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ABSTRACT: Self-regulation is crucial for student success in scientific inquiry and engineering design. 
However, it remains unclear how students dynamically engage in self-regulated learning (SRL) processes to 
achieve high performance. In this study, we investigated the temporal nature of self-regulation during 
engineering design by leveraging computer trace data from 101 high school students who designed an energy-
plus house in a simulated learning environment. Using sequential mining, we found that high-performing 
students were more engaged in the Observation, Analysis, and Evaluation phases of SRL than low-performing 
students. Additionally, high-performing students demonstrated consecutive sequential patterns between 
Observation and Analysis, Reformation and Evaluation, and Analysis and Evaluation behaviors. These findings 
provide insights into students’ SRL processes and the design of scaffoldings. 
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1. Introduction 
 
The field of Science, Technology, Engineering, and Mathematics (STEM) education has evolved into a meta-
discipline where students need to design solutions for complex contextual problems without the traditional 
divisions between subjects (Kennedy & Odell, 2014). There is an increasing number of educational programs 
that integrate technology and engineering into K-12 school curricula to promote scientific inquiry. Engaging 
students in these educational programs requires teachers to reconsider the way STEM is taught, moving away 
from conventional lecture-style and knowledge-transmission teaching methods toward active learning 
pedagogies (Haak et al., 2011; Kober, 2015). Teachers and educational programs prioritize students’ engagement 
in active learning pedagogies by providing ongoing support and evaluation throughout the learning process. An 
increasing amount of evidence suggests that utilizing active teaching pedagogies can promote student learning 
and mitigate disparities in academic achievement (Eddy & Hogan, 2014; Freeman et al., 2014). However, the 
degree to which students can benefit from these pedagogies depends on their capacity to self-regulate their own 
learning (Greene et al., 2021; Sinatra & Taasoobshirazi, 2017). 
 
Self-regulated learning, as defined by Zimmerman (2013), occurs when students actively pursue their academic 
goals and adapt various aspects of their learning (i.e., cognition, metacognition, emotions, and motivation) 
through the processes of planning, monitoring, controlling, and evaluating. Not all learners are capable of 
enacting these SRL processes effectively and efficiently. For example, some students may struggle to set clear 
goals or plan effectively, while others may find it difficult to monitor their progress or evaluate their 
understanding of the material. Students who are able to implement SRL processes in an effective and efficient 
manner are more likely to succeed academically and benefit from active learning pedagogies, compared to those 
who struggle with self-regulation (Dent & Koenka, 2016; Schraw et al., 2006). However, it is still unclear why, 
when, and how some students engage in SRL whereas some others fail to do so (Ben-Eliyahu & Bernacki, 2015). 
SRL is temporal in nature due to the dynamic and adaptive learning process in response to moment-to-moment 
changes across the various phases of learning. Investigating such temporal SRL processes requires computer 
trace data to record students’ real-time learning actions (Azevedo et al., 2018) and advanced modeling 
methodologies to reveal the patterns of self-regulatory processes (Bernacki, 2017). Thus, the purpose of this 
study is to understand how SRL processes are related to student performance in STEM learning by utilizing 
computer trace data and advanced modeling techniques. The trace data was collected from a computer-simulated 
learning environment designed to promote scientific inquiry and engineering design. More specifically, we 
examined differences in self-regulated learning (SRL) frequencies and patterns between high and low 
performers. 
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2. Literature review  
 
2.1. Engineering design in STEM education 
 
Engineering design refers to the process of designing a product to meet a specific need or set of requirements 
while considering factors such as cost and functionality (Dym, 2013). Engineering design has become an 
essential component of K-12 STEM education as a response to the call for authentic interdisciplinary STEM 
education and a more diverse and inclusive STEM workforce. By engaging in engineering design challenges, 
students can develop their problem-solving skills and gain a deeper understanding of how STEM concepts can be 
used to address real-life issues (Lin et al., 2021). Engineering design also plays a crucial role in fostering a more 
diverse and inclusive STEM workforce in the future by allowing students to participate and succeed regardless of 
prior knowledge and cultural background (Palid et al., 2023). Thus, an increasing number of high schools keep 
students actively engaged in engineering design using active teaching pedagogy (Apedoe et al., 2008; Becker & 
Mentzer, 2015), including project-based learning. Project-based learning (PBL) allows students to work on real-
world projects to solve authentic engineering problems, during which students engage in the entire engineering 
design process (Karan & Brown, 2022). For example, Lin et al. (2018) incorporated PBL into the context of 3D 
printing technology education, aiming to enhance students’ comprehension of modeling and the engineering 
design process. In a STEM camp, Barroso et al. (2016) used a bridge design and construction PBL activity to 
keep students in the engineering design circle of proposing multiple creative solutions and finalizing a solution. 
Thus, PBL emerges as a highly viable and effective approach to actively involve students in the complex 
engineering design process. 
 
