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Abstract

Graph condensation, which reduces the size of a large-scale graph by synthesizing a
small-scale condensed graph as its substitution, has immediate benefits for various
graph learning tasks. However, existing graph condensation methods rely on the
joint optimization of nodes and structures in the condensed graph, and overlook
critical issues in effectiveness and generalization ability. In this paper, we advocate
a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-
scale graph into a small-scale graph node set without explicit graph structures, i.e.,
graph-free data. Our idea is to implicitly encode topology structure information into
the node attributes in the synthesized graph-free data, whose topology is reduced
to an identity matrix. Specifically, SFGC contains two collaborative components:
(1) a training trajectory meta-matching scheme for effectively synthesizing small-
scale graph-free data; (2) a graph neural feature score metric for dynamically
evaluating the quality of the condensed data. Through training trajectory meta-
matching, SFGC aligns the long-term GNN learning behaviors between the large-
scale graph and the condensed small-scale graph-free data, ensuring comprehensive
and compact transfer of informative knowledge to the graph-free data. Afterward,
the underlying condensed graph-free data would be dynamically evaluated with the
graph neural feature score, which is a closed-form metric for ensuring the excellent
expressiveness of the condensed graph-free data. Extensive experiments verify the
superiority of SFGC across different condensation ratios.‡

1 Introduction

As prevalent graph data learning models, graph neural networks (GNNs) have attracted much
attention and achieved great success [68, 36, 22, 82, 25, 24, 23]. Various graph data in the real
world comprises millions of nodes and edges[37, 38, 43], reflecting diverse node attributes and
complex structural connections [33, 34, 32, 54]. Modeling such large-scale graphs brings serious
challenges in both data storage and GNN model designs, hindering the applications of GNNs in many
industrial scenarios [74, 2, 64, 73, 80, 71, 72]. For instance, designing GNN models usually requires
repeatedly training GNNs for adjusting proper hyper-parameters and constructing optimal model
architectures. When taking large-scale graphs as training data, repeated training through message
passing along complex graph structures, makes it highly computation-intensive and time-consuming
through try-and-error.

To address these challenges brought by the scale of graph data, a natural data-centric solution
[78] is graph size reduction, which transforms the real-world large-scale graph to a small-scale
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graph, such as graph sampling [66, 6], graph coreset [47, 60], graph sparsification [1, 5], and graph
coarsening [3, 28]. These conventional methods either extract representative nodes and edges or
preserve specific graph properties from the large-scale graphs, resulting in severe limitations of
the obtained small-scale graphs in the following two folds. First, the available information on
derived small-scale graphs is significantly upper-bounded and limited within the range of large-
scale graphs [66, 60]. Second, the preserved properties of small-scale graphs, e.g., spectrum
and clustering, might not always be optimal for training GNNs for downstream tasks [1, 3, 28].

Figure 1: Comparisons of condensation
vs structure-free condensation on graphs.

In light of these limitations of conventional meth-
ods, in this work, we mainly focus on graph con-
densation [27, 26], a new rising synthetic method
for graph size reduction. Concretely, graph conden-
sation aims to directly optimize and synthesize a
small-scale condensed graph, so that the small-scale
condensed graph could achieve comparable test per-
formance as the large-scale graph when training the
same GNN model. Therefore, the principal goal of
graph condensation is to ensure consistent test re-
sults for GNNs when taking the large-scale graph
and the small-scale condensed graph as training data.

However, due to the structural characteristic of graph data, nodes and edges are tightly coupled. This
makes condensing graph data a complicated task since high-quality condensed graphs are required to
jointly synthesize discriminative node attributes and topology structures. Some recent works have
made initial explorations of graph condensation [27, 26]. For instance, GCOND [27] proposed the
online gradient matching schema between the synthesized small-scale graph and the large-scale graph,
followed by a condensed graph structure learning module for synthesizing both condensed nodes and
structures. However, existing methods overlook two-fold critical issues regarding effectiveness and
generalization ability. First, graph condensation requires a triple-level optimization to jointly learn
three objectives: GNN parameters, distilled node attributes, and topology structures. Such complex
optimization cannot guarantee optimal solutions for both nodes and edges in the condensed graph,
significantly limiting its effectiveness as the representative of the large-scale graph. Furthermore,
existing online GNN gradients [27, 26] are calculated with the short-range matching, leading to
the short-sight issue of failing to imitate holistic GNN learning behaviors, limiting the quality of
condensed graphs. Second, existing condensed graphs generally show poor generalization ability
across different GNN models [27, 26], because different GNN models vary in their convolution
operations along graph structures. As a result, existing methods are vulnerable to overfiting of specific
GNN architectures by distilling convolutional information into condensed graph structures.

To deal with the above two-fold challenges, in this work, we propose a novel Structure-Free Graph
Condensation paradigm, named SFGC, to distill large-scale real-world graphs into small-scale syn-
thetic graph node sets without graph structures, i.e., condensed graph-free data. Different from
conventional graph condensation that synthesizes both nodes and structures to derive a small-scale
graph, as shown in Fig. 1, the proposed structure-free graph condensation only synthesizes a small-
scaled node set to train a GNN/MLP, when it implicitly encodes topology structure information into
the node attributes in the synthesized graph-free data, by simplifying the condensed topology to
an identity matrix. Overall, the proposed SFGC contains two essential components: (1) a training
trajectory meta-matching scheme for effectively synthesizing small-scale graph-free data; (2) a graph
neural feature score metric for dynamically evaluating the quality of condensed graph-free data.
To address the short-sight issue of existing online gradient matching, our training trajectory meta-
matching scheme first trains a set of training trajectories of GNNs on the large-scale graph to acquire
an expert parameter distribution, which serves as offline guidance for optimizing the condensed
graph-free data. Then, the proposed SFGC conducts meta-matching to align the long-term GNN
learning behaviors between the large-scale graph and condensed graph-free data by sampling from
the training trajectory distribution, enabling the comprehensive and compact transfer of informative
knowledge to the graph-free data. At each meta-matching step, we would obtain updated condensed
graph-free data, which would be fed into the proposed graph neural feature score metric for dynam-
ically evaluating its quality. This metric is derived based on the closed-form solutions of GNNs
under the graph neural tangent kernel (GNTK) ridge regression, eliminating the iterative training
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of GNNs in the dynamic evaluation. Finally, the proposed SFGC selects the condensed graph-free
data with the smallest score as the optimal representative of the large-scale graph. Our proposed
structure-free graph condensation method could benefit many potential application scenarios, such as,
graph neural architecture search [79, 81], privacy protection [69], adversarial robustness [67, 70],
continual learning [78], and so on. We provide detailed demonstrations of how our method facilitates
the development of these areas in Appendix B

In summary, the contributions of this work are listed as follows:

• We propose a novel Structure-Free Graph Condensation paradigm to effectively distill large-scale
real-world graphs to small-scale synthetic graph-free data with superior expressiveness, to the best
of our knowledge, for the first time.

• To explicitly imitate the holistic GNN training process, we propose the training trajectory meta-
matching scheme, which aligns the long-term GNN learning behaviors between the large-scale
graph and the condensed graph-free data, with the theoretical guarantee of eliminating graph
structure constraints.

• To ensure the high quality of the condensed data, we derive a GNTK-based graph neural feature
score metric, which dynamically evaluates the small-scale graph-free data at each meta-matching
step and selects the optimal one. Extensive experiments verify the superiority of our method.

Prior Works. Our research falls into the research topic dataset distillation (condensation) [30, 59],
which aims to synthesize a small typical dataset that distills the most important knowledge from a
given large target dataset as its effective substitution. Considering most of the works condense image
data [59, 39, 77, 76, 4], due to the complexity of graph structural data, only a few works [27, 26]
address graph condensation, while our research designs a new structure-free graph condensation
paradigm for addressing the effectiveness and generalization ability issues in existing graph conden-
sation works. Our research also significantly differs from other general graph size reduction methods,
for instance, graph coreset [47, 60], graph sparsification [1, 5] and so on. More detailed discussions
about related works can be found in Appendix A.

2 Structure-Free Graph Condensation

2.1 Preliminaries

Notations. Denote a large-scale graph dataset to be condensed by T = (X,A,Y), where X ∈ R
N×d

denotes N number of nodes with d-dimensional features, A ∈ R
N×N denotes the adjacency matrix

indicating the edge connections, and Y ∈ R
N×C denotes the C-classes of node labels. In general,

graph condensation synthesizes a small-scale graph dataset denoted as T ′ = (X′,A′,Y′) with

X′ ∈ R
N ′×d, A′ ∈ R

N ′×N ′
, and Y′ ∈ R

N ′×C when N ′ � N . In this work, we propose the
structure-free graph condensation paradigm, which aims to synthesize a small-scale graph node set

S = (X̃, Ỹ) without explicitly condensing graph structures, i.e., the condensed graph-free data, as an

effective substitution of the given large-scale graph. Hence, X̃ contains joint node context attributes
and topology structure information, which is a more compact representative compared with (X′,A′).

Graph Condensation. Given a GNN model parameterized by θ, graph condensation [27] is defined
to solve the following triple-level optimization objective by taking T = (X,A,Y) as input:

min
T ′

L
[
GNNθT ′ (X,A),Y

]
s.t. θT ′ = argmin

θ
L [GNNθ (X

′,A′) ,Y′] ,

ψA′ = argmin
ψ

L [GSLψ (X′)] ,

(1)

where GSLψ is a submodule parameterized by ψ to synthesize the graph structure A′. One of inner
loops learns the optimal GNN parameters θT ′ , while another learns the optimal GSL parameters
ψA′ to obtain the condensed A′, and the outer loop updates the condensed nodes X′. All these
comprise the condensed small-scale graph T ′ = (X′,A′,Y′), where Y′ is pre-defined based on the
class distribution of the label space Y in the large-scale graph.

Overall, the above optimization objective needs to solve the following variables iteratively: (1) con-
densed X′; (2) condensed A′ with GSLψA′ ; and (3) GNNθT ′ . Jointly learning these interdependent
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Figure 2: Overall pipeline of the proposed Structure-Free Graph Condensation (SFGC) framework.

objectives is highly challenging. It is hard to guarantee that each objective obtains the optimal and
convergent solution in such a complex and nested optimization process, resulting in the limited
expressiveness of the condensed graph. This dilemma motivates us to reconsider the optimization
objective of graph condensation to synthesize the condensed graph more effectively.

Graph Neural Tangent Kernel (GNTK). As a new class of graph kernels, graph neural tangent
kernel (GNTK) is easy to train with provable theoretical guarantees, and meanwhile, enjoys the full
expressive power of GNNs [10, 19, 21, 41]. In general, GNTK can be taken as the infinitely-wide
multi-layer GNNs trained by gradient descent. It learns a class of smooth functions on graphs with
close-form solutions. More specifically, let G = (V,E) denote a graph with nodes V and edges
E, where each node v ∈ V within its neighbor set N (v). Given two graphs G = (V,E) and
G′ = (V ′, E′) with n and n′ number of nodes, their covariance matrix between input features can be

denoted as Σ(0) (G,G′) ∈ R
n×n′

. Each element in
[
Σ(0) (G,G′)

]
uu′ is the inner product h�

u hu′ ,

where hu and hu′ are of input features of two nodes u ∈ V and u′ ∈ V ′. Then, for each GNN
layer � ∈ {0, 1, . . . , L} that has B fully-connected layers with ReLU activation, GNTK calculates

K(�)
(β) 〈G,G′〉 for each β ∈ [B]:

[
K(�)

(β) 〈G,G′〉
]
uu′

=
[
K(�)

(β−1) 〈G,G′〉
]
uu′

[
Σ̇

(�)

(β) (G,G′)
]
uu′

+
[
Σ

(�)
(β) (G,G′)

]
uu′

,
(2)

where Σ̇(�) denotes the derivative w.r.t. the �-th GNN layer of the covariance matrix, and the (�+1)-th

layer’s covariance matrix aggregates neighbors along graph structures as
[
Σ

(�+1)
(0) (G,G′)

]
uu′

=∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

[
Σ

(�)
(B) (G,G′)

]
vv′

, ditto for the kernel
[
K(�+1)

(0) (G,G′)
]
uu′

. With

the GNTK matrix K(L)
(B) 〈G,G′〉 ∈ R

n×n′
at the node level, we use the graph kernel method to

solve the equivalent GNN model for node classification with closed-form solutions. This would
significantly benefit the efficiency of condensed data evaluation by eliminating iterative GNN training.

2.2 Overview of SFGC Framework

The crux of achieving structure-free graph condensation is in determining discriminative node attribute
contexts, which implicitly integrates topology structure information. We compare the paradigms
between existing graph condensation (GC) and our new structure-free condensation SFGC as follows:

T = (X,A,Y) → T ′ = (X′,A′,Y′), GC.

T = (X,A,Y) → S = (X̃, I, Ỹ) = S = (X̃, Ỹ), SFGC.
(3)
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It is fundamentally different between existing GC paradigm with T → T ′ and our SFGC with

T → S. Our idea is to synthesize a graph-free data S = (X̃, I, Ỹ) whose topology is reduced
to an identity matrix I (i.e., structure-free), instead of explicitly learning A′as existing GC. To

enforce node attribute X̃ encoding topology structure information as X̃ � (X,A), we propose
a long-term imitation learning process with training trajectories, which requires a GNN model

learned from S , i.e., GNNS= GNN(X̃, I, Ỹ) must imitate a GNN model from the original graph, i.e.,
GNNT = GNN(X,A,Y). We provide more theoretical illustrations of the proposed structure-free
graph condensation paradigm from the views of statistical learning and information flow, respectively,
in Appendix D. The overall pipeline of the proposed Structure-Free Graph Condensation (SFGC)
framework is shown in Fig. 2.

We consider two coupled stages in the proposed SFGC framework, i.e., graph-free data synthesis ( 1

∼ 4 ) and condensed graph-free data evaluation ( 5 ), corresponding to two essential components:
(1) the training trajectory meta-matching scheme and (2) the graph neural feature score metric.

Concretely, as illustrated in Fig. 2, taking the given large-scale graph T as input, we first ( 1 ) train

an expert set of GNNT , parameterized by
{
Θi

T
}K

i=1
=

{
θ∗,i
t

}T

t=1
, denoting K numbers of expert

training trajectories, each within T time steps. Then, we sample a single expert training trajectory i

at t0 step, i.e., θ∗,i
t0 , and further use it to initialize the model ( 2 ) GNNS trained by the condensed

graph-free data S . Then, after q steps of GNNS and p steps of GNNT , we conduct the meta-matching

( 3 ) between the long-term intervals of training trajectories
[
θ̃t0 , θ̃t0+q

]
and

[
θ∗,i
t0 ,θ

∗,i
t0+p

]
with the

proposed meta-matching loss Lmeta-tt. Next, the loss function back-propagates along GNNS and the

condensed graph-free data S is updated ( 4 ). After, the updated S at the current step is used to

calculate the GNTK-based graph neural feature score metric γgnf for dynamic evaluation ( 5 ), along
with the large-scale validation subgraph Tval. Finally, SFGC selects the optimal condensed graph-free
data with the smallest γ∗

gnf as the expressive substitution of the large-scale graph.

2.3 Training Trajectory Meta-matching

Different from existing graph condensation methods [27, 26] that conduct online gradient matching
within the short range, i.e., step-by-step or single-step matching gradients between the large-scale
graph and the condensed graph, the proposed SFGC matches their long-term GNN training trajectories
with the guidance of the offline expert parameter distribution. Concretely, inspired by [4], we first
train K numbers of GNN models with the same architecture denoted as GNNT on the large-scale

graph T . Then, we save their network parameters
{
Θi

T
}K

i=1
=

{
θ∗,i
t

}T

t=1
at certain epoch intervals,

resulting in K numbers of expert training trajectories that have comprehensive knowledge of the
large-scale graph in terms of GNN’s training process. Such expert training trajectories further build
a parameter distribution PΘT denoting the GNN learning behavior on the large-scale graph. Note
that such a parameter distribution is pre-calculated and stored. Hence, this process can be offline
and separated from the end-to-end graph condensation pipeline, moderately reducing the online
computation costs.

By sampling from the pre-derived parameter distribution PΘT , we optimize the following objective
for synthesizing S as:

min
S

Eθ∗,i
t ∼PΘT

[
Lmeta-tt

(
θ∗
t |pt=t0 , θ̃t|qt=t0

)]
. (4)

Note that θ∗
t |pt=t0 and θ̃t|qt=t0 denote the parameters of GNNT within the range of (t0, t0 + p) and

GNNS within (t0, t0 + q), respectively, where t0 < t0 + p < T . More specifically, Lmeta-tt calculates

certain parameter training intervals within
[
θ∗,i
t0 ,θ

∗,i
t0+p

]
and

[
θ̃t0 , θ̃t0+q

]
as

Lmeta-tt =

∥∥∥θ̃t0+q − θ∗,i
t0+p

∥∥∥2
2∥∥∥θ̃t0 − θ∗,i

t0+p

∥∥∥2
2

. (5)

Here, we initialize the parameter of GNNS with that of GNNT at t0 training step, so that we have

θ∗,i
t0 = θ̃t0 . And we consider the expectation on S w.r.t. different initialized parameter θ∗,i

t0 in

5



Algorithm 1 Structure-Free Graph Condensation (SFGC)

Require: (1) PΘT : Pretrained a set of K numbers of GNNs on the large-scale graph GNNT
parameterized by ΘT ; (2) T0: numbers of meta-matching steps; (3) T1: GNNS training steps.

Ensure: A small-scale condensed graph-free data S =
(
X̃, Ỹ

)
1: while η < T0 do
2: randomly sample a pretrained training trajectory in PΘT and calculate the Lmeta-tt according

to Eq. (5);
3: for t < T1 do
4: train GNNS through gradient descent by θ̃

t+1

S ← θ̃
t

S − ζ∇
˜θLcls

[
GNNS

(
X̃, I

)
, Ỹ

]
,

where ζ is the step size;
5: end for
6: update the condensed graph-free data Sη according to Eq. (4);
7: calculate current η-th step γgnf(Sη) according to Eq. (7);
8: end while
9: select the optimal condensed graph-free data S∗

η with the smallest score γ∗
gnf as the final output.

distribution PΘT , which can be taken as a ‘meta’ way to make the distilled dataset S adapt different
parameter initialization. That is why we call it ‘meta-matching’. In this way, when initializing GNNT
and GNNS with the same model parameters, Eq. (5) contributes to aligning the learning behaviors
of GNNT that experiences p-steps optimization, to GNNS that experiences q-steps optimization.
In this way, the proposed training trajectory meta-matching schema could comprehensively imitate
the long-term learning behavior of GNN training. As a result, the informative knowledge of the
large-scale graph T can be effectively transferred to the small-scale condensed graph-free data

S = (X̃, Ỹ) in the above outer-loop optimization objective of Eq. (4).

For the inner loop, we train GNNS on the synthesized small-scale condensed graph-free data for

optimizing its model parameter until the optimal θ̃
∗
S . Therefore, the final optimization objective of

the proposed SFGC is

min
S

Eθ∗,i
t ∼PΘT

[
Lmeta-tt

(
θ∗
t |pt=t0 , θ̃t|qt=t0

)]
,

s.t. θ̃
∗
S = argmin

˜θ

Lcls

[
GNN

˜θ (S)
]
,

(6)

where Lcls is the node classification loss calculated with the cross-entropy on graphs. Compared with
the triple-level optimization in Eq. (1), the proposed SFGC directly replaces the learnable A′ in Eq. (1)

with a fixed identity matrix I, resulting in the condensed structure-free graph data S = (X̃, I, Ỹ).
Without synthesizing condensed graph structures with GSLψ ,the proposed SFGC refines the complex
triple-level optimization to the bi-level one, ensuring effectiveness of the condensed graph-free data.

Hence, the advances of the training trajectory meta-matching schema in the proposed SFGC can be
summarized as follows: (1) compared with the online gradient calculation, SFGC’s offline parameter
sampling avoids dynamically computing and storing gradients of both the large and condensed small
graphs, reducing computation and memory costs during the condensation process; (2) compared with
short-range matching, SFGC’s long-term meta-matching avoids condensed data to short-sightedly fit
certain optimization steps, contributing to a more holistic and comprehensive way to imitate GNN’s
learning behaviors.

2.4 Graph Neural Feature Score

For each update of the outer loop in Eq. (6), we would synthesize the brand-new condensed graph-free
data. However, evaluating the quality of the underlying condensed graph-free data in the dynamical
meta-matching condensation process is quite challenging. That is because we cannot quantity a graph
dataset’s performance without blending it in a GNN model. And the condensed graph-free data itself
cannot be measured by convergence or decision boundary. Generally, to evaluate the condensed
graph-free data, we use it to train a GNN model. If the condensed data at a certain meta-matching
step achieves better GNN test performance on node classification, it indicates the higher quality of
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the current condensed data. That means, evaluating condensed graph-free data needs an extra process
of training a GNN model from scratch, leading to much more time and computation costs.

In light of this, we aim to derive a metric to dynamically evaluate the condensed graph-free data in the
meta-matching process, and utilize it to select the optimal small-scale graph-free data. Meanwhile,
the evaluation progress would not introduce extra GNN iterative training for saving computation
and time. To achieve this goal, we first identify what characteristics such a metric should have: (1)
closed-form solutions of GNNs to avoid iterative training in evaluation; (2) the ability to build strong
connections between the large-scale graph and the small-scale synthesized graph-free data. In this
case, the graph neural tangent kernel (GNTK) stands out, as a typical class of graph kernels, and
has the full expressive power of GNNs with provable closed-form solutions. Moreover, as shown in
Eq. (2), GNTK naturally builds connections between arbitrary two graphs even with different sizes.

