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Abstract

Label Distribution Learning (LDL), as a more general learn-
ing setting than generic single-label and multi-label learning,
has been commonly used in computer vision and many other
applications. To date, existing LDL approaches are designed
and applied to data without considering the interdependence
between instances. In this paper, we propose a Graph Label
Distribution Learning (GLDL) framework, which explicitly
models three types of relationships: instance-instance, label-
label, and instance-label, to learn the label distribution for
networked data. A label-label network is learned to capture
label-to-label correlation, through which GLDL can accu-
rately learn label distributions for nodes. Dual graph convo-
lution network (GCN) Co-training with heterogeneous mes-
sage passing ensures two GCNs, one focusing on instance-
instance relationship and the other one targeting label-label
correlation, are jointly trained such that instance-instance re-
lationship can help induce label-label correlation and vice
versa. Our theoretical study derives the error bound of GLDL.
For verification, four benchmark datasets with label distri-
butions for nodes are created using common graph bench-
marks. The experiments show that considering dependency
helps learn better label distributions for networked data, com-
pared to state-of-the-art LDL baseline. In addition, GLDL not
only outperforms simple GCN and graph attention networks
(GAT) using distribution loss but is also superior to its vari-
ant considering label-label relationship as a static network.
GLDL and its benchmarks are the first research endeavors to
address LDL for graphs. Code and benchmark data are re-
leased for public access.

Introduction
Label distribution learning (LDL) enables the assignment of
a distribution to the label of each instance, quantitatively
representing the description degree of the label to the in-
stance (Geng, Yin, and Zhou 2013; Chen et al. 2020). As
such, LDL advances the traditional single/multi-label learn-
ing’s aim from answering the question of “can this/these la-
bel(s) describe the instance?” (i.e. binary answers) to “how
well a label characterizes the instance?” (i.e. numeric an-
swers) (Carbonell, Michalski, and Mitchell 1983; Kotsiantis,
Zaharakis, and Pintelas 2006; Zhang et al. 2021; Chen et al.
2019; Xie et al. 2023).

Copyright © 2024, Association for the Advancement of Artificial
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Figure 1: A motivating example of graph label distribution
learning, where the label of each colored (labeled) node is
a distribution, influenced by its position within the network.
Class 3 is the dominant label for nodes v1, v2, and v3. For v3,
Class 3 demonstrates a weaker correlation to other classes
(e.g., a company with a focused business); in contrast, for
v1 and v2, Class 3 exhibits a stronger correlation to other
classes (e.g., a company with more diverse business scope).

Enabling the modeling of label distribution allows LDL to
have a richer and more nuanced description of the underly-
ing objects, invaluable for many computer vision (CV) and
natural language processing (NLP) applications. For exam-
ple, in an image portraying a lake surrounded by trees with a
mountain in the distance, LDL aptly captures the essence of
the scene by indicating that the lake is the most prominent
element in terms of pixel coverage, while the mountain, be-
ing less visible, holds a minor presence (Xu et al. 2023).

Despite its success across various domains, LDL has pri-
marily been applied to data characterized by independent
and identically distributed (i.e. IID) properties. Yet, recent
advances in social networks and complex information sys-
tems have resulted in a large number of applications where
data convey dependency relationships. Consider the task of
analyzing a business collaboration network, as shown in
Fig. 1, where nodes represent companies and edges signify
shared users or customers. A company may offer a variety
of services with different levels of emphasis (e.g., a bike
store might also provide rental or coaching services). Pre-
dicting the companies’ business scopes in this network can
be conceptually cast as an LDL task. The Yelp and Yelp2
datasets explored in our experiments present similar appli-
cations, where the label distribution of a node (i.e. a restau-
rant) reflects the diverse ratings from customers. In this case,
label distribution modeling is more informative than a sin-
gle aggregate rating, as it provides a richer understanding
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of customer opinions and preferences. However, applying
standard LDL methods to such network data would require
careful consideration, as they tend to miss out the relational
information embedded within the topological structure.

Whereas more recent LDL methods have considered
label-label correlation in the modeling process (Jia et al.
2018; Wang and Geng 2023; Kou et al. 2023), they still pos-
tulate IID instances. For graphs, a label-label relationship is
also impacted by network topology, i.e. labels of connected
nodes may have a stronger correlation, as shown in Fig. 1.
Applying LDL to graphs presents distinct challenges due to
the non-IID nature of graph data, described as follows.

• First, network topology plays a significant role in deter-
mining label distributions. The topological features con-
vey learnable semantic meanings, such as density, de-
gree, reachability, etc. The label distribution for a node
is not only based on its contents but also heavily influ-
enced by its position within the network.

• Second, label distribution of a node can be affected by
its neighboring nodes, which may lead to inconsistency
and disagreement between node features and topologi-
cal structure. Balancing and integrating these potentially
conflicting sources of information is challenging yet was
not encountered in traditional LDL settings.

• Third, unlike traditional LDL that mostly models label-
label correlation across the whole dataset, in graphs, a
node’s label distribution can be influenced by its neigh-
bors, leading to varied label-label dependencies across
different local regions of the graph. This requires a new
design that can capture and harmonize both local and
global label-wise dependencies.

Due to these challenges, simply extending the existing
graph learning models, such as graph convolutional net-
works (GCNs) or graph attention networks (GATs), to LDL
by using a distributional loss (e.g., KL-divergence) is sub-
optimal because label correlation is overlooked.

Motivated by this, we propose a new learning framework,
termed graph label distribution learning (GLDL). Our key
idea is to induce a label-label network and combine it with
node-node network in the graph learning process. The learn-
ing of node-node network aims to obtain good node feature
representations, and the learned node features will help in-
duce a label-label network, whose results will in turn im-
prove the learning of node embeddings. The two networks
are collaboratively learned, ensuring the resultant node fea-
tures can jointly minimize the distributional loss in the label
space and the topology loss of the induced label-label net-
work. The technical merits of our GLDL are backed up by
theoretical analysis and empirical studies. Furthermore, our
experiments show that GLDL has significantly better stabil-
ity and robustness in tackling over-smoothness, a common
phenomenon observed for GCN learning, especially for net-
works with severely imbalanced label distributions (i.e. one
or two labels dominating the whole dataset).
Specific contributions of this paper are as follows:
1. This is the first study to explore the label distribution

learning (LDL) problem for graphs. The technical chal-

lenges of this problem encompass a complex interplay
among graph topology, node features, and label correla-
tions, with details unfolded in Section .

2. We propose a new GLDL approach that employs static
and dynamic strategies for effective label correlation
modeling. At its core, GLDL jointly learns node and label
embeddings, aiming for a globally optimized representa-
tion. Technical details are presented in Section .

3. We provide an in-depth theoretical analysis, deriving the
generalization error bounds of our proposed GLDL in
Section 29. This lays a rigorous theoretical bedrock for
ensuing exploration in the domain of graph LDL.

4. Extensive experiments are carried out to substantiate the
viability and effectiveness of our proposed approach. Re-
sults and findings are documented in Section 29.

5. Our code, benchmark data, and supplementary material
are openly accessible at GitHub1.

Related Work
Label Distribution Learning (LDL) Existing LDL meth-
ods mainly fall into three categories: problem transforma-
tion (PT), algorithm adaption (AA), and specialized algo-
rithm (SA). In the realm of PT, (Geng 2016) and (Bor-
chani et al. 2015) reconceptualized the LDL challenge as a
single-label learning task, where label probabilities are har-
nessed as weights. On the other hand, AA methods repur-
pose established classifiers to fit the LDL milieu. Notably,
AA-kNN (Geng 2016) leverages the instance-neighbor dis-
tances as heuristics to approximate label distributions. Turn-
ing our attention to SA methods, most existing LDL meth-
ods employ SA design. LDLLC (Jia et al. 2018) encodes
the label correlation into a distance to measure the similar-
ity of any two labels. A Gaussian label distribution learning
method (Xu et al. 2023) employs a parametric model under-
pinned by an optimization strategy assessing KL-divergence
distance between Gaussian distributions. Note, these preva-
lent LDL methods assume IID data, and often neglect to
capture instance-wise correlations. Existing studies (Geng
2016) vouch for the superior performance of SA over its
LDL counterparts. Consequently, in our exploration, we jux-
tapose SA against other LDL methods to discern its adapt-
ability and efficacy, especially in the intricate landscape of
networked data (graphs).

Graph Learning (GL) Graph neural networks (GNNs)
have solidified their stature as a cornerstone model for graph
learning (GL) and data mining on graphs. Central to GNNs
are two fundamental stages: neural message passing and
aggregation. The aggregation stage synthesizes information
from neighboring nodes to refine embeddings for the cur-
rent node. Multiple GNN variants have emerged, each offer-
ing nuanced interpretations and expansions. To wit, Graph
Convolution Network (GCN) (Kipf and Welling 2017) in-
spired by the graph spectral theory capitalizes on the eigen-
decomposition of the graph Laplacian matrix. Graph At-

1https://github.com/Listener-Watcher/Graph-Distribution-
Learning.
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tention Network (GAT) (Veličković et al. 2018) is adept at
learning weights attributed to neighboring nodes during ag-
gregation. Graph Isomorphism Network (GIN) (Xu et al.
2019) introduces a neural network as its aggregation func-
tion, taking cues from the Weisfeiler-Lehman test, which
aims to accentuate discrepancies between disparate graphs.
GraphSAGE (Hamilton, Ying, and Leskovec 2017) adopts a
sub-sampling approach for neighbor nodes, ensuring a more
agile and scalable training regimen tailored for extensive
graphs. Despite node classification emerging as a prevalent
application for these GL models, a significant oversight is
their treatment of labels as isolated entities. This tunnel vi-
sion fails to recognize potential correlations between labels,
resulting in suboptimal generalization in LDL scenarios. In
this exploration of GLDL, a pioneering foray into addressing
the LDL challenge within graph contexts, we have elected to
use GCN as our backbone model, as its streamlined architec-
ture not only facilitates implementation but also serves as an
effective scaffold for our innovative contributions.

Preliminaries
Notation Appointment We follow graph learning conven-
tions. Let G = (V,E,X, Y ) denote a graph, where V =
{vi}i=1,··· ,n is the vertex set representing nodes of the graph
G, and E is the edge set. Denoted by eij = (vi, vj) ∈ E is
the edge linking node vi and node vj . The graph topology
(V,E) is encoded in an adjacency matrix A ∈ {0, 1}n×n,
where Ai,j = 1 if eij ∈ E and Ai,j = 0 otherwise.
Let ∆i = {vj |eij ∈ E, ∀j} denote the neighbors of node
vi, where Ei includes the set of edges incident to node vi,
i.e, Ei = {eij |vj ∈ ∆i, ∀j}. To ease derivation, we write
Ā = A + I the adjacency matrix with a self-loop added on
each node, and D̄ is the diagonal matrix of Ā.

Problem Statement Let X ∈ Rn×m denote the feature
matrix associating with n nodes, where each node vi is de-
scribed by an m-dimensional feature vector xi ∈ Rm. In
our problem of graph label distribution learning, the goal
is find a mapping ψ : (G,X) 7→ Y , where Y ∈ Rq is
a distribution of descriptive labels over q classes. Namely,
yi,j ∈ [0, 1] denotes the probability that the node vi belongs
to the j-th class, and

∑q
j=1 yi,j = 1. In this study, we frame

the learning problem of ψ in a transductive regime (Bac-
ciu et al. 2020), where the ground-truth label distributions
are available for a node subset Vtr ⊂ V during training.
|Vtr| << |V |. The learned ψ is expected to generalize well
at the remaining unlabeled node subset V \ Vtr.

Graph Convolution Network GCN is a transductive GL
model proposed by (Kipf and Welling 2017). The crux of
GCN is to propagate node information through neighbors.
One GCN layer at depth i can be formulated as:

Hi = D̄− 1
2 ĀD̄− 1

2Hi−1W i, (1)

where Hi is the node representations at layer i, with the
initial embedding features being each node’s attributes, i.e.
H0 = X , and W i is the learnable parameter for layer i.
Multiple GCN layers can be stacked and used to integrate
topology and features into a hidden dimension embedding.

Technical Challenge and Our Thoughts Traditional la-
bel distribution learning focuses on inducing ψ from IID
data. However, when addressing networked data, one is con-
fronted with an intricate task: balancing two disparate graph
signals within a unified learning objective. The first signal
originates from the nodal contents X , whereas the second
is intrinsically encoded within the topological structure A.
The complexity of this task is accentuated within an LDL
framework. Unlike conventional learning paradigms, where
targets often stand as independent variables, in LDL they
manifest as closely intertwined descriptive labels. This in-
troduces multifaceted dynamics. For instance, if node i ex-
hibits a high probability of belonging to class j, it conversely
signals a diminished likelihood of its association with other
classes. Yet, complicating this further is the influence ex-
erted by its immediate neighbors ∆i on the graph. This rela-
tionship stems from the principle of graph homophily (Zhu
et al. 2020), which posits that directly connected nodes ex-
hibit a propensity to converge in their label characteristics.
As such, a competent graph LDL learner requires a dedi-
cated optimization objective that can concurrently respect
and capture three information channels: the inherent charac-
teristics of the nodes, the intricate network of graph topol-
ogy, and the nuanced interplay of label correlations.

To tailor such objective, our key idea is to build a label-
label network Gc = (V c, Ec, Xc, Y c), in which each node
vci ∈ V c represents a class label, and |Vc| = q. Each edge
eci,j ∈ Ec captures the correlation between the two connect-
ing classes i and j. The topology of Gc thus models the de-
pendency structure in the label space. The semantic meaning
of each class i is captured by its node embedding xci ∈ Xc.
Each label node i is assigned a hard label yci representing the
class i in one-hot code. The main objective is to learn two
GCNs over G and Gc jointly, and then induce the bipartite
edges connecting nodes in V and V c, where each such edge
êi,j indicates the probability that node vi belongs to the class
node vcj . We present technical details in the next section.

GLDL: The Proposed Method
Overall Framework
The overall framework of our proposed Graph Label Distri-
bution Learning (GLDL) approach is illustrated in Figure 2,
which mainly contains the learning processes of two inter-
linked networks. The input graph G is the node-node net-
work (lower panel), on which we train a GCN for node
representation and predicting the nodal label distributions.
The label-label network (upper panel) is constructed from
the nodes in G that possess ground-truth distributions. This
is realized via a Graph Generation function GG( ·), which
also enables message passing between the two networks.
The overarching learning objective of GLDL comprises three
key components as follows. 1) The design and training of
an LDL learner that strives to minimize the KL-divergence
loss amongst labeled nodes within the node-node network.
2) The formulation and training of a multi-class learner for
the label-label network, aiming to distill the intrinsic seman-
tic relationships and interdependencies present within the la-
bel space, with the objective being the reduction of cross
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Figure 2: The proposed GLDL framework. Lower panel denotes node-node network, and upper panel denotes label-label
network, which is induced through the Graph Generation GG() process as in Eq 4. For both networks, colored nodes are
labeled. Brief process: A node-node network in 1⃝ is first used to induce label-label network in 2⃝. The dual GCN training at
3⃝ and 4⃝ will result in respective node embedding. Steps 5⃝ and 6⃝ will each induce a network regulated by consistency and

momentum terms in 7⃝. Step 8⃝ updates the label-label network for succeeding training process (q = 3 in this example).

entropy. 3) The regularization terms ensure the continuity of
the construction of the label-label network, devoid of sudden
topological shifts.

Label-Dependency-Aware Graph Generation
To construct the label-label network Gc, the feature matrix
of the label nodes Xc ∈ Rq×m is initialized based on the
labeled nodes inG that belongs to each corresponding class.
Specifically, for class j, its feature vector xcj aggregates the
labeled nodes of which the dominant class is j, defined as

xcj = Agg(κ) =
1

|κ|
∑
i∈κ

xi, (2)

where κ:={ vi | argmax(Yi) = j, vi ∈ V }. To build the

edges Ec, a straightforward idea is to leverage the similar-
ity metrics such as Pearson correlation, leading to the static
label-label network, with the generation function defined as:

Ac-static
i,j := GG(xci , x

c
j) =

1

1 + exp−⟨xc
i ,x

c
j⟩
, (3)

where the (i, j)-th entry ofAc gauges the inner-product sim-
ilarity between the two class nodes vci and vcj . We note that
the design of Eq. (3) takes an analogical form as the de-
coder layer of a non-probabilistic graph autoencoder (Kipf
and Welling 2016). As the label-label network is constructed
only once before learning starts, the heuristic of Eq. (3) can
tame the training of GCN upon it and avoid loss oscillation
incurred by the topological changes of Gc.

