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Abstract– We consider the max-min fair resource allocation
problem. The best-known solutions use either a sequence of
optimizations or waterfilling, which only applies to a narrow
set of cases. These solutions have become a practical bottle-
neck in WAN traffic engineering and cluster scheduling, espe-
cially at larger problem sizes. We improve both approaches:
(1) we show how to convert the optimization sequence into a
single fast optimization, and (2) we generalize waterfilling to
the multi-path case. We empirically show our new algorithms
Pareto-dominate prior techniques: they produce faster, fairer,
and more efficient allocations. Some of our allocators also
have theoretical guarantees: they trade off a bounded amount
of unfairness for faster allocation. We have deployed our allo-
cators in Azure’s WAN traffic engineering pipeline, where we
preserve solution quality and achieve a roughly 3× speedup.

1 Introduction
Multi-resource fair allocators have become essential for cloud
operators as multi-tenancy, availability, and efficiency grow
in importance. These allocators divide the resources fairly
among different requests (applications, users, or network
flows). Operators use them to meet customer expectations,
especially during congestion and for network neutrality.

Recent works present fair allocators in settings such as
WAN traffic engineering [17, 30, 34, 38] and GPU schedul-
ing [14, 42, 56]. We show these allocators achieve fairness at
the cost of speed (crucial for maintaining high utilization as
loads change [4]) and efficiency1 (essential for profit).

We aim to achieve a better balance between fairness, effi-
ciency, and speed, and our novel algorithms offer operators
greater flexibility to control the trade-off between them. We
focus on max-min fairness — where we cannot allocate more
to one request without reducing the allocation of another with
an equal or smaller value — because it is simple, commonly
used in practice [30, 34, 39, 56], and can promote efficiency.2

The definition of max-min fairness naturally leads to itera-
tive solutions that prioritize smaller requests over larger ones
and assign rates in order from smallest to largest. In multi-
resource settings, these solutions solve either mixed-integer
or linear optimizations [52, 59] at each step. Their scalability
depends on the size of each individual optimization and the
number of iterations – typically a function of the number of

∗The author contributed to this work while at Microsoft.
1In this paper, we use efficiency and utilization interchangeably.
2We defer extending to other notions of fairness to future work.
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FIGURE 1: Comparing the new allocators with state-of-the-
art. Soroush offers parameterizable max-min fair allocators. The
axes are fairness and speed; the marker size corresponds to effi-
ciency (larger is more efficient). Our new allocators empirically
Pareto-dominate other schemes, and some of them have theoreti-
cal guarantees on fairness (§4).

resources and requests.
Operators need to invoke resource allocators when work-

loads change or failures occur. However, today’s exact [17,56]
or approximate solutions (e.g., that trade-off fairness for
speed [30]) are too slow in reacting to these events at the
production scale. They take tens of minutes to hours (§4) on
WANs with 100s of routers that serve millions of flows or
clusters with 1000s of jobs.

We ask: are iterative optimizations necessary for max-min
fair resource allocation? Max-min fair algorithms must max-
imize smaller allocations before assigning more capacity to
larger ones. Current solutions iterate because they do not
know the sorted order of these rate allocations apriori. One
of our ideas is to (1) use sorting networks [7] to discover the
sorted order of max-min fair allocations dynamically within
the optimization and (2) use a linear weighted objective that
explicitly incentivizes the optimization to allocate more rates
to requests with smaller indices in the sorted order. The result
is a single-shot optimization for max-min fair allocation.

The above single-shot optimization is not always practical
as modeling sorting networks within an optimization can sig-
nificantly increase its size, and the linear weighted objective
can cause double-precision issues when there are many re-
quests. To develop a practical solution, we combine this idea
with an approximate max-min fair allocator from SWAN [30].
This combination results in a new allocator, GeometricBinner
(or GB), which is fundamentally faster than SWAN, does not
need sorting networks, has no double precision issues, and
provides the same fairness guarantees as SWAN.

Waterfilling-based algorithms [8] can be faster than black-



Allocator Properties Parameters
Geometric (T) α-approx fairness guarantee α
Binner (E) Faster than other α-approx methods ϵ

Adaptive (T) Solution in a small set containing optimal #iterations
Waterfiller (E) Fastest

Equi-depth (T) Better than Adaptive Waterfiller #iterations
Binner (E) Fairest and fast #bins, ϵ

TABLE 1: The Soroush allocators, their properties (Theoretical
and Empirical), and their parameters. These allocators provide
different trade-offs among fairness, efficiency, and speed.

box optimizations, but they are specialized for cases where
each request seeks rates on a single path. In a broad class of
problems [14,17,30,34,38,42,56], requests ask for allocation
from multiple paths. In these cases, the global fair share is not
locally fair along each path, and waterfilling does not apply.
Our solution, AdaptiveWaterfiller (or AW), extends waterfilling
to multi-path settings. AW is faster than GB but does not have
a worst-case fairness guarantee. We prove AW can converge
to a small set of allocations that contain the optimal.

Our third algorithm, which is empirically the fairest, com-
bines the above approaches. We apply GB with one change:
use the allocations from AW to spread requests more uni-
formly among bins (instead of the fixed geometrically increas-
ing bin sizes in GB). This allocator, EquidepthBinner (or EB),
is slower than both AW and GB (executes each once) but intu-
itively improves fairness for the same reason that equi-depth
binning reduces histogram approximation error [32].

Soroush3 is the collection of these algorithms, each provid-
ing a different trade-off among fairness, efficiency, and speed.
Operators can use our simple decision process to choose the
allocator (and its hyper-parameters) that achieves their de-
sired trade-off. Table 1 lists our allocators, their theoretical
and empirical properties, and their parameters.

To show Soroush is general, we introduce a graph model for
multi-resource, max-min fair resource allocation problems
where edges model resources and paths capture groups of
resources the allocator must assign together. Requests (de-
mands) can then ask for resources on any choice of multiple
paths. This compact and general model subsumes problems
from at least two domains: traffic engineering (TE) and cluster
scheduling (CS). Soroush can solve any future max-min fair
allocation problem if the user can specify it in this model.

Our extensive evaluation in both TE and CS (which we
summarize in Fig. 1) show the new allocators Pareto-dominate
the state-of-the-art in fairness, speed, and efficiency.

We deployed GeometricBinner in the production TE
pipeline at Azure where it provides a 2.4× average speedup
(up to 5.4× in some cases) without any impact on fairness
and efficiency compared to the previous allocator.

2 Motivation and Overall Approach
Faster workload dynamics [4] and higher availability require-
ments [45] have made fast resource allocation a necessity.

3Our code is available at https://github.com/microsoft/Soroush
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FIGURE 2: Slow max-min fair resource allocators cause
under-utilization and unfairness. We compare two instances of
the SWAN solver – one computes the allocations instantly while
the other needs two windows – on a 5-hour trace from Azure’s
WAN. The results indicate a large gap between the two solutions
in fairness and efficiency.

Operators of multi-tenant clouds further require solutions that
ensure fairness and maintain high efficiency [30, 34]. Prior
work ( [4, 45, 55, 66] in TE or [56] in CS) fails to meet one or
more of these requirements.

Efficient and fair solvers [17, 30, 56] cannot adapt quickly
to conditions that frequently change. Some production envi-
ronments [4] use the most recent previous allocation when the
solver cannot allocate resources within a fixed time window.
This is sub-optimal: nodes that increase their demands in the
new window do not get enough resources, and others who
request less may receive more than they need.

We quantify the impact of this strategy in the TE setting
using a 5-hour trace from Azure’s production WAN (Fig. 2),
which uses a 5-minute window. We observe a solver that
needs two windows (10 minutes) to allocate resources reduces
fairness by 20% – 60% and efficiency by 10% – 30% relative
to a solver that completes within one window.

How often do solvers miss their deadline? We use traces
from [4] to show the distribution of the number of windows
an exact solver (Danna et al. [17]) and Microsoft’s approx-
imate solver (SWAN [30]) need to compute max-min fair
allocations. For nearly half of the traffic trace, these solvers
exceed the 5-minute window and often need 2 to 3 windows
to finish (Fig. 3, left). This is because these approaches invoke
expensive optimizations multiple times (Fig. 3, right).

Soroush invokes at most one optimization and always com-
pletes within a single window. Whether a one-shot optimiza-
tion is faster than an iterative approach that solves multiple
optimizations depends on two factors: (a) the number of op-
timizations in the iterative approach, and (b) the size of the
optimization in the one-shot approach compared to those in

https://github.com/microsoft/Soroush
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FIGURE 3: State-of-the-art methods can not keep up with fre-
quently changing demands. We capture the number of windows
(left) and the number of iterations (right) each approach needs. To
keep up with demands, they must finish within a single 5-minute
window. However, SWAN [30] and Danna et al. [17] often need
more than one window and miss their deadline. The results are
on a topology with ∼200 nodes and ∼500 edges. Left captures
160 different scenarios. Right is a highly loaded scenario [4] – the
results hold across all the algorithms in Soroush.

the iterative solution4. Our one-shot optimizations are faster
than previous solutions [17, 30, 56] because we only add a
small number of variables to convert the problem into one
that can be solved in one shot, and we avoid the overhead in
solving multiple optimizations. See §F for a detailed analysis.

While examples here are from TE, CS resource allocators
are similar [56]. We omit the details for brevity.

2.1 Our model
We model the max-min fair resource allocation problem as a
capacitated graph5. Each edge represents a different resource,
and edge capacities show the amount of available resources.
Paths in the graph encode a collection of resources we must
allocate together (e.g., GPU and memory), and demands can
request resources on a subset of these paths. Our model also
supports other affine constraints over graph variables (e.g.,
text in maroon below). Soroush solves any max-min fair re-
source allocation problem we can specify in this model.

Our model takes as input:

• A set of resources E , each with capacities ce,e ∈ E .
• A set of paths P where each path is a group of dependent

resources that we must allocate together.
• A set of demands D where each demand k ∈ D:

– Requests some rate dk.
– Has weight wk (for weighted max-min fairness).
– Can be routed over a set of multiple paths Pk ∈ P .
– Consumes re

k of the capacity on edge e for each
unit rate we assign.

– Has utility qp
k on path p for each unit rate.

A max-min fair allocator assigns rates to demands such that
the weighted ratios { fk

wk
} are max-min fair: to increase the

4LP solver latency is polynomial in the problem size [13, 15].
5We present the formulation of this model in §A

Term Interpretation
E,D,P sets of resources, demands and paths
ce capacity of resource e ∈ E
f ,fp

k
rate allocation vector and rate for demand k on path p

dk,wk requested rate and weight for demand k ∈ D
re

k, qp
k

scaling resource consumption and rate utility for demand k

TABLE 2: Notation for our max-min fair resource allocation
model. (more details in Table A.1)
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FIGURE 4: Choosing allocators (and their parameters).

allocation of any demand, we have to reduce the allocation of
another demand with a smaller ratio.

We can use this model to specify max-min fair alloca-
tion problems in traffic engineering (TE) [30, 34] and cluster
scheduling (CS) [22, 25, 56].

TE. The actual links in the network are the resources, and
demands are services that require a specific rate between
nodes in the network. The TE scheme picks the paths for each
demand. Weights describe how the operator wants to divide
the rates (e.g., split rate between search and ads services).

CS. Each path corresponds to a server and contains multiple
edges. Each edge models a different type of resource on each
server (e.g., CPU, memory, or GPU). Demands are jobs that
require a number of workers. We model heterogeneity (work-
ers may progress at different rates on different servers) with
the utility term qp

k and scale how much of each resource the
worker uses with re

k.6 We also support extensions, such as
jobs with varying resource requirements [22, 25].

We are unaware of any model as general as ours for max-
min fair allocation. However, solving this general model is
hard: when we must allocate resources along multiple paths
(groups of resources), local fairness does not imply global fair-
ness, so single-path solutions [36] are ineffective. In Soroush,
we focus on this model and leave the extension to problems
that we cannot model as graphs [21] for future work.

2.2 Soroush Overview
Soroush offers a suite of allocators that produce approximate
solutions for graph-based max-min fair allocation problems.
An allocator is either an algorithm or optimization (or a com-
bination of both) that assigns max-min fair rates that meet the
demand and capacity constraints.

Table 1 lists our allocators, their key properties, and salient
parameters that let the user trade-off between fairness, speed,

6We can also use these terms to model similar aspects in TE.
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FIGURE 5: An example of how to pick the right allocator.

and efficiency (see §3 for more details). We have many
choices here and naïvely running multiple allocators in paral-
lel can waste computational resources. We suggest a simple
decision process along with a hyperparameter search to help
practitioners choose a suitable allocator (Fig. 4 and 5). A sen-
sitivity analysis in §4 indicates that this decision process is
robust. We do not claim any credit for it but use it as evidence
that we have effective mechanisms to make the choice.

The GeometricBinner (§3.1) is the only allocator in Soroush
with worst-case fairness guarantees: for a given α > 1, it prov-
ably assigns rates to each demand within [α−1,α] times its
optimal max-min fair rate. EquidepthBinner (§3.3) is the best
choice for users who prefer fairness and efficiency but do not
need formal worst-case guarantees. AdaptiveWaterfiller (§3.2)
is suitable for users who prefer speed over efficiency.

3 Max-Min Fair Resource Allocators
We present two novel kinds of multi-resource max-min fair
resource allocation algorithms.

3.1 One-shot Optimizations
Overview. We can think of max-min fair resource allocation
as an optimization with a prioritized list of objectives: first,
we maximize the smallest allocation, then the second smallest,
and so on. This intuition naturally leads to a sequence of linear
optimization problems (LPs) [17, 30].

Prior exact methods are slow since they solve nearly as
many LPs as the number of unique resources [17] (number of
edges in a network or machines in a cluster).

We will show how to linearize a prioritized list of objectives
such that we can solve one optimization instead of a (long)
sequence. The optimization we arrive at is analytically inter-
esting but can encounter double-precision errors, requires a
sorting network to sort allocations, and is consequently slower
in practice — we instead linearize an approximate version.

SWAN [30] uses an approximate solution that needs to
solve fewer LPs. It gradually and geometrically increases
the maximum possible rate for each demand and guarantees
the final allocations are within α× their optimal fair rates.
Users pick an α based on their requirements for fairness and
speed (e.g., α = 2 in SWAN). A larger α requires fewer LPs
but results in less fair allocations.7 Microsoft has been using
SWAN in production for many years [39].

7The number of LPs is logα Z where Z is the ratio between the largest
and the smallest request.

Term Meaning

t, ti sorted rate vector and the ith smallest rate

Nβ ,Db number of bins and set of demands in bin b

ℓb, sb boundary and slackness of bin b

fb, fkb bin allocation vector and rate of demand k in bin b

TABLE 3: Additional notation for Soroush.

We develop an approximate one-shot optimization by lin-
earizing SWAN’s approximate geometric method. Our idea
is to define “bins” that capture the geometric rate increase
at each iteration and introduce new variables to model each
flow’s allocation from each bin instead of the cumulative total.
This combination of techniques is novel and has the same
worst-case fairness guarantees as SWAN. By linearizing at
the granularity of bins, we no longer encounter double pre-
cision issues, do not need a sorting network, and achieve an
empirically faster solution.

We flesh out the details next (Tables 2 and 3 show our
notations). We discuss why this one-shot optimization is fun-
damentally smaller and faster than SWAN’s sequence of op-
timizations. We present results from our production deploy-
ment in §4.2.

Max-min fair allocation as a sequence of LPs. If we have n
demands, we can use n LPs to compute max-min fair alloca-
tions — the ith LP in the sequence maximizes the ith smallest
rate. Let ti be the ith smallest rate, then:

MaxMini(E ,D,P) ≜ argmax ti (1)

s.t. (t1, . . . , ti−1) ∈ MaxMini−1(E ,D,P),
fk ≥ ti, ∀k whose rate is not yet frozen

f ∈ FeasibleAlloc(E ,D,P).

Note that the algorithm freezes demands that can not re-
ceive more than ti in each iteration. These demands will not
receive any allocations in later iterations.

Our one-shot optimal max-min fair solution. We
change Eqn. 1 (changes are in color) to a single optimiza-
tion by (1) using a sorting network [7, 35, 45] to sort the
rates as part of the optimization (Fig. A.1), and (2) using a
linear weighted objective where the weight of a demand de-
creases based on its rank in the sorted order — these weights
incentivize the optimization to increase the smaller rates.

Eqn. 1 does not need sorting because each LP maximizes
the next smallest rate. The one-shot optimization, however,
must explicitly sort the allocations in order to weight them
appropriately in the objective. Let ϵ < 1, then:

OneShotOpt(E ,D,P) ≜ argmax
f

n∑︂
i=1

ϵi−1ti (2)

s.t. (t1, . . . , tn) = sorted rates(f),
f ∈ FeasibleAlloc(E ,D,P).

We prove OneShotOpt leads to max-min fair rates:



Theorem 1. There exist values of ϵ for which the optimization
in Eqn. 2 yields the same max-min fair rate allocations as the
sequence of optimizations shown in Eqn. 1.

Proof Sketch. Let t† be the rate vector solution from Eqn. 2.
Notice that the optimal max-min fair rate vector, say t∗, is
a feasible solution to Eqn. 2. Thus,

∑︁
i ϵi−1t†

i ≥
∑︁

i ϵi−1t∗
i

(otherwise t† is not the optimal solution to Eqn. 2). We can re-
arrange and get t∗

1 − t†
1 ≤ ϵ

(︂∑︁
i>1 ϵi−1t†

i −
∑︁

i>1 ϵi−1t∗
i

)︂
.

By definition of max-min fairness, we have t∗
1 ≥ t†

1 since t∗
1

is the smallest allocation in the optimal max-min fair solution.
If we can find a feasible assignment where the smallest rate t†

1
is higher, then t∗ cannot be max-min fair — we can increase
the smallest rate without hurting any other demand with an
smaller allocation (because no such demand exists). These
statements together imply the smallest rates must match as
ϵ → 0. The rest follows by induction.

OneShotOpt is not practical. We need a small ϵ to find an
optimal solution (see proof), but we will encounter double pre-
cision errors if the smallest weight (ϵn−1) is too small. In this
case, the formulation may have to sacrifice optimality and use
a large ϵ to solve the one-shot optimization (especially when
there are many demands). Even with a large ϵ, we find that
solving LPs with a full sorting network is slow [35, 45] since
sorting networks add O(nlog2(n)) additional constraints.

Our one-shot GeometricBinner (or GB) linearizes the fol-
lowing approximate max-min fair technique. Compared
to Eqn. 1, Eqn. 3 shows a shorter sequence of LPs inspired by
SWAN [30] (changes in color) but also differs from SWAN 8

in one crucial way (it introduces new variables to track the
increase in the allocation of each demand in each iteration):

ApproxMaxMinb(E ,D,P) ≜ argmax
∑︂
k∈D

fk (3)

s.t. fk =
∑︂

bins j≤b

fkj , ∀k ∈ D

fk1 ≤ U, ∀k ∈ D

fkb ≤ U(αb−1−αb−2), ∀b > 1,∀k ∈ D

fkb = 0 if
∑︂
j<b

fkj < Uαb−2, ∀b > 1,∀k ∈ D

(f1, . . . , fb−1) ∈ ApproxMaxMinb−1,

f ∈ FeasibleAlloc(E ,D,P).

The changes cause the bth LP, where index b begins at 1, to
allocate only up to U(αb−1 − αb−2) for b > 1 and up to U
for b = 1. The algorithm also freezes any demand that does
not receive the full rate from the previous iteration. α and
U are input parameters that control the fairness guarantee
and the minimum rate, respectively. Observe that each LP
in the sequence allocates rates unfairly, but the unfairness is
bounded as each LP allocates rates only within a small range.

8Eqn. 9 in §C shows SWAN’s formulation for comparison.
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FIGURE 6: Geometric Binning: Approximate one-shot max-
min fair allocations. We can model the problem in one shot be-
cause we add a new variable to track the allocation to each demand
from each bin. With this idea, we can then change the objective to
incentivize the optimization to make sure its allocation saturates
smaller bins before allocating from subsequent bins.

Fig. 6 shows the key idea behind our one-shot geometric
binner. If we consider each allocation as the sum of contri-
butions from different, geometrically-sized bins, we can use
ϵ-weighting per bin to incentivize the optimization to allocate
more from the smaller bins. The resulting formulation is:

GeoBinning(E ,D,P) ≜ argmax
f

∑︂
k∈D

∑︂
bins b

ϵb−1fkb (4)

s.t. fk =
∑︂

bins b

fkb, ∀k ∈ D

fk1 ≤ U, ∀k ∈ D

fkb ≤ U(αb−1−αb−2), ∀b > 1,∀k ∈ D
f ∈ FeasibleAlloc(E ,D,P).

The geometric binner (Eqn. 4):

• Applies to various bin choices beyond the geometric
ones we used here. We use a similar intuition from equi-
depth binning in databases [32] to show in §3.3 that we
can choose bin boundaries to improve fairness.

• Offers the same fairness guarantee as SWAN [30] when
using the same (geometric) bins. GeoBinning allocates
rates within an α ratio of the optimal max-min fair rates
for any demand.

Theorem 2. Eqn. 4 assigns resources to a demand k in
bin b only if it has assigned demand k the full rate from
all of the larger-weighted bins.

Proof Sketch. Assume otherwise: Eqn. 4 has assigned a
non-zero rate to some demand k in some bin b without
assigning the full rate from some other bin j < b. Then,
we can move some δ rate from bin b to j and not violate
any constraints yet improve the objective value.9
We can combine Theorem 2 with the proof technique of
Theorem 1 to prove Eqn. 4 will allocate the same rates
as Eqn. 3, so the approximation ratio proof from [30]
applies directly.

• Lets users adjust α to balance the trade-off between
fairness approximation guarantee and the solver time.

9Smaller indexed bins have larger weights because ϵ < 1.



Algorithm 1: Waterfilling algorithm to compute
single-path weighted max-min fair rates.

Input: Γ where Γ [e,k] is the weight of single-path demand
k on link e.

Input: c: link capacity vector.
Output: f : max-min rate allocation vector.

1 Da← [0, . . . ,K−1] initial list of active demands
2 f ← 0 initial rate vector
3 while |Da|> 0 do
4 n← Γ1 total weight per link
5 ζ← c

n vector division, fairshare per link
6 e← argmin ζ link with minimum fair share
7 De←{k : Γ [e,k] > 0} active demands on link e

8 foreach k ∈ De do
9 f [Da[k]]← ζ[e]Γ [e,k] fix to weighted fair share

10 foreach l : Γ [l,k] > 0 do
11 c[l]← c[l]− f [Da[k]] deduct allocations
12 end
13 end
14 c← c[\{e}] remove link e

15 Γ ← Γ [\{e};\De] remove link e and its demands
16 Da←Da \De update set of active demands
17 end
18 return f

• Is less likely to run into precision issues compared
to Eqn. 2 since there are fewer bins than demands.

• Requires no sorting constraints unlike Eqn. 2.
• Is only slightly larger in size compared to each of the

optimizations in Eqn. 3 (see §F for more details). The
key difference is that we can now run one LP instead of
many. The one-shot optimization is empirically faster,
likely due to redundant computation between the LPs in
the sequence of optimizations in Eqn. 3.

3.2 Multi-path Waterfilling
We also generalize the classical waterfilling algorithm for
max-min fair allocation over multiple resources. We present
parallelizable combinatorial algorithms (and not optimiza-
tions) with better empirical performance compared to §3.1
but weaker fairness guarantees.

Waterfilling is a well-known method that applies to sce-
narios where all the demands are unconstrained and require
resources on exactly one path [36]. Under these conditions,
we can achieve max-min fairness by visiting resources in the
ascending order of their fair share and splitting their capacities
fairly among the demands [67] (see Alg. 110)

We extend this approach to constrained demands by adding
a virtual edge with a capacity equal to the requested rate for
each demand. This augmented topology ensures that demands
receive at most what they asked for. For small requests, the
virtual edge becomes the bottleneck and limits the allocation.

It is harder to generalize waterfilling to multi-path settings

10Notice weighted max-min fair allocation is roughly the same with one
minor change: we relatively weigh the rate we allocate to each flow.
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(b) AW’s weight multipliers and allocations converge to global
max-min fair allocation.

FIGURE 7: An example to illustrate the difficulty in extending
waterfilling to multi-path settings and how our AdaptiveWaterfiller
effectively tackles the issue. Waterfilling (single-path) computes
local fair shares and is ineffective in multi-path settings as it ignore
the dependencies between different paths of a single demand.

because the local max-min fair allocation at individual re-
sources is not globally fair. Fig. 7 shows a simple example
where the blue demand — which has access to more paths —
must receive a locally unfair share on the common link in
order to produce a globally max-min fair solution. We next
modify waterfilling to produce approximate, globally max-
min fair rates in the general multi-resource setting.

ApproxWaterfiller (or aW): For each demand, aW creates
several “subdemands”, each going through one of the de-
mand’s paths. Subdemands of each demand pass through a
shared virtual edge to ensure the algorithm does not allocate
more than the requested rate. We then use waterfilling to
assign rates to these subdemands. This algorithm simply ig-
nores the coupling between multiple paths and does not reach
global max-min fair rates, but we use it as the starting point
to generalize waterfilling. As a solution, it is fast, and we also
use a variant of Alg. 1 to speed it up further (Alg. 2).

The new algorithm simplifies Alg. 1 by retaining the initial
order of the links in subsequent iterations. In each iteration, it
only recomputes the fair share for the link under consideration
and fixes the rates for the demands bottlenecked by that link.
It is approximate (even in the one-path case [5, 54]) but is
faster and more parallelizable.

Global max-min fairness assigns lower rates to subdemands
that are on congested paths but their corresponding demand
can get enough allocation from its other paths. For example,
the blue demand in Fig. 7(a) should receive a lower allocation
on the path through the congested link. Intuitively, the allo-



Algorithm 2: Our Approx. Waterfilling algorithm to
compute single-path weighted max-min fair rates.

Input: Γ where Γ [e,k] is the weight of single-path demand
k on link e.

Input: c: link capacity vector.
Output: f : max-min rate allocation vector.

1 f ←∞ initial max-min rate set to ∞
2 n← Γ1 total weight per link
3 L← argsort c

n vector division, sort links in ascending order
4 foreach e ∈ L do
5 De←{k : Γ [e,k] > 0} demands on link e

6 while De ̸= ∅ do
7 ζ← c[e]∑︁

k∈De
Γ[e,k]

fair share of link e

8 B ← {k ∈ De : f [k] < ζΓ [e,k]}
9 if B = ∅ then if no flows bottlenecked elsewhere,

10 f [De]← ζΓ [e,De] fix rate to weighted share.
11 break
12 else otherwise, remove those bottlenecked elsewhere.
13 c[e]← c[e]−

∑︁
k∈B f [k]

14 De←De \B
15 end
16 end
17 end
18 return f

cator can get closer to global max-min fair assignments by
moving each demand’s allocation from more congested paths
to less congested ones. We can achieve this by iteratively seek-
ing more rates from subdemands that have received higher
rates (i.e., on less-contended paths) in previous iterations.

AdaptiveWaterfiller (or AW): Motivated by this intuition,
AW uses a weighted version of aW (using Alg. 1 or Alg. 2)
and adjusts the input weights (Γ) to seek more rate from
subdemands on less congested paths.

Let θp
k be the weight multiplier for the subdemand of

demand k on path p. AW initializes these multipliers as
θp

k = 1
∥{p∈Pk}∥ . In each iteration, AW first computes Γ di-

rectly from θ. Γ [e,kp] is the weight of the subdemand kp

(demand k on path p) on link e11. Following the definition,
Γ [e,kp] = θp

k 1 [e ∈ p]. AW then invokes one of the waterfill-
ing algorithms12 with these weights Γ . For iteration t+1, AW

sets θp
k(t+1) = f

p
k

(t)∑︁
p

f
p
k

(t) where fp
k (t) is the rate demand k

obtains from path p in iteration t. We show how multipliers
and rates evolve in our example in Fig. 7(b).

AW converges when θp
k(t+1) = θp

k(t). We can prove that
adapting weight multipliers gets close to global max-min
fairness: we say a rate assignment in the multi-path setting
is bandwidth-bottlenecked if for all demands k, (i) each of
its subdemands fp

k is bottlenecked on some link l, and (ii)

11Note that waterfilling requires each demand to be on a single path. We
use the notation kp to show the single-path subdemands.

12We use Alg. 2 for our experiments since it is an order of magnitude faster
with only a slight decrease in fairness (Fig. 8).

fk ≥ fj , for all demands j that have any subdemand on any
such link l. We prove in §D.1 that:

Theorem 3. If the adaptive waterfiller converges, it converges
to a bandwidth bottlenecked assignment.

We prove the global max-min fair allocation is bandwidth-
bottlenecked (see §D.2). The converse is not true — not all
bandwidth-bottlenecked allocations are max-min fair. How-
ever, the set of bandwidth-bottlenecked allocations is signifi-
cantly smaller than the set of all feasible allocations. We also
prove that AW converges when its assignment is bandwidth-
bottlenecked (i.e., it stops iterating). Empirically, AW’s allo-
cations stabilize within 5 – 10 iterations on average (§4.4).

Adaptive waterfiller produces allocations that belong to
a constrained set containing the optimal max-min fair rates.
It is slower than approximate waterfiller because it iterates
and updates weight multipliers. It is faster than the Geometric
Binner as it does not solve an LP. Users can tune the maximum
number of iterations to trade-off between fairness and speed.

3.3 Combinations and Extensions
Empirically, we find that the geometric binner (§3.1) is fairer
than what its worst-case guarantee suggests (recall, we prove
the rates will be within [α−1,α] times the optimal max-min
fair rate). We can attribute most of the unfairness to bins that
happen to contain many demands (Fig. A.5): can we set the
bin boundaries differently to improve fairness?

We use the generalized waterfillers (§3.2) — which are fast
but lack worst-case guarantees — to set bin boundaries in a
way that spreads demands more uniformly across bins:

Equi-depth Binner (or EB) applies GeoBinning (Eqn. 4) with
a few changes: it uses the rate allocation from AdaptiveWa-
terfiller to approximate the order across demands; distributes
demands more uniformly over bins; and finds the bin bound-
aries as part of the optimization. Specifically, EB divides de-
mands D into Nβ equi-sized sets (D1 . . .Dn) based on their
increasing order of rates from AW. In EB, the demands in a set
Db only receive rates from one bin with index b. EB dynami-
cally chooses bin boundaries: ∀k ∈ Db, ℓb−1 ≤ fk < ℓb +s(b)
where s(b) is a small constant that helps reducing the impact
of inaccuracies from AW. We provide a more formal definition
of EB in §E.

EB is slower than GB and AW because it executes both but
we expect it to be fairer than GB — it spreads demands more
uniformly across bins. We empirically confirm this hypothesis.
It is hard to formally analyze EB but we suspect it also offers
tighter worst-case guarantees. This is subject for future work.

Extensions: We did not explicitly account for weighted max-
min fairness (e.g., wk in §2.1) when describing our one-shot
optimization. This extension is straightforward. For example,
we can replace the first constraint in the geometric binner (GB)
in Eqn. 4 with fk/wk =

∑︁
bins b fkb. Algorithm 2, which we

use in our generalized waterfillers in §3.2, already supports



weights. We compute the per-edge per-subdemand weighted
routing matrix as Γ [e,kp] = wkθp

k1 [e ∈ p].
We have also omitted the heterogeneous utilities, different

resource consumption scales, and other affine functions in our
model (§2.1) when describing the solutions. These extensions
are also straightforward and we show them in §A. The key
is to appropriately manipulate the constraints that determine
when an allocation is feasible (FeasibleAlloc, Eqn. 5).

4 Evaluation
Implementation. We implemented Soroush in Python and C#
using Gurobi 9.1.1 [27] as the solver.

Summary of results. We apply Soroush to traffic engineering
(TE) and cluster scheduling (CS). We show Soroush captures
the trade-off between speed, fairness, and efficiency. We also
show the results from integrating Soroush with Azure’s pro-
duction TE system where it reduces the run-times by up to
5.4× without any impact on efficiency and fairness.

In TE, all the allocators in Soroush are faster than both the
optimal algorithm by Danna et al. [17] (referred to as Danna)
and the more practical α-approximate SWAN [30]. Soroush
contains algorithms that match or exceed the efficiency or
fairness of these methods while running orders of magnitude
faster. Soroush can also trade-off (a little) fairness and effi-
ciency for up to 3 orders of magnitude speed up.

Our solution scales to one of the largest WAN topologies
(over 1000 nodes and 1000 edges), which is significantly
larger than those in [10,17,30,34,75] and matches the size of
topologies in [4]. We also analyze the sensitivity of Soroush
to demand variations and other relevant inputs.

In CS, we show Soroush outperforms two variants of
Gavel [56]. Our Equi-depth binner (EB) has the same fairness
and efficiency as the optimal variant of Gavel (the one with
waterfilling), but is 2 orders of magnitude faster.

4.1 Benchmarks and Metrics
Benchmarks. We use state-of-the-art solutions in both WAN-
TE and CS as benchmarks to evaluate Soroush:

WAN-TEs. We use Danna [17], SWAN [30], and a modified
version of the k-waterfilling algorithm [36] as benchmarks.
We also provide limited comparisons with B4 [34] for com-
pleteness (see §4.2). The k-waterfilling algorithm only applies
to single-path, infinite-demand scenarios — we extend it to
multi-path, demand-constrained cases. We tune each bench-
mark for maximum speed (see §G.1). Following [30], we set
α = 2 for SWAN and GB unless mentioned otherwise.

CS. We compare with two variants of Gavel [56], the state-
of-the-art max-min fair allocator in CS (with and without
waterfilling). We use Gavel’s public implementation.

Metrics. We use the following metrics for comparisons:

Fairness. We report fairness of a particular allocation (f ) as

Topology # Nodes # Edges

WANLarge ∼1000s ∼1000s
WANSmall ∼100s ∼1000s
Cogentco 197 486
UsCarrier 158 378
GtsCe 149 386
TataNld 145 372

TABLE 4: Topologies used for the evaluation of Soroush.

its distance from the optimal max-min fair allocation (f∗)13.
For fairness distance, we use the qϑ metric [46, 47]. This
metric is resilient to numerical instability and is computed as
min

(︁ max(fk,ϑ)
max(f∗

k
,ϑ) ,

max(f∗
k ,ϑ)

max(fk,ϑ)
)︁

for a given demand k. We report
the geometric mean of qϑ across all the demands as the overall
fairness measure (the geometric mean is less sensitive than
the arithmetic mean to outliers). For our evaluations, we use
ϑ = 0.01% of the resource (link or GPU) capacities.

Efficiency. We measure efficiency in TE as the total rate
allocated to flows relative to Danna (i.e., e

edanna
). For CS, we

measure the effective throughput which is the progress rate
of a job given an allocation. We report CS efficiency relative
to Gavel (i.e., e

egavel
).

Runtime. In most cases, we report speed up (i.e., relative
runtime compared to a baseline sbaseline

s ). Our runtimes con-
sist of the time each algorithm needs to compute the alloca-
tions. We measure runtimes on an AMD Operaton 2.4GHz
CPU (6234) with 24 cores and 64GB of memory.

4.2 WAN Traffic Engineering
Experiment Setup. Table 4 summarizes the topologies in our
evaluation. We show the results for both Azure’s production
WAN topology and the topologies from the Topology Zoo [1].
We use K-shortest paths [73] to find the paths between node
pairs (K=16 unless mentioned otherwise).

For topologies from Topology Zoo, we generate traffic
using Poisson [6], Uniform, Bimodal, and Gravity [6, 62]
distributions. We follow [4] and generate traffic at different
scale factors. Our traffic spans a range of loads: light (scale
factors {1, 2, 4, 8}), medium ({16, 32}), and high ({64, 128}).
At higher loads, more flows compete for traffic than at medium
or light loads. We report results of over 640 experiments,
which capture different traffic and topology combinations.

Comparison to benchmarks (Fig. 8 and 9). All algorithms
in Soroush are faster than SWAN and Danna (Fig. 8). Each
approach is in a different color in this figure, and each point
corresponds to a single traffic demand on a single topology.
The plot also shows the mean and standard deviations along
the fairness and speedup axes.

We see the trade-off across these different max-min fair
resource allocators: (a) Danna is optimal but also by far the

13Danna and Gavel (w waterfilling) compute the optimal max-min fair
allocations in TE and CS respectively. They are too slow for practice but we
can run them to completion outside of a production environment.

http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/UsCarrier.jpg
http://www.topology-zoo.org/maps/GtsCe.jpg
http://www.topology-zoo.org/maps/TataNld.jpg
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FIGURE 8: The fairness vs speed trade-off across different approaches. As in [4], we use the scale-factor to denote the level of load. We
observe even the slowest algorithm in Soroush is faster than SWAN and Danna. While 1-waterfilling is faster than most of the algorithms in
Soroush, it has to sacrifice much more in terms of fairness (it is 30% less fair than Danna in the high load case).
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FIGURE 9: The efficiency of Soroush’s algorithms and our benchmarks. We report numbers relative to Danna. Empirically, Soroush
Pareto-dominates SWAN, 1-waterfilling, and Danna on the efficiency, agility, and fairness. In (c), the error bar is small because of light
load — most solutions can satisfy all the demands (fairness is also close to one for most algorithms in these cases.)

slowest (on average taking 4.3× longer than the second slow-
est algorithm, SWAN, under high-load); (b) 1-waterfilling is
the fastest of the baselines but does not consider flow-level
fairness (30% less fair than Danna on average but 4 orders of
magnitude faster); (c) SWAN sits somewhere in between. It
is faster than Danna (solves fewer optimizations), but slower
than 1-waterfilling (1-waterfilling does not solve any optimiza-
tion). It is fairer than 1-waterfilling but unlike Danna does not
achieve optimal max-min fairness; (d) Soroush empirically
Pareto-dominates these baselines as each of its algorithms
provide a different point on the trade-off space.

Our algorithms are most effective under high loads (ar-
guably, speed and fairness matter most). Soroush’s Geometric
Binner (GB) is faster than SWAN by 4.5× on average (6× in
the 90th percentile) because it only solves a single optimiza-
tion. GB also has worst-case fairness guarantees. The Equi-
depth Binner (EB) is faster than SWAN, slightly slower than
GB, and fairer than both. Soroush’s Approximate Waterfiller
is even faster than 1-waterfilling (by an order of magnitude)
with the same flow-level fairness. Soroush’s Adaptive Water-
filler improves fairness (19% higher on average) at a slight
speed reduction (still 21.4× faster than SWAN on average).

Fig. 9 compares the efficiency of different methods. Under
low loads, all schemes are comparable. The differences be-
come evident at higher loads, where EB is approximately as

efficient as Danna. GB and SWAN are more efficient, likely
because they sacrifice fairness.

We can see these differences more clearly when we focus
on a single topology and workload in Fig. 10. Soroush’s allo-
cators Pareto-dominate other approaches. The Approximate
Waterfiller, Adaptive Waterfiller (number of iterations = 3 and
10), and EB are faster than SWAN and Danna. Adaptive Water-
filler and EB are also fairer than SWAN while having compara-
ble efficiency. Operators can use GB to get strong worst-case
guarantees (at the cost of reduced fairness). B4 [34]’s TE
algorithm is just as fast and fair as GB (albeit slightly less
efficient) but does not have fairness guarantees. Note that
we can control the fairness and runtime of GB by tuning α,
whereas we can not control either in B4.

In summary, in settings where Danna is impractical, Soroush
outperforms other TE algorithms (SWAN, 1-waterfilling, B4).
Depending on the requirements, users can opt for Adaptive or
Approximate Waterfillers, or EB (or GB if fairness guarantees
are important). They can also customize the parameters in
each allocator to further tune the balance.

Production deployment (Fig. 11). We have successfully
deployed Soroush in the production TE pipeline of Azure. Mi-
crosoft opted for GB as it has the same fairness guarantees as
their existing TE solver. Fig. 11(a) shows cumulative density
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FIGURE 10: The empirical Pareto-dominance of Soroush over
all of our baselines on an example topology (Cogentco) and
an example workload with 64× scale factor. The size of the
markers in (a) are in proportion to the efficiency of each algorithm
— we report exact comparisons in (b).

function (CDF) of the relative speed up of Soroush compared
to the provider’s previous allocator. These measurements are
over a month-long deployment in a WAN with thousands of
nodes. Soroush reduces the run-time on average by 2.4× (up
to 5.4×) without impacting fairness or efficiency.

We compare Soroush with the previous allocator on pro-
duction demands at different loads (Fig. 11(b)). Soroush’s
speedup increases with the load because the previous iterative
solver invokes more optimizations at higher loads. Soroush’s
efficiency also increases because its ϵ-trick can exploit minor
fairness violations to improve efficiency. In all cases, Soroush
is within 1% of the previous solver’s fairness.

Tracking Changing Demands (Fig. 12). We evaluated each
method on a sequence of traffic, arriving every five minutes
(a window), starting from a medium load traffic demand. Our
methodology is the same as NCFlow [4]. In this scenario,
SWAN needs two windows to compute each allocation – it
only computes allocations for half of the demands. This re-
sults in up to 10% reduction in fairness compared to an instant
SWAN (a hypothetical scheme that computes the allocation
instantly). However, EB14 reacts to changes quickly and meets
all the deadlines. In general, SWAN’s inability to keep track
of demands leads to even higher unfairness than EB (rela-
tive to what we reported in Fig. 8). Also, as we move from
medium to high load, we expect the difference to be more as
SWAN is even slower and needs to solve more optimizations.

4.3 Cluster Scheduling
Experiment Setup. We generate job requests from Gavel’s
job generator: we consider 3 types of GPUs (V100, P100,

14GB is faster than EB. If the latter can keep up, so can GB. We have
omitted an evaluation based on GB for this reason.

1 2 3 4 5
speed up wrt Production Cloud

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n 

of
 sc

en
ar

io
s

speedup

(a) Speedup

20 21 22 23 24 25

load factor
0

1

2

3

4

sp
ee

d 
up

 
 w

rt 
Pr

od
uc

tio
n 

Cl
ou

d

Speed up

0.98

1.00

1.02

1.04

1.06

to
ta

l f
lo

w 
 w

rt 
Pr

od
uc

tio
n 

Cl
ou

d

total flow

(b) Impact of load

FIGURE 11: Results from deploying Soroush in production.
(a) Month-long measurements show substantial speedup with
no impact on efficiency or fairness compared to the provider’s
previous max-min fair allocator. (b) Using production traces, we
show the benefit of Soroush improves as loads [4] increase.
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FIGURE 12: Impact of solver runtimes on fairness when de-
mands change. SWAN can not react to the new demands quickly
and faces another 10% reduction in fairness whereas EB can keep
track of the changes. These results are on Cogentco following
NCFlow’s change distribution [4] on medium load traffics.

K80) and uniformly sample jobs from the 26 different job
types available in Gavel (see §G.2). Jobs are heterogeneous:
they require a different number of workers (which we derive
from the Microsoft public trace [3]) and have different priori-
ties (which we sample uniformly from the set {1,2,4,8}).

Comparison to benchmarks. We report results on over 40
different scenarios, which capture different number of avail-
able GPUs and competing jobs (see §G.2 for more details).
Our results match our observations from WAN-TE; Soroush
Pareto-dominates both Gavel and Gavel with waterfilling. We
present these results in Fig. A.2 in §G.2 for space.

We provide further insight into Soroush’s performance
through an example scenario where 8192 jobs compete for
resources (Fig. 13). Adaptive Waterfiller outperforms stan-
dard Gavel in fairness, efficiency, and speed. For CS, GB
is slower than Gavel but fairer (more than 10%) and more
efficient (more than 30%). We can augment Gavel with water-
filling [56] to improve it, but with a substantial slowdown. In
contrast, EB provides comparable fairness and efficiency as
Gavel with waterfilling and is ∼ 2 orders of magnitude faster.
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FIGURE 13: Trade-off between efficiency, fairness, and speed
in CS on an example scenario (with 8192 jobs). (a) shows
the fairness vs run-time behavior of the different approaches; (b)
shows the efficiency relative to the Gavel w waterfilling. Empiri-
cally, Soroush Pareto-dominates both variants of Gavel.

4.4 Convergence and Sensitivity Analysis
Convergence. We empirically evaluate the convergence of
the Adaptive Waterfiller. In §D, we proved the algorithm
in §3.2 only converges to and stops if it finds a bandwidth-
bottlenecked allocation but may not converge if it does not
find one. We empirically find that Adaptive Waterfiller always
converges. Fig. 14(a) shows how its weights and fairness
properties change with the number of iterations: the weights
stabilize after 5 iterations.

Impact of number of bins. Fig. 14(b) and 14(c) show fairness
and efficiency of binners (GB/EB) for different number of bins.
Soroush uses this parameter to tune the trade-off between
efficiency, fairness, and run-time. Using more bins increases
fairness because the number of demands within each bin
decreases but at the cost of higher run-time (more variables
in the optimization). EB is fairer than GB for up to 16 bins
because GB suffers from bin-imbalance. However, GB does
not incur bin-imbalance for ≥ 32 bins and both methods have
roughly the same fairness. The slightly lower fairness of EB
is due to Adaptive Waterfiller making small mistakes when
estimating the order of rates and influencing EB’s binning.

4.5 Other Experiments
Impact of number of paths. We explore how sensitive our
solutions are to the number of paths by varying this parameter
and comparing our fairest methods (i.e., Adaptive Waterfill-
ing and EB) to SWAN (Fig. 15). Increasing the number of
paths improves the benefit of Soroush in both speedup and
fairness. With more paths, each optimization of SWAN be-
comes more expensive, while Adaptive Waterfiller as well as
EB can exploit path diversity better to achieve higher fairness.

Impact of topology size. The benefit of Soroush’s allocators
increases with the topology size (Fig. 16): SWAN needs to
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FIGURE 14: Convergence and sensitivity analysis. (a) Adaptive
Waterfiller empirically converges within 5 – 10 iterations. (b, c)
The number of bins controls the trade-off between fairness and
efficiency in EB and GB (fewer bins lead to higher efficiency and
lower fairness). Results are on the Cogentco topology and Gravity
traffic distribution (scale factor = 64). (see Fig. A.3 for Poisson)

solve more optimizations for larger topologies while Soroush
solves a fixed number of optimizations (=1 for EB/GB and =0
for adaptive waterfilling).

Comparison to NCFlow and POP. NCFlow [4] and
POP [55] decompose the resource allocation problem to scale
but do not directly address max-min fairness [65]. NCFlow
only maximizes the total flow, and the authors mention in the
paper that it is hard to extend it to max-min fairness objec-
tive [4]. Similarly, POP maximizes total flow and maximum
concurrent flow (i.e., the smallest fractional allocation) but
does not provide any results on max-min fairness. To under-
stand how POP compares to Soroush, we adapt both SWAN
and Soroush to use it. We randomly divide demands (with
client splitting as needed per POP’s guidelines) among differ-
ent partitions and run SWAN or Soroush in parallel on each
partition (Fig. 17, extended evaluation in §G.3).

We use GB to ensure a fair comparison to SWAN: it has
the same theoretical guarