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PARTIALLY HYPERBOLIC DIFFEOMORPHISMS HOMOTOPIC
TO THE IDENTITY IN DIMENSION 3
PART I: THE DYNAMICALLY COHERENT CASE

THOMAS BARTHELME, SERGIO R. FENLEY, STEVEN FRANKEL,
AND RAFAEL POTRIE

ABSTRACT. We study 3-dimensional dynamically coherent partially hyperbolic
diffeomorphisms that are homotopic to the identity, focusing on the transverse
geometry and topology of the center-stable and center-unstable foliations, and
the dynamics within their leaves. We find a structural dichotomy for these
foliations, which we use to show that every such diffeomorphism on a hyper-
bolic or Seifert-fibered 3-manifold is leaf-conjugate to the time-one map of
a (topological) Anosov flow. This proves a classification conjecture of Hertz—
Hertz—Ures in hyperbolic 3-manifolds and in the homotopy class of the identity
of Seifert manifolds.

1. INTRODUCTION

A diffeomorphism f of a 3-manifold M is partially hyperbolic if it preserves a
splitting of the tangent bundle T'M into three 1-dimensional sub-bundles

TM = E° @ E° @ EY,

where the stable bundle E® is eventually contracted, the unstable bundle E™ is
eventually expanded, and the center bundle E° is distorted less than the stable and
unstable bundles at each point.

From a dynamical perspective, the interest in partial hyperbolicity stems from its
appearance as a generic consequence of certain dynamical conditions, such as stable
ergodicity and robust transitivity. For example, a diffeomorphism is transitive if it
has a dense orbit, and robustly transitive if this behavior persists under C'-small
deformations. Every robustly transitive diffeomorphism on a 3-manifold is either
Anosov or “weakly” partially hyperbolic [DPU99]. Analogous results hold for stable
ergodicity and in higher dimensions [BDV05].

From a geometric perspective, one can think of partial hyperbolicity as a gen-
eralization of the discrete behavior of Anosov flows, which feature prominently in
the theory of 3-manifolds. Recall that a flow ® on a 3-manifold M is Anosov if
it preserves a splitting of the unit tangent bundle TM into three 1-dimensional
sub-bundles

TM =E°¢T® ¢ EY,

where T'® is the tangent direction to the flow, E® is eventually exponentially con-
tracted, and E" is eventually exponentially expanded. After flowing for a fixed time,
an Anosov flow generates a partially hyperbolic diffeomorphism of a particularly
simple type, where the stable and unstable bundles are contracted uniformly, and
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the center direction, which corresponds to T'®, is left undistorted. More generally,
one can construct partially hyperbolic diffeomorphisms of the form f(x) = ®,(, ()
where ® is a (topological) Anosov flow and 7: M — R is a positive continuous
function; the partially hyperbolic diffeomorphisms obtained in this way are called
discretized Anosov flows?!.

In this article and its sequel [BFFPa] we show that large classes of partially
hyperbolic diffeomorphisms can be identified with discretized Anosov flows. This
confirms a large part of the well-known conjecture by Pujals [BW05], which at-
tempts to classify 3-dimensional partially hyperbolic diffeomorphisms by asserting
that they are all either discretized Anosov flows or deformations of certain kinds of
algebraic examples.

1.1. Homotopy, integrability, and conjugacy. There are two important ob-
structions to identifying a partially hyperbolic diffeomorphism with a discretized
Anosov flow. The first comes from the fact that the latter are homotopic to the iden-
tity, while the former may be homotopically non-trivial. Homotopically non-trivial
examples include Anosov diffeomorphisms on the 3-torus with distinct eigenval-
ues, “skew products,” and the counterexamples to Pujals’ conjecture constructed
in [BPP16, BGP16, BZ17, BGHP20].

The second major obstruction comes from the integrability of the bundles in
a partially hyperbolic splitting. In the context of an Anosov flow ®, the stable
and unstable bundles E® and E" integrate uniquely into a pair of 1-dimensional
foliations, the stable foliation W* and unstable foliation W*". In fact, even the weak
stable and weak unstable bundles E® @ T® and E" @& T'® integrate uniquely into
a transverse pair of ®-invariant 2-dimensional foliations, the weak stable foliation
Wws and weak unstable foliation W™,

In the context of a partially hyperbolic diffeomorphism f, the stable and unstable
bundles still integrate uniquely into stable and unstable foliations, WW* and W"
[HP18]. However, the center-stable and center-unstable bundles E° @ E® and E° @
E™ may fail to be uniquely integrable. In fact, there are examples where it is
impossible to find any f-invariant 2-dimensional foliation tangent to the center-
stable or center-unstable bundle [RHRHU16, BGHP20].

If one can find a pair of f-invariant foliations tangent to the center-stable and
center-unstable bundles then f is said to be dynamically coherent. This condition
is certainly satisfied if f is a discretized Anosov flow (cf. Appendix G).

We take dynamical coherence as an assumption in the present article; Part II
[BFFPa] works without this.

1.2. Results. Most of the existing progress towards classifying partially hyperbolic
diffeomorphisms takes an outside-in approach, restricting attention to particular
classes of manifolds, and comparing to an a priori known model partially hyper-
bolic (see [CRRU18, HP18] for recent surveys). In particular, partially hyperbolic
diffeomorphisms have been completely classified in manifolds with solvable or vir-
tually solvable fundamental group [HP14, HP15]. Here, by classification we mean
both the description of the topology of manifolds and isotopy classes admitting
such dynamics as well as the production of topological models that describe such
systems.

Ours is an inside-out approach, using the theory of foliations to understand the
way the local structure that defines partial hyperbolicity is pieced together into a
global picture. We then relate the dynamics of these foliations to the large-scale
structure of the ambient manifold. An advantage of this method is that, since it

INote that a discretized Anosov flow is not in general the time-1 map of a reparametrization
of the Anosov flow, see Appendix G.
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does not rely on a model partially hyperbolic to compare to, we can consider any
manifold, not just one where an Anosov flow is known to exist. Note that here it
will be possible to construct a topological model even if the manifold is not known
to admit an Anosov flow, nor if such flow is unique.

The following two theorems are the main consequences of our work, applied to
two of the major classes of 3-manifolds. Note that the classification of partially
hyperbolic diffeomorphisms is always considered up to finite lifts and iterates, since
one can easily build infinitely many different but uninteresting examples by taking
finite covers.

Theorem A (Seifert manifolds). Let f: M — M be a dynamically coherent par-
tially hyperbolic diffeomorphism on a closed Seifert-fibered 3-manifold. If f is ho-
motopic to the identity, then some iterate is a discretized Anosov flow.

We eliminate the assumption of dynamical coherence in [BFFPa]; this resolves
the Pujals’ Conjecture for Seifered fibered manifolds®. Note that Theorem A does
not use the classification of Anosov flows on Seifert-fibered 3-manifolds [Ghy84,
Bar96].

Theorem B (Hyperbolic manifolds). Let f: M — M be a dynamically coherent
partially hyperbolic diffeomorphism on a closed hyperbolic 3-manifold. Then some
iterate of f is a discretized Anosov flow.

This resolves a classification conjecture in [CRRU18] for hyperbolic 3-manifolds.
We note here that hyperbolic 3-manifolds are well known to admit many partially
hyperbolic diffeomorphisms as many Anosov flows have been constructed on them.
The question of which hyperbolic 3-manifolds admit Anosov flows is still open, but
our result implies that those which admit dynamically coherent partially hyperbolic
diffeomorphisms must admit Anosov flows.

Note that this theorem does not assume that f is homotopic to the identity, since
any homeomorphism on a closed hyperbolic 3-manifold has a finite power that is
homotopic to the identity. It does, however, assume dynamical coherence.

Theorems A and B strengthen a more general statement which works in every
3-manifold and which requires some knowledge of taut foliations. See Appendix B
for the relevant definitions.

Let f: M — M be a partially hyperbolic diffeomorphism on a closed 3-manifold
M. When f is homotopic to the identity, we denote by fa lift to the universal cover
M that is obtained by lifting such a homotopy. For a dynamically coherent par-
tially hyperbolic diffeomorphism, we denote the center-stable and center-unstable
foliations by W and W¢", and their lifts to M by W and Weu,

Theorem C. Let f: M — M be a dynamically coherent partially hyperbolic dif-
feomorphism on a closed 3-manifold M that is homotopic to the identity. If YW
and W are f-minimal, then either

(i) f is a discretized Anosov flow, or
(ii) W and W are R-covered and uniform, and f acts as a translation on
the leaf spaces of W and W*.

Here, f-minimal means that the only closed sets that are both f-invariant and
saturated by the foliation are the empty set and the whole manifold M. If f is
transitive or volume-preserving, then it is already known that W and W¢" are

2The conjecture is true for Seifert manifolds with fundamental group with polynomial growth
[HP14] and false in Seifert-fibered manifolds when the isotopy class is not the identity as the
examples in [BGP16, BGHP20] are not homotopic to identity and so cannot be discretized Anosov
flows.
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f-minimal [BW05]. We will show that this holds as well when M is hyperbolic or
Seifert and the lift fﬁxes a leaf in the universal cover (see Proposition 3.15). We
show that (ii) cannot occur in a hyperbolic manifold, and Theorem B follows.

It is likely that Theorem B could be shown in the setting of 3-manifolds with
atoroidal pieces in their JSJ decomposition, but we have not pursued this here as
it would require proving results similar to [Thu, Cal00, Fen02] in this setting.

The technique to eliminate the possibility (ii) in Theorem C is more widely
applicable: In a companion article [BFFP21], we use the same ideas to show that a
partially hyperbolic diffeomorphism on a Seifert manifold which acts as a pseudo-
Anosov on (part of) the base is not dynamically coherent.

For Seifert manifolds, it is possible to show that, after taking an iterate, there
is another lift f that is still a bounded distance from the identity and which fixes
a leaf of W, and f-minimality follows. We show that (ii) implies leaf conjugacy
of (possibly an iterate of) f to a time-one map of an Anosov flow on a Seifert-
fibered manifold, and Theorem A follows. We also completely classify the partially
hyperbolic diffeomorphisms for which it is necessary to take an iterate, as opposed
to f itself, to get a discretized Anosov flow (see Remark 7.3).

1.3. Remarks and references. The definition of a partially hyperbolic diffeo-
morphism traces back to [HPS77] and [BP73].

The classification problem for 3-dimensional partially hyperbolic diffeomorphisms
has attracted significant attention since the pioneering work of [BW05, BBI04,
BI08], which was partially motivated by Pujals’ conjecture (see also [PS04, §20]).
See also the surveys [CRRU18, HP18, Pot18].

Besides its intrinsic interest, the classification problem for partially hyperbolic
diffeomorphisms has dynamical implications. For example, several finer dynamical
and ergodic properties have been studied under the assumption of having a dis-
cretized Anosov flow (while not using that terminology), for instance in [AVW15,
BFTar| (see also [Pot18, Will0]). Our results here and in [BFFPa] make that con-
dition checkable. Several of the techniques presented here also yield information
about the dynamics along the center direction, which is so far poorly understood
(see, e.g. [FP18)).

In addition, this article contains several new results of independent interest.
Indeed, important steps in our study do not use partial hyperbolicity, but instead
only use the more general setting of foliation preserving diffeomorphisms. Thus
some results (see §3 and §8 for instance) are much more widely applicable. In
particular, in §8 we use regulating pseudo-Anosov flows to understand the dynamics
of a diffeomorphism that translates the leaves of an R-covered foliation, showing
that any such diffeomorphism has “invariant cores” that shadow the closed orbits
of the corresponding flow.

1.4. Acknowledgments. We would like to thank Christian Bonatti, Andrey Gogolev,
and Andy Hammerlindl for many helpful comments and discussions.

2. OUTLINE AND DISCUSSION

In this section we will set some basic terminology, outline our major arguments,
and detail the organization of this paper.

Definition 2.1. A C!-diffeomorphism f: M — M on a 3-manifold M is partially
hyperbolic if there is a D f-invariant splitting of the tangent bundle T'M into three
1-dimensional bundles

TM = F° @ E°® E"
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such that for some n > 0, one has
IDf"|psay |l < 1,
IDf*|pa()ll > 1, and

DS el < I1Df"|Be@ll < 1Df*|Ba@l;

for all x € M.

See Appendix F for more details. Our major goal is to show that large classes
of partially hyperbolic diffeomorphisms are discretized Anosov flows:

Definition 2.2. A discretized Anosov flow is a partially hyperbolic diffeomorphism
g: M — M on a 3-manifold M that is of the form g(p) = ®;,)(p) for a topological
Anosov flow ® and a map t: M — (0,00).

The precise definition of a topological Anosov flow is given in Appendix G, where
we also explain the relationship between discretized Anosov flows and the more
common notion of partially hyperbolic diffeomorphisms that are leaf-conjugate to
time-1 maps of Anosov flows.

Consider a discretized Anosov flow g: M — M on a closed 3-manifold M. We
will see (Proposition G.2) that g is dynamically coherent, and that the center leaves
of g are exactly the orbits of the underlying flow. This means that g fixes each leaf
of the center foliation. Moreover, it has a natural lift g: M — M to the universal
cover that fixes the lift of each center leaf, but fixes no point in M. Indeed, such a lift
may be obtained by flowing points along lifted orbits. That is, g(p) = it(w(p))(p),

where ® is the lifted flow and 7: M — M is the covering map.

In fact, to show that a partially hyperbolic diffeomorphism f: M — M is a
discretized Anosov flow, it will suffice to find a lift ]?: M — M with this property,
i.e., that fixes the leaves of the lifted center foliation, but fixes no point in M. This
argument is essentially given in [BW05, Section 3.5] — see Section 6.2.

2.1. Setup. We will now set some basic definitions and outline our major argu-
ments. We will assume some familiarity with 3-manifold topology, taut foliations,
and leaf spaces; see Appendices A and B for an outline of the necessary background.

In this paper, M will be a closed 3-manifold, and f: M — M will be a dy-
namically coherent partially hyperbolic diffeomorphism that is homotopic to the
identity.

The center-stable, center-unstable, stable, unstable, and center foliations on M
are denoted by W=, W, W*, W", and W¢. These lift by the universal covering
map w: M — M to foliations on M which we denote by W W WS WU and
We.

Convention: Throughout this paper we will assume that m (M) is not virtu-
ally solvable.

This assumption implies that there is no closed surface tangent to either E or
E°" (Theorem F.1), a fact that we will use often.

The classification of partially hyperbolic diffeomorphisms on manifolds with vir-
tually solvable fundamental group is complete [HP14, HP15], and our assumption
does not affect our main results (see Theorem F.5).

2.1.1. Good lifts. Since f is homotopic to the identity, we can lift such a homotopy
to M, and obtain a lift f: M — M that is good:

Definition 2.3. A lift f: M — M of a homeomorphism f: M — M is called a
good lift if
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(i) it moves each point a uniformly bounded distance (i.e., there exists K > 0

such that dg;(x, f(z)) < K for all z € M), and
(ii) it commutes with every deck transformation.

Throughout this paper we will always take fto be a good lift of f.

Remark 2.4. In fact, it is easy to show that (i) follows from (ii) on a closed
manifold.

A homeomorphism may have more than one good lift. Indeed, composing a
good lift with a deck transformation in the center of the fundamental group yields
another good lift. Conversely, the existence of more than one good lift implies
that the fundamental group has non-trivial center. By the Seifert-fibered space
conjecture (see, e.g., [Cal07]), this implies that the manifold is Seifert-fibered with
orientable Seifert fibration.

2.2. Outline of the paper. Recall that there are no closed surfaces tangent to
the center-stable or center-unstable bundles. In particular, W and W have no
closed leaves, which implies that they are taut. Furthermore, M is homeomorphic
to R3, and each leaf of W or WeU is a properly embedded plane that separates
M into two open balls (cf. Theorem B.1).

2.2.1. Duchotomies for foliations. In §3 we study the basic structure of the center-
stable and center-unstable foliations, and the way that f permutes their lifted
leaves. Much of this section applies more generally to a homeomorphism that is
homotopic to the identity and preserves a foliation.

The basic tool is Lemma 3.3, which says that the complementary components of a
lifted center-stable or center-unstable leaf are “large” in the sense that they contains
balls of arbitrary radius. Since fmoves points a uniformly bounded distance, this
has immediate consequences for the way that it acts on the leaf spaces of W and
weu,

In particular, we deduce that the set of center-stable leaves that are fixed by f
is closed in the leaf space L= of W, each complementary component of this set is
an open interval that is acted on by f as a translation, and any two leaves in one of
these “translation regions” are a finite Hausdorff distance apart (Proposition 3.7).
The same holds for the center-unstable foliation.

When W is f-minimal, or M is hyperbolic or Seifert-fibered, we use this to
show that either:

. fﬁxes every leaf of WCS, or N
(%) e W is R-covered and uniform, and f acts as a translation on
the leaf space of W,

Recall that R-covered means that the leaf space in the universal cover is home-
omorphic to R, and uniform means that any two leaves in the universal cover are
a finite Hausdorff distance apart.

This dichotomy is easy to show under the assumption of f-minimality, where it
does not use partial hyperbolicity (Corollary 3.10). It takes significantly more work
assuming instead that M is hyperbolic or Seifert-fibered (Proposition 3.15).

If W and W€ are f-minimal, or M is hyperbolic or Seifert-fibered, we are left
with three possibilities:

(1) double invariance: f fixes every leaf of both W¢ and WeU;

3This dichotomy holds even without the assumption of dynamical coherence, but the proof is
substantially more difficult (see [BFFPal).
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(2) mixed behavior: f fixes every leaf of either W or W, and acts as a
translation on the leaf space of the other, which is R-covered and uniform;
or

(3) double translation: f acts as a translation on both W and W<, which
are R-covered and uniform.

The remainder of the argument is arranged around these three possibilities. We
will see in §5 that mixed behavior cannot happen. In §6 we show that double
invariance implies that f is a discretized Anosov flow. The double translation case
is ruled out for Seifert-fibered manifolds in §7, and for hyperbolic manifolds in
§8-8§9.

2.2.2. Center dynamics in fived leaves. In §4, we work under the assumption that
f fixes every leaf of W and study the dynamics within each center-stable leaf. In
particular, we show (Proposition 4.4):

If f fixes every leaf of WCS, then any leaf of Wes that is fixed by a
(%) non-trivial deck transformation contains a center leaf that is fixed by
I

This immediately eliminates the possibility of mixed behavior (see §5). It will
also be used in §6 to show that double invariance implies that f is a discretized
Anosov flow.

Consider a center-stable leaf L that is fixed by a deck transformation . The
proof of (xx) comes down to understanding the topology of the stable foliation
within L “in the direction of” =. The formal meaning of this is the axis for the
action of fon the stable leaf space in L (see Appendix E), but it can be understood

intuitively as the set of all stable leaves that cross the core of the cylinder M / {(v)

essentially.

Suppose that there is an line’s worth of stable leaves in this direction, which
corresponds to circle’s worth in M / (v) as depicted (roughly) in the left half of
Figure 1. Then one can find a curve representing ~ that is transverse to the sta-
ble foliation, and a “graph transform argument” finds a corresponding center leaf
preserved by both ~ and f (Lemma 4.5).

FIGURE 1. Axes

The other possibility is that one finds gaps, which look roughly like Reeb com-
ponents as in the right half of Figure 1. We eliminate the possibility of such gaps
by combining the dynamics coming from partial hyperbolicity with two conflicting
forces:
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(i) On one hand, the topology of the stable and center foliations within L
forces the existence of a center ray within this gap that is expanded by f
(Lemma 4.7).

(ii) On the other hand, we find from the geometry of L that the entire gap,
and any center leaf within it, must be coarsely contracted (Lemma 4.9).

These conclusions are contradictory, so there can be no gaps, completing the proof
of (x).

The existence of the expanded center ray (i) is delicate, and depends crucially
on dynamical coherence (see Remark 4.8 and Figure 5). The coarse contraction of
gaps (ii) is more robust, and will be used again in the dynamically incoherent case
in [BFFPa).

2.2.3. Double invariance. In the doubly invariant case (1), one would like to show
that }’v fixes each center leaf. Since by assumption it fixes each center-stable and
center-unstable leaf, it fixes the intersection between any two such leaves. Each
component of this intersection is a center leaf, but there is no a priori reason for it
to have a single component. In §6.1, we show that fﬁxes either every center leaf
or no center leaf, and so by (xx) it fixes every center leaf.

Once we know that fﬁxes every center leaf, we can use the arguments of Bonatti—
Wilkinson [BWO05] to show that the center foliation is the orbit foliation of a topo-
logical Anosov flow, and hence that f is a discretized Anosov flow. This is done in
§6.2, completing the proof of Theorem C.

2.2.4. Double translation in Seifert-fibered manifolds. The double translation case
(3) turns out to be the trickiest. The preceding results work with either topological
conditions (M being Seifert-fibered or hyperbolic) or dynamical conditions (min-
imality or f-minimality). To handle double translations we will need topological
restrictions.

Part of the difficulty is that double translation do in fact exist (Remark 7.3)!
However, these examples live in Seifert-fibered manifolds, and have iterates that
are discretized Anosov flows. Using a similar idea (see section 6.2 of [BFFPD]), one
can build homeomorphisms that act as a double translation on any manifold which
admits an R-covered Anosov flow which is not a suspension, but our techniques
do show that they cannot be dynamically coherent partially hyperbolic (even in a
topological sense) when the ambient manifold is hyperbolic.

Eliminating double translations when M is a Seifert manifold relies on a trick:
Since there are many good lifts, we show in §7 that some good lifts (of a power of f)
must fix the leaf of at least one foliation. This completes the proof of Theorem A.

2.2.5. Double translation in hyperbolic manifolds. We are left to treat the case of
double translations in hyperbolic manifolds, which we do in §8 and §9.

In §8, we prove a result about R-covered foliations that is of general interest.
In a hyperbolic 3-manifold, an R-covered foliation admits a transverse regulat-
ing pseudo-Anosov flow (see Appendix D). We will use this flow to understand
the dynamics of any homeomorphism that acts as a translation on its leaf space
(Proposition 8.1):
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Let f: M — M be a homeomorphism on a closed hyperbolic 3-manifold
that is homotopic to the identity and preserves a taut, R-covered foli-
ation 7. Suppose that a good lift acts as a translation on T .

(x* %) Then for each periodic orbit v of the regulating pseudo-Anosov flow
®, there is a corresponding invariant “core” T, for f. Moreover, the
dynamics of f at T’ is coarsely identical to the dynamics of ® at ~ (in
the sense that they have the same Lefschetz index).

There is a little lie in this description, as the core T, is in fact in the cover

M / (v) and is invariant under the appropriate lift of f to that cover. Also, having

a hyperbolic manifold is not essential — we use similar techniques on Seifert-fibered
manifolds in [BFFP21].

The result (***) is the main ingredient in §9, where we show that double trans-
lations cannot occur in hyperbolic manifolds and complete the proof of Theorem
B. The rough idea is that (x x x) gives a circle invariant by (a lift of) f and with
at least one fixed point, but partial hyperbolicity implies that any fixed point must
be, say, repulsive. But the devil is in the details, and while one can make this
rough idea precise in the case of a foliation, it does not lead to a contradiction
for branching foliation. This is why Theorem B requires dynamical coherence. In
the non-dynamically coherent case, treated in [BFFPa], while we do not prove or
disprove its existence, we obtain a detailed description of the permitted structure
in the translation case that in particular produces some topological obstructions
for the existence of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds.

3. FOLIATIONS AND GOOD LIFTS

In this section we will study the way that a good lift fof a dynamically coherent
partially hyperbolic diffeomorphism f: M — M that is homotopic to the identity
permutes the leaves of the lifted center-stable and center-unstable foliations.

Most of the arguments in this section apply to any homeomorphism of a 3-
manifold that preserves an appropriate foliation and is homotopic to the identity,
so we will work for a while in this more general setting. At the end, we obtain the
following results for our setting.

Proposition 3.1. Let f: M — M be a dynamically coherent partially hyperbolic
diffeomorphism on a closed 3-manifold that is homotopic to the identity, and let f
be a good lift of f. If W is f-minimal, or M is hyperbolic or Seifert-fibered, then
either
(1) W is R-covered and uniform, and ]7 acts on the leaf space of the lifted
foliations as a translation, or
(2) fﬁxes each leaf of the lifted foliation.

The same holds for the center-unstable foliation YW.

3.1. General homeomorphisms. Let 7 be a taut foliation on a closed 3-manifold
M. Recall our standing assumption that M does not have virtually solvable funda-
mental group. This implies that the universal cover M is homeomorphic to R3, and
that each leaf of the lifted foliation 7T is a properly embedded plane (see Theorem
B.1

l*zlx a homeomorphism f M — M that preserves T and is homotopic to the
identity, and a good lift f M— M (Definition 2.3).

3.1.1. Complementary regions. Being a properly embedded plane, each leaf KeT
separates M into two open balls. We will call these two components of M \ K the
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complementary regions of K. The closure of such a complementary region U is
called a side of K and is simply U = U U K. .

If K,L e T are distinct leaves, then K U L separates M into three open com-
plementary regions, which can be built from the complementary regions of K and
L: Let U, U’ be the complementary regions of K, labeled so that L C U’, and let
W, W' be the complementary regions of L, labeled so that K C W’. Then the
complementary regions of KUL are U, V = U'NW’, and W. See Figure 2. We call
V the (open) region between K and L. Its closure, which is simply V = K UV UL,
is called the closed region between K and L.

FI1GURE 2. The region between two leaves

Since M is simply connected, the lifted foliation T is coorientable. A coorien-
tation determines a labeling of the complementary regions of each leaf L € T as
a positive complementary region denoted L® and a negative complementary re-
gion denoted L®. The corresponding positive and negative sides are denoted by
LtT=L%ULand L~ = L°UL.

Remark 3.2. We stress that a priori, some deck transformations or lifts of 7-
preserving homeomorphisms may exchange the coorientations of 7.

3.1.2. The big half-space lemma. The following lemmas will be used to understand
the way that f can act on the leaf space of T.

Lemma 3.3. For every leaf L € 7~', and every R > 0, there is a ball of radius R
contained in each of the complementary regions of L.

Proof. If necessary, we pass to a double cover of M for which 7 is coorientable,
and choose such a coorientation. Then every deck transformation preserves the
corresponding coorientation on 7" and orientation on the leaf space £ = Lz.

Fix a ball B C M of arbitrary radius, and a leaf L € 7. We will find a deck
transformation g that takes B into L®; a similar argument would find a deck
transformation that takes B into L®, completing the proof.

Since B is compact, we can find a leaf F' € M such that B C F ©. Indeed,
the quotient map v: M — L takes B to a compact subset v(B) of the leaf space,
which can be covered by a finite collection of open intervals Iy, Io,-- - , I,,. We may
assume that v(B) intersects every one of these intervals. Since the leaf space is
simply connected, we claim that at least one of these intervals has an initial point
(with respect to the orientation on £) that is not contained in any other interval.
To prove this we use induction. Start with any interval, denote it by I;, and let p;
be its initial point. If p; is not contained in the interior of any of the I/s then we
proved the property we want. Otherwise p; is contained in the interior of another
interval, which we denote by I;,. Let ps be the initial point of I;,. Then, since £ is
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simply connected, po is not in I;; (and, obviously, nor is it in I;,). Notice that I;,
is distinct from I;, as p; is in I;, but not in I;,. In this way, we inductively obtain
distinct intervals I;, with initial points p, of I;, not contained in Ui<;<,I;;. Since
the collection is finite the process terminates at some n, and we obtain I, so that
its initial point is not contained in the interior of any I;.

The lowest endpoint of I;  is therefore disjoint from v(B). Then B is contained
in the positive complementary region of the leaf F' corresponding to this initial
point.

Let us now find a deck transformation g that takes F®, and hence B C F9,
into L®. Since 7 is taut, we can find a positively oriented closed transversal
v:[0,1] — M, based at a point in 7 (F'), that passes through 7w(L). Let ¥ be a the
lift of v based at a point in F, which passes through some lift L' of 7(L). Then
we can take g = b’ o h, where h is the deck transformation that takes 7(0) to 7(1),
and ' takes L’ to L. The oriented transversal ¥ certifies that h(F®) C L'®, and
R (L'®) C L® because our deck transformations preserve coorientation. ]

It follows that f can never take a complementary region of a leaf off of itself:
This would mean that it takes an arbitrarily large ball off of itself, which contradicts
the fact that f moves points a uniformly bounded distance. This has important
consequences for the way that fbehaves with respect to each leaf.

In particular, if f~ fixes a leaf, then it cannot interchange its complementary
components, and we have:

Corollary 3.4. If L € T is fized by ]?, then fpreserves coorientations at L.

Lunnghunn Vv L mnnghnnn
U U’ w’ w

FIGURE 3. Translation-like behavior

3.1.3. Translated leaves. If fmoves some leaf, then it does so in a “translation-like”
manner as is illustrated in Figure 3. In fact, something a bit stronger is true:
Proposition 3.5. Let L € T bea leaf that is not fized by f, then

(1) the closed region between L and f(L) is foliated as a product, N

(2) f takes each coorientation at L to the corresponding coorientation at f(L),
and
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(8) the closed region between L and f(L) 1s contained in the closed 2 R-neighborhood
of L, where R = maxyeﬁd(y, f(y)-

Proof As in Figure 3, let U, U’ be the complementary components of L, labeled so
that f ( ) C U’, and let W, W’ be the complementary components of f ( ), labeled
so that L C W’. Then V = U’ N W’ is the open region between L and f(L).

Note that f must take U to either W or W’. But W is disjoint from U, so
we cannot have f(U) = W by Lemma 3.3. Thus f takes U to W', and U’ to W.
This is what is meant formally by the aforementioned “translation-like” behavior.
Denote K = f(L).

(1) Tt follows, in particular, that ftakes V off of itself and into W. To see
that V = K UV U L is foliated as a product, it suffices to show that every
leaf that lies in V separates K from L. Suppose that some leaf FF C V
does not separate K from L. Then K and L are contained in the same
complementary region of F', so the other complementary region is contained
entirely in the open region V between K and L. But this means that V
contains balls of arbitrary radius, which contradicts the fact that f takes
V off of itself. Thus every leaf that lies in V separates K from L, and V is
foliated as a product.

(2) Since V = KUV UL is foliated as a product, it follows that a coorientation
taking L® = U’ will take f(L)® = W. We have already seen that f(U’) =
W, so (2) follows.

(3) Suppose for a contradiction that there is a point p € V with d(p, L) = 2R+¢
for some & > 0. Then since d(L, f(L)) < R, it follows from the triangle
inequality that d(p, f(L)) > R+¢e. This means that the open ball Bg.(p)
at p of radius R + € is contained in V. But we have already seen that
f takes V off of itself, so this implies that d(p, f(p)) >R+e >R, a
contradiction. ]

It follows that if L € 7T is not fixed by f , then one can string together the
f translates of the closed region V between L and f ( ) to see that their union

UV UV UV U () U (V) U

is an open, product-foliated set that is preserved by f . This corresponds to an open
interval in the leaf space on which ]7 acts as a translation.

Let X C M be the union of all leaves of 7 that are fixed by f Then U is
contained in a connected component of M \ X. In fact, the following lemma says
that U is exactly a connected component of M \ X.

Lemma 3.6. Let L be a leaf of'T that is not fized by f, and let U = ;2 f1(V),
where V is the closed region between L and f(L). Then each leaf in dU = U\ U is
fixed by f.

Proof. The frontier OU can be broken into “forwards” and “backwards” frontiers
d,U = limsup f*(L) and 0,U = limsup f*(L),
1—> 00 1—>—00
each of which is preserved by f.

Let K be a leaf in 9,U, and suppose that f(K) # K. Then the closed region
between K and f(K ) would be product foliated, and it follows that either K sep-
arates U from f(K) or f(K) separates U from K. This contradicts the fact that
K, f(K ) C 9,U, so we must have f(K ) = K. A similar argument shows that every
leaf in 9, U is fixed by f. O
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3.1.4. The dichotomy. We summarize the preceding discussion in terms of the leaf
space:

Proposition 3.7. Let M be a closed 3-manifold, f: M — M a homeomorphism
homotopic to the identity that preserves a taut foliation T, and f a good lift.

The set A C Lz of leaves that are fived by f is closed and 71 (M)-invariant.
Moreover, each connected component I of E%\A is an open interval that fpreserves
and acts on as a translation, and every pair of leaves in I are a finite Hausdorff
distance apart.

Proof. The only detail that needs to be pointed out is that A is 7y (M )-invariant,
which follows from the fact that f commutes with every deck transformation. [

In particular, one may have A = {):

Corollary 3.8. Let M be a closed 3-manifold, f: M — M a_homeomorphism
homotopic to the identity that preserves a taut foliation T, and J_a good lift.

]ffﬁxes no leaf of T, then T is R-covered and uniform, and f acts on L7 ~R
as a translation.

This leads to a simple dichotomy when the foliation is f-minimal. Recall:

Definition 3.9. A foliation T that is preserved by a map f: M — M is said to
be f-minimal if the only closed sets that are both f-invariant and saturated are M
and 0.

Corollary 3.10. Let M be a closed 3-manifold, f: M — M a homeomorphism
homotopic to the identity that preserves a taut foliation T, and f a good lift.
If T is f-minimal, then either
(1) f fizes every leaf of T, or
(2) T is R-covered and uniform, and f acts as a translation on the leaf space

of T.