While this static generation strategy offers simplicity, it
introduces potential pitfalls. On the one hand, such a static
approach might inadvertently infuse noise, particularly if the

initialization of label nodes is ill-conditioned. Such pertur-
bations can impede the accurate representation and correla-
tion of labels. On the other hand, the static strategy appears
to be myopic in its design, neglecting the dynamic interplay
between the embeddings of the original node-node network
and the label distribution. Given the intricate nature of graph
data, even slight variations in node embeddings can lead
to precipitate substantially different label-label networks.
This necessitates a more dynamic and adaptive strategy that
capitalizes on the evolving information during the learning
process, thereby constructing a more informed and adap-
tive label-label network. By doing so, it brings Expectation-
Maximization style improvement to benefit both node rep-
resentation and label correlation.

For dynamic label-label network construction, we draw
insights from graph condensation (Jin et al. 2022) to learn a
parametric graph generator GG( ·), defined as:

Ac-dynamic
i,j := GG(xci , x

c
j)

= sigmoid
(MLPΦ([x

c
i ;x

c
j ]) +MLPΦ([x

c
j ;x

c
i ])

2

)
, (4)

with Φ denoting learnable parameters of multi-layer percep-
tron (MLP), and [ · ; · ] indicates concatenation. In this dy-
namic strategy, a new graph Gc is re-generated regularly
(e.g., based on a fixed number of epochs).

Dual GCN Co-Training via Heterogeneous
Message Passing
After having the node-node network G and the label-label
network Gc, the next question would be to train the GCN
model that allows message passing between the two graphs,
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so that the learned node representations can capture the de-
pendency structures in both topological and label spaces.

To that end, we first define the objective function of train-
ing GCN model on each graph independently, and then de-
vise the mechanism to bolster message passing between the
two graphs having heterogeneous nodes.

To train GCN on G, the Kullback-Leibler (KL) diver-
gence presents itself as an apt loss function. This metric
gauges the divergence between the predicted and ground-
truth nodal label distributions. Formally, the KL-divergence
for a node vi is defined as:

ℓKL(vi) =
∑

j∈[1,q]

yi,j × log
yi,j
ŷi,j

, (5)

where ŷi,j denotes the predicted likelihood that node i be-
longs to class j. Figure 2 demonstrate an example in which
the ground truth y4,3 = 0.2 and the predicted ŷ4,3 = 0.1.

To train GCNc on the label-label network Gc, a cross-
entropy loss is employed. This ensures the mapped repre-
sentation of a learned label node accurately corresponds to
its class. For a single label node i, the loss is defined as:

ℓCE(v
c
i ) =

∑
j∈[1,q]

yci,j × log ŷci,j (6)

where yci,j is the ground truth label, represented as a scalar
of index j of the one-hot vector yi of length q, and ŷci,j signi-
fies the estimated probability for label node i at index j. An
illustrative example in Figure 2 showcases yc3,3 = 1.0 while
ŷc3,3 = 0.6.

The linchpin of our GLDL approach is the ability to facil-
itate message passing between the divergent graphs G and
Gc. This is achieved by forming induced edges based on the
training node labels Y . Specifically, an induced edge materi-
alizes between node vi and a label node vcj if argmax(yi) =
j. This ensures proper communication between label-label
correlation and node embedding learning. During the initial
convolution layer, edges spanning across both graphs G and
Gc are meticulously considered, allowing information ex-
change between the two learning processes. After a fixed
number of epochs, both node features and label features un-
dergo an update, adopting the learned embeddings H and
Hc, as visualized in Figure 2. The epoch frequency desig-
nated for updating node features is denoted as freqv , while
that for label features is freqc. For effectiveness without los-
ing simplicity, we synchronize the label feature update with
the graph update, meaning we contemporaneously update
the label graph Gc whenever the label feature Xc undergoes
an update.

Expedited Graph Training with Momentum and
Consistency Regularization
A key difficulty in training the dual GCN model is ensuring
the stability of the training process. Rapid fluctuations or
oscillations in the learning process can make convergence
difficult and slow. To tame the dynamically generated Gc,
two unsupervised regularization terms are proposed to ease
the GCN training difficulty. The parametric graph genera-
tor GG(Xc) is updated periodically after several epochs,

using Xc as initial label embeddings and demonstrated as
Hc in Figure 2. This aids in the training of the network and
consequently drives the graph induction. The resultant syn-
thetic graphAc

syn is derived from an aggregation of the node
embedding features, while Ac

new arises from the learned la-
bel embedding, calculated by Ac

syn = GG(Agg(H)) and
Ac

new = GG(Hc). The two regularization terms are for-
mally defined as follows.

Consistency Loss intermediately quantifies the discrep-
ancy between the learned node embedding and the label em-
bedding through the constructed graph topology, defined as:
consistency = ||Λ(Dc

new −Ac
new)− Λ(Dc

syn −Ac
syn)||22,

(7)
where instead of the adjacency matrices, we resort to the
eigenvalues of the graph Laplacian Λ(Dc

new −Ac
new) to de-

lineate the variances between graphs. This strategy ensures
that the properties of the two graphs remain analogous, in-
sulating against complications such as graph isomorphism.
The intuition behind this loss is that, when the predictions
are consistent with the given label distributions, the learning
process is more aligned, and can lead to faster convergence.
This loss helps the model stay on track by penalizing signif-
icant deviations from expected representations.

Momentum Loss ensures that there are no drastic changes
between consecutive epochs by modulating the rate of evo-
lution of the graph, defined as:
momentum = ||Λ(Dc

new−Ac
new)−Λ(Dc

old−Ac
old)||22, (8)

where Ac
new and Ac

old represent the graph generated from
current epoch embedding Hc and that from the previ-
ous epoch, respectively. By modulating the fluctuations
in consecutive graph formations, it fosters stability during
model training. The holistic regularization objective com-
bines these two losses as regularization = consistency +
α×momentum, offering a tunable balance α between them.

Algorithm
Algorithm 1 reports detailed steps and static and dynamic
network details.

Label-Label Graph Module The GCNc architecture for
label graph Gc consists of GCN layers, projection layers,
and a softmax layer. The 1st GCN layer integrates node in-
formation from both label-label graph Gc and node-node
graph G following Eq. (1) and line 11 in Algorithm 1.
The rest of the GCN layers integrate node information from
nodes within graph Gc alone. The learned hidden label em-
bedding Hc = [hc1; · · · ;hcq] is then forward projected to the
original feature space to ensure that the label representation
can be aligned with the node features. This alignment pro-
cess is crucial to allow node propagation between graphs in
the 1st GCN layer. The learned label representation is also
used to regularize the dynamic graph generator GG(Hc) as
part of the momentum loss for Ac

new in Fig 2 and line 25
in Algorithm 1. A softmax layer is applied to obtain proba-
bility values needed for computing the cross-entropy loss in
Eq. (6) and line 14 in Algorithm 1. The learned embedding
is updated as the new label features for a certain frequency
denoted by freqc following line 22 in Algorithm 1.
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Node-Node Graph Module The GCN architecture for
node graph G is the same as the GCNc except for the num-
ber of nodes, independent learnable weight, and final ob-
jective function. After applying the softmax function, KL-
divergence loss as stated in Eq. (5) is used as the loss func-
tion. The learned embedding is updated using a different
frequency denoted by freqv following line 19 in Algorithm
1. The updated embedding H = [h1; · · · ;hn] is also used
to regularize the dynamic graph generator GG(Agg(H)) as
part of the consistency loss for Ac

syn following line 25.

Dynamic Graph Module This module is an optional
module to replace the static graph generation function
GG(·) as stated in Eq. (3). Following Eqs. (7), (8) or from
lines 23 to 27 in Algorithm 1, the parametric model is trained
every certain epoch (same frequency freqc as the label fea-
tures are updated for simplicity of the model) and then infer
a new graph topology Ac

new to replace the original Ac
old for

succeeding training.

Algorithm 1: The GLDL algorithm
Input: G:(A,X,Y), freqv , freqc, epochs, epochsGG

Model: GCN,GCNc, GG(·)
Init: Ah ∈ R(m+q,m+q)← 0, Eh ∈ R(m,q) ← 0
Output: Ŷ

1 Xc ← Agg(Xtrain); Ac ← GG(Xc)
2 for i ≤ m do
3 for j ≤ q do
4 if argmax(Yi) = j then

5 Eh
i,j ← 1

6 Ah ←
[

A Eh

(Eh)T Ac

]
7 Xh ← [X ; Xc]; Xhc ← [X ; Xc]
8 for i ≤ epochs do
9 H1 ← GCN(1)(Ah, Xh)

10 Ŷ ← GCN(A,H1)

11 Hc(1) ← GCNc(1)(Ah, Xhc).embedding()
12 Ŷ c ← GCNc(Ac, Hc1)

13 ℓKL(Y, Ŷ )← compute loss using Eq. (5)
14 ℓCE(Y

c, Ŷ c)← compute loss using Eq. (6)
15 compute gradient of ℓKLand ℓCE

16 update GCN and GCNc with gradient

17 if i % freqv == 0 then
18 H ← GCN.embedding()
19 Xh ← [H ; Xc]

20 if i % freqc == 0 then
21 Hc ← GCNc.embedding()
22 Xch ← [X ; Hc]
23 if dynamic mode then
24 for j = 1, 2, . . . , epochsGG do
25 Train GG(·) with Eqs. , (7) , (8)

26 Ac ← GG.inference(Hc)

27 update Ah with Ac

28 Ŷ c ← GCNc(Ah, Ac, Xh, Xc)

29 return Ŷ c

Theoretical Analysis
We derive the theoretical performance of our GLDL algo-
rithm (Detailed proof is given in the extended version avail-
able in the GitHub project). To proceed, we make some
mild assumptions as follows. First, we considerG as simple,
undirected graphs with no loop and the maximum degree of
d − 1. Second, the GCN has in total l layers with the max-
imum hidden dimension k. Third, the nodal feature vectors
are normalized and reside in an ℓ2-ball of radiusB, such that
∥xji∥2 ≤ B, where xji denotes the i-th node’s representation
at the j-th layer.

Denoted by LG (fw) and L(X,A) (fw) are the generaliza-
tion error over a graph distribution G and the empirical er-
ror on the training graph data (X,A), respectively, where
(X,A)

iid∼ G. We define ϕ( · , ·) the distance metric such that
|ϕ(u, p) − ϕ(u, q)| ≤ (

√
m + 1)∥p − q∥2, ∀u, p, q ∈ Rm.

The error terms can be defined on the function fw as follows.

LG (fw) = E(X,A)∼GEyi∼Y ϕ (fw(X,A)[i], yi) ,

L(X,A) (fw) =
1

nq

n∑
i=1

q∑
j=1

fw(X,A)[i, j] ln
fw(X,A)[i, j]

yi,j

where fw(X,A)[i] ∈ Rq and yi ∈ Rq represent the pre-
dicted and ground-truth label distribution of the i-th node,
respectively. Denoted by fw(X,A)[i, j] the predicted prob-
ability that node i belongs to the j-th class. We then have

Theorem 1 For any B > 0, l > 1, let fw ∈ H : X × G →
Rq be an l-layer GCN, parameterized by W1, . . . ,Wl. Then
for any δ, γ > 0, with probability at least 1− δ we have

LG (fw)− L(X,A) (fw) ≤
2(
√
2q +

√
2)q√

n
max

i∈[n],j∈[l]

∥∥∥xj
i

∥∥∥
2

+ 3b

√
log 2/δ

2n
(9)

+O
(√

B2dl−1l2k log(lk)D(Wi)+log nl
δ

γ2n

)
,

where D(Wi) =
∏l

i=1 ∥Wi∥22 ·
∑l

i=1

(
∥Wi∥2F / ∥Wi∥22

)
bounds the hypothesis space and b is a constant.

Remark Theorem 1 establishes determinants of the gen-
eralization error bound of the GLDL algorithm. First, a di-
rect relation between the dimension of the label space q
and the generalization error is observed. Specifically, as q
increases, the algorithm exhibits less favorable generaliza-
tion properties. This suggests that the vastness of the label
space introduces complexities that adversely impact the gen-
eralization capability. Second, our results illuminate that the
algorithmic robustness to noise diminishes with the growth
of B, which captures the magnitude of data perturbations.
Larger values ofB indicate heightened numerical instability
in the data, which translates to inferior generalization perfor-
mance. Third, as the graph becomes more intricate (larger
d), the algorithm generalizes worse. This emphasizes the
challenge of modeling more complex relational data. Fourth,
delving into the GCN architecture, we discern that both the
depth l and width k of its layers play pivotal roles. A deeper
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(larger l) or wider (larger k) GCN tends to exacerbate the
generalization error, highlighting the trade-offs inherent in
architectural design. Fifth, Upon close examination of the
RHS of Eq. (9), we identify structural similarities with the
Rademacher complexity of a multi-class γ-margin loss, as
suggested by (Kakade, Sridharan, and Tewari 2008), given
by R(fw) ≤ maxi∈[n] ∥xi∥2/

√
n. It can be succinctly de-

duced that R(fw, ϕ) ≤ (
√
2q +

√
2)

∑c
j=1 R(fw). This re-

veals that our GLDL algorithm presents a more refined com-
plexity bound compared to a naive decomposition of the
label distribution problem into multiple binary regression
tasks on graph data. The relaxing coefficient,

√
2q+

√
2, un-

derscores that GLDL’s superiority grows more pronounced
with diminishing label vector dimensions.

Complexity Analysis
Asymptotically, GLDL has the complexity of O(T1qmE +
mq2) for static and O(T1(qmE + mq2) + qm(T1T2/ω))
for dynamic variants, where q, m, and E denote the num-
bers of classes, nodal features, and edges, respectively. T1
and T2 represent numbers of training epochs for GCN and
LLN, respectively, and ω is the frequency of LLN updates.
Given that q is much less than m, and E often dominates
in large graphs, the term O(mq2) becomes relatively trivial;
hence, the computing efficiency of our GLDL is on par with
vanilla GCNs (Kipf and Welling 2017), which computes at
O(T1qmE).

Experiments
Benchmark Datasets
To the best of our knowledge, no public graph dataset with
benchmark label distribution is available for evaluation. To
verify our model performance, we create four datasets with
ground-truth label distributions for each node. Table 1 sum-
marizes the data characteristics. Tables 2 and 3 list average
label distributions of all nodes in DBLP and Yelp datasets.
Figure 3 further shows average label distributions for one
class of Yelp and DBLP dataset, respectively, where Yelp
has more even node label distributions whereas DBLP shows
much stronger label dominance.

By utilizing heterogeneous datasets and metapath aggre-
gation, homogenization of heterogeneous datasets can be
achieved (Fu et al. 2020). During the homogenization pro-
cess, metapath aggregation allows auxiliary node types or
preexisting labels to be converted into distribution labels.

• DBLP: Originally a citation network (Tang et al. 2008)
composed of Author, Paper, Conference, and Term
nodes, DBLP is homogenized through an Author-Paper-
Author metapath, resulting in a coauthorship graph
where nodes represent authors and each edge indicates
that two authors share at least one paper. Each author is
labeled with a distribution of conference areas, derived
from the author’s conference publication history. More
specifically, a distribution composed of the conference
area in which papers are published, where the distribu-
tion is defined as the percentage of papers published at

Figure 3: Average label distributions (mean±std) for the
4th class for Yelp (left panel) and the DBLP (right panel)
datasets. The nodes whose dominant label is the 4th class
are used to calculate the average label distributions.

the respective conference area concerning the total num-
ber of papers published by the author. The node features
are a bag of words representing all authors’ papers.

• Yelp: Originally a review network composed of Busi-
ness and User nodes connected by Review, Check-in,
and Tip edges, Yelp was aggregated along the Business-
User-Business metapath, using review edges, resulting in
a network of businesses with common customer bases.
The businesses were then labeled with a distribution built
from the star ratings extracted from their review edges.
Business features are a bag-of-word representation ex-
tracted from their reviews.

• Yelp2: Another graph generated from the same hetero-
geneous Yelp graph with a larger bag-of-word feature
space. We use Yelp2 to validate how node features im-
pact the algorithm performance for networks with similar
topologies.

• ACM: Originally a citation network (Tang et al. 2008)
composed of Author, Paper, and Subject nodes, ACM
was homogenized similarly to DBLP but was labeled us-
ing subject nodes instead of the conference nodes. The
resultant distribution represents the disciplines in which
each author has published. The node features are also a
bag-of-word representation of all authors’ papers.

Baselines
• SA-IIS (Geng 2016) SA-IIS uses maximum entropy to

find a model minimizing the KL-divergence. When ap-
plying SA-IIS to graphs, only node features are used as
input, because the model does not consider graph topol-
ogy. The parametric model can be described as:

p(yi|x; θ) =
1

Z
e

∑
k

θyi,kxi,k

(10)

where Z =
∑

yi∈Y

e

∑
k

θi,kxi,k

, θi,k is the learnable weight,

xi,k is the k-th feature of node vi. SA-IIS and SA-BGFS
have similar performance but SA-BGFS is more efficient
in general. SA-IIS is used in our experiments because
SA-BGFS frequently encounters stability problem.

• GCN-KL A supervised simple Graph Convolution net-
work with multiple GCN layers defined by Eq. (1) and
a softmax layer outputs final label distribution for each
node. KL-divergence is used as the training loss.
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Dataset Nodes Edges Average Degree Homophily # of Labels # of Features Metapath

DBLP 1711 5796 3.387 0.780 4 334 Author-Paper-Author
Yelp 2719 38233 14.061 0.502 5 1640 Business-User-Business
Yelp2 3000 33857 11.286 0.460 5 6167 Business-User-Business
ACM 6007 25338 4.218 0.920 11 1903 Author-Paper-Author

Table 1: Dataset statistics. Homophily is computed as the fraction of edges connecting nodes sharing the same labels (Ma et al.
2022). Low homophily scores imply heterophilous graphs.

Class 1 Class 2 Class 3 Class 4

0.88±0.18 0.04±0.11 0.01 ±0.06 0.07±0.12

0.06±0.12 0.77±0.22 0.08±0.15 0.09±0.15

0.02±0.06 0.04±0.10 0.87±0.19 0.07±0.15

0.03±0.09 0.04±0.09 0.03 ±0.08 0.99±0.17

Table 2: DBLP dataset average label distributions
(mean±Std) of all nodes w.r.t. different classes. To
generate this average, label distributions are grouped by
their dominant class. Average label distributions are then
calculated within their respective groups. Standard devia-
tions are calculated between each class within each group.
The table is q × q, where q denotes the number of classes.
The diagonal values denote the dominant class’s probability
value. The lower the diagonal values, the more spread out
the class probability is.

Class 1 Class 2 Class 3 Class 4 Class 5

0.51±0.17 0.10±0.09 0.09±0.09 0.11±0.09 0.19±0.12

0.13±0.11 0.36±0.08 0.15±0.10 0.20±0.11 0.16±0.13

0.12±0.08 0.12±0.10 0.40±0.11 0.22±0.10 0.14±0.11

0.12±0.09 0.09±0.07 0.14±0.09 0.42±0.11 0.24±0.11

0.11±0.10 0.05±0.06 0.06±0.06 0.13±0.11 0.65±0.20

Table 3: Yelp dataset average label distributions (mean±Std)
of all nodes w.r.t. different classes (other details are the same
as Table 2).

• GAT-KL A supervised simple Graph Attention network
with multiple GAT layers followed by (Veličković et al.
2018) and a softmax layer outputs final label distribution
for each node. KL-divergence is used as the supervised
training loss.

Evaluation Metrics
Following commonly used LDL evaluation metrics (Geng
2016), six measures are chosen as our measure for distribu-
tion error. Additionally, Weighted F1-score and accuracy on
a converted single-label classification setting are also used.
These metrics belong to different measure families and each
of them reflects some aspects of the model performance.

From our over-smoothing experiments (reported in ex-
tended version available in the GitHub project), it is ob-
served that the above six measures may not reflect overall
model performance for imbalanced datasets, which typically
result in better distribution measure but worse weighted F1-
score and accuracy. The addition of the two single-label clas-

sification metrics reveals the biased prediction over the dom-
inant class. “# of top metrics” is used to count the number
of times a model archives the best or 2nd best performance
across all measures.

Results and Analysis

The results in Table 4 show that GLDL dynamic model has
the best performance with the highest number of winning
counts among eight metrics across all the datasets, followed
by the static GLDL model. SA-IIS has the worst perfor-
mance. Specifically, SA-IIS only has good accuracy and
F1-score on Yelp and Yelp2 datasets but all other distribu-
tion measures are significantly lower. One possible reason is
that Yelp and Yelp2 have low homophily scores which indi-
cate that they are heterophilic and GCN is known to favor
homophilic graphs in a semi-supervised node classification
task (Zhu et al. 2020).

GCN-KL and GAT-KL have a better distribution mea-
sure than SA-IIS but their overall performance is worse
than GLDL. This is mainly because they overlook label-
label correlation in predicting node label distributions. For
GLDL static vs. dynamic models, the dynamic approach al-
ways has a better Chebyshev distance and Intersection and
a better weighted F1 score and accuracy among three out of
four datasets. The specific experiment settings and further
analysis are provided in extended version available in the
GitHub project.

Figure 4: Convergence of the dynamic graph generation
w.r.t the unsupervised loss. As the number of epochs
increases, the loss decreases. The spike denotes the change
of the label-label network as per dynamic graph generation.
The change of the network results in a larger loss and will
decrease after several iterations.
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DBLP

Model CHD↓ COD↓ CAD↓ CLD↓ IND↑ KLD↓ ACC↑ weighted F1↑ # of top metrics↑
SA-IIS 0.3491 0.2187 3.0655 1.6863 0.6458 0.8321 0.6887 0.6956 0/8
GAT-KL 0.2232 0.1122 2.8416 1.608 0.7718 0.4037 0.8075 0.7969 2/8
GCN-KL 0.2267 0.0986 2.8706 1.6219 0.7695 0.3428 0.8326 0.8321 1/8
GLDLs 0.2143 0.097 2.8588 1.6206 0.7821 0.3455 0.8405 0.8406 6/8
GLDLd 0.2142 0.0977 2.8587 1.6208 0.7828 0.3449 0.8327 0.8328 7/8

Yelp

Model CHD↓ COD↓ CAD↓ CLD↓ IND↑ KLD↓ ACC↑ weighted F1↑ # of top metrics↑
SA-IIS 0.3682 0.2564 2.7356 1.3972 0.5913 0.8302 0.5196 0.5655 1/8
GAT-KL 0.3317 0.2093 2.4005 1.2299 0.6217 0.4685 0.5993 0.4491 0/8
GCN-KL 0.3288 0.1953 2.428 1.2635 0.6311 0.4611 0.6133 0.5296 2/8
GLDLs 0.3027 0.1824 2.3091 1.2016 0.6550 0.4167 0.5944 0.5035 6/8
GLDLd 0.2893 0.1684 2.2432 1.1752 0.6698 0.3843 0.6115 0.5194 7/8

Yelp2

Model CHD↓ COD↓ CAD↓ CLD↓ IND↑ KLD↓ ACC↑ weighted F1↑ # of top metrics↑
SA-IIS 0.3628 0.2362 2.8063 1.4299 0.6053 0.8081 0.5196 0.5655 1/8
GAT-KL 0.3021 0.1845 2.465 1.2831 0.659 0.4214 0.61 0.5033 0/8
GCN-KL 0.3236 0.1983 2.467 1.2765 0.6352 0.4573 0.57 0.5246 0/8
GLDLs 0.2957 0.1695 2.3291 1.217 0.6682 0.3851 0.5889 0.5107 7/8
GLDLd 0.2874 0.1657 2.3173 1.213 0.6741 0.3805 0.6022 0.5456 8/8

ACM

Model CHD↓ COD↓ CAD↓ CLD↓ IND↑ KLD↓ ACC↑ weighted F1↑ # of top metrics↑
SA-IIS 0.42477 0.26459 N/A N/A 0.57304 1.3635 0.6705 0.6747 0/8
GAT-KL 0.3849 0.2181 10.2209 3.1732 0.6108 0.9249 0.7243 0.7052 3/8
GCN-KL 0.3993 0.2275 10.2388 3.1752 0.5966 0.9247 0.7166 0.691 0/8
GLDLs 0.3543 0.2236 9.7422 3.0416 0.6403 0.9093 0.7116 0.6845 6/8
GLDLd 0.3534 0.2252 9.7354 3.0387 0.6418 0.9132 0.726 0.7008 7/8

Table 4: Results of different models on the created datasets. The number of top metrics counts the number of best (Bold) or
second-best (Italian) results for each model. CHD: Chebyshev Distance, COD: Cosine Distance, CAD: Canberra Distance,
CLD: Clark Distance, IND: Intersection Distance, KLD: KL Divergence, ACC: Accuracy. A ↑ / ↓ symbol denotes that the
measured values are higher/lower the better. N/A in the ACM dataset is due to a numerical error from SA-IIS.

Regularization Convergence
Fig. 4 reports unsupervised loss for the graph generator in
the training stage (DBLP, Yelp2, and ACM datasets). We can
observe that the graph generatorGG( ·) does achieve a lower
consistency and momentum loss during training. The curves
in Fig 4 further validate the effectiveness of the GLDL’s dy-
namic module, where all three datasets show clear conver-
gence under dynamic network setting.

Noticeably, ACM has eleven classes (labels), so its label-
label network has more variety in topology, making it ideal
for assessing dynamic module’s performance. As soon as the
dynamic network changes, the loss will first experience in-
crease and then decrease. The peak values will gradually de-
cline and eventually converge to a small value.

Conclusion
In this study, we proposed a framework for a novel and
under-researched problem: graph label distribution learn-
ing, where our goal is to learn from graph structured data
to accurately predict label description degrees of respec-
tive nodes. We argued that existing LDL methods cannot

handle networked data and a simple adaption of GCN us-
ing KL-divergence loss is ineffective to solve the prob-
lem due to over-smoothing and the lack of consideration
of label-label correlation. To address the problem, we pro-
posed GLDL to explicitly model label-label correlation us-
ing a unique dynamic graph generation process with unsu-
pervised loss for stable performance. A dual graph convo-
lution network (GCN) co-training with heterogeneous mes-
sage passing is proposed for node label distribution predic-
tion to fully leverage network topology and label-correlation
for accurate prediction. A theoretical bound for GCN train-
ing with KL-divergence is derived to support our design.
Experimental studies on four benchmark datasets validate
GLDL’s performance compared to baseline.
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