When performing engineering design in PBL, however, students face multiple challenges, including 
understanding complex and ill-structured problems (Kuppuswamy & Mhakure, 2020) and managing the time 
constraints and the uncertainty that naturally arises from the design process (Beneroso & Robinson, 2022). They 
must also overcome the fear of risks and failure (Lönngren et al., 2020) and contend with limited access to 
materials and equipment (Mentzer, 2014). For example, McFadden and Roehrig (2019) found that students had 
difficulty handling the unpredictability of an engineering design challenge by analyzing classroom discourse in a 
science classroom. According to Mentzer et al. (2015), high school students demonstrated a tendency to become 
overly focused on a single solution without adequately comprehending the problem from the client’s point of 
view. Despite attending seminars focused on failure in engineering design, students did not exhibit an increase in 
their willingness to embrace and learn from failures (Das & Yang, 2021). To guide students toward successful 
engineering design, it is essential to provide them with a computer-simulated learning environment that offers 
support and resources and eliminates the consequences of failure. More importantly, students need to self-
regulate themselves in monitoring and controlling the engineering design process to avoid focusing on a single 
solution, deal with uncertainties, and be open to design failures.  
 
 
2.2. The domain-specific self-regulated learning in engineering design 
 
Self-regulated learning (SRL) plays a paramount role in engineering design, serving as a catalyst for success in 
this complex and demanding field. SRL refers to the dynamic process in which learners actively monitor and 
control their thoughts and behaviors to attain learning goals (Zimmerman, 2013). SRL empowers learners to take 
ownership of their engineering design process, allowing them to set specific goals, monitor their progress, and 
adapt learning strategies to the ever-changing design challenges. Students displayed varying levels of SRL 
quality, regardless of their educational levels (Lawanto et al., 2013a). For example, Lawanto et al. (2013b) found 
that high-performing students used more monitoring but less planning strategies than their low-performing peers. 
In another study, Zheng et al. (2023) identified the positive effect of SRL strategies on students’ science and 
design knowledge increase in engineering design. These previous research findings highlight the need for 
additional exploration and investigation of SRL processes in the context of engineering design. 
 
While the core principles of SRL, such as goal setting, monitoring, and adjustment, remain consistent, the 
specific strategies and behaviors employed by individuals may differ based on the nature of the learning task and 
the domain’s unique demands (Alexander et al., 2011; Poitras & Lajoie, 2013). Zheng et al. (2020) developed a 
domain-specific SRL model (see Figure 1) to guide instructional and research design in engineering. According 
to this model, learners engage in self-regulation through the cognitive processes of observation, formulation, 
reformulation, analysis, and evaluation. These processes align with the three-phase structure of general SRL 
model (Zimmerman, 2013), which includes forethought, performance, and self-reflection phases. During the 
forethought phase, learners observe to understand the task. The performance phase is crucial, involving 
formulation, reformulation, and analysis as learners actively complete the design circle. In the self-reflection 
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phase, learners evaluate their current design in comparison to their intended design. These five SRL processes 
are iterative and cyclical, enabling learners to continually refine their designs based on new insights and 
feedback. This domain-specific SRL model in engineering design balances generality and domain-specificity, 
illustrating how students adeptly self-regulate their learning in engineering contexts. It provides valuable insights 
into learners’ different adaptive and iterative SRL practices, contributing to a deeper understanding of effective 
self-regulation in engineering design. More importantly, this model makes it possible to investigate the temporal 
nature of SRL with computer trace data. 
 

Figure 1. Domain-specific SRL model 

 
 
 
2.3. Temporal SRL with computer trace data 
 
Computer trace data has been instrumental in examining the temporal nature of SRL, since it could offer unique 
insights into students’ SRL processes and patterns. Trace data has been used in various domains to perform fine-
grained analysis. Fan et al. (2023) integrated computer trace data with think-aloud data to reveal students’ SRL 
processes in reading and writing. Azevedo et al. (2013) used multiple sources of trace data to examine the 
complex roles of cognitive, affective, and metacognitive self-regulatory processes deployed by students during 
scientific problem-solving. These studies demonstrate a common approach of aggregating events, which can be 
beneficial when revealing how often students enact a type of SRL process or identifying the patterns of students’ 
SRL processing (Greene et al., 2021). In the context of engineering design, for example, students observe the 
design environment from different perspectives. They open Heliodon to understand how sunlight interacts with 
buildings and spaces. They may also use Shadows View to assess how shadows are cast by trees and buildings. 
The specific observation behavior/action matters less than the fact that learners are making observations to 
develop an understanding of the task. Thus, all these events can be aggregated as observation behavior. Similar 
aggregation can occur for instances of formulation, analysis, reformulation, and evaluation. Such aggregated 
computer trace data can be used to examine the occurrence and frequency of SRL activities. Furthermore, 
advanced data mining techniques, such as sequential mining, can be used to reveal how SRL patterns are related 
to students’ performance. 
 
Sequential mining is becoming an increasingly valuable analytical tool for identifying behavioral patterns, 
especially in the investigation of SRL (Kinnebrew et al., 2013). Differential sequential mining algorithms have 
been used to compare behavioral patterns of high versus low efficient students (Zheng et al., 2022), high versus 
low performers (Kinnebrew et al., 2017), and students in experimental versus control conditions (Wong et al., 
2019). For example, Kinnebrew et al. (2017) conducted a study investigating the patterns in strategy use between 
high and low performers. They found that sequential mining was an effective method in detecting students’ 
learning strategy patterns as they engaged with Betty’s Brain, an open-ended learning environment. Zheng et al. 
(2022) utilized sequential mining to examine students’ SRL patterns in clinical reasoning, revealing that less 
efficient students exhibited more disorganized behavior than efficient students. In another study, Taub et al. 
(2018) used sequential pattern mining to determine if there were differences in hypothesis testing behaviors 
between high and low-efficient students when they played a game about microbiology on Crystal Island. They 
found that low-efficient students had the most sequences of testing behaviors, especially less strategic hypothesis 
testing behaviors. As demonstrated by these previous studies, sequential mining techniques unveil crucial 
behavioral patterns that significantly advance our understanding of the sequential and temporal aspects of SRL. 
Additionally, these studies serve as exemplary models for investigating differential behavioral patterns by 
employing sequential mining techniques in the context of the engineering design process. 
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3. Current study  
 
The purpose of this study is to gain a better understanding of how computer trace data can be used to capture the 
temporal nature of SRL in engineering design. Using sequential mining and performance data during an 
engineering design task, we addressed the following research questions: (1) Do high-performing and low-
performing students differ in the frequency of their enactment of SRL processes? (2) Do high-performing and 
low-performing students demonstrate different sequential patterns of self-regulatory processes? The first research 
question aims to uncover relevant differences between high and low-performing students in SRL. We anticipate 
that a significantly higher frequency of SRL sequences would be observed in the high-performing group 
compared to the low-performing group. The second research question delves into the temporal nature of SRL, 
specifically the difference in sequential patterns between high and low-performing students. Based on previous 
research findings (Zheng et al., 2020), we anticipate observing more consistent sequential patterns in the high-
performing group compared to the low-performing group. 
 
 
4. Methods 
 
4.1. Participants  
 
This is part of a larger study that involves students from a suburban high school in the northeastern United 
States. This study included 101 students who completed the learning task and consented to participate. Among 
them, fifty-five (50.9%) were female and fifty-three (49.1%) were male. These participants were enrolled in five 
honors courses in physical science, instructed by a male teacher with more than 17 years of experience teaching 
physical sciences and 5 years of experience guiding engineering design projects. Based on the school’s data, the 
majority of the student population consists of White students, accounting for 76.7% of the total. The remaining 
percentages comprise Hispanic students at 4.6%, African American students at 4.2%, students of multiple races 
at 3.4%, Native American students at 0.2%, and Native Hawaiian/Pacific Islander students at 0.2%. 
 