Proof. Since fcommutes with each deck transformation, each deck transformation
preserves the set A C L of fixed leaves. In particular, if I is a component of £\ A
and g € w1 (M) then one has either g(I) =1 or g(I) NI = 0. If A = () then we are
in case (2) by the preceding corollary.

Suppose instead that A # (. If A # L, then it corresponds to a closed, 7T-
saturated subset of M that is preserved by f. Furthermore, this subset is not all
of M since it cannot accumulate on a leaf lying in the interior of a complementary
interval to A. This contradicts f-minimality, so we have A = £ and are in case
(1). O
3.1.5. Bounded movement inside leaves. We end this section by showing that a

good liftAt/hat fixes every leaf will be within a bounded distance of the identity not
only in M but also in each leaf.

Lemma 3.11. Let M be a closed 3-manifold, f: M — M a homeomorphism ho-
motopic to the identity that preserves a taut foliation T, and f a good lift.

Iffﬁa:es every leaf of 7~', then there is a uniform bound K > 0 such that for any
leaf L € T one has N

dr(z, f(z)) < K for all x € L,
where dy, is the path metric on L.

Proof. Suppose for a contradiction that there is a sequence of points z; € M for
which dp,(z;, f(z;)) tends to infinity, where dr, is the path metric on the leaf
L; € T containing x;.
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Since M is compact, we can pass to a subsequence and find a sequence of deck
transformations ~y; such that v;(z;) converges to a point . Since f commutes
with 7;, we have that ~v;(f(2;)) = f(yi(z:)) converges to f(zoo).

Now, since dp,(vi(f(:)),vi(z:)) = du, (f( i),xi) goes to infinity, the points
f(#s0) and zoe must be in different leaves of 7. This contradicts the fact that f
fixes each leaf of 7. O

Remark 3.12. This lemma applies as well to a leaf of a closed sublamination of
T whose lift is leafwise fixed by f.

3.2. Consequences for partially hyperbolic systems. Let us now specialize,
and fix a closed 3-manifold M whose fundamental group is not virtually solvable,
a dynamically coherent partially hyperbolic gi\i/ffeonfl\(/)rphism f: M — M that is
homotopic to the identity, and a good lift f: M — M.

We denote by WS, W WS W' and W€ the center-stable, center-unstable,
stable, unstable, and center foliations.

3.2.1. Fized points and the topology of leaves.

Lemma 3.13. Let L € WS be a leaf that is fized by f If there is a sequence of
leaves L; € WS that are fized by f and accumulate on L, then there are no points
in L fized by non-trivial power of f

Proof. Suppose that f", n > 0, fixes some point = € L. Then it fixes the unstable
leaf VNV“(x) through that point. When 1 is sufficiently large, W“(:c) intersects L; at
a single point x;, which must therefore also be fixed by f" This contradicts the
fact that f" expands unstable leaves. U

Proposition 3.14. Let L € WS be q leaf that is fixed by f If fﬁxes no point in
L, then A = 7(L) has cyclic fundamental group (and is therefore a plane, cylinder,
or Mébius band).

Proof. Let L be the leaf space of the stable foliation within L. Since f fixes no
point in L, it cannot fix any stable leaf in L, since a stable leaf that is fixed by f
would contain a fixed point. In other words, f acts freely on £, and hence has an
axis Ay by Proposition E.2.

Consider two elements 1,72 € 7 (M) that fix L. Since the stable foliation can
have no circular leaves, neither of these elements may fix a stable leaf. Hence each
7; acts freely on £ with an axis A;.

As f commutes with both ~; and 7, it follows from Proposition E.2 that in
fact these axes are the same, i.e., 41 = Ay = Ay. Proposition E.2 further implies
that the subgroup generated by ~; and -5 is abelian. Since there are no compact
leaves in W it follows that this subgroup is cyclic, and hence 47 = 75" for some
n,m. O

3.2.2. Minimality in hyperbolic or Seifert manifolds. The following proposition im-
plies that the dichotomy in Corollary 3.10 holds, without the assumption of f-
minimality, when M is hyperbolic or Seifert-fibered.

Proposition 3.15. Let M be a closed 3-manifold that is hyperbolic or Seifert-
fibered, f: M — M a dynamically coherent partially hyperbolic diffeomorphism
that is homotopic to the identity, and f a good lift.

If ]?ﬁxes one leaf of WCS, then W is a minimal foliation, and fﬁxes every leaf
of WSS, The same statement holds for Wweu.,
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Proof. Without loss of generality, we may assume, by passing to a finite cover of
M and power of f, that W is orientable and coorientable, and f preserves all
orientations and coorientations, and in addition that M is orientable.

Let X € M be the union of all leaves of W< that are fixed by f This set
is non-empty by hypothesis, 71 (M)-invariant as f is a good lift and closed by
Proposition 3.7. It follows that 7(X) C M is compact and non-empty. By Zorn’s
lemma, we can find a minimal compact, non-empty, W<-saturated subset A C
m(X). We will show that A = M, which implies both that W is minimal and that
fﬁxes every leaf.

Note that A cannot contain any isolated leaves. Indeed, it cannot consist solely of
isolated leaves since then these leaves would be compact, and W has no compact
leaves. Deleting an isolated leaf from A still leaves a closed, saturated subset, so
the existence of an isolated leaf would contradict our minimality assumption.

Let A be the preimage of A in M. Since no leaf in A is isolated, every leaf in Ais
accumulated on by a sequence of leaves in A. Since these leaves are all fixed by f ,
Lemma 3.13 implies that f has no fixed points in A. Tt follows from Proposition 3.14
that each leaf of A is either a cylinder or a plane.

Assume for a contradiction that A # M, and hence A #+ M. Then we can choose
a non-trivial connected component V' of M \ A.

Claim 3.16. The projection w(OV') to M consists of finitely many leaves.

This is a standard fact in the theory of foliations [CC00, Lemma 5.2.5].

For each = € 9V, let u, be the maximal connected unstable segment that starts
at z and is contained in V, which is either a closed interval or a ray. That is, u,
is the component of W"(z) NV that contains z. Given r > 0, and a leaf L C 9V
define

={x e L|l(uy)>r}.

Claim 3.17. For any leaf L C OV, and any r > 0, the set w(A}) is compact as a
subset of w(L).

Proof. It is straightforward to see that (A7) is closed as a subset of w(L). If it is
not compact, then one can find sequence of points z; C w(A7}) that escapes every
compact subset of w(L). After taking a subsequence we can assume that the z;
converges in M to some point z. Take a chart around x of the form D? x (0,1)
where each D? x {y} is a plaque of W, and each {p} x (0,1) is an oriented
plaque of W*. Since the z; escape every compact subset of (L), we can pass to a
subsequence such that each z; is contained in a different plaque. Then it is easy to
see that the lengths of the unstable segments at z; that stay in 7(V) must go to 0,
a contradiction. O

Claim 3.18. Each leaf L C 9V corresponds to an annulus w(L) in M.

Proof. Fix a leaf L C 0V and an r > 0 for which A := A} is non-empty. As
m(L) is either a plane or an annulus, we assume for a contradiction that it is a
plane. Then the covering map 7 restricts to a homeomorphism on L, so the fact
that m(Ayr) is compact means that Ay, is compact. Let D be a disk in L containing
Ay in its interior. B B

Since the leaves of V' are fixed by f, and a positive iterate of f expands the
lengths of unstable arcs, we can find an n > 1 for which f*(D) Cc A, C D.
Then Brouwer’s fixed point theorem implies that f” has a fixed point in L, which
contradicts Lemma 3.13. So L must be an annulus. (]

Now we can complete the proof of Proposition 3.15. Let Lq,..., Li be a finite
collection of leaves in OV that cover m(9V'), and fix r > 0 such that each A; := Af s



16 T. BARTHELME, S.R. FENLEY, S. FRANKEL, AND R. POTRIE

non-empty. Choose a compact annulus C; in each 7(L;) that contains 7(A;). Since
f preserves orientations and coorientations, we can join each C; to an adjoining C;
with an annulus built out of unstable segments wu, for points x € 9C;. Iterating
this procedure, we obtain a torus 7' that consists of alternating annuli contained in
leaves of W and annuli transverse to W inside W = 7(V'). Notice that T is a
torus and not a Klein bottle, since T is two sided and M is orientable.

We will now (for the first time) use the assumption that M is hyperbolic or
Seifert-fibered to see that 7" bounds a solid torus. If M is hyperbolic, then T either
bounds a solid torus or is contained in a 3-ball (Lemma A.2). If T is contained in a
3-ball, then the annuli C; are contained in that ball, so the W< leaf containing C;
is compressible. This contradicts the fact that YW is a taut foliation (see Theorem
B.1), so T bounds a closed solid torus U. Notice that V' is not 71 (M) invariant, but
it is precisely invariant, that is, if v(V'),V intersect for v € m (M) then they are
equal. The set (V') is just the projection of V to M, and it is a complementary
region of A.

If M is Seifert-fibered, then W is a horizontal foliation. That is, one can
isotope W so that all leaves are transverse to the Seifert fibers of M (Theorem
F.3). It follows that the complementary regions of the lamination A are horizontal.
In particular, the region 7(V U dV) is a product, which means that the torus T is
made up of two horizontal C; and two transverse annuli, and hence bounds a closed
solid torus U.

We will now use a “volume vs. length” argument to get a contradiction. Roughly
the argument is that volume grows linearly with iteration, but unstable length grows
exponentially, leading to a contradiction. We refer to [HPS18, Proposition 5.2] for
a detailed proof and give only a sketch: Consider an unstable arc inside U from
a point in some 7(A;) to some C;. Fix some ¢ > 0, and call u the non-empty
part of that unstable segment that is at distance > € from both C; and C;. Up to
taking € > 0 smaller if necessary, we can then assume that u is at distance at least
e > 0 from T. Consider a lift @ C V of u, and note that for any positive n, f™(a)
stays a bounded distance ay > 0 away from the corresponding lift T of T. This is
the reason for taking u which is ¢ away from 7', the value of ¢ is not important.
Notice also that f(U/) € U. The length of f" () will grow exponentially in n, while
the volume of its maximal tubular neighborhood of size ag can only grow linearly,
as f is at bounded distance from the identity and the fundamental group of 7 is
Z. This means that for n arbitrarily big, f™(@) returns very near to itself in M,
contradicting the fact that it is transverse to We. Thus A = M as desired. U

Remark 3.19. We point out here that the hypothesis of M being hyperbolic or
Seifert-fibered is used in a single place, but it is crucial. To see this, it is enough
to consider the time-one map of Franks-Williams intransitive Anosov flow [FW80]
(or any other non-transitive Anosov flow), for which neither the center-stable nor
the center-unstable foliations are minimal.

3.3. Gromov-hyperbolicity of leaves. In this section we show that Candel’s
Theorem (Theorem C.1) applies under the assumptions that f is partially hyper-
bolic and that fﬁxes the leaves of the center-stable foliation. It is known that the
assumption for Candel’s Theorem is always satisfied for hyperbolic 3-manifolds (see
e.g., [Cal07]), as well as for horizontal foliations in Seifert-fibered manifolds with
exponential growth of fundamental group (which is automatic in our case thanks to
Theorem F.3). However, in order to deal with other 3-manifolds, we need a more
general version.

Lemma 3.20. Let M be a closed 3-manifold, f: M — M a dynamically coherent
partially hyperbolic diffeomorphism homotopic to the identity, and f a good lift.
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Suppose W has no compact leaves, and fﬁxes every leaf of WSS, Then every
leaf of W is Gromov-hyperbolic. Moreover, there is a metric on M which restricts
to a metric of constant negative curvature on each leaf of W*.

Proof. Thanks to Candel’s Theorem (Theorem C.1), all we have to show is that
W does not admit a holonomy invariant transverse measure. So we suppose that
there is an invariant transverse measure p to W. Let S be its support. First
notice that, as there are no compact leaves in W, i has no atoms, so there are no
isolated leaves in S. N N .

Let iz be the lift of p to M. The fact that f fixes every leaf of W implies that
the measure p is f-invariant. To see this, consider 7 a small transversal to W<,
and 7 its lift to M. Then, since f fixes every leaf of WCS the transversals 7 and
f(7) intersect the same set of leaves of W. Hence, 7 and f(7) have the same
p-measure (because p is an invariant transverse measure), thus u(7) = p(f(7)) as
desired.

Now let 7 be a closed segment on an unstable leaf and call x one of its endpoints.
Note that 7 is a transversal to W, and, up to taking a different unstable segment,
we assume that 7 is chosen so that u(7) > 0. We can also choose a sequence (n;) of
negative integers converging to —oo such that (f™i(x)) converges to some y € M.

Then, as the n; are negative integers, f™ contracts the unstable length, so the
sequence of segments (f™i(7)) also converges to y. Now, since p is f-invariant, it
implies that p (f™ (7)) = u(7) > 0, for all n,. By taking the limit, we get that the
W leaf containing y must be an atom of y, in contradiction with the fact recalled
earlier that 4 has no atoms. Thus W does not admit an invariant transverse
measure and Candel’s Theorem yields the conclusion of our lemma. O

We will use the metric given by this lemma on M in the specific situations where
a hyperbolic metric makes the proof less technical. But all such results only need
a Gromov-hyperbolic metric in the center-stable or center-unstable leaves.

3.4. Summary. For convenience, we summarize the results obtained in Section 3.

Corollary 3.21. Let f: M — M be a partially hyperbolic, dynamically coherent,
diffeomorphism of a 3-manifold M that is homotopic to the identity. Suppose that
W© s f-minimal, or that M is hyperbolic or Seifert-fibered. Let f: M — M be
any good lift of f.
Then, f has no fixed points and either
(1) the foliation W* is R-covered and uniform, and f acts as a translation on
the leaf space of WCS,' or.
(2) the map f leaves every leaf of Wwes fized and every leaf of W is a plane, an
annulus or a Mobius band. Moreover, there is a metric on M that restricted
to each leaf has constant negative curvature —1.

Proof. By Proposition 3.7, either the foliation W* is R-covered and uniform, and
f acts as a translation on the leaf space of W“, i.e. we are in case 1., or, if f does
not act as a translation, then it must fix at least one leaf.

Then, by assumption, or by Proposition 3.15 if M is hyperbolic or Seifert-fibered,
we have that W is f-minimal. Hence, if f does not act as a translation, then we
can apply Corollary 3.10 to get that f must fix every leaf of Wes.

Now, if no leaf of W“ is fixed by f then f cannot have fixed points. On the other
hand, if all leaves of WSS are fixed, then we can apply Lemma 3.13 to deduce that
f still does not fix points. Finally, Proposition 3.14 implies that when all leaves
of W are fixed then every leaf is a plane, an annulus, or a Mébius band. The
existence of the claimed metric follows from Lemma 3.20. U
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The same statement holds for the foliation W". Notice that, in principle, the
behavior of each foliation is independent. The goal of the next few sections is to
show that the behavior of one of the foliations forces the same behavior in the other
foliation.

4. CENTER DYNAMICS IN FIXED LEAVES

In this section we will study the dynamics within center-stable leaves. The main
result is Proposition 4.4, which will be used to understand the doubly invariant and
mixed cases (see §2.2.1).

4.1. Perfect fits. Much of this section will be concerned with transverse pairs
of foliations of a plane — in particular, the stable and center foliations within a
center-stable leaf. We begin by introducing some basic tools, in particular the idea
of “perfect fits” first used by Barbot and the second author [Fen94, Bar95].

Let L be a complete plane equipped with a transverse pair of one-dimensional
foliations S and C. We denote by £° := L/S§ and L¢ := L/C their respective
leaf spaces. These are simply-connected, separable 1-manifolds which may not be
Hausdorff (see e.g., [Bar98, Cal07]).

Definition 4.1. A leaf ¢ € C and leaf s € § are said to make a CS-perfect fit, if
they do not intersect, but there is a local transversal 7 to C through ¢, such that
every leaf ¢/ € C that intersects 7 on one side of ¢ must intersect s.

On the other hand, if there exists 7/ a local transversal to s € S, such that every
leaf s’ € S that intersect 7/ on one side of s has to intersect ¢, we will say that s
and ¢ make a SC-perfect fit.

If ¢ and s make both a CS-perfect fit and a SC-perfect fit, we say that they make
a perfect fit.

FIGURE 4. The leaves ¢ and s make a CS-perfect fit, but not a SC-
perfect fit. The leaves ¢ and s’ make a perfect fit.

Lemma 4.2. If two leaves ¢ € C and s € S make a CS-perfect fit, then there exists
s’ €8, possibly distinct from s such that c and s' make a perfect fit. The symmetric
statement holds for SC-perfect fits.

Proof. Fix a small transversal 7 to ¢. Let ¢’ near enough ¢ which also intersects s.
Let p=cd N7and g =¢ Ns. For any z in ¢ between p and g and near enough p,
the stable leaf of x intersects c. Let y in ¢’ between p and ¢ be the first point such
that the stable leaf of iy does not intersect c. Let s’ be this stable leaf. Then c, s’
form a perfect fit. O
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A straightforward argument shows the following — see, e.g., [Fen98, Claim in
Theorem 3.5]. Note that the argument in [Fen98] generally apply to any plane with
two transverse foliations by lines.

Lemma 4.3. If two leaves s,s' € S are non-separated in the leaf space L*, then
there is a unique leaf ¢ € C that separates s from s' and makes a perfect fit with s.

4.2. Finding fixed center leaves. The following proposition is the main result
of this section.

Proposition 4.4. Let f: M — M be a dynamically coherent partially hyperbolic
diffeomorphism homotopic to the identity, and f a good lift.

Suppose that fﬁxes every leaf of WS, Then any leaf of WS that is fized by a
non-trivial element of m (M) contains a center leaf that is fized by f

The proof of this will span the rest of this section. Let us fix M, f, and f as
above, along with a leaf L € W and a non-trivial element v € 71 (M) that fixes
L. Our goal is to find a center leaf ¢ C L that is fixed by f f

Let £° and L£¢ be the leaf spaces of the foliations WS and W¢ restricted to
L. These are simply connected, separable, 1-manifolds that may not be Hausdorff.
Since f fixes every center-stable leaf, Lemma 3.13 implies that f has no fixed points.
This means that f cannot fix any stable leaf, since such a leaf would be contracted
and hence contain a fixed point, so f acts freely on L*.

Since there are no circular stable leaves downstairs, v must also act freely on
L#. By Proposition 3.14, the stabilizer of L is cyclic, so we may take v to be a
generator. Finally, since f and v commute and act freely on £°, they preserve an
axis A® C L®, which is either a line or a Z-union of intervals (see Proposition E.2
and Remark E.3).

The following lemma completes the proof of Proposition 4.4 when A? is a line.
We remark here that a center leaf is an intersection of a center-stable and center-
unstable leaf; but there could be curves tangent to the center which are not made
this way if the center bundle is not uniquely integrable (which could be the case
even if f is dynamically coherent). We will call the latter curves ‘center curves’ to
distinguish them from ’center leaves’.

Lemma 4.5. If A* ~ R, then there exists a center leaf ¢ C L thal is fized by both
f and ~.

Proof. We will use the graph transform argument (Lemma H.1). Since A® is home-
omorphic to R, one can find a bi-infinite curve 7 in L that is transverse to the stable
foliation and invariant under ~. For instance, pick a point z in L and an arc a from
x to yx transverse to the stable foliation. Concatenating the positive and negative
iterates of a by 7 gives such a curve 1 (that can be smoothed if required).

In particular, 1 represents the axis A® of 7, in the sense that a stable leaf is in
A? if and only if it intersects 1. Since A® is also the axis for the action of f on L*,
every f iterate of n also represents A®. In particular, f ( ) and 7 intersect the exact
same set of stable leaves. So the curve 7 satisfies the two hypothesis of Lemma H.1,
and we obtain a curve 3 in L that is tangent to E° and invariant under both f and
~. In particular 8 is a center curve. It remains to show that f is in fact a center
leaf.

Choose a point x € 3, and let 3’ be the compact subsegment of 8 running from z
to yx. This is a fundamental domain for the action of v on 8. At each point y € 3,
one can find a compact center segment c, through y that intersects the same set of
stable leaves as some compact subsegment 3, of 3, where the interior of 8, contains
y. A center segment is a segment contained in a center leaf. By compactness of 3,
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one can find a finite collection ci,ca, - - , ¢ of these center segments such that the
corresponding subsegments of 3 covers /3.

Projecting to M, we have a finite union of center segments | J 7(¢;) that intersects
the same set of stable leaves as the closed curve 7(5). Since f contracts stable
segments, f™(|Jm(c;)) converges to m(5) as n — oo. Since a sequence of center
segments can only converge to a center segment, it follows that w(8) is a center
leaf, and so is 5. O

4.2.1. Gaps. To complete the proof of Proposition 4.4 we will show that A® is
indeed a line.
Suppose that A® is not a line. Then it is a Z-union of closed intervals

i€

We will call each of the pairs sj, $;,1 @ gap in this axis. The following lemma says

that some positive power of f fixes the image of each gap in M.
Lemma 4.6. There are m # 0 and n > 0 such that h =~ o f” fixes every sf

Proof. Since f and ~ act freely on A°, they act freely on the index set of the
collection of intervals, which is Z. It follows that some non-trivial element of the
group generated by f and v acts trivially on Z. This element is of the form h :=
~™ o f™. Since both v, and f act freely on A®, neither n nor m can be equal to
zero, and we can take n > 0. Since h fixes each interval, it fixes the endpoints of
each interval as desired. O

For the remainder of this section, we fix h as in this lemma, and look at a single
gap, setting st = s;L and s~ = s, for some fixed i.

We highlight some features of this gap — see Figure 5: First, Proposition E.2
says that s is non-separated from s~ in the leaf space £*, so Lemma 4.3 provides
a center leaf ¢ that makes a perfect fit with s* and separates s™ from s~. Since
there is a unique such leaf, it follows that h fixes c.

Note that h eventually contracts stable leaves; this is because v is an isometry,
feventually contracts stable leaves, and n > 0. Up to an iterate we can assume
that this contraction is immediate. It follows that h fixes a single point xz within
sT. Let ¢’ be the center ray that starts at = on the side of c.

We will show that h expands ¢’ in Lemma 4.7, and that it contracts ¢’ in Corol-
lary 4.13. This is contradictory, so there are no gaps in A®, i.e., it is a line, and the
proof of Proposition 4.4 is complete.

4.2.2. Perfect fits and expanded center rays. In the following lemma we find that
the topology of the stable and center foliations in L forces a stable ray in our gap
to expand.

Lemma 4.7. h acts as an expansion on ¢ with unique fized point x.

Proof. Note that the stable leaf s, = Wg(y) through any point y € ¢ that is
sufficiently close to = will intersect c. This is because s and ¢ make a perfect fit,
and ¢’ is a transversal to S on the side of ¢. Given such a point, let s; be the
compact segment of s, that runs from ¢’ to c¢. Since the lengths of h-iterates of this
segment go to zero, i.e., lim, o ¢(h"(s")) = 0, it follows that the h-iterates of y
eventually escape every compact set. Indeed, otherwise one would find that ¢ and
¢’ intersect at some accumulation point of h"(y). See Figure 5 (left).

The lemma follows since we can take y € ¢’ arbitrarily close to x. (]
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FIGURE 5. A perfect fit forces expansion on a center ray (left), while,
in the non-dynamically coherent case, ¢’ may land by merging with c
(right).

Remark 4.8. The proof of Lemma 4.7 uses the structure of the transverse pair of
foliations in an essential way. It does not hold when the center leaves are allowed
to merge — see Figure 5 (right). This is exactly the type of behavior that arises in
the examples of [RHRHU16].

4.2.3. Coarse contraction in stable gaps. In the following lemma we find that the
geometry of the gap forces it to contract laterally. This contradicts the expansion
found in Lemma 4.7 — see Corollary 4.13.

Lemma 4.9. There is a rectangle R bounded by segments of s™ and s~ that contain
the fized points, together with two arcs 11,72, such that h(R) is contained in the
interior of R. See Figure 6.

FIGURE 6. The domain R is mapped onto itself by h.

We will need two lemmas. The first is that the gap is “uniformly thin”:

Lemma 4.10. The leaves st and s~ are a bounded Hausdorff distance apart with
respect to the path metric on L.
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Proof. Since this gap is part of the axis A% = (J, s}, s], it follows that s~
separates s from either f(s™) or f=!(s*). Then Lemma 3.11 implies that the

Hausdorff distance between s* and fil(s"‘) is uniformly bounded above, and the
same holds for the Hausdorff distance between s* and s~ . (]

Recall that, since f fixes all leaves of )//\V/CS, Lemma 3.20 (thanks to Candel’s
Theorem) implies that there is a metric g on M such that W is leafwise hyperbolic.
Let d be the associated path metric on the leaf L. First, notice that since we are
using a metric in M provided by Candel’s Theorem C.1, it follows that the path
metric on leaves of W is hyperbolic, hence L is isometric to the hyperbolic plane
with this path metric. In addition if v is a deck transformation leaving L invariant,
then ~ is an isometry of this path metric. This isometry has to be hyperbolic, as
M is a closed manifold: There cannot be fixed points of 7 in L, and the translation
distance is strictly positive, because M is closed and there is a positive lower bound
to the injectivity radius, once a metric is fixed. So v cannot be parabolic either.

Lemma 4.11. For any Ko > 0, and any ray r C s*, there exists y € r such that
d(y, h(y)) > Ko.

Proof. Let 7 be a ray of sT. Suppose for a contradiction that there exists Ky such
that for all y in r one has d(y, h(y)) < Kp.

Recall that h = ’ymf", where m and n are fixed. By Lemma 3.11, there exists a
constant K such that, for any z in L, d(z, f”(z)) < K. Thus, by assumption, for
any y € r,

d(y,v™y) < d(y, " (y"y)) + d(y™y, [ (™)) < Ko + K.

Now, as explained above, v is an hyperbolic isometry for d. Hence, since
d(y,v™y) stays bounded for all y in r, it implies that r has to stay a bounded
distance from the geodesic in L that is the axis for the action of v on L.

So 7(r) stays a bounded distance away from the geodesic in A = w(L) that
lifts to the axis of 4. Thus, Poincaré—Bendixson Theorem implies that () must
accumulate onto a closed stable leaf in M, which is impossible (see Figure 7). O

Remark 4.12. Notice that this is the only place in the proof of Proposition 4.4
that Candel’s Theorem C.1 is used.

In fact, the proof does not actually need d to come from a Riemannian hyperbolic
metric — only that it is Gromov-hyperbolic: The only change one has to do in the
proof is replace “the” geodesic realizing the axis of v by “any” geodesic. So Lemma
4.11 will hold as long as we know Gromov-hyperbolicity of the leafwise metric. We
will need this in [BFFPa].

Proof of Lemma 4.9. Let y; and 3 be points in s that lie on either side of, and
far away from, the fixed point 2 ¥, and let 7, and 75 be geodesic arcs from y; and s
to s7. See Figure 6. Note that the lengths of 7;, ¢ = 1, 2, are uniformly bounded by
Lemma 4.10, and since f has bounded derivatives, the length of h(7;) is bounded
as well. By Lemma 4.11, we can ensure that A moves y; far enough to ensure that
h(t;) is disjoint from 7;, and the lemma follows. d

Corollary 4.13. Some subsegment of ¢’ is contracted by h.

Proof. This follows from Lemma 4.9, noting that ¢’ must intersect either 71 or
T2. O

This completes the proof of Proposition 4.4.
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L

FI1GURE 7. If a stable ray in L stays close to the axis of the deck
transformation v which is a hyperbolic isometry, then its projection
in M has to accumulate on a circle stable leaf.

Remark 4.14. Note that Lemma 4.9 also implies that the center leaf ¢ that sepa-
rates s from s~ is “coarsely contracted” by h, in the sense that certain sufficiently
large subsegments of ¢ are taken properly into themselves. To show this one needs
to note that the set of fixed points of h in ¢ is compact and this follows from the
same argument as in Lemma 4.11.

This then generalizes as follows:

Lemma 4.15. Let ¢ be a center leaf in a center-stable leaf L C M. Suppose that L
is Gromov-hyperbolic, and fized by f and some non-trivial v € m (M). Moreover,
assume that there exist two stable leaves s1,s2 on L such that:

(1) The center leaf c is in the region between s; and so;

(2) The leaves s and sg are a bounded Hausdorff distance apart;

(8) The leaves ¢, s1 and so are all fized by h =™ o ™, m #£0.
Then, there erists a compact segment I C c, such that h (if m > 0) or h=1 (if
m < 0) acts as a contraction on ¢\ I.

This remains true without assuming dynamical coherence — we will use it in
[BFFPa]. The proof of this lemma is very similar to that of Lemma 4.9. Note
that we do not need ¢ to make a perfect fit with s; or ss, nor do we need that ¢
necessarily goes to both ends of the band determined by s; and ss as in Figure 6.
All we need is that ¢ is between s; and s, and that both rays of ¢ escape every
compact set in L. That last fact is true of any center leaf in M.

5. MIXED BEHAVIOR
We can now eliminate mixed behavior in our cases of interest.

Theorem 5.1. Let f: M — M be a dynamically coherent partially hyperbolic

diffeomorphism homotopic to the identity. Assume that W is f-minimal or that

M is hyperbolic or Seifert. . .
If a good lift f fixes all the leaves of W, then it also fizes all the leaves of YWU.

Proof. Since M is not T? (recall that 7 (M) is not virtually solvable), Proposition
B.2 says that we can find a leaf in W with non-trivial fundamental group. Let
L € W be a lift of such a leaf, which is invariant by some non-trivial v € 1 (M).
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By Proposition 4.4, fﬁxes some center leaf ¢ in L, so it must fix the center-unstable
leaf K € W that contains L. From the dichotomy in Corollary 3.21, it follows
that f fixes every leaf of W as desired. O

In particular, under the assumptions of this theorem, one rules out the mixed
case (see item (2) of section 2.2.1).

6. DOUBLE INVARIANCE

In this section we show that, under the appropriate conditions, the doubly in-
variant case (see item (1) of section 2.2.1) leads to a discretized Anosov flow.

Theorem 6.1. Let f be a dynamically coherent partially hyperbolic diffeomorphism.
Assume that M s hyperbolic or Seifert or that W and W are f-minimal. If
there exists a good lift f which fizes a leaf of WCS then f is a discretized Anosov

flow.

Thanks to Proposition 3.15, under any of the hypothesis of the Theorem, both
We and We" are f-minimal. Moreover, Theorem 5.1 implies that fmust fix every
leaf of both W and Weu.

Notice that Theorem 6.1 together with the dichotomy of Corollary 3.10 proves
Theorem C from the introduction.

We will first show that connected components of the intersections of center-
stable and center-unstable leaves are fixed by f (i.e., that f fixes leaves of the
center foliation). To do that, we will prove that the set of connected components
of intersections fixed by fis both open and closed and then that it is non-empty.
Proving that f is a discretized Anosov flow will then follow rather easily.

6.1. Fixing center leaves. The main step in the proof of Theorem 6.1 is the
following proposition. Recall that the lift We of the center foliation W¢ consists of
the connected components of the intersections between leaves of Wes and Weu,

Proposition 6.2. Let f be a dynamically coherent partially hyperbolic diffeomor-
phism homotopic to the identity. Let f be a good lift of f which fizes every leaf
of W and Wcu Suppose that W and W are f-minimal in M. Then f fizes
every leaf of we.

The key point in the proof of this proposition is to show that either all leaves
of We are fixed by f , or no leaf of We is fixed by f In the latter case we will use
an argument similar to that of the analysis of the mixed behavior case, reaching a
contradiction from the results of section 4.

Lemma 6.3. The set
Fixf; = {a: € ]Téﬂ the center leaf through x is fized by f}

is open in M. In addition Fix;~ 1s invariant under deck transformations.

Proof. Let ¢ € W€ be such that f(c) = c. Let L = W(c) be the center-stable leaf
containing c¢. Let € > 0 be small enough so that the center and stable foliations
restricted to any ball of radius ¢ in L is product (i.e., every stable and central leaf
in the ball intersect each other).

Let x € ¢. By continuity of f, pick § > 0 such that if d(z,y) < J then
d(f(z), f(y)) < e. Up to taking & smaller, and since f(z) € ¢, we can assume
that for any y € L such that d(x,y) < J, we have that ¢(y), the central leaf through
y, intersects s(f(x)), the stable leaf through f(z). This § a priori depends on z.
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Let y € L such that d(z,y) < 4, then c(y) N s(f(z)) # 0. Moreover, since
d(f(z), f(y)) < e, we have that ¢(f(y)) N s(f(z)) # 0. So the stable leaf s(f(z))
intersects both ¢(y) and c(f(y)).

Now, as f fixes the leaves of the central unstable foliations, we have that WC“( (y) =

Weu (c(f(y))) But s(f(z)) is transverse to WU so it cannot intersect the same

leaf of W< more than once (see Theorem B.1). Hence ¢(f(y)) = c(y).

Thus, the set of center leaves fixed by fin a center-stable leaf is open in that
center-stable leaf. As the same argument applies to the center-unstable leaves and
it is uniform, we obtain that the union of points in center leaves in Fix% is open

in M. Finally, since f commutes with every deck transformation, Fix;~ is 71 (M)-
invariant. U

We will think of Fix‘;;« as both a subset of M and a collection of center leaves in

We. Let D == W(Fix%). By Lemma 6.3, D is open in M, and, obviously, f-invariant.

Lemma 6.4. Either Fix‘}~ =M or FiX;~ ={.
Proof. Assume that Fix% # (), and thus, D # (.

We start by showing that every leaf of WS has at least some fixed center leaves:
Let E be the W<-saturation of Fix¢ P and suppose for a contradiction that there
exists L a leaf of W such that LN E = (). Since FiX% is w1 (M)-invariant, so is E.
Hence, for any v € m (M), we have yL N Fix‘}~ = (). Therefore, in M, we have

m(L)yNnw(E)=0.

So w(L) is contained in the set M ~\ w(E), which is thus non-empty. But 7(F)
is the W*-saturation of D, hence open since D is open. The set 7(E) is also f-
invariant since D is. Therefore, M ~ 7 (E) is a non-empty, closed, f-invariant subset
of M saturated by W. The f-minimality of W implies that M \ 7n(E) = M,
which is in contradiction with the fact that 7(F) is non-empty. It follows that, for
any center-stable leaf L, we have L N FiX‘J}. # (.

Our next step is to prove that any center-stable leaf that has a non-trivial stabi-
lizer in 71 (M) is contained in Fixj?. Let L be a leaf of W such that its projection
A = w(L) is not simply connected (in which case it must be an annulus or a Mobius
band according to Corollary 3.21). As we proved above, we know that LﬂFix;‘; # ().
We now want to show that L C Fix‘;;. Let us assume for a contradiction that
Fixj; NL#L.

Recall that Fixj; is open (by Lemma 6.3), thus so is B = Fix‘}%ﬂL (for the relative

topology on L). Notice that, since both Fix% and L are invariant by f, so is B, and

in turn, so is its boundary 0B. !

Let ¢1 be a center leaf in 0B. Then f(cl) = ¢1, but arbitrarily near ¢; there are
some fixed center leaves. Since ¢; and f(cl) are both in 0B, they are non-separated
from each other in the leaf space of the center foliation in L. Indeed, if one takes a
sequence (c,,) of central leaves in B that accumulates on ¢, then, since f(cn) = cp,
the sequence also accumulates on f(cy).

As ¢; and f(cl) are not separated in the center leaf space of L, it follows that
there exists a stable leaf s; making a perfect fit with c1, such that s; separates ¢
from f(cl) If some power of f fixes 51, then that power of f has a fixed point in

s1, contradicting Lemma 3.13 (since f fixes every leaves of WCS).
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It follows that the sequence (ﬁ(sl)) is infinite. Moreover, there exists ¢ € Fix‘}~

that intersects all the leaves (]71(51)) Indeed, taking c € Fixc~ to be a central

leaf close enough to c¢; so that ¢ N sy # (), then ¢ intersects every fl(sl) because
f(c) = ¢. Furthermore, for all i, fl(sl) separates f'~1(sy) from fi*!(s;), because
f acts as a translation on ¢ (because f cannot have a fixed point in L by Lemma
3.13).

As facts freely on the stable leaf space in L (again thanks to Lemma 3.13), then
f has an axis A*(f) for this action. By definition, all the leaves fi(s1) are in this
axis. Since all the leaves fi(sl) also intersect a common transversal ¢, we deduce
that A°(f) is a line (see Figure 8).

Now recall that C' = (L) is an annulus or a Mobius band (thanks to Corollary
3.21). Let v be the deck transformation associated with the generator of 71 (C'), so
that ~ fixes L.

FIGURE 8. The combination of fixed and non-fixed center leaves allows
to construct a center leaf intersecting s1 and f(s1) in the axis A°(f) =

A (7).

Recall also that, since there does not exist closed stable leaves in M, v must act
freely on the stable leaf space in L. Thus v admits an axis A%(v). Since f and ~
commute, then A*(f) = A*(y) (see Proposition E.2). In particular, A*(y) is a line.

Therefore there exists a ~y-invariant curve in L , that we call «, such that « is
transverse to the stable foliation, and intersects each stable leaf in A%(y) = A%(f)
exactly once. It follows that fN’(a) and « intersect exactly the same set of stable
leaves in L. So we can use the Graph Transform argument (Lemma H.1) on « and
obtain that there exists a curve ¢y in L, tangent to the central direction* E°, and
invariant by both fand 5.

Since ¢ intersects s1, and the leaves s; and ¢; make a perfect fit, we deduce that
there exists s, close to s1, that intersects both ¢y and ¢1. Let z =cpNs, y =c1Ns
and z = ¢y Ns;. Up to choosing s closer to s1, we may assume that the distance
between x and z is less than some fixed K > 0, the length of the closed curve 7(cp).
Now, since ¢ is invariant by ~, we have that, for all n,

d(f*(x), [*(2)) < K

4n fact, since there exists a central leaf that is transverse to the axis, an argument used in
the proof of Lemma 4.5 shows that cg is not just tangent to the central direction, but an actual
central leaf. However, just having tangency to the central direction is enough to finish the proof.
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Moreover, since f contracts stable length, we have that d(f™ (), f™(y)) converges
to 0 as m goes to 4o0.

Using the above, together with the invariance of c¢g by J’Tand the fact that cq is
tangent to the central direction, we deduce that for some large enough n, the leaf
f”(cl) intersects f”(sl), contradicting the fact that s; and c¢; do not intersect.

FIGURE 9. The fixed center circle and the circles in the boundary of
w(B) are joined by a stable leaf.

Hence, we proved thus far that for any L a center-stable leaf with non-trivial

stabilizer, we have L C Fix% We can now finish the proof of Lemma 6.4.

Let ¢ be any center leaf in M. Let z be a point in ¢, let U be the center-unstable
leaf containing ¢, and let 7 be a small unstable segment in VNVu(x) that contains x in
its interior. Recall (see Proposition B.2) that there exists leaves in WS with non-
trivial stabilizer. Then f-minimality implies that such leaves are dense. Thus, we
may assume that both endpoints of 7 are on center-stable leaves with non-trivial
stabilizer. Call ¢; and ¢y the center leaves through the two endpoints of 7. We
proved above that both ¢; and ¢y are fixed by f (since they are on center-stable
leaves with non-trivial stabilizer).

Since ¢ intersects 7, an unstable segment from ¢; to cg, it follows that ¢ separates
c1 from ¢y in U. As fﬁxes both ¢; and ¢y then f(c) also separates c¢; from co in
U. This implies that f(c) also intersects 7. As argued before, since fﬁxes every
center-stable leaves, ¢ and f(c) must be in the same center-stable leaf, and, since
they both intersect 7, which is a transversal to the center-stable foliation, we deduce
that ¢ = f(c) Therefore, we proved that fﬁxes every center leaf, i.e., Fix% = M ,

f
as desired. O

We can now prove Proposition 6.2.

Proof of Proposition 6.2. By assumption, fﬁxes every leaf of WCS, and, by Propo-
sition B.2, there exists some center-stable leaf with non-trivial stabilizer. Thus,
Proposition 4.4 implies that there exists at least one fixed center leaf, i.e., Fix‘}~ # .

Lemma 6.4, then yields that Fixcf =M , which is what we wanted to prove. (I

6.2. Showing that the map is a discretized Anosov flow.

Proposition 6.5 (Leaf conjugacy to a topological Anosov flow). Let f be a partially
hyperbolic diffeomorphism on a 3-manifold M. Suppose that there exists a lift f to
the universal cover M such that f moves points a bounded distance and f fixes
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every center leaf. Then the center foliation is the orbit foliation of a topological
Anosov flow.

The proof is very similar to that given in [BWO05, Section 3.5]. We sketch the
main points of the proof. We also refer to Appendix G for the precise definition of
a topological Anosov flow, and more discussion about discretized Anosov flows.

Proof. Fix a metric on M and consider X¢ a unit vector field in E°¢ which we first
assume orientable. In the universal cover, using that fﬁxes every center leaf, one
can show that fdoes not fix any point in M , that there is a uniform estimate for
do(z, f(x)), and it is indeed continuous (see [BWO05, Lemma 3.4] for a proof with
less hypothesis). In particular, we can assume that [z, f(a:)]c is positively oriented
with respect to X°.

Now, let c1,co be two center leaves in the same center-stable leaf such that
for some x € ¢; one has that )/NVS(x) N ey # (. Then, letting y be the point of
intersection, we have that d(f™(z), f*(y)) — 0 as n — oco. As the points are
moving forward by falong the orbits of X¢ at bounded speed, this shows that the
flow is locally contracted on center-stable manifolds. The symmetric arguments
gives local contraction for the past in center-unstable manifolds. Notice that the
fact that facts as a translation in all center leaves and that center leaves are fixed
by fimplies that no deck transformation can reverse orientation of the center, this
implies that our initial assumption is verified.

This shows that the flow generated by X°¢ is expansive. Moreover, it preserves
the transverse foliations W and W¢", which do not have singularities. Thus, the
work of Paternain [Pat93] implies that the flow generated by X¢ is a topological
Anosov flow (see also Appendix G). O

Putting together Theorem 5.1, Proposition 6.2, Proposition 6.5 and Proposition
G.2 one finishes the proof of Theorem 6.1 and of Theorem C.

7. PROOF OF THEOREM A

We are now ready to finish the proof of Theorem A.
We start by proving that, in a Seifert manifold, one can always choose a good
lift in such a way that it fixes one center-stable leaf.

Proposition 7.1. Let f: M — M be a dynamically coherent partially hyperbolic
diffeomorphism on a Seifert manifold. Suppose that f is homotopic to the identity
and that the Seifert fibration in M is orientable. Then there exists a good lift of an
iterate of f which fizes a leaf (and therefore every leaf) of W*.

Proof. To prove the result, we will need partial hyperbolicity for two things: To
get that M has non-zero Euler class ([HPS18, Theorem B]), and that the foliation
is horizontal ([HPS18, Theorem 3.1]).

First up to taking a finite lift we assume that M is an orientable circle bundle
over a higher genus (orientable) surface X.

Consider the leaf space £ of the center-stable foliation and let § be the deck
transformation associated with the center of M. As the foliation is horizontal (see
Theorem F.3), it follows that the leaf space £ is homeomorphic to the real line.
In addition, £/ is a circle that we will call Sj.

Consider a good lift fof f. The map finduces a homeomorphism f : Sy — Sh

Moreover, f commutes with the image of the homeomorphisms p(vy): S} — S}
which are defined for all v € m(M). Note that p(6v) = p(7), so p naturally
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induces a quotient representation p: m1(X) — Homeoy (S}) when using the iden-
tification my(M)/ 5y = m1(3). The Euler class of M coincides with the one of the
representation p (see [CC03, Chapter 4]).

We first show that f has rational rotation number. We proceed by contradiction:
Assume that f has irrational rotation number.

Suppose first that f is minimal. It directly implies that f is conjugate to an
irrational rotation by a homeomorphism h: S; — S}. Conjugating the homeomor-
phisms p(v) (that is, h=p(y)h), since they commute with an irrational rotation
they must commute with every rotation. Therefore the homeomorphisms p(v) are
all conjugate by h to rigid rotations. This implies that p: 7 (X) — Homeo (S?) is
conjugate to a representation into SO(2,R). This allows to construct a path to the
trivial representation, because one can move freely along SO(2, R) until one gets to
the identity without altering the relations. Therefore the representation has zero
Euler class, see [Manl18, Sections 5.2 and 5.3|, a contradiction.

If f is not minimal, it is a Denjoy counterexample, one can see that the rep-
resentation of 71(X) into Homeo(S!) is semi-conjugate to a representation which
commutes with a minimal homeomorphism, and so it also has to have zero-Euler
class (see [Manl8, Section 5.2]). This is a contradiction and proves that f has
rational rotation number.

Now we go back to the original manifold. Since in the finite cover, the corre-
sponding map f had rational rotation number, the same is true for f associated
with the original manifold. In particular, f has a periodic point, which means that
for some i # 0, 5”fi has a fixed point. So 5”]7i is the sought good lift (note that it
is a good lift because the Seifert fibration is orientable, and thus ¢ is in the center
of m1(M)) This finishes the proof. O

Notice that the symmetric statement holds for W but a priori not for both
simultaneously.

Remark 7.2. In this proof, we did not really use dynamical coherence (see [BFFPa]).
One could give a slightly simpler proof that uses dynamical coherence. However,
since we will need this result in the non-dynamically coherent case in [BFFPa, it
is more efficient to give the general proof.

So we can now prove Theorem A.

Proof of Theorem A. If the result holds in a finite cover of M, then, by projection,
it also holds in M. So, by lifting to a double cover, we may assume that M
has orientable Seifert fibration. Let f be a good lift of some power f* given by
Proposition 7.1. Then f does not act as a translation on both center-stable and
center-unstable leaf spaces, so is not in case (ii) of Theorem C. Thus it is in case
(i) of Theorem C, i.e., f* is a discretized Anosov flow. O

Remark 7.3. Note that, in Theorem A, we need to take a power of f to get a dis-
cretized Anosov flow, whereas Theorem C holds for the original f. This condition
is necessary, i.e., there are some dynamically coherent partially hyperbolic diffeo-
morphisms homotopic to the identity on a Seifert manifold that are not discretized
Anosov but such that a (non-trivial) iterate is. We will give such an example below
and also classify all such examples.

Consider ¥ a hyperbolic surface (or orbifold) and g’ the geodesic flow on T'X.
Let M be a k-fold cover of T*3 obtained by unwrapping the fiber and gt,: M — M
be a lift of g to M. Call s: M — M the map obtained by lifting the “rotation
by 277 along the fiber in 7'3. Then for any ¢ = 1,...,k — 1, the diffeomorphism
fri = gl o s" is a partially hyperbolic diffeomorphism, dynamically coherent,
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homotopic to the identity, and it is not a dicretized Anosov flow (but f,fl is a
discretized Anosov). Notice that the action of any good lift of fi; on the center-
stable and center-unstable leaf spaces is by translations.

Now, suppose that M is a Seifert manifold and f is a dynamically coherent par-
tially hyperbolic diffeomorphisms homotopic to the identity. Then, by Theorem A,
there exists k such that f* is a discretized Anosov flow. Thus, by the classification
of Anosov flows on Seifert manifolds (see [Ghy84, Bar96]), M is a finite lift of the
unit tangent bundle of an orbifold ¥ and f* is leaf-conjugate to the time-one map
of the lift of the geodesic flow. Then the action of (a good lift of) f on both the
central stable and central unstable leaf spaces is conjugated to the action of (a good
lift of) a diffeomorphism fj; as above. So f and fj,; are leaf-conjugate.

8. COARSE DYNAMICS OF TRANSLATIONS

In this section, we consider a homeomorphism f: M — M of a hyperbolic 3-
manifold that preserves a uniform, R-covered foliation F and acts as a translation
on its leaf space. We show that the dynamics of f is comparable to the dynamics of
the pseudo-Anosov flow @ (given by Theorem D.3) that regulates F. More precisely,
for every periodic orbit of ®, we show that there exists a compact core (in a lift of
M) invariant by f that plays the role of the periodic orbit of ®.

So in particular, the result of this section does not require f to be partially
hyperbolic and is of independent interest. The description of the dynamics of f in
periodic leaves of F (if any) can be compared to the global shadowing for pseudo-
Anosov homeomorphisms done in [Han85]. We will use the results obtained here
to complete the proof of Theorem B in the next section.

To make this comparison precise we will introduce some more objects. Let
f: M — M be a homeomorphism of a hyperbolic 3-manifold. We assume that f
is homotopic to the identity, and preserves a foliation F. Furthermore, we suppose
that F is R-covered and uniform and such that a good lift fOf f acts as a translation
on the leaf space of F.

Since fcommutes with any deck transformation and acts as a translation on the
leaf space of F , it implies that the foliation F is actually transversely orientable.
Hence Theorem D.3 applies and we call ® a transverse regulating pseudo-Anosov
flow. We denote by ® its lift to the universal cover M. We note that all periodic
orbits of a pseudo-Anosov flow are homotopically non-trivial (in the case at hand
this is even easier as the flow is transverse to a Reebless foliation).

Let v € (M) be an element associated with a periodic orbit of & (i.e., such
that there is a flow line of ® invariant under 7). Let M, := M/<w> be the cover of
M associated with that deck transformation. The foliation F, lifted from F to M,
is a foliation by planes. Indeed, since ® is regulating, each orbit of ® can represent
the leaf space Lz of F. Thus 7, and all of its powers, act as a translation on Lz,
so no leaf of F can be fixed by a power of . Therefore, ]:"7 is a foliation by planes
(see, e.g., [Fen02] for more details). Since fis a good lift of f it induces a lift fy of
fin M,.

For a periodic orbit a of ®, we call a (stable) half-leaf of a any connected
component of the complement of « in its stable leaf (so that a regular orbit has two
half-leaves for each foliations, and a p-prong orbit has p half-leaves). We can now
state precisely the main result of this section.

Proposition 8.1. Let M, f: M — M, F and ® be as above.
Then, for every v € m (M) associated with a periodic orbit of ®, there is a
compact f-invariant set T, in M. which intersects every leaf of F.
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Moreover, if an iterate fff ofﬁY fixes a leaf L of]:'w and ~y fizes all the half -leaves

of the periodic orbit associated with v, then the fized set of fff in L is contained in
T, N L and has negative Lefschetz index.

Remark 8.2. In fact, the proof will show that the total Lefschetz index I ~r (ﬂ“ )
equals —1 if the periodic orbit of ® is a regular periodic orbit, and equals 1 — p if
the periodic orbit is a p-prong, p > 3, assuming that ~y fixes the half-leaves of the
orbit.

We also remark that, by construction, the set T is essential in the sense that
any neighborhood of it contains a curve homotopic to (a power of) ~.

To prove this proposition, we first need to explore some properties of the pseudo-
Anosov flow ® and its interaction with the foliation F.

Let Ay and A, be the weak stable and weak unstable (singular) foliations of
the pseudo-Anosov flow ®. We denote by INXS and 1~\u their lift to the universal
cover. For any leaf L of F , we denote by G; and G} the one-dimensional (singular)
foliations obtained by intersecting the foliations /N\s and 7\“ with L.

Fact 8.3. The length along foliations G and G} is uniformly efficient up to a

multiplicative distortion at measuring distances in the leaves of F. That is, the
rays of G and G} are uniform quasi-geodesics for the path metric on L.

Proof. This fact is a consequence of the construction of the foliations KS and /~\u
They are obtained by blowing down certain laminations that intersect the leaves
of F along geodesics (with respect to the uniformization metric obtained via Can-
del’s Theorem C.1). We refer to [Fen02] or [Cal07] for the construction of these
laminations. _

In particular, there exists a uniform Kj; > 1 such that for every L € F and
y € Gi () one has

([, y)9%) < Krdy(2,y) + K

where £([x,y]9L) denotes the length of the arc in G joining = and y. And similarly
for G} (). d

The flow @ does not preserve the foliation F , but since it is transverse and
regulating to the foliation, it makes sense to consider, given Ly, Ly € F two leaves,
the map 715: Ly — Lo consisting in flowing along ® from one leaf to the other. By
construction, the map 72 is a homeomorphism. Notice that since F is R-covered
and uniform, the Hausdorff distance between L; and Lo is bounded multiplicatively
with the flow distance between the leaves — at least for leaves which are sufficiently
apart from each other.

By convention, we will always assume that Lo is taken to be above Li, in the
sense that one has to follow the orbits of ® in the positive direction to go from L;
to Lo. Notice that invariance of A, and A, by ® imply that the homeomorphism
712 maps the foliations G and Gf into the the foliations G}, and G, respectively.

When the leaves L, Ly are understood, we will omit them from the notation.
It is a standard fact from the dynamics of pseudo-Anosov flows and the bounded
comparison between flow distance and leaves® that the following holds:

Fact 8.4. For any leaves Ly and Lo sufficiently far apart, the map T2 erpands
lengths (and, equivalently distances) of G} exponentially in terms of the Hausdorff

5Tt is worth noting that the pseudo-Anosov property is invariant under reparametrizations of
the flows.
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distance between L1 and Lo. That is, there exists a A > 0, independent of L1, Lo,
such that, for any x € Ly and y € G} (x), we have

sz (7_12(1')7 T12 (y)) > 6)\dHMS(Ll’LQ)dlq ($, y)a

as long as dyaus(L1, Lo) is sufficiently big. Similarly, 7'1_21 expands the lengths in
G*® exponentially in terms of the Hausdorff distance between Ly and Lo.

The following simple result will be extremely useful for us. The leaf space is
endowed with an orientation. If a deck transformation /S acts freely on the leaf
space, we say that 8 acts decreasingly if 8z < z with respect to the orientation for
some (and hence all) z in the leaf space.

Lemma 8.5. Suppose that 5 is a deck transformation that acts freely and decreas-
ingly on the leaf space of F. Let Ly be a leaf of F. Let 112 be the flow along map
from Ly to Ly := 37Y(L1). Define gs.1,, == Bomi2: L1 — Li. Fiz a point z1 in
Ly. Then, for every K > 0, there exists R > 0 such that for any x in Ly satisfying
dr,(z,z1) > R, then dr, (z, 95,1, () > K.

Remark 8.6. Notice that in this Lemma, we do not ask for 8 to be associated
with a periodic orbit of the pseudo-Anosov regulating flow.

Proof. Suppose for a contradiction that there exists K > 0 and a sequence ¥,
escaping to infinity in Ly and such that dr, (yn, 98,0, (yn)) < K for all n. Then, up
to taking a subsequence, there exists v, € m (M) such that v, (y,) converges to yo
in M. o . _

We define a map 73: M — M as follows: given z in M, it is in L a leaf of F, then
we let 75(z) be the intersection of the flow line of ® through z with 5~1(L). Notice
that if x € Ly, then 75(x) = m2(x). In particular, for every n, 75(yn) = T12(Yn)-

Since v, (yn) converges to yo, and 73 consists of flowing along P a uniformly
bounded amount, for n big enough, we have that d(m12(ys), 75(7;, ' (y0)) is as small
as we want. Hence, for n big enough, we have

d(B o T12(yn), B0 75(70 " (v0)) < 1.

This only uses that [ is an isometry of M. Now, 8712(yn) = 98,1, (Yn) is at distance
less than K from y, in L; — this is by hypothesis. Since path distance in the leaf
is less than distance in M , it follows that the same inequality is true for d. The
triangle inequality implies that d(y,, 80 75(7;, ' (y0)) < 1+ K — again d is distance
in M. Thus, after applying ~,,, we get

d(Yn(Yn), 0 BoTa(,  (w0)) < 1+ K.

We are again using that -y, is an isometry of M. Note that the map Tg Imoves every
point a bounded distance, the transformations ~,, 5 are isometries, and, for n big
enough, d(v,(yn),vo) is very small. Therefore, d(yo,¥n o 807, (yo)) < K’ for all
n big enough and a fixed constant K'.

So we can extract a converging subsequence once more, and get that for any n, m
the distance between 7,37, 1 (vo) and v, 37,  (yo) is smaller than the injectivity
radius of M. It follows that

VBV = 1Brn

for all n,m.

Now we use that M is hyperbolic. So 3 is a hyperbolic isometry of H? =2 M.
It has an axis with ideal points a,b. Then, since 7,37, 1 = 'ylﬁvfl, we have that
Yn(a) = v1(a) and v, (b) = 11 (), for all n. Let ¢ := y1(a) and d := v, (b). Notice
that (for all n) the axis of the isometry v, 37, ! has endpoints ¢ and d.
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Let « be the generator of the group of deck transformations fixing ¢, d. Then, for
all n there is an integer i,, so that -y, = a’»v;. In addition since y,, escapes compact
sets in Ly and Ly is properly embedded, it follows that y,, escapes compact sets in
M. On the other hand ~, (y,) converges to yo, so |i,| converges to infinity.

Notice that, since =; sends the axis of 8 to the axis of «, a power of « is
conjugated to a power of 5 by v1. Now, since 3 acts freely on the leaf space of F ,
then so does a. Let 2z, := 71(yn), L := v1(L1) and E the leaf of F through yq.
Recall that 7, (y,) converges to yo. Hence

' (zn) = a"7(Yn) = Yn(yn)
converges to yo. But all z, are in the fixed leaf L. It follows that a’» (L) converges
to F, and does not escape in the leaf space. This contradicts the fact that a acts
freely on the leaf space because [i,,| — oo. O

We remark that this proof only uses geometry of M and foliations. That is, this
proof works for any regulating flow transverse to a transversely oriented, R-covered,
uniform foliation in a hyperbolic 3-manifold.

The reason we will be able to compare the dynamics of f and @ is thanks to
the fact that they are a uniform bounded distance apart. That is, we have the
following.

Lemma 8.7. Let f: M — M be a homeomorphism of a hyperbolic 3-manifold M
preserving an R-covered uniform foliation F and f a good lift to M. There exists

Ry > 0 so that for every Ly € ]-:, if Ly = f(L1) and x € Ly thendr,(f(x), m12(z)) <
R;.

Proof. Since f is a good lift it follows that one can join z with f(z) by an arc
of bounded length. In particular, since the foliation F is R-covered and uniform,
it follows that the Hausdorff distance between L; and Lo = f(Li) is uniformly
bounded above and below independently of L, € F. Therefore, as explained before
the statement of Fact 8.4 the amount of flowing needed to go from L; to L, is also
uniformly bounded below and above. Thus dﬁ(f(x), T12(x)) is uniformly bounded.
Again we use the fact that leaves of an R-covered taut foliation are uniformly
properly embedded in the universal cover (see [Cal07, Lemma 4.48]). The result
follows. 0

Now we are ready to prove Proposition 8.1.

Proof of Proposition 8.1. Let v € m (M) be represented by a periodic orbit &g of
® and take & the unique lift of dg to M fixed by v. We will build the core T,
that we seek by considering a very large tubular neighborhood of ¢ and taking the
intersection of this tubular neighborhood with all of its forward and backwards
images under f (see figure 10). We will prove that this infinite intersection is
non-empty, thus its projection to M, will have the desired properties.

Note that, if we build the core for a power 7k1~and sz instead, then taking its

union with its images by v, ... ¥~V and f,..., f*~1 will produce a core which is
both v and f invariant, as we want. So, in this proof we may take any finite power
of v or f.

Thus, if §p is a p-prong, we replace v by a power if necessary, so that v fixes
every half-leaf of §. Furthermore, we take a power of f so that for any L, f(L) is
above (L). For notations sake, we assume this is the original f.

For any leaf L in F, we write z, to be the (unique) intersection of § with L.
Let aiL, with ¢ = 1,...,p, be all the ideal points on the boundary at infinity of L
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L
FIGURE 10. The image of a large tubular neighborhood of the lift of
the prong by f in a given center-stable leaf.

of the weak unstable leaf (of 5) through ¢ intersected with L, where p =2 if § is a
regular orbit and otherwise 4 is a p-prong orbit. Equivalently, a® is the ideal point
determined by each ray of G¥(xy). Similarly, we define r%, i = 1,...,p, to be the
ideal ends of the rays of G (xp,).

For every L € F and for every i, we choose P! and N} neighborhoods (in
L U dxL) of, respectively a’ and ri. We also choose these neighborhoods such
that their boundary (in L) are geodesics for the path metric on L. Furthermore, we
choose these neighborhoods in such a way that they depend continuously on L € F
and they are y-invariant, i.e., y(P}) = P;‘(L) and y(N?) = ny(L). Up to taking the
neighborhoods smaller, we assume that for any L and any i,j, Pi N Ni = (); and
for any i # j, PiﬂPiz@, NEﬂN%z@.

We define a map 7y: M — M in the following way: For any L in F and any
x € L, 77(x) is the intersection of the orbit of & through z with f(L).

Let R; be the constant given by Lemma 8.7 (i.e., such that f and 7; are R;-
close). Using that leaves of G¥(xy) and Gj (zr) are quasigeodesics and that the
flow in a given time expands and contracts their length by a factor different from
one, one can construct neighborhoods P! and N} sufficiently small so that:

(i) For any L and any 1,
71(Pp) C Py and df (Tf(Pz),aPJ%(L)) > 10R;.
(ii) For any L and any 1,
—1pni i —1(p7i i
T HND) CNE ) and dj (Tf (NL),afol(L)) > 10R;.

To make sense of the distance between sets in L U 0x L above, we decide that ideal
points are at infinite distance from any other point. A direct consequence of the
conditions above is that

(1) For any L and any i, f(Pi) C P}%(L)

(2) For any L and any i, f~'(Ni) C N%_l(L)

Lemma 8.7 shows that, for any L, the maps 7¢|; and ﬂ ., are a finite distance
from each other. Thus their extension to the circles at infinity 0L is the same.
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Now, recall that 7y corresponds to flowing along the pseudo-Anosov flow ®. Hence,
up to replacing f by a very high power of f, we can moreover assume that:

(3) For any L and i, if w is an ideal endpoint of N¢, then flw) € P%(L), for

some j (where j is the unique index such that aji is the first attractor on
the side of w from 7% );

(4) For any L and i, if w is an ideal endpoint of P!, then f~1(w) € N%*l(L)’
for some j (where j is uniquely determined as above).
Note that conditions (1) and (2) still are satisfied by our high power of f.
Now we choose a constant R large enough so that for every L and every i, the
ball Dy, := B(zr, R), of radius R around x, intersects every Pi. Moreover, we
choose it to satisfy:

prof(one, ) ~UPL . puo it (opPy, ) UM
j J

This is possible because the ideal points of A = f( N;: are contained in the

‘ 1(L))
interior of the ideal boundary of the union of the P}. It follows that for each L only
a compact part of AN L is outside the union, and this varies continuously with L.
By choosing R big enough one satisfies the equations above.

Let
V.= U DL.
LeF

We will show that the set [, f7(V) is non-empty and thus its projection to M,
is the core T’, that we seek. The proof will be done by induction. In order to make
that induction work, we need the following

Claim 8.8. Let L be a leaf in F. Let C C Dy, be any compact and path-connected
set that does not intersect any Ni .
If there exists iy1,19 distinct such that C intersect both P;' and Pj?, then there

; _ ; i J2
exists a path-connected component of f(C') N D5y, that intersects Pf(L) and Pf(L),

for some jo # i1 (j2 is not necessarily is) and that does not intersect any N;?(L).

Proof. Since C intersects le and PEQ, f(C’) also intersects both PJ?(L) and P}?L)
(thanks to the condition (1)). Now, since C' does not intersect any N, because

of condition (3) and the choice of Dy, the intersections of f(C) with 0D () are

contained in the union of the P}( L

Thus, as claimed, f(C)N Df( L) contains a connected component that intersects

PJ-?(L) and P%?L), for some jo # i1 (j2 is not necessarily i) and that does not

intersect any N;?(L)' O

Figure 11 shows a case where j; is not equal to i2: It may be that f(C) stretches

well into P72(f(L)) and out of Dy py- Thus, as in the figure, the intersection
f(C’) NnD (1) can have two components Cy and Cs, neither of which intersects both

’il 12
Priny and Py

The same proof as above, using f~* instead (and the conditions (2) and (4)),
gives

Claim 8.9. Let L be a leaf in F. Let C C Dy, be any compact and path-connected

; i
set that does not intersect any Pf(L)'
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J2 ry
Py 1O

FIGURE 11. The intersection f(C)N D¢ 1, may not have a connected
set joining P to P2,

If there exists i1,1o distinct such that C intersect both Nzl and N?, then there

exists a path-connected component of f’l( )ﬂDf (L) that intersects N;-‘;A(L) and

N¥2 , for some jo # i1 and that does not intersect any PJ%_

F=H(L) HLy”

For any leaf L and any integer n > 0, define

ﬂ f k(L) and QL = ﬂ f fk L))

Claim 8.10. For every i and every n, R} contains a subset C, compact and path-
connected that does not intersect any N3 but does intersect Pi and some P2 (for
some iy # 1).

Similarly, for every i and every n, Q} contains a subset C, compact and path-
connected that does not intersect any Pi but does intersect Ni and some N> (for
some ig # 1)

Proof. We only do the proof for R}, as the claim for Q)} follows similarly.

First, since RY = Dy, the claim is true for n = 0 and any leaf L (because Dy,
clearly contains such a subset). Let us assume that the claim holds for R}j_l and
for any L. Then, Claim 8.8 implies that (for any L) f(szl) NDj ) has a compact
and path-connected subset that does not intersect any IV, i but does intersect P}

and some P> (for some ig # 7).
But, by definition, we have

rs n—1
ﬂ D) = F (R ) N D
Thus the claim is proved. O

Now, since for any L, the ideal points a® and r? alternate, the properties of R}
and Q7 given by Claim 8.10 imply that, for all n, R} N Q7 is a non-empty compact
set.
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Since R} and @)} are decreasing sets, the set

Ty = () (RENQY)

n>0

is (for any L) non-empty and compact. Thus

T::UTL

LeF

is non-empty, and, by construction, f—invariant (note also that T = ﬂnezfn(V) as
we claimed above). Hence, the projection T, of T to M, is non-empty, compact
and fv-invariant.

Once T, is built, the second half of Proposition 8.1 follows directly from the
homotopy invariance of Lefschetz index together with Lemma 8.7. So we finished
the proof of Proposition 8.1. (]

In the proof of Proposition 8.1, we obtained the following result which we state
independently for future reference.

Lemma 8.11. Let f: M — M be a homeomorphism of a hyperbolic 8-manifold, f
homotopic to the identity. Suppose that f preserves an R-covered uniform foliation
F and that a good lift f of f acts as a translation on the leaf space of F. Let
v € w1 (M) be a deck transformation.

Ifh=~o f" fizes some leaf L € F (with n # 0) then the set of fized points of h
in L is contained in a compact subset of L.

Moreover, given n > 0 big enough, then for every R > 0 there is a compact set
D C L such that if y ¢ D then dp(y, h(y)) > R.

Finally, let P be the set of ideal points in the boundary at infinity S*(L) that are
attracting and fized under the map o 712, where T12: L — f”(L) 1s the flow along
® map. Then, for any y € P, there exists a neighborhood U of y in LU S (L) such
that

(1) h(U) is strictly contained in U, and

(2) ﬂizo r(U) = {y}.

Remark 8.12. Notice that the results of this section should be adaptable to the
case of a homeomorphism acting as a translation on the leaf space of a manifold with
one atoroidal piece. What would be required is some sort of analogue of Theorem
D.3. That is, we would need to know that there exists a transverse regulating flow
such that any orbit that stays in the atoroidal piece is a hyperbolic p-prong (p > 2).
Although that result seems likely to be true, it has not been proven. A similar
case is dealt with in a companion paper [BFFP21] where we study integrability for
partially hyperbolic diffeomorphisms not homotopic to identity in Seifert manifolds.

9. DOUBLE TRANSLATIONS IN HYPERBOLIC MANIFOLDS

In this section we prove Theorem B.

Let f: M — M be a dynamically coherent partially hyperbolic diffeomorphism
of a hyperbolic 3-manifold M. Recall that we denote by W and W°" a pair of
f-invariant foliations tangent respectively to £ and E". Up to taking an iterate,
one has that f is homotopic to identity and therefore has a good lift fto M. We
fix that good lift. - .

We want to show that ]7 fixes the leaves of both foliations W and W°". By
Theorem 6.1 this is enough to prove Theorem B. Notice that by Corollary 3.21 and
Theorem 5.1 we can assume by contradiction that both foliations are R-covered
and uniform and that f acts as translation on both leaf spaces.
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We in fact will get a contradiction using just one of the translations thanks to
Proposition 8.1, together with the following result. Notice that we thus obtain an
alternative proof, albeit much more complicated, of the fact that there cannot be
a mixed behavior in a hyperbolic manifold.

Proposition 9.1. Assume that a good lift f of f acts as a translation on the
foliation WS and let ® be a transverse requlating pseudo-Anosov flow for W*.
Then, for every v € w1 (M) associated to the inverse of a pemodzc orbit v of ® there
isn > 0,m > 0 such that h =" Ofm fizes a leaf L of)/VCb

By symmetry, the same result holds if applied to W. Notice that once one
knows that h fixes a leaf L of W, the second part of Proposition 8.1 applies to f.

Proof. Thanks to Proposition 8.1, we can consider the cover M. = M /<>
and let V' be a compact solid torus in M, such that (1, , f7'(V) = T, is compact,
non-empty, and far from V. Let z € T. Let y € T, be an accumulation point of

(fr2)).
We take 7, j big enough, with j much bigger than 7, such that fz( ) and fJ( ) are
both very close to y. Now, consider I a small closed unstable segment containing

fi(2) in its interior. Since fJ i increases the unstable length, every leaf of W<
through I intersects the interior of f% i(I). This set of W leaves is an interval.
This produces a fixed W leaf under f!f’ Lifting to M proves the proposition. [

We can now finish the proof of Theorem B.

Proof of Theorem B. Let fbe a good lift of f and let Ly be a leaf fixed by h := PyOfk
for some k > 0 and v € m(M) \ {id} given by Proposition 9.1.

For any leaf L fixed by h, the map h|;, has negative Lefschetz index (according
to Proposition 8.1). We stress that this is the two dimensional Lefschetz index of
h|r, and not the of the map h on a 3-manifold. Thus there exists a point z;, € L
fixed by h. Now, h is partially hyperbolic, so any fixed leaf L is repelling along the
unstable manifold through x. But this is impossible, as in the leaf space of W,
the closed interval between Lo and (L) is mapped to itself so cannot contain only
repelling fixed points. B

This contradiction implies that f cannot act as a translation on either leaf spaces.
It follows that f has to fix every center-stable and center-unstable leaf. Therefore

by Theorem 6.1, it is conjugate to a discretized Anosov flow. This proves Theorem
B. O

APPENDIX A. SOME 3-MANIFOLD TOPOLOGY

We collect here some concepts from 3-manifold topology that were used in this
article. We refer the reader to [Hem76, Hat] for more background.

A 3-manifold (which we always mean to be a smooth manifold) is irreducible,
if every smoothly embedded sphere bounds a ball. It is well known that closed
3-manifolds admitting taut foliations are irreducible (see, e.g., [Cal07]).

An irreducible compact, 3-manifold M is said to be homotopically atoroidal if
every mi-injective map of a torus in M is homotopic to a map into the boundary of
M. The manifold is geometrically atoroidal if every mi-injective, embedded smooth
torus is homotopic to the boundary of M.

If a manifold with exponential growth of fundamental group is homotopically
atoroidal, then by the geometrization theorem it is hyperbolic, i.e., the interior of
M admits a complete, Riemannian metric of constant negative curvature.
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Notice that when M is homotopically atoroidal, 71 (M) does not contain any
subgroup isomorphic to Z2.

A 3-manifold is called a Seifert manifold if it admits a partition by distinct
circles such that a tubular neighborhood of each fiber is homeomorphic by a fiber-
preserving homeomorphism to either:

e A fibered solid torus of type (p,q). This is a torus obtained from D? x [0, 1]
by identifying D? x {0} to D? x {1} via the map (z,0) — (z exp(2mip/q), 1).
The fiber {0} x St is called regular if p = 0 and exceptional otherwise. Or,

e A fibered solid Klein bottle, obtained from D? x [0, 1] by identifying D? x {0}
to D? x {1} via the map (z,0) ~ (2,1). The fibers {z} x S, 2 € R, are
also called exceptional.

The quotient of a Seifert manifold by the Seifert fibration, called the base, B,
has a structure of a 2-orbifold (without corner reflectors). The exceptional fibers
separate into two sets: The axis of the fibered solid torus projected to isolated points
in the interior of B (called conical points), while the exceptional fibers coming from
fibered solid Klein bottles projects to a closed 1-submanifold of the boundary of B
(and each connected component is called a reflector curve).

Remark A.1. The definition above is not the one originally taken by Seifert.
Indeed, the fibered solid Klein bottles neighborhood were not allowed in the original
definition. However, it is now more common to use this definition. In particular,
with this definition, works of Epstein and Tollefson imply that all 3-manifolds
foliated by circles are Seifert (see, e.g., [Sco83]).

Note that both the original definition and the one chosen here agree when the
manifold is assumed orientable.

If a Seifert manifold has fundamental group with exponential growth, then it
is finitely covered by a circle bundle over a surface of genus > 2. In particular,
thanks to the classification of Seifert manifolds (see [Sco83, Theorem 3.8]), the
Seifert fibration is unique in this case.

If a 3-manifold M is geometrically atoroidal but not homotopically atoroidal
then the proof of the Seifert fibered conjecture (see, e.g., [Cal07]) implies that M
is closed and Seifert. The base surface has to be a sphere with 3-singular fibers.
Unless the difference between geometric and homotopic atoroidal is essential we
only refer to it as atoroidal.

The JSJ decomposition theorem implies that compact, irreducible, and ori-
entable 3-manifolds admit a decomposition into finitely many pieces, which are
either geometrically atoroidal or Seifert [Hem76, Hat].

The following lemma was used when establishing minimality of foliations in
Seifert and hyperbolic 3-manifolds:

Lemma A.2. If T is an embedded torus inside an orientable closed hyperbolic 3-
manifold M, then T either bounds a solid torus or is contained in a 3-dimensional
ball.

Proof. This is standard result in 3-manifold topology, so we only sketch the proof.
Since M is orientable and hyperbolic, T is two sided, and not m-injective. Since T is
furthermore embedded, Dehn’s lemma [Hem76] implies that there is a compressing
disk D. That is, D is embedded and DNT = 0D. Cutting T along D and capping
with two copies of D produces a sphere. Since M is hyperbolic, it is irreducible, so
it follows that the sphere bounds a ball. This implies that either 7" bounds a solid
torus or T is contained in a 3-ball [Hem76]. O

We also use the following consequence of Mostow rigidity
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Proposition A.3. If M is a hyperbolic 3-manifold and f: M — M a homeomor-
phism, then it has an iterate which is homotopic to identity.

Proof. Mostow rigidity (see, e.g., [BP92]) implies that every homeomorphism is
homotopic to an isometry. By Theorem [BP92, Theorem C.5.6] isometries of a
closed hyperbolic 3-manifold are torsion elements, implying the result. O

APPENDIX B. TAUT FOLIATIONS IN 3-MANIFOLDS

All the foliations considered in this article are continuous foliations, with C!
leaves, tangent to a continuous distribution of a 3-manifold (so they are foliations
of regularity C%1* in the terminology of [CCO00]). In this appendix, all foliations
are 2-dimensional.

A foliation on M is called taut if it admits a closed transversal that intersects
every leaf of T. .

Let T denote the lift of the foliation 7" to M. The leaf space of T is defined as
the set Lz := M /% equipped with the quotient topology.

The following theorem gathers some known properties of taut foliations (see, for
instance, [Cal07, Chapter 4] for the proofs) and relies particularly on the celebrated
theorems by Novikov and Palmeira.

Theorem B.1. A foliation without compact leaves in a 3-manifold M is taut.

If M is a 3-manifold that is not finitely covered by 52 x S1 and admitting a taut
foliation 7{ then M is homeomorphic to R3. Moreover, every leaf of T lifts to a
plane L € T which is properly tamely embedded in M and separates M in two half
spaces.

The leaf space Lz is a one-dimensional (non necessarily Hausdorff), simply
connected (separable) manifold. Furthermore, every point in Lz 1s contained in the
interior of an interval in Lz.

In particular, if 8 is a transersal to ’7~', then [ intersects a leaf of T at most
once.

When Lz is Hausdorff, then it is homeomorphic to the real numbers R. In this
case, the fohatlon T is called R-covered.

Since M is simply connected, T is transversely orientable (but deck transforma-
tions of M may flip this transverse orientation).

For reference, we cite the following result that we used in this article (for the C°
version of the arguments used, see [CC00, §9], or [Cal07, Lemma 7.21]).

Proposition B.2 (Rosenberg). Let M be a closed 3-manifold which is not home-
omorphic to T2, and let T be a foliation on M. Then some leaf of T is not a
plane.

APPENDIX C. UNIFORMIZATION OF LEAVES

The following result is very helpful to understand the action of deck transforma-
tions inside leaves of the foliations of a partially hyperbolic diffeomorphism. See,
e.g., [Cal07] for a proof.

Theorem C.1 (Candel). Let F be a taut foliation of a 3-manifold M and assume
that it has no transverse invariant measure. Then, there is a metric in M which
restricts to a (2-dimensional) hyperbolic metric in each leaf of F.

6Note that since M is not finitely covered by S? x S, no leaves of 7 can be a sphere or a
projective plane.
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A transverse invariant measure is an assignment of a non-negative number to
each arc transverse to JF, such that it satisfies the properties of measures under
countable union and restriction. In addition the measure is unchanged if we homo-
tope the transverse arcs keeping each point in its respective leaf. The statement
of Candel’s Theorem gives further properties on the transverse invariant measure
(also called holonomy invariant transverse measure), stating that it has zero Euler
characteristic, but we will avoid defining this (see [Cal07] for a detailed treatment).

It is well known that every taut foliation in a hyperbolic 3-manifold (see e.g.,
[Cal07]) or the horizontal foliations in a Seifert manifold used in this article sat-
isfy the conclusion of Theorem C.1. We remark that it is possible to show that
any minimal foliation on a manifold with non-virtually solvable fundamental group
satisfies the hypothesis of Theorem C.1 (see [FP18, Section 5.1]).

APPENDIX D. UNIFORM FOLIATIONS AND TRANSVERSE PSEUDO-ANOSOV FLOWS

Uniform foliations were introduced by Thurston [Thu], and have been intensively
studied, particularly when M is a hyperbolic 3-manifold. They are intimately
related to the notion of slitherings (see [Thu] or [Cal07, Chapter 9]).

Definition D.1. An R-covered foliation 7 is called uniform if the Hausdorff dis-
tance between any pair of leaves L, L’ of T is finite. That is, there exists K > 0
(depending on L and L’) such that L C Bg(L') and L' C Bg(L) where Bg(X)
denotes the set of points at distance less than K from X C M.

Thurston build a special pseudo-Anosov flow associated with a R-covered folia-
tion in a hyperbolic manifold.

Definition D.2. Let F be a foliation of a 3-manifold. A flow U: M — M is called
regulatinngor F if every orbit of the lifted flow W intersects every leaf of the lifted
foliation F in the universal cover M.

Theorem D.3 (Thurston, Calegari, Fenley [Thu, Cal00, Fen02]). A transversely
oriented, R-covered, uniform foliation in a hyperbolic 3-manifold admits a regulating
transverse pseudo-Anosov flow ®. Moreover, ® can be chosen so that the singular
foliations have C leaves outside the prongs.

Recall that a pseudo-Anosov flow @ is a flow generated by a vector field X which
preserves two singular foliations A® and A" and such that, outside a finite number
of singular orbits, the flow is locally modeled on a (topological) Anosov flow (see
Appendix G). The foliations glue along the singularities forming p-prongs (with
p > 3). We refer the reader to [Cal07] for more details. We note also that every
expansive flow is orbit-equivalent to a pseudo-Anosov flow [Pat93, IM90].

Work of Barbot and the second author implies that Thurston’s regulating flow
is genuinely pseudo-Anosov:

Proposition D.4. If ® is a pseudo-Anosov flow regulating and transverse to a
uniform foliation in a non-virtually solvable 3-manifold, then, ® is not a topological
Anosov flow. In particular, there are singular periodic orbits which are p-prongs
with p > 3.

Proof. This fact can be found in [Fen13], but we recall the argument: every element
of the fundamental group that represents a periodic orbit of ® acts as a translation
on the leaf space of F. However, this is inconsistent with the fact that every Anosov
flow on a 3-manifold, except for suspensions of Anosov diffeomorphisms (which do
not exist on non-virtually solvable manifolds), admits pairs of periodic orbit that
are freely homotopic to the inverse of each other (this fact follows from work of
Barbot and the second author, see [BBGR21, Theorem 2.15]). O
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APPENDIX E. AXES

Here, we recall some needed results from the theory of azes for free actions
on one-dimensional, non-Hausdorff, simply connected, manifolds. These results
extend similar results for trees. We refer the reader to [Fen03, Bar98] for a more
detailed account. All of the results we state are true for homeomorphisms of one-
dimensional, non-Hausdorff, simply connected, separable manifolds. However, to
keep the terminology close to the core of this article, we phrase our results in the
setting of homeomorphisms preserving a foliation.

Let L be a complete plane. Let C be a foliation such that its leaf space L¢ is a
one-dimensional (not necessarily Hausdorff) simply connected manifold.

Definition E.1 (Axis of a foliation-preserving homeomorphism). Let g: L — L be
a homeomorphism which preserves C. The axis (or C-azis) of g is the set of leaves
c € C such that g(c) separates ¢ from g*(c).

For the statement below, we recall that a Z-union of intervals means an ordered
set consisting of countably many closed (possibly degenerate) intervals which are
ordered according to Z.

Proposition E.2. Let g: L — L be a homeomorphism that preserves C without
leaving any leaf of C fixed. Then, the C-axis for the action of g in L¢ is non-empty.
In addition, the axis is either a line or an ordered Z-union of intervals. In the
second case, the axis is UI;, where I; = [x;,y;] is a closed interval and y; is not
separated from x;11 in the leaf space of C.

Moreover, suppose that g, h: L — L are two C-preserving homeomorphisms that
do not fix any C-leaves, and that share the same azis. If the group generated by g
and h acts freely” on this axis, then it is abelian.

Proof. This is proven in section 3 of [Fen03]. See in particular Lemma 3.5, Theorem
3.8 and Proposition 3.10 there. The last statement uses Holder’s Theorem (see e.g.,
[Cal07, Theorem 2.90]) to deduce that the group generated by g and h must be
abelian. O

Remark E.3. Two commuting homeomorphisms that induce a free action of Z?2
have the same axis (see [Bar98, Section 2| or [Fen03, Section 3]). We remark a
couple of subtle points:

(1) The fact that f acts freely does not imply that any non-trivial power of f
acts freely, and in fact there are easy counterexamples,

(2) Unlike in the case of trees, f acting freely does not necessarily imply that
the axis is properly embedded in the leaf space. If the axis is a bi-infinite
union of intervals, then it is properly embedded (see Lemma E.5 below). If
the axis is the reals, it may fail to be properly embedded, even if all powers
of f act freely.

Notice that as a consequence we obtain:

Corollary E.4. Let f,g,h: L — L be three C-preserving homeomorphisms such
that both (f,g) and (f,h) induce free actions of Z* in the C-leaf space. Assume
moreover that f commutes with g and with h. Then, the group generated by f,g,h
is abelian.

Proof. Notice that as f commutes with g and h then all three homeomorphisms
of the leaf spaces share the same axis ([Bar98, Section 2]). Now the result follows
from the previous proposition. O

"Recall that we say that a group acts freely if no element different from the identity has a fixed
point.
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Another useful fact about axes is the following:

Lemma E.5. If A is the axis of a C-preserving homeomorphism f and A is a
Z-union of intervals, then A is properly embedded in the leaf space of C.

Proof. Let A = UgzlI;, where I; = [x;,y;], with y; and 2,11 not separated in the leaf
space of C.

If A is not properly embedded, then there exists a leaf ¢ € C such that (z;) and
(yi) converges to c as, say, n goes to +0o. Now, for any 4, the interval I; separates
I;_q from [;;q1. Thus, if 7 is a transversal to C through ¢, then 7 intersects every
I;, for i big enough. So in particular, for some ¢ big enough, 7 intersects both y;
and x;41. But this is impossible since these two leaves are not separated. O

APPENDIX F. ON PARTIAL HYPERBOLICITY

Here we state some facts about partial hyperbolicity that are used in the article
but are well-known to the experts.

Recall that a C'-diffeomorphism f: M — M of a 3-manifold, is partially hyper-
bolic if there exists a D f-invariant splitting TM = E* @ E°® E" into 1-dimensional
bundles and an n > 0 such that for every x € M we have

I1Df" B2 (@) | < min{1, [Df"|ge(ay [} < max{L, [|Df"|pe@) I} < [I1DF"[Ee(@)ll-

By changing the Riemannian metric, one can always assume that n = 1 (see
[Gou07, CP]).

A partially hyperbolic diffeomorphism is called dynamically coherent if there
exists f-invariant foliations W and W€ tangent to F® = E®* ® E° and E° =
E°¢ @ E". Taking the intersection of W and W*" gives a one-dimensional foliation
W€ tangent to E° and f-invariant. Note that these foliations are not assumed to
be unique in any sense (see [BW08] for a discussion).

Partially hyperbolic diffeomorphisms need not be dynamically coherent, but
when they are, the standard notion of equivalence (which goes back to [HPS77]) is
that of leaf conjugacy: Two dynamically coherent partially hyperbolic diffeomor-
phisms f: M — M and g: N — N are said to be leaf-conjugate if there exists a
homeomorphism h: M — N that maps the center foliation W5 of f to the center
foliation Wy of g. More precisely, h is such that h(W5(f(x))) = Wy (g(h(z))) for all
x € M. We refer the reader to [Pot18] and references therein for more discussions.

We state the following result of Hertz, Hertz and Ures in a way that fits our
particular needs.

Theorem F.1 ([RHRHUL1]). Let f: M — M be a partially hyperbolic diffeo-
morphism admitting a compact manifold® tangent to E° (or E%). Then, M has
solvable fundamental group (indeed, it is a torus bundle over the circle).

In particular, if the fundamental group of M is not virtually solvable, and f
is dynamically coherent, then the center-stable and center-unstable foliations are
taut.

Hence, using the fundamental results of Burago and Ivanov [BIO8] one gets:

Corollary F.2 ([BI08, Par10]). Let M be a 3-manifold with non-solvable funda-
mental group. Suppose that M admits a partially hyperbolic diffeomorphism f such
that the bundles E°, E°, E" are orientable and Df preserves these orientations.
Then M admits a taut foliation. In particular, M is irreducible, and aspherical.

8Notice that a compact manifold tangent to E is necessarily a torus, see e.g., [RHRHU11].
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We recall that when 71 (M) is (virtually) solvable a complete classification of
partially hyperbolic diffeomorphisms is known [HP14, HP15, HP19].

In the setting of Seifert manifolds we used the following result from [HPS18§]
which is partially based on the study of horizontal and vertical laminations in
Seifert manifolds [Bri93].

Theorem F.3 ([HPS18]). Let f: M — M be a dynamically coherent partially
hyperbolic diffeomorphism on a Seifert manifold M whose fundamental group is not
(virtually) solvable. Then, M is a finite cover of TS where S is a 2-dimensional
hyperbolic orbifold, and the center-stable and center-unstable foliations of f are
horizontal. That is, there exists a Seifert fibration p: M — X for which every leaf
of the center-stable and center-unstable (2-dimensional) foliations is transverse to
the (1-dimensional) fibers.

An invariant foliation is called f-minimal if the only non-empty, saturated, closed
set invariant by f is the whole manifold. The following result motivates asking for
f-minimality of the foliations as a hypothesis as it covers the most important (from
a dynamical standpoint) cases.

Proposition F.4 (see Lemma 1.1 of [BWO05]). Let f: M — M be a dynamically
coherent partially hyperbolic diffeomorphism. If f is either volume-preserving or
transitive,” then the center-stable and center-unstable foliations are f-minimal.

Proof. Assume that there is a compact, non-empty f-invariant set A saturated by
center-stable leaves. If A # M, () then it must be a repeller, so f cannot be transitive
nor volume-preserving. (|

We remark that the property of f-minimality of W and W€ is a strictly
weaker hypothesis than (chain-)transitivity (as seen, for instance, in the examples
of [BG10]).

Finally, we recall the classification of partially hyperbolic diffeomorphisms in
manifolds with virtually solvable fundamental group under the assumption that f
is homotopic to the identity (see [HP14, HP15, HP19] for the general case):

Theorem F.5. Let f : M — M be a partially hyperbolic diffeomorphism homotopic
to identity in a 3-manifold with virtually solvable fundamental group. Then M s
not Seifert-fibered and if f is dynamically coherent then it is a discretized Anosov
flow. Moreover, if there are no tori tangent to E® or E then f is dynamically
coherent.

APPENDIX G. DISCRETIZED ANOSOV FLOWS

Let ¢s: M — M be a continuous flow generated by a continuous vector field
X = agif lt=o. It is called a topological Anosov flow if it preserves two topologically
transverse codimension one continuous'? foliations F*¢ and F“* (called weak stable

and weak unstable) such that:

(i) For every pair of points z,y € F™* (resp. x,y € F*"), there exists an in-
creasing continuous reparametrization h: R — R so that d(¢:(z), one)(y)) —
0 as t — +o0o (resp. as t — —00);

(ii) There exists € > 0 such that for every z,y € F*¢ (resp. z,y € F**) not on
the same orbit, there exists ¢t < 0 (resp. t > 0) such that d(p:(x), (y))) >
€.

9t in fact suffices that f be chain-recurrent, that is, if a non-empty open set U verifies that
f(U) C U then U = M, see [CP] for equivalences.
L0we emphasize here that we do not require a priori the foliations to have Cl-leaves.
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As mentioned earlier in Appendix D, thanks to the work of Paternain [Pat93] and
Inaba and Matsumoto [IM90], the definition of topological Anosov flow can be
replaced by asking for the flow to be expansive and to preserve two (non-singular,
i.e., without prongs) foliations. Note also that just condition (i) is not enough for
a flow to be topological Anosov as condition (i) does not imply condition (ii).

Conditions (i) and (ii) allow one to obtain the same classical results as for Anosov
flows (e.g., there are no closed F* or F* leaves; the foliations F** and F** are
taut; the leaves are planes, annuli or Mobius bands — these last two possibilities
arising only when the leaves contain a periodic orbit; periodic points are dense in
the non-wandering set, etc., see [Bar05] and references therein).

We say that a diffeomorphism f: M — M is a discretized Anosov flow if there
exists a topological Anosov flow ¢;: M — M and a continuous function 7: M —
R such that f(z) = @;(z)(z).

Remark G.1. Note that one should not expect a discretized Anosov flow to be
the time-1 map of a reparametrization of the Anosov flow. To see this, one can for
instance restrict to a periodic orbit of the flow: Then the discretized Anosov flow
f restricts to a diffeomorphism of the circle. But diffeomorphisms of the circle do
not all come from the time-1 map of a non-singular flow on the circle.

The following result relates the notion of discretized Anosov flows with the usual
form of equivalence between partially hyperbolic systems.

Proposition G.2. Let f: M — M be a partially hyperbolic diffeomorphism. The
following are equivalent:

(1) f is a discretized Anosov flow;
(2) f is dynamically coherent, the center leaves are fized by f and the center
foliation is the flow line foliation of a topological Anosov flow.

Proof. The fact that the second condition implies the first follows from arguments
in [BWO5], as was done in section 6.2.

The newer result is the other implication, which we now prove. Let ¢p;: M — M
be a topological Anosov flow and 7: M — R+ be the positive continuous function
such that f(z) = o) (2). Let F' be the distribution generated by the vector field
X generating ;. First, we claim that F = E°. To prove this we will first show
that F' cannot be equal to F®* or E" at any point and then deduce that F' has to
be E°.

Suppose that there is © € M such that F'(z) = E®(x). Then, the invariance of
the orbits of the flow ¢; by f together with the uniqueness of the stable manifold
implies that there is an arc I = ¢[_. () of the orbit of = by ¢; which is tangent
to E®. That fact is proven in [CP], we give here a brief explanation and the precise
references. Consider a small cone field around E®. Let « be the orbit of ¢ through
x. Since F'(z) = E®(x), it follows that, near f™(x), the curves f™(«) are uniformly
Lipschitz and their tangent are inside the cone field around E®. Notice further that
the family of curves {f™(«)} is also invariant under f. The uniqueness of the stable
manifold implies that Lipschitz curves that are invariant and inside the cone have
to be the stable manifold near the point (this is done in [CP, Sections 4.2 and 4.3]).
Hence f™(a)) must contain an open interval inside the stable manifold near x.

Iterating I backwards, we get that the length of f~"(I) grows exponentially,
contradicting the continuity of 7: M — Ryg.

Thus F is never tangent to E°. The same argument shows that it is never tangent
to E".

Now, suppose that there is a point y such that F' is not inside E° at y. Then
applying Df™ to F(y) will get F(f™(y)) closer and closer to E*(f™(y)). Hence, for
any point z in the w-limit set of y, one has that F(z) = E"(z), contradicting the
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above. So F' is everywhere inside F°® and, by the same argument, also inside F".
Thus F' = E° everywhere.

The last step is to show that f is dynamically coherent, for this, we use the fact
that the strong stable saturation of a center curve is tangent to F* @ E° (see [BIOS,
Proposition 3.1]). We stress that a center curve here means a curve whose tangent
everywhere is in the center bundle E°. Since f is a discretized Anosov flow, the
saturation of a flow line by strong stable leaves of f is contained in the weak stable
foliation of the Anosov flow ¢; (cf. the proof of Proposition 6.5). In particular
this implies that the weak stable foliation F** of ¢; (which a priori could be only
continuous) has C! leaves and is everywhere tangent to £ @ E°. This establishes
dynamical coherence and completes the proof. 0

We remark that a long-standing conjecture (see [BWO05]) states that every topo-
logical Anosov flow is orbit-equivalent to an Anosov flow. If this conjecture is true,
then condition (2) above is equivalent to saying that f is dynamically coherent and
leaf-conjugate to the time-one map of an Anosov flow. We remark here that it
has been recently announced that this conjecture is true in the setting of transitive
topological Anosov flows (Shannon [Sha21]).

APPENDIX H. THE GRAPH TRANSFORM ARGUMENT

We give here an application of the general graph transform technique to the
particular case we needed it in. .

We call center-stable plane any embedded C'-plane tangent to ES @ E€ in M.
Notice that by unique integrability of E® there is always a stable foliation inside a
center-stable plane.

Lemma H.1 (Graph transform lemma). Let f be a partially hyperbolic diffeomor-
phism in M. Suppose that L C M is a center-stable plane which is fized by a lift

f of f to M, and by some v € m (M) \ {id}. Assume that there is a properly
embedded C' curve n transverse to the stable foliation in L and such that

y=n and f(n)c |JW(2)

zen

Then in L there is a curve ) which is fixed by both f and v and is everywhere
tangent to E°.

Notice the subtlety in the conclusion of this lemma: The curve 7 produced is
tangent to the center direction, however, it may not be a center leaf since the bundle
may not be uniquely integrable.

Remark H.2. The second hypothesis of the lemma is equivalent to saying that
the union {J,., W*(2) is invariant by f. In particular, all positive and negative

images of 1 by powers of f are contained in this union. To see this, notice that,
calling « the projection of 1 to the cylinder L/, the second condition implies
that fi(a) is freely homotopic to « (because L/« is a cylinder), and « (or fi(a))
is not null homotopic in this cylinder. Therefore (.., W*(2) = U, ¢, W*(2)-

Thus | Ws(2) is f invariant. The converse is immediate.

zEn

Proof. We work in the quotient L/~ which is an annulus on which 7 projects to
a closed Cl-circle transverse to the stable foliation, denoted by «. Let mp: L —
L/« the quotient map. Let f; be the induced diffeomorphism on L/ .

Up to a small modification of « if necessary, we can assume that « is simple,
that is, it goes around the cylinder L/~ once.
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We parametrize a in L/.,~ by arclength (for the leaf-wise path metric on
L/<ys). Then, we parametrize |J, ., W?*(z) as a cylinder S* x R contained in
L/<y~, where « is the zero section and the stable leaves are parametrized by ar-
clength.

Since all f"(n) are in Usey
C'-functions'! from S* to R

We want to show that f acts as a contraction on curves transverse to the stable
foliation in (at least a compact part of) (J,., W*(z) ~ S* x R. First we show that
all the 7, stay in a compact subset of (J,, W?*(2) (and thus also of L/<,>).

Our assumptions imply that there exists some ag > 0, such that fi(«a) is con-
tained in an ag stable neighborhood of 7. That is, in the union of stable segments
of length 2aq centered at 7.

Let A < 1 be the smallest contraction factor for f; along stable leaves. It follows
that f2(n) is contained in the stable neighborhood of size ag + Aag around «, and
so on. Thus, we immediately get that, for all n, f{*(«) is contained in a compact
subset of the annulus.

Now that we know that all the 7, curves are contained in a compact subset,
we can use the fact that fi contracts stable leaves more than centers to prove the
following:

There exists some constant a; such that f; globally preserves the space of uni-
formly bounded (for some appropriately large bound) Lipschitz functions from S*
to R with Lipschitz constant less than a;. By standard computations, one can see
that this acts as a contraction on this complete metric space (this is usually called
the graph transform technique see e.g., [HPST7] or [CP, Section 4.2] for a more
detailed study of this technique and the reason for considering Lipschitz functions).

Therefore, one obtains that there is a unique fixed point of this action which
corresponds to the graph of a Lipschitz function from S' to R which is the unique
invariant Lipschitz graph under fi. It is also standard to show that the tangent
cones at each point must actually be degenerate (see [CP, Section 4.2]), i.e., the
invariant curve is C'. Moreover, since E° is the only invariant bundle transverse
to E®, the curve must be everywhere tangent to E°. The lift of this curve to L is
the curve we sought. O

W#(z), we can express 7, := f"(n) as graphs of

Under the assumptions of the graph transform lemma (Lemma H.1), another
thing we easily deduce is that there must be a periodic center leaf of f in the
projection of the leaf L:

Lemma H.3. Let f be a partially hyperbolic diffeomorphism in M. Suppose that
L C M is a center-stable plane which is fized by a lift f of f to M, and by some
v € m (M)~ {id}.

Assume that there exists a curve 7 that is fized by both f and v. Then there
exists a center leaf ¢ in L and two integers n,m, with m # 0, such that ¢ = 'y”fmc.

To prove this lemma, we need to use the center leaf space on L. When the
foliations are branching (i.e. in the non-dynamically coherent setting), the center
leaf space will be defined in [BFFPa).

Proof. Let n = w(#}) be the projection of 4 to M. Since 4} is invariant by v and f,
the curve 7 is a circle on which f acts.

H1n this specific case with one-dimensional center, one can assume that the stable foliation is
C' inside center-stable leaves so that this makes sense, see [CP, Section 4.7]. If the stable foliation
is less regular then one can go through with the proof by taking a smooth approximating foliation
instead, and the arguments would be essentially the same.
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Suppose first that f has a periodic point on 7. Then, there exists a center leaf
through that point that is periodic, as claimed.

Otherwise, there exists a point in n that is inside its w-limit set for f.

Lifting back to the universal cover, this means that there exists x € 7 such that
there exists integers m,n, with m arbitrarily large, such that z and " fm(x) can
be made arbitrarily close.

Let 7 be a compact segment of the stable leaf through x. Since f contracts the
length of stable segments, we can choose m € N large enough so that every center
leaf through 4™ f™ (7) intersects the interior of 7. (This is possible as v f™(7) can
be chosen arbitrarily small and arbitrarily close to z, which is in the interior of 7.)

Let L be the leaf space of the center foliation in L. Let

Te={ceLf|cnT£D}.

Notice that 7. is a compact interval in the 1-manifold L7 .

Then consider the function h: 7, — £ defined by h(c) = 4" f™(c). The map h
is continuous, and, thanks to our choice of m, h(7.) is contained in the interior of
T.. Hence, there exists ¢y € 7. that is fixed by h, as claimed. O
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