Geist, and S. Trimpe, “Using physics knowledge for
learning rigid-body forward dynamics with gaussian process force
priors,” in CoRL, 2021.

[19] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu, “Neu-
ral networks with physics-informed architectures and constraints for
dynamical systems modeling,” in L4DC, 2022.

[20] G. Sutanto, I. M. R. Fernández, P. Englert, R. K. Ramachandran, and
G. S. Sukhatme, “Learning equality constraints for motion planning
on manifolds,” in CoRL, 2020.

[21] G. Chou, D. Berenson, and N. Ozay, “Learning constraints from
demonstrations,” in WAFR, 2018.

[22] G. Chou, N. Ozay, and D. Berenson, “Uncertainty-aware constraint
learning for adaptive safe motion planning from demonstrations,” in
CoRL, 2020.

[23] G. Chou, H. Wang, and D. Berenson, “Gaussian process constraint
learning for scalable chance-constrained motion planning from demon-
strations,” IEEE Robotics Autom. Lett., vol. 7, no. 2, 2022.

[24] M. Menner, P. Worsnop, and M. N. Zeilinger, “Constrained inverse
optimal control with application to a human manipulation task,” IEEE
TCST, 2021.

[25] K. C. Stocking, D. L. McPherson, R. P. Matthew, and C. J. Tomlin,
“Maximum likelihood constraint inference on continuous state spaces,”
in ICRA, 2022.

[26] S. M. LaValle, Planning algorithms. Cambridge Press, 2006.
[27] W. P. Klingenberg, “Riemannian geometry.” De Gruyter, 1995.
[28] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for

Machine Learning. The MIT Press, 2005.
[29] J. Kelley, General Topology. Springer New York, 1975.
[30] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric

discriminatively, with application to face verification,” in CVPR, 2005.

[31] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” CoRR, vol. abs/1807.03748, 2018.

[32] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” in ICML,
2020.

[33] R. Bro, E. Acar, and T. Kolda, “Resolving the sign ambiguity in the
singular value decomposition,” Journal of Chemometrics, 2008.

[34] R. H. Byrd and R. B. Schnabel, “Continuity of the null space basis
and constrained optimization,” Math. Program., vol. 35, no. 1, pp.
32–41, 1986. [Online]. Available: https://doi.org/10.1007/BF01589439

https://doi.org/10.1007/BF01589439

	Introduction
	Related Work
	Preliminaries and Problem Statement
	Method
	Learning sparse dynamics
	Contrastive learning of pseudometrics
	Learning a pseudometric for sparsifying the dynamics
	Learning the sparse dynamics model

	Learning the constraint manifold
	Constraint formulation
	Approximating the normal space
	Training the constraint distance pseudometric
	Learning the constraint on reduced input space

	Generating predictions at evaluation time

	Results
	Discussion and Conclusion
	References