Based on the graph kernel method with GNTK, we proposed a graph neural feature score metric γgnf

to dynamically evaluate and select the optimal condensed graph-free data as follows:

γgnf(S) =
1

2

∥∥∥Yval −K 〈Tval,S〉 (K 〈S,S〉+ λI)
−1

Ỹ
∥∥∥2 , (7)

where K 〈Tval,S〉 ∈ R
Nval×N ′

and K 〈S,S〉 ∈ R
N ′×N ′

denote the node-level GNTK matrices
derived according to Eq. (2). And Tval is the validation sub-graph of the large-scale graph with
Nval numbers of nodes. Concretely, γgnf(S) calculates the graph neural tangent kernel based ridge
regression error. It measures that, given an infinitely-wide GNN trained on the condensed graph S
with ridge regression, how close such GNN’s prediction on Tval to its ground truth labels Yval. Note
that Eq. (7) can be regarded as the Kernel Inducing Point (KIP) algorithm [39, 40] adapted to the
GNTK kernel on GNN models.

Hence, the proposed graph neural feature score meets the above-mentioned characteristics as: (1)
it calculates a closed-form GNTK-based ridge regression error for evaluation without iteratively
training GNN models; (2) it strongly connects the condensed graph-free data with the large-scale
validation graph; In summary, the overall algorithm of the proposed SFGC is presented in Algo. 1.

3 Experiments

3.1 Experimental Settings

Datasets. Following [27], we evaluate the node classification performance of the proposed
SFGC method on Cora, Citeseer [61], and Ogbn-arxiv [17] under the transductive setting, on
Flickr [66] and Reddit [16] under the inductive setting. For all datasets under two settings, we
use the public splits and setups for fair comparisons. We consider three condensation ratios (r) for
each dataset. Concretely, r is the ratio of condensed node numbers rN(0 < r < 1) to large-scale
node numbers N . In the transductive setting, N represents the number of nodes in the entire large-
scale graph, while in the inductive setting, N indicates the number of nodes in the training sub-graph
of the whole large-scale graph. The dataset statistic details are shown in Appendix C.

Baselines & Implementations. We adopt the following baselines for comprehensive compar-
isons [27]: graph coarsening method [20], graph coreset methods, i.e., Random, Herding [60], and
K-Center [51], the graph-based variant DC-Graph of general dataset condensation method DC [77],
which is introduced by [27], graph dataset condensation method GCOND [27] and its variant GCOND-
X without utilizing the graph structure. The whole pipeline of our experimental evaluation can be
divided into two stages: (1) the condensation stage: synthesizing condensed graph-free data, where
we use the classical and commonly-used GCN model [61]; (2) the condensed graph-free data test
stage: training a certain GNN model (default with GCN) by the obtained condensed graph-free data
from the first stage and testing the GNN on the test set of the large-scale graph with repeated 10 times.
We report the average transductive and inductive node classification accuracy (ACC%) with standard
deviation (std). Following [27], we use the two-layer GNN with 256 hidden units as the defaulted
setting. Besides, we adopt the K-center [51] features to initialize our condensed node attributes for
stabilizing the training process. Additional hyper-parameter setting details are listed in Appendix E.
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Table 1: Node classification performance (ACC%±std) comparison between condensation methods
and other graph size reduction methods with different condensation ratios. (Best results are in bold, and the
second-bests are underlined.)

Datasets Ratio (r)
Other Graph Size Reduction Baselines Condensation Methods Whole

Dataset
Coarsening [20] Random [60] Herding [60] K-Center [51] DC-Graph [77] GCOND-X [27] GCOND [27] SFGC (ours)

Citeseer
0.9% 52.2±0.4 54.4±4.4 57.1±1.5 52.4±2.8 66.8±1.5 71.4±0.8 70.5±1.2 71.4±0.5

71.7±0.11.8% 59.0±0.5 64.2±1.7 66.7±1.0 64.3±1.0 66.9±0.9 69.8±1.1 70.6±0.9 72.4±0.4

3.6% 65.3±0.5 69.1±0.1 69.0±0.1 69.1±0.1 66.3±1.5 69.4±1.4 69.8±1.4 70.6±0.7

Cora
1.3% 31.2±0.2 63.6±3.7 67.0±1.3 64.0±2.3 67.3±1.9 75.9±1.2 79.8±1.3 80.1±0.4

81.2±0.22.6% 65.2±0.6 72.8±1.1 73.4±1.0 73.2±1.2 67.6±3.5 75.7±0.9 80.1±0.6 81.7±0.5

5.2% 70.6±0.1 76.8±0.1 76.8±0.1 76.7±0.1 67.7±2.2 76.0±0.9 79.3±0.3 81.6±0.8

Ogbn-arxiv
0.05% 35.4±0.3 47.1±3.9 52.4±1.8 47.2±3.0 58.6±0.4 61.3±0.5 59.2±1.1 65.5±0.7

71.4±0.10.25% 43.5±0.2 57.3±1.1 58.6±1.2 56.8±0.8 59.9±0.3 64.2±0.4 63.2±0.3 66.1±0.4

0.5% 50.4±0.1 60.0±0.9 60.4±0.8 60.3±0.4 59.5±0.3 63.1±0.5 64.0±0.4 66.8±0.4

Flickr
0.1% 41.9±0.2 41.8±2.0 42.5±1.8 42.0±0.7 46.3±0.2 45.9±0.1 46.5±0.4 46.6±0.2

47.2±0.10.5% 44.5±0.1 44.0±0.4 43.9±0.9 43.2±0.1 45.9±0.1 45.0±0.2 47.1±0.1 47.0±0.1

1% 44.6±0.1 44.6±0.2 44.4±0.6 44.1±0.4 45.8±0.1 45.0±0.1 47.1±0.1 47.1±0.1

Reddit
0.05% 40.9±0.5 46.1±4.4 53.1±2.5 46.6±2.3 88.2±0.2 88.4±0.4 88.0±1.8 89.7±0.2

93.9±0.00.1% 42.8±0.8 58.0±2.2 62.7±1.0 53.0±3.3 89.5±0.1 89.3±0.1 89.6±0.7 90.0±0.3

0.2% 47.4±0.9 66.3±1.9 71.0±1.6 58.5±2.1 90.5±1.2 88.8±0.4 90.1±0.5 89.9±0.4

Figure 3: Comparisons between five variants of synthesizing graph structures vs. our structure-free
SFGC (discrete k-nearest neighbor (kNN) structure variants: SFGC-d1 (k = 1), SFGC-d2 (k = 2), and SFGC-d5 (k = 5), continuous graph

structure variant: SFGC-c, parameterized graph structure variant: SFGC-p).

3.2 Experimental Results

Performance of SFGC on Node Classification. We compare the node classification performance
between SFGC and other graph size reduction methods, especially the graph condensation methods.
The overall performance comparison is listed in Table 1. Generally, SFGC achieves the best per-
formance on the node classification task with 13 of 15 cases (five datasets and three condensation
ratios for each of them), compared with all other baseline methods, illustrating the high quality and
expressiveness of the condensed graph-free data synthesized by our SFGC. More specifically, the
better performance of SFGC than GCOND and its structure-free variant GCOND-X experimentally
verifies the superiority of the proposed method. We attribute such superiority to the following two
aspects regarding the condensation stage. First, the long-term parameter distribution matching of our
SFGC works better than the short-term gradient matching in GCOND and GCOND-X. That means
capturing the long-range GNN learning behaviors facilitates to holistically imitate GNN’s training
process, leading to comprehensive knowledge transfer from the large-scale graph to the small-scale
condensed graph-free data. Second, the structure-free paradigm of our SFGC enables more compact
small-scale graph-free data. For one thing, it liberates the optimization process from triple-level
objectives, alleviating the complexity and difficulty of condensation. For another thing, the obtained
optimal condensed graph-free data compactly integrates node attribute contexts and topology structure
information. Furthermore, on Cora and Citeseer, SFGC synthesizes better condensed graph-free data
that even exceeds the whole large-scale graph dataset. These results confirm that SFGC is able to break
the information limitation under the large-scale graph and effectively synthesize new, small-scale
graph-free data as an optimal representation of the large-scale graph.

Effectiveness of Structure-free Paradigm in SFGC. The proposed SFGC introduces the structure-
free paradigm without condensing graph structures in graph condensation. To verify the effectiveness
of the structure-free paradigm, we compare the proposed SFGC with its variants, which synthesize
graph structures in the condensation process. Specifically, we evaluate the following three different
methods of synthesizing graph structures with five variants of SFGC: (1) discrete k-nearest neighbor
(kNN) structures calculated by condensed node features under k = (1, 2, 5), corresponding to the
variants SFGC-d1, SFGC-d2, and SFGC-d5; (2) cosine similarity based continuous graph structures
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Table 2: Performance across different GNN architectures.

Datasets
(Ratio)

Methods MLP GAT [56] APPNP [14] Cheby [7] GCN [61] SAGE [16] SGC [63] Avg.

Citeseer
(r = 1.8%)

DC-Graph [77] 66.2 - 66.4 64.9 66.2 65.9 69.6 66.6
GCOND-X [27] 69.6 - 69.7 70.6 69.7 69.2 71.6 70.2
GCOND [27] 63.9 55.4 69.6 68.3 70.5 66.2 70.3 69.0
SFGC (ours) 71.3 72.1 70.5 71.8 71.6 71.7 71.8 71.5

Cora
(r = 2.6%)

DC-Graph [77] 67.2 - 67.1 67.7 67.9 66.2 72.8 68.3
GCOND-X [27] 76.0 - 77.0 74.1 75.3 76.0 76.1 75.7
GCOND [27] 73.1 66.2 78.5 76.0 80.1 78.2 79.3 78.4
SFGC (ours) 81.1 80.8 78.8 79.0 81.1 81.9 79.1 80.3

Ogbn-arxiv
(r = 0.25%)

DC-Graph [77] 59.9 - 60.0 55.7 59.8 60.0 60.4 59.2
GCOND-X [27] 64.1 - 61.5 59.5 64.2 64.4 64.7 62.9
GCOND [27] 62.2 60.0 63.4 54.9 63.2 62.6 63.7 61.6
SFGC (ours) 65.1 65.7 63.9 60.7 65.1 64.8 64.8 64.3

Flickr
(r = 0.5%)

DC-Graph [77] 43.1 - 45.7 43.8 45.9 45.8 45.6 45.4
GCOND-X [27] 42.1 - 44.6 42.3 45.0 44.7 44.4 44.2
GCOND [27] 44.8 40.1 45.9 42.8 47.1 46.2 46.1 45.6
SFGC (ours) 47.1 45.3 40.7 45.4 47.1 47.0 42.5 45.0

Reddit
(r = 0.1%)

DC-Graph [77] 50.3 - 81.2 77.5 89.5 89.7 90.5 85.7
GCOND-X [27] 40.1 - 78.7 74.0 89.3 89.3 91.0 84.5
GCOND [27] 42.5 60.2 87.8 75.5 89.4 89.1 89.6 86.3
SFGC (ours) 89.5 87.1 88.3 82.8 89.7 90.3 89.5 88.2

calculated by condensed node features, corresponding to the variant SFGC-c; (3) parameterized
graph structure learning module with condensed node features adapted by [27], corresponding to
the variant SFGC-p. We conduct experiments on three transductive datasets under nine condensation
ratios for each graph structure synthesis variant and the proposed SFGC. The results are presented
in Fig. 3. In general, the proposed SFGC achieves the best performance over various graph structure
synthesis methods, and these results empirically verify the effectiveness of the proposed structure-free
condensation paradigm. More specifically, for discrete k-nearest neighbor (kNN) structure variants,
different datasets adapt different numbers of k-nearest neighbors under different condensation ratios,
which means predefining the value of k can be very challenging. For example, Citeseer dataset has
better performance with k = 1 in SFGC-d1 under r = 0.9% than SFGC-d2 and SFGC-d5, but under
r = 1.8%, k = 2 in SFGC-d2 performs better than others two. Besides, for continuous graph structure
variant SFGC-c, it generally cannot exceed the discrete graph structure variants, except for Ogbn-arxiv
dataset under r = 0.05%. And the parameterized variant SFGC-p almost fails to synthesize satisfied
condensed graphs under the training trajectory meta-matching scheme. The superior performance of
SFGC to all structure-based methods demonstrates the effectiveness of its structure-free paradigm.

Effectiveness of Graph Neural Feature Score in SFGC. We compare the learning time between
GNN iterative training vs. our proposed GNTK-based closed-form solutions of γgnf. Note that
the iterative training evaluation strategy mandates the complete training of a GNN model from
scratch at each meta-matching step, hence, we calculate its time that covers all training epochs
under the best test performance for fair comparisons. Typically, for Flickr dataset (r = 0.1%), our
proposed γgnf based GNTK closed-form solutions takes only 0.015s for dynamic evaluation, which
significantly outperforms the iterative training evaluation with 0.845s. The superior performance can
also be observed in Ogbn-arxiv dataset (r = 0.05%) with 0.042s of our γgnf, compared with 4.264s
of iterative training, illustrating our SFGC’s high dynamic evaluation efficiency. More results and
analysis of our proposed γgnf in GNTK-based closed-form solutions can be found in Appendix.

Generalization Ability of SFGC across Different GNNs. We evaluate and compare the general-
ization ability of the proposed SFGC and other graph condensation methods. Concretely, we test the
node classification performance of our synthesized graph-free data (condensed on GCN) with seven
different GNN architectures: MLP, GAT [56], APPNP [14], Cheby [7], GCN [61], SAGE [16], and
SGC [63]. It can be generally observed that the proposed SFGC achieves outstanding performance
over all tested GNN architectures, reflecting its excellent generalization ability. This is because our
method reduces the graph structure to the identity matrix, so that the condensed graph node set can
no longer be influenced by different convolution operations of GNNs along graph structures, enabling
it consistent and good performance with various GNNs.

More experimental analysis and discussions, including the effects of different ranges of long-term
meta-matching, the performance on downstream unsupervised graph clustering task, visualization of
our condensed structure-free node set, as well as time complexity analysis, are detailed in Appendix E.
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4 Conclusion

This work proposes a novel Structure-Free Graph Condensation paradigm, named SFGC, to distill
the large-scale graph into the small-scale graph-free node set without graph structures. Under the
structure-free learning paradigm, the training trajectory meta-matching scheme and the graph neural
feature score measured dynamic evaluation work collaboratively to synthesize small-scale graph-free
data with superior effectiveness and good generalization ability. Extensive experimental results and
analysis under large condensation ratios confirm the superiority of the proposed SFGC method in
synthesizing excellent small-scale graph-free data. It can be anticipated that our work would bridge
the gap between academic GNNs and industrial MLPs by synthesizing small-scale, graph-free data to
address graph data scalability, while retaining the expressive performance of graph learning. Our
method works on condensing the number of nodes in a single graph at the node level, and we will
explore extending it to condense the number of graphs in a graph set at the graph level in the future.
We will also explore the potential of unifying graphs and large language models [44] for the graph
condensation task.
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Appendix

This is the appendix of our work: ‘Structure-free Graph Condensation: From Large-scale
Graphs to Condensed Graph-free Data’. In this appendix, we provide more details of the proposed
SFGC in terms of related works, potential application scenarios, dataset statistics, method analysis,
and experimental settings with some additional results.

A Related Works

Dataset Distillation (Condensation) aims to synthesize a small typical dataset that distills the
most important knowledge from a given large target dataset, such that the synthesized small dataset
could serve as an effective substitution of the large target dataset for various scenarios [30, 49], e.g.,
model training and inference, architecture search, and continue learning. Typically, DD [59] and
DC-KRR [39] adopted the meta-learning framework to solve bi-level distillation objectives through
calculating meta-gradients. In contrast, DC [77], DM [76], and MTT [4] designed surrogate functions
to avoid unrolled optimization through the gradient matching, feature distribution matching, and
training trajectory matching, respectively, where the core idea is to effectively mimic the large target
dataset in the synthesized small dataset. Except for the image data condensed by the above-mentioned
works, GCOND [27] first extended the online gradient matching scheme in DC [77] to structural
graph data, along with parameterized graph structure learning module to synthesize condensed edge
connections. Furthermore, DosCond [26] proposed single-step gradient matching to synthesize
graph nodes, with a probabilistic graph model to condense structures on the graph classification
task. In this work, we eliminate the process of synthesizing graph structures and propose a novel
structure-free graph condensation paradigm, to distill the large-scale graph to the small-scale graph-
free data, leading to the easier optimization process of condensation. Meanwhile, the structure-free
characteristic allows condensed data better generalization ability to different GNN architectures.

Graph Size Reduction aims to reduce the graph size to fewer nodes and edges for effective and
efficient GNN training, including graph sampling [66, 6], graph coreset [47, 60], graph sparsifica-
tion [1, 5], graph coarsening [3, 28], and recently rising graph condensation [27, 9, 26]. Concretely,
graph sampling methods [66, 6] and graph coreset methods [47, 60] sample or select the subset
of nodes and edges from the whole graph, such that the information of the derived sub-graph is
constrained by the whole large-scale graph, which considerably limits the expressiveness of the
size-reduced graph. Moreover, graph sparsification methods [1, 5] and graph coarsening methods
[3, 28] reduce the number of edges and nodes by simplifying the edge connections and grouping
node representations of the large-scale graph, respectively. The core idea of both sparsification
and coarsening is to preserve specific large-scale graph properties (e.g., spectrum and principle
eigenvalues) in the sparse and coarsen small graph. The preserved graph properties in the small-scale
graph, however, might not be suitable for downstream GNN tasks. In contrast, our work focuses on
graph condensation to directly optimize and synthesize the small-scale condensed data, which breaks
information constraints of the large-scale graph and encourages consistent GNN test performance.

B Potential Application Scenarios

We would like to highlight the significance of graph condensation task to various application scenarios
within the research field of dataset distillation/condensation, while comprehensive overviews can
be found in survey works [30, 59]. Specifically, we present several potential scenarios where our
proposed structure-free graph condensation method could bring benefits:

Graph Neural Architecture Search. Graph neural architecture search (GraphNAS) aims to develop
potential and expressive GNN architectures beyond existing human-designed GNNs. By automatically
searching in a space containing various candidate GNN architecture components, GraphNAS could
derive powerful and creative GNNs with superior performance on specific graph datasets for specific
tasks [80, 81, 46, 13, 18]. Hence, GraphNAS needs to repeatedly train different potential GNN
architectures on the specific graph dataset, and ultimately selects the optimal one. When in the
large-scale graph, this would incur severe computation and memory costs. In this case, searching on
our developed small-scale condensed graph-free data, a representative substitution of the large-scale
graph, could significantly benefit for saving many computation costs and accelerating new GNN
architecture development in GraphNAS research field.
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Privacy Protection. Considering the outsourcing scenario of graph learning tasks, the original
large-scale graph data is not allowed to release due to privacy, for example, patients expect to use
GNNs for medical diagnosis without their personal medical profiles being leaked [52, 11]. In this
case, as a compact and representative substitution, the synthesized small-scale condensed graph
could be used to train GNN models, so that the private information of the original graph data can be
protected. Besides, considering the scenario that over-parameterized GNNs might easily memorize
training data, inferring the well-trained models could cause potential privacy leakage issue. In this
case, we could release a GNN model trained by the synthesized small-scale condensed graph, so that
the model avoids explicitly training on the original large-scale graph and consequently helps protect
its data privacy.

Adversarial Robustness. In practical applications, GNNs might be attacked with disrupted perfor-
mance, when attackers impose adversarial perturbations to the original graph data [68], for instance,
poisoning attacks on graph data [53, 15, 84], where attackers attempt to alter the edges and nodes of
training graphs of a target GNN. Training on poisoned graph data could significantly damage GNNs’
performance. In this case, given a poisoned original training graph, graph condensation could synthe-
size a new condensed graph from it, which we use to train the target GNN would achieve comparable
test performance with that trained by the original training graph before being poisoned. Hence, the
new condensed graph could eliminate adversarial samples in the original poisoned graph data with
great adversarial robustness, so that using it to train a GNN would not damage its performance for
inferring test graphs.

Continual learning. Continual learning (CL) aims to progressively accumulates knowledge over
a continuous data stream to support future learning while maintaining previously learned informa-
tion [45, 12, 65]. One of key challenges of CL is catastrophic forgetting [31, 83], where knowledge
extracted and learned from old data/tasks are easily forgotten when new information from new
data/tasks are learned. Some works have studied that data distillation/condensation is an effective
solution to alleviate catastrophic forgetting [8, 48, 50, 62], where the distilled and condensed data is
taken as representative summary stored in a replay buffer that is continually updated to instruct the
training of subsequent data/tasks.

To summarize, graph condensation task holds great promise and is expected to bring significant
benefits to various graph learning tasks and applications. By producing compact, high-quality,
small-scale condensed graph data, graph condensation has the potential to enhance the efficiency and
effectiveness of future graph machine learning works.

C Dataset Details

We provide the details of the original dataset statistics in Table A1. Moreover, we also compare the
statistics of our condensed graph-free data with GCOND [27] condensed graphs in Table A2. It
can be observed that both GCOND [27] and our proposed SFGC significantly reduce the numbers
of nodes and edges from large-scale graphs, as well as the data storage. Importantly, our proposed
SFGC directly reduces the number of edges to 0 by eliminating graphs structures in the condensation
process, but with superior node attribute contexts integrating topology structure information.

Table A1: Details of dataset statistics.

Datasets #Nodes #Edges #Classes #Features Train/Val/Test

Cora 2,708 5,429 7 1,433 140/500/1000
Citeseer 3,327 4,732 6 3,703 120/500/1000
Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603

Flickr 89,250 899,756 7 500 44,625/22312/22313
Reddit 232,965 57,307,946 41 602 15,3932/23,699/55,334

D More Analysis of Structure-free Paradigm

In this section, we theoretically analyze the rationality of the proposed structure-free paradigm from
the views of statistical learning and information flow, respectively.
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Table A2: The statistic comparison of condensed graphs by GCOND [27] and condensed graph-free
data by our SFGC.

Dataset Citeseer (r = 1.8%) Cora (r = 2.6%) Ogbn-arxiv (r = 0.25%) Flickr (r = 0.5%) Reddit (r = 0.1%)

Methods Whole GCOND [27] SFGC (ours) Whole GCOND [27] SFGC (ours) Whole GCOND [27] SFGC (ours) Whole GCOND [27] SFGC (ours) Whole GCOND [27] SFGC (ours)

Accuracy 70.7 70.5 72.4 81.5 79.8 81.7 71.4 63.2 66.1 47.1 47.1 47.0 94.1 89.4 90.0
#Nodes 3,327 60 60 2,708 70 70 169,343 454 454 44,625 223 223 153,932 153 153
#Edges 4,732 1,454 0 5,429 2,128 0 1,166,243 3,354 0 218,140 3,788 0 10,753,238 301 0
Sparsity 0.09% 80.78% - 0.15% 86.86% - 0.01% 3.25% - 0.02% 15.23% - 0.09% 2.57% -
Storage 47.1MB 0.9MB 0.9MB 14.9MB 0.4MB 0.4MB 100.4MB 0.3MB 0.2MB 86.8MB 0.5MB 0.4MB 435.5MB 0.4MB 0.4MB

The View of Statistical Learning. We start from the graph condensation optimization objective
of synthesizing graphs structures in Eq. (1) of the main submission. Considering its inner loops
θT ′ = argmin

θ
L [GNNθ (X

′,A′) ,Y′] with A′ = GSLψ (X′), it equals to learn the conditional

probability Q(Y′ | T ′) given the condensed graph T ′ = (X′,A′,Y′) as

Q(Y′ | T ′) ≈
∑

A′∈ψ(X′)

Q(Y′ | X′,A′)Q(A′ | X′)

=
∑

A′∈ψ(X′)

Q(X′,A′,Y′)/Q(X′,A′) ·Q(X′,A′)/Q(X′)

=
∑

A′∈ψ(X′)

Q(X′,A′,Y′)/Q(X′)

=Q(X′,Y′)/Q(X′) = Q(Y′ | X′),

(8)

where we simplify the notation of graph structure learning module GSLψ as parameterized ψ (X′).
As can be observed, when the condensed graph structures are learned from the condensed nodes
as A′ ∈ ψ (X′), the optimization objective of the conditional probability is not changed, while its
goal is still to solve the posterior probability Q(Y′ | X′). In this way, eliminating graph structures
to conduct structure-free condensation is rational from the view of statistical learning. By directly
synthesizing the graph-free data, the proposed SFGC could ease the optimization process and directly
transfer all the informative knowledge of the large-scale graph to the condensed graph node set
without structures. Hence, the proposed SFGC conducts more compact condensation to derive the
small-scale graph-free data via Eq. (6) of the main manuscript, whose node attributes already integrate
implicit topology structure information.

The View of Information Flow. For training on large-scale graphs to obtain offline parameter
trajectories, we solve the node classification task on T = (X,A,Y) with a certain GNN model as

θ∗
T = argmin

θ
Lcls [GNNθ(X,A),Y] , (9)

where ∗ denotes the optimal training parameters that build the training trajectory distribution PΘT .
The whole graph information, i.e., node attributes X and topology structures A are both embedded
in the latent space of GNN network parameters. Hence, the large-scale graph information flows to
GNN parameters as (X,A) ⇒ PΘT . In this way, by meta-sampling in the trajectory distribution,
Eq. (4) and Eq. (5) in the main manuscript explicitly transfer learning behaviors of the large-scale

graph to the parameter space θ̃S of GNNS as PΘT ⇒ θ̃S . As a result, the informative knowledge
of the large-scale graphs, i.e., node attributes and topology structure information (X,A), would be

comprehensively transferred as (X,A) ⇒ PΘT ⇒ θ̃S . In this way, we could identify the critical

goal of graph condensation is to further transfer the knowledge in θ̃S to the output condensed graph
data as:

(X,A) ⇒ PΘT ⇒ ΘS ⇒ T ′ = (X′,A′), GC.

(X,A) ⇒ PΘT ⇒ ΘS ⇒ S = (X̃), SFGC.
(10)

where GC and SFGC are corresponding to the existing graph condensation and the proposed structure-
free graph condensation, respectively.

Hence, from the view of information flow, we could observe that condensing structures would not
inherit more information from the large-scale graph. Compared with GC which formulates the
condensed graph into nodes and structures, the proposed SFGC directly distills all the large-scale
graph knowledge into the small-scale graph node set without structures. Consequently, the proposed
SFGC conducts more compact condensation to derive the small-scale graph-free data, which implicitly
encodes the topology structure information into the discriminative node attributes.
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Table A3: Running time comparison (seconds) of the proposed SFGC and GCOND [27] for 50 epochs
with a single GeForce RTX 3080 GPU.

Ogbn-arxiv r=0.05% r=0.25% r=0.5%

GCOND[27] 296.34 442.58 885.58
SFGC (ours) 101.07 183.54 150.35

Figure A1: Comparison of the dynamic tensor used memory cost between online short-range gradient
matching method GCOND [27] and our proposed SFGC.

E More Experimental Settings and Results

E.1 Time Complexity Analysis & Dynamic Memory Cost Comparison

We first analyze the time complexity of the proposed method and compare the running time between
our proposed SFGC and GCOND [27].

Let the number of GCN layers be L, the large-scale graph node number be N , the small-scale
condensed graph node number be N ′, the the feature dimension be d, the time complexity of
calculating training trajectory meta-matching objective function is about TKO(LN ′d2 +LN ′d), for
each process of the forward, backward, and training trajectory meta-matching loss calculation, where
T denotes the number of iterations and K denotes the meta-matching steps. Note that the offline
expert training stage costs an extra TKO(LEd+ LNd2) on the large-scale graph, where E is the
number of edges.

In contrast, for GCOND, it has at least TKO(LN ′2d+LN ′d) + TKO(N ′2d2), and also additional
TKO(LEd+LNd2) on the large-scale graph, where K denotes the number of different initialization
here. It can be observed that our proposed SFGC has a smaller time complexity compared to GCOND,
which can be mainly attributed to our structure-free paradigm when the adjacency matrix related
calculation in O(LN ′2d) can be avoided. The corresponding comparison of running time in the
graph condensation process can be found in Table A3. As can be observed, both results on time
complexity and running time could verify the superiority of the proposed SFGC.

Moreover, we present the comparison result of the dynamic tensor used memory cost between the
online short-range gradient matching method GCOND [27] and our offline long-range meta-matching
SFGC. As shown in Fig. A1, we consider three stages of optimizing the objective function, i.e.,
before outer optimization, in the outer and inner optimization, and after outer optimization. It can be
observed that the proposed SFGC could significantly alleviate heavy online memory and computation
costs. This can be attributed to its offline parameter matching schema.

E.2 Effectiveness of Graph Neural Feature Score in SFGC

To verify the effectiveness of graph neural feature score γgnf in the proposed SFGC, we consider
the following two aspects in dynamic evaluation: (1) node classification performance at different
meta-matching steps in Table A4; (2) learning time comparison between iterative GNN training and
our closed-form γgnf in Fig. A2.

As shown in Table A4, we select certain meta-matching step intervals, i.e., 1000, 2000, and 3000,
for testing their condensed data’s performance, which is a commonly-used evaluation strategy for
existing methods. Here, we set long-enough meta-matching steps empirically to ensure sufficient
learning to expert training trajectory-built parameter distribution. And we compare these interval-step
results with the performance of our condensed graph-free data, which is selected at certain steps of
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Table A4: Performance of the condensed graph-free data between different meta-matching steps and
γgnf dynamic evaluation selected steps in the proposed SFGC.

Datasets
(Ratio)

Meta-matching Steps γgnf

1000 2000 3000 ACC Selected Steps

Citeseer
(r = 1.8%)

61.8±3.1 64.2±5.2 - 72.4±0.4 46

Cora
(r = 2.6%)

81.2±0.5 81.8±0.7 - 81.7±0.5 929

Ogbn-arxiv
(r = 0.25%)

64.5±0.8 65.8±0.3 - 66.1±0.4 90

Flickr
(r = 0.5%)

46.3±0.2 44.7±0.3 - 47.0±0.1 200

Reddit
(r = 0.1%)

86.9±0.5 89.8±0.3 89.9±0.5 90.0±0.3 2299

Figure A2: Learning time comparison (seconds) in dynamic evaluation between GNN iterative
training and closed-form GNTK in γgnf of the proposed SFGC.

the meta-matching process according to the metric γgnf. Overall, γgnf could select optimal condensed
graph-free data with superior effectiveness at best meta-matching steps.

For the learning time comparison between GNN iterative training vs. GNTK-based closed-form
solutions of γgnf in Fig. A2, we consider the time of GNN iterative training that covers all training
epochs under the best test performance for fair comparisons. This is due to the fact that the iterative
training evaluation strategy mandates the complete training of a GNN model from scratch at each
meta-matching step. For instance, in Flickr dataset (r = 0.1%), we calculate 200 epochs running time,
i.e., 0.845s, which is the optimal parameter setting for training GNN under 0.1% condensation ratio.
As can be generally observed, for all datasets, the proposed GNTK-based closed-form solutions of γgnf

significantly save the learning time for evaluating the condensed graph-free data in meta-matching,
illustrating our SFGC’s high dynamic evaluation efficiency.

E.3 Analysis of Different Meta-matching Ranges

To explore the effects of different ranges of long-term meta-matching, we present the different step
combinations of q steps (student) in GNNS and p steps (expert) of GNNT in Eq. (5) of the main
manuscript on Ogbn-arxiv dataset under r = 0.05%. The results are shown in Fig. A3. As can be
observed, there exists the optimal step combination of q student steps (600) and expert p steps (1800).
Under such a setting, the condensed small-scale graph-free data has the best node classification
performance. Moreover, the quality and expressiveness of the condensed graph-free data moderately
vary with different step combinations, but the variance is not too drastic.

More detailed settings of hyper-parameters of q steps (student) in GNNS and p steps (expert) of
GNNT in the long-term meta-matching, as well as the meta-matching learning rate (LR) in the
outer-level optimization and GNNS learning rate (step size) ζ (Algorithm 1 of the main manuscript)
in the inner-level optimization, are listed in Table A5.
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Figure A3: Performance with different step combinations of q student steps and expert p steps on
Ogbn-arxiv (r = 0.05%).

Table A5: Hyper-parameters of p expert steps and q student steps with meta-matching learning
rate (LR) in the outer-level optimization and GNNS learning rate (step size) ζ in the inner-level
optimization.

Datasets Ratios (r) p steps (expert) q steps (student) Meta-matching LR ζ for GNNS

Citeseer
0.9% 500 200 0.0005 1.0
1.8% 500 200 0.001 1.0
3.6% 400 300 0.001 1.0

Cora
1.3% 1500 400 0.0001 0.5
2.6% 1200 500 0.0001 0.5
5.2% 2000 500 0.0001 0.5

Ogbn-arxiv
0.05% 1800 600 0.2 0.2
0.25% 1900 1200 0.1 0.1
0.5% 1900 1000 0.1 0.1

Flickr
0.1% 700 600 0.1 0.3
0.5% 900 600 0.01 0.2
1% 900 900 0.02 0.2

Reddit
0.05% 900 900 0.02 0.5
0.1% 900 900 0.05 0.5
0.2% 900 900 0.2 0.2

E.4 Performance on Graph Node Clustering Task

Taking graph node clustering as the downstream task, we verified that, our condensed graph-free data,
synthesized based on the node classification task, can be effectively utilized for other graph machine
learning tasks, demonstrating the applicability of our condensed data. The experimental results are
shown in Table A6 and Table A7 below.

Concretely, we use our condensed graph-free data, which is generated using GNN classification
experts, to train a GCN model. Then, the trained GCN model conducts clustering on the original
large-scale graph. The clustering results in percentage on Cora and Citeseer datasets are shown by four
commonly-used metrics, including clustering accuracy (C-ACC), Normalized Mutual Information
(NMI), F1-score (F1), and Adjusted Rand Index (ARI).

Table A6: Performance comparison on Cora in terms of graph node clustering. Best results are in
bold and the second best are with underlines.

Clusterings on Cora C-ACC NMI F1 ARI

K-means 50.0 31.7 37.6 23.9
VGAE [29] 59.2 40.8 45.6 34.7
ARGA [42] 64.0 44.9 61.9 35.2
MGAE [58] 68.1 48.9 53.1 56.5
AGC [75] 68.9 53.7 65.6 44.8
DAEGC [57] 70.4 52.8 68.2 49.6
SUBLIME [35] 71.3 54.2 63.5 50.3

SFGC (ours) (r = 1.3%) 70.5 51.9 71.0 43.7
SFGC (ours) (r = 2.6%) 69.4 51.3 70.1 42.2
SFGC (ours) (r = 5.2%) 71.8 53.0 73.1 43.8
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Table A7: Performance comparison on Citeseer in terms of graph node clustering. Best results are in
bold and the second best are with underlines.

Clusterings on Citeseer C-ACC NMI F1 ARI

K-means 54.4 31.2 41.3 28.5
VGAE [29] 39.2 16.3 27.8 10.1
ARGA [42] 57.3 35.0 54.6 34.1
MGAE [58] 66.9 41.6 52.6 42.5
AGC [75] 67.0 41.1 62.5 41.5
DAEGC [57] 67.2 39.7 63.6 41.0
SUBLIME [35] 68.5 44.1 63.2 43.9
SFGC (ours) (r = 0.9%) 64.9 38.1 63.6 37.3
SFGC (ours) (r = 1.8%) 66.5 39.4 64.9 39.7
SFGC (ours) (r = 3.6%) 65.3 37.6 63.4 38.0

Figure A4: Visualization of t-SNE on condensed graph-free data by SFGC.

As can be observed, our condensed graph enables the GNN model to achieve comparable results with
many graph node clustering baseline methods, even though we do not customize the optimization
objective targeting node clustering task in the condensation process. These results could justify that:
(1) the condensed graph-free data that is synthesized based on GNN classification experts, could also
work well in other tasks, even without task-specific customization in the condensation process; (2)
the condensed graph-free data contains adequate information about the original large-scale graph,
which can be taken as the representative and informative substitution of the original large-scale graph,
reflecting the good performance of our proposed method in graph condensation.

E.5 Visualization of Our Condensed Graph-free Data

we present t-SNE [55] plots of the condensed graph-free data of our proposed SFGC under the
minimum condensation ratios over all datasets in Fig. A4. The condensed graph-free data shows
a well-clustered pattern over Cora and Citeseer. In contrast, on larger-scale datasets with larger
condensation ratios, we can also observe some implicit clusters within the same class. These
results show that the small-scale graph-free data synthesized by our method has discriminative and
representative node attributes that capture comprehensive information from large-scale graphs.
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