 
4.2. The learning environment 
 
Aladdin, previously known as Energy3D, is a computer-supported simulation environment that supports 
engineering design, and it enables the construction, designing, and evaluation of green buildings that utilize solar 
power (Xie et al., 2018). Aladdin (see Figure 2) offers various simulations to aid students in understanding the 
solar conditions in which their buildings would be situated, including showing shadows, heliodon displays, and 
sun animations (i.e., observations). Figure 2 also demonstrates how Aladdin provides students with tools for 3D 
modeling, including walls, windows, roofs, solar panels, and trees. These tools allow for quick and easy creation 
and modification of building designs (i.e., formulation and reformulation). Additionally, Aladdin offers a wide 
range of quantitative analysis tools (such as energy and solar energy calculations, and annual energy analysis), 
which aid users in assessing the energy efficiency of their buildings and making necessary modifications to meet 
the net energy requirement. Finally, students are encouraged to reflect and evaluate their every round of design 
by responding to built-in prompts such as, “Describe your design ideas and explain why you think they are good 
ideas.” Aladdin maintains a timeline that records all user actions, and these actions can reveal the temporal 
regulatory processing of engineering design.  
 
 
4.3. Procedures  
 
The institutional review board approved this study to protect the rights of human participants. All students who 
took part in this research provided their consent by filling out consent forms. The study was conducted in a 
science course, where participants were given 50-80 minutes each day to design a house using Aladdin software. 
The participants dedicated two days to the task of designing a single house. On the first day, participants got 
familiar with the Aladdin platform with the guidance of two researchers. They learned how to construct 
buildings, modify buildings, utilize the built-in simulations, and perform daily/annual energy analyses. At the 
same time, they learned the specified design requirements that were listed in a two-page printed instruction. 
Students are supposed to use Aladdin to individually design an energy-plus Cape Cod style house. To qualify as 
an energy-plus building, the house is required to generate a surplus of renewable energy over the course of 1 
year, surpassing the amount of energy it utilizes. The Cape Cod style house is expected to fulfill certain criteria: 
it should exhibit an attractive exterior design; the ratio of the overall window area to the floor area should range 
between 0.05 and 0.15; trees should be positioned no closer than 2 meters from the house walls; the roof 
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overhang cannot exceed a width of 50 centimeters. The allocated budget for the construction of the house is 
$200,000. The living space should range from 100 to 150 square meters, and the height of the house should be 
between 7 and 9 meters. In addition to design requirements, a two-page instructional handout also included an 
engineering design cycle to assist students in their design process. Students were encouraged to exchange ideas 
with their classmates before creating a building using Aladdin. On the second day, students started to perform 
construction independently. After finishing the construction, students were able to iterate their design by 
evaluating the energy efficiency of their building with embedded analysis tools. In total, students then spent two 
consecutive days completing the Cap Cord design of a house. Other than the provided instruction manual, 
students received very little explicit direction or guidance.  
 

Figure 2. The interface of Aladdin 

 
 
 
4.4. Data analysis  
 
A total of 70,236 lines of student-generated computer trace data were utilized in this study. Each action 
conducted by students in the Aladdin environment was recorded by one row of data, including student 
anonymized ID, timestamped computer actions (by second), and action types. Each action was manually coded 
by researchers in alignment with the domain-specific SRL model (Figure 1) to understand students’ self-
regulatory phases, or processes. The coding scheme, as presented in Table 1, provided the operational definition 
for each SRL process along with the corresponding student actions. For instance, actions such as “show 
heliodon,” “show shadow,” and “animate sun” were used by students to monitor the movement of the sun 
throughout the day or year. Thus, these actions were coded as part of the Observation process within the 
engineering design domain.  
 

Table 1. Coding scheme of SRL 
Self-regulatory 
processes 

Definition Computer actions 

Observation Students observe the building 
and the sun using different types 
of visualization tools 

Show Heliodon; Show Shadow; Animate Sun; Spin 
View; Top View; Show Annotation; Show Axes 

Formulation Students create the building by 
adding different components to 
the house 

Add Solar Panel; Add Window; Add Wall; Add Trees; 
Add Hip Roof; Add Door; Add Pyramid Roof; Add 
Custom Roof; Add Floor; Add Foundation; Add 
people; Add Sensor; 

Reformulation Students modify the house by 
changing the size, location, and 
attributes of different house 
components and discarding some 
house components 

Edit Window; Edit Solar Panel; Edit Wall; Change 
Date; Remove Solar Panel; Remove Window; Remove 
Trees; Remove Wall; Efficiency Change for Selected 
Solar Panel; Move Trees etc. 

Analysis Students calculate the energy 
production and consumption of 
the house 

Solar Energy; Compute Energy; Energy Annual 
Analysis; Cost; Annual Sensor Data; Energy Angular 
Analysis 

Evaluation Students reflect on the design 
processes by justifying their 
decision-making process. 

Make notes 
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The data was processed in Google Colab using Python programming language. First, we categorized students 
into high and low-performance groups based on their engineering design performance. Students’ energy 
performance was assessed by calculating the net annual energy of the Cape Cod style house they 
constructed. The net annual energy of a house is determined by subtracting its annual production energy 
from its annual consumption energy. A negative value denotes an energy-plus house. A lower net energy 
value signifies a more energy-efficient house. The 101 participants were divided into a high-performing group 
(n = 51) and a low-performing group (n = 50) by using the 50th percentile as the threshold. To address the first 
research question, we presented the frequency of all five SRL processes to provide a holistic perspective on 
students’ engagement in SRL phases during the engineering design process. In addition, the SRL processes were 
transformed into sequences that reflect students’ SRL patterns and the iterative nature of the design process. 
Table 2 presents some examples of generated sequences. As displayed in Table 2, the numbers in the third 
column represent different SRL processes (Observation = 1, Formulation = 2, Reformulation = 3, Analysis = 4, 
Evaluation = 5). More specifically, the first row indicates that student A conducted a design activity consisting of 
five SRL processes on March 13th, while the same student performed a different sequential pattern the next day . 
In total, 310 SRL sequences were generated by all participants throughout the engineer design activity. 
Furthermore, we transformed the SRL sequences into a series of two-action sequences (see Table 3). As 
indicated in Table 3, the columns named “Sequences” present two-action combinations between process 1 and 
process 5, which resulted in 20 pairs. For instance, the cell “1-2” represents the sequential actions students 
conducted from the Observation (1) phase to the Formulation (2) conducted by students, which is 152 in this 
case. Similarly, for 1-3 under column “Sequences,” the corresponding “Frequencies” is 304. This indicates that 
students conducted a total of 304 sequential actions from Observation (1) to Reformulation (3) throughout the 
entire activity. 
 

Table 2. Example of SRL sequences 
Student Date Activity sequence 
A Mar.13th  [1, 5, 2, 3, 4] 
A Mar.14th  [5, 3, 4, 5, 4, 5, 5, 3, 5, 4, 5] 
C Mar.17th  [3, 4, 1, 2, 3, 4, 3, 4, 3, 4, 5, 2, 3, 2] 
Note. 1 = Observation, 2 = Formulation, 3 = Reformulation, 4 = Analysis, 5 = Evaluation. 
 

Table 3. The frequencies of consecutive activity pairs 
Sequences Frequencies 

1-2 152 
1-3 304 
1-4 181 
1-5 30 
2-1 99 
2-3 2399 
2-4 545 
2-5 23 
3-1 291 
3-2 2322 
3-4 1982 
3-5 111 
4-1 208 
4-2 461 
4-3 1851 
4-5 335 
5-1 77 
5-2 147 
5-3 222 
5-4 235 

Note. 1 = Observation, 2 = Formulation, 3 = Reformulation, 4 = Analysis, 5 = Evaluation. 
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5. Results 
 
5.1. Research Question 1. Do high-performing and low-performing students differ in the frequency of 
their enactment of SRL processes? 
 
To answer the first research question, participants’ behavioral frequencies that mapped into correspondent SRL 
phases were divided into high (n = 51) and low-performing (n = 50) groups. As displayed in Figure 3, 
reformulation and evaluation were the most frequent SRL activities in both high and low-performing groups, 
indicating that students devoted the most effort to revising the design and reflecting on the design processes. In 
general, high-performing students performed more SRL activities in all phases. 
 

Figure 3. The distribution of SRL activities in high and low-performing groups 

 
 
In particular, independent t-tests were performed on the frequencies of five SRL phases on students from high 
and low-performing groups. As indicated in Table 4, there were significant differences between the two groups 
in observation, analysis, and evaluation. More specifically, in the observation phase (t (82) = 2.32, p < .05), 
students in the high-performing group (M = 21.39, SD = 21.76) presented significantly higher frequencies than 
the low-performing group (M = 12.20, SD = 12.77) with a medium effect size (d = .51). Students in the high-
performing group (M = 92.76, SD = 80.81) also conducted significantly more analysis actions ((t (99) = 2.60, p < 
.05) than that of low-performing group (M = 61.10, SD = 59.25) with a moderate effect size (d = .45). Regarding 
the Evaluation phase, students in the high-performing group (M = 296.78, SD = 199.19) exhibited significantly 
higher frequencies compared to the low-performing group (M = 186.44, SD = 220.71) with a medium effect size 
(d = .53). 
 

Table 4. Comparison of SRL activities frequency between high and low performing group 
SRL phase Group N M SD t df p Cohen’s d 
Observation High 44 21.39 21.76 2.32 82 .02* .51 
 Low 40 12.20 12.77     
Formation High 51 111.65 58.46 .64 99 .52 .13 
 Low 50 103.54 68.72     
Reformation High 51 259.73 156.70 1.68 99 .10 .34 
 Low 50 210.20 138.28     
Analysis   High 51 92.76 80.81 2.25 99 .03* .45 
 Low 50 61.10 59.25     
Evaluation High 51 296.78 199.19 2.60 99 .01* .53 
 Low 50 186.44 220.71     
Note. *p < .05. 
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5.2. Research Question 2. Do high-performing and low-performing students demonstrate different 
sequential patterns of self-regulatory processes? 
 
Students in the high-performing group (n = 51) performed 40,798 log actions that equivalented to 179 SRL 
sequences, whereas the low-performing group (n = 50) conducted 29,438 log actions that equivalented to 131 
SRL sequences. Sankey graphs were generated to visualize students’ sequential and iterative SRL processes in 
engineering design. A Sankey graph is a particular type of data visualization that employs arrows of varying 
widths to depict the flow of quantities between different phases (Pan & Liu, 2022). As displayed in Figure 4 and 
Figure 5, high and low-performing students demonstrated similar iterative SRL patterns. Students focus the 
majority of their effort on the iteration of Formulation, Reformulation, and Analysis, suggesting that these three 
actions play a significant role in determining the flow of the engineering design process. Although the iterative 
SRL patterns were similar, we conducted further exploration to determine if there were differences in the 
sequential pattern and directionality of the sequential pattern between high and low-performing students. 
 

Figure 4. The sequential patterns of high-performing students’ regulatory processes 

 
            

Figure 5. The sequential patterns of low-performing students’ regulatory processes 

 
 
Non-parametric Mann-Whitney U tests were conducted to compare the difference in the frequency of SRL 
sequence between the two groups since the data violates the normality assumption. Table 5 presents the results 
generated by Mann-Whitney U tests. More specifically, it presents the average and total frequency of each SRL 
sequence for both high and low-performing groups. Additionally, the table includes the Mann-Whitney U value 
and p value to signify any significant difference between two groups in each SRL sequence. For example, for the 
sequence 1-4 (Observation to Analysis), students in the high-performing group performed this sequential action a 
total of 139 times. On average, each student conducted this sequential action 2.73 times. In contrast, students in 
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the low-performing group only conducted this action 42 times in total, with an average of 0.88 times per student. 
This sequential action showed a significant difference between the two groups (U = 886.50, p < .05). 
 
As indicated in Table 5 and Figure 6, there were significant differences in six different SRL sequences or three 
SRL cynical patterns between the two groups: Observation <=> Analysis (1-4, 4-1); Reformulation <=> 
Evaluation (3-5, 5-3); Analysis <=> Evaluation (4-5, 5-4). More specifically, students in the high-performance 
group demonstrated significantly more sequential patterns from Observation to Analysis phase (1-4, U = 886.50, 
p < .05, r = .28) and from Analysis to Observation (4-1, U = 921.00, p < .05, r = .25) than their peers in the low-
performance group. For the cynical pattern between Reformulation and Evaluation, the high-performing group 
also conducted significantly more than the low-performing group in the sequence from Reformulation to 
Evaluation (3-5, U = 963.50, p < .05, r = .23) and from Evaluation to Reformulation (5-3, U = 826.50, p < .05, r 
= .31). Moreover, the high-performance group also conducted significantly more sequences from Analysis to 
Evaluation (4-5, U = 628.50, p < .05, r = .44) and from Evaluation to Analysis phase (5-4, U = 683.50, p < .05, r 
= .41) than the low-performing group. 
 

Table 5. Mann-Whitney U tests results comparing the sequential patterns of high and low-performing students 
Sequence High performance group Low performing group Mann-Whitney U 
 Mean Total Mean Total  
  1-2  1.73 88 1.28 64 1196.00 
  1-3  3.94 201 2.06 103 1004.50 
  1-4  2.73* 139 0.84 42 886.50 
  1-5  0.29 15 0.30 15 1154.00 
  2-1  0.98 50 0.98 49 1306.50 
  2-3  23.33 1190 24.18 1209 1329.50 
  2-4  5.80 296 4.98 249 1187.50 
  2-5  0.35 18 0.10 5 1027.50 
  3-1  3.78 193 1.96 98 1033.50 
  3-2  21.98 1121 24.02 1201 1407.00 
  3-4  23.73 1210 15.44 772 1008.00 
  3-5  1.37* 70 0.82 41 963.50 
  4-1  3.10* 158 1.00 50 921.00 
  4-2  5.25 268 3.86 193 1087.50 
  4-3  21.33 1088 15.26 763 1097.50 
  4-5  4.69* 239 1.92 96 628.50 
  5-1  0.96 49 0.56 28 1155.50 
  5-2  1.65 84 1.26 63 1032.50 
  5-3  2.86* 146 1.52 76 826.50 
  5-4  3.25* 166 1.38 69 683.50 
Note. *p < .05. 1 = Observation, 2 = Formulation, 3 = Reformulation, 4 = Analysis, 5 = Evaluation. 
 

Figure 6. The significantly different sequential paths between high and low-performing students 
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6. Discussion 
 
This study found that students allocated the majority of their effort to evaluation and reformulation processes, 
signifying a strong focus on the self-reflection and performance phase of SRL. The significant allocation of 
effort to these two phases highlights the active involvement and metacognitive awareness of students in 
evaluating and revising their designs. Although there are no prior findings on how students distribute their effort 
across the three phases of SRL, it is important to note that effective self-regulated learners do not evenly 
distribute their effort across the three phases of SRL even though all three phases play important roles in SRL (Li 
et al., 2018). The three phases of SRL are interlinked, collectively shaping the learning process. For example, 
Callan and Cleary (2019) explored the connection between SRL phases, revealing that effort invested in the 
forethought phase positively influenced effort in the performance phase, subsequently impacting mathematics 
performance. However, an overemphasis on the forethought phase might lead to reduced time for the 
performance phase, potentially resulting in poor academic performance (Li et al., 2018). Similarly, learners who 
do not engage in self-reflection may miss opportunities to adjust their learning strategies to improve learning 
efficiency and performance. Therefore, it is essential for learners to balance their effort across the three phases of 
SRL, especially when heavily involved in the self-reflection and performance phase. 
 
Additionally, we found that high-performing students devoted more effort than low-performing students to the 
three phases of SRL, particularly the Observation, Analysis, and Evaluation processes. This finding is consistent 
with prior studies that contended that high-performing students devote more time to all phases of SRL compared 
to lower performers (Dibenedetto & Zimmerman, 2010; DiFrancesca et al., 2016; Foong et al., 2021; Li et al., 
2018). This finding also supports our previous argument that learners should balance their effort across the 
phases of SRL. Moreover, in the context of engineering design, a distinctive finding emerges where high-
performing students show deeper engagement in analyzing design solutions during the performance phase of 
SRL. This finding highlights that high-performing students allocate considerable effort to critically analyze the 
effectiveness of their design solutions. This analytical strategy enables them to identify areas of strength and 
areas that require improvement (Katz, 2015), leading to adjustments that optimize their learning process. Thus, 
educators can use this finding to design targeted interventions and provide support to students who may need 
assistance in analytic thinking skills in the performance phase.  
 
Of particular interest, students in the high-performing group exhibited a higher occurrence of consecutive 
sequential patterns between Observation and Analysis, Reformation and Evaluation, and Analysis and 
Evaluation. The frequent occurrence of consecutive patterns between Observation and Analysis shows that high-
performing students systematically gather relevant information and then analyze it effectively to make informed 
decisions about their design solutions. The high incidence of consecutive patterns between Reformation and 
Evaluation suggests that high-performing students actively evaluate their design after implementing changes or 
reforms in their learning strategies. The frequent consecutive patterns between Analysis and Evaluation imply 
that high-performing students adeptly utilize their analytical skills to assess their performance and learning 
outcomes. These three sequential patterns indicate that high-performing students possess metacognitive 
awareness (Ramirez-Corona et al., 2013), actively engaging in analysis based on observation, evaluating 
reformed design solutions, and integrating analytical thinking into their evaluation process. These self-
assessment and self-adjustment processes enable students to refine their design solutions and optimize their 
design performance. Educators and computer program developers can use these findings to promote 
metacognitive development in engineering design, highlighting the importance of observational skills, critical 
analysis, and self-evaluation throughout the learning journey. By designing prompts that reinforce the connection 
between observation, analysis, and evaluation, educators can encourage students to engage more actively in their 
self-assessment and self-adjustment processes. 
 
 
7. Limitations and future directions 
 
Fine-grained tracing of student actions and sequential mining of their temporal patterns offer insights into the 
temporal structures of students’ SRL in engineering design. However, this study also comes with limitations. The 
computer trace data was collected in a single task (i.e., designing a Cape Cod Style energy-plus house) and thus 
generalizability is constrained to that task and sample. As previously discussed, SRL strategies and behaviors 
employed by individuals can vary based on the nature of the learning task (Alexander et al., 2011). 
Consequently, the identified sequential patterns may vary when considering different contexts and individuals. 
Future research could replicate this study across various engineering design tasks to validate the findings. 
Moreover, results may be further influenced by external support during the task, such as peer support and teacher 
support. Although peer support and teacher support were not available in the current study, this kind of external 
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support may influence the efficiency and efficacy of SRL. Thus, future research should take into account these 
external factors when analyzing students’ self-regulatory processes. Another limitation pertains to the method of 
categorizing students into high and low-performing groups. While design outcomes hold significant importance 
in this task, they are not the sole metrics for differentiation. For instance, the aesthetic dimension of the design 
could be considered in evaluating students’ performance. Aspects such as students’ motivation and prior 
knowledge also matter. Future studies should consider measuring students’ motivation, prior knowledge, and the 
aesthetic dimension of the design to differentiate students comprehensively. Finally, the study did not establish 
causal relationships despite the fact that we successfully examined the differences in SRL patterns between high 
and low-performing students. To further validate the efficacy of these findings, future research endeavors could 
delve into examining the impact of interventions crafted based on these identified patterns. 
 
 
8. Conclusion 
 
This study examined the SRL patterns of 101 high school students as they performed engineering design in a 
computer-supported simulation environment, Aladdin. The sequential mining results revealed that students in the 
high-performing group engaged in significantly more actions associated with the Observation, Analysis, and 
Evaluation processes of SRL. Moreover, students from high and low-performing groups exhibited distinct self-
regulatory patterns. The visualized sequential patterns, presented through Sankey charts, depicted more nuanced 
differences between the two groups, including iterative SRL patterns and variations in the proportions of the 
paths taken by each group. More specifically, students in the high-performing group presented a higher 
occurrence of consecutive sequential patterns between Observation and Analysis, between Reformation and 
Evaluation, and between Analysis and Evaluation.  
 
The results have practical implications for the design of interventions and system development. First, educators 
can tailor interventions to assist students in honing their analytical thinking skills during the performance phase. 
Secondly, educators and computer program developers can collaborate to foster metacognitive growth in 
engineering design by emphasizing observational skills, critical analysis, and self-evaluation throughout the 
learning process. By incorporating prompts that reinforce the interconnectedness of observation, analysis, and 
evaluation, educators can stimulate students’ active engagement in self-assessment and adjustment. Lastly, these 
results underscore the importance of evenly distributing effort across the three phases of SRL for achieving 
effective learning outcomes. 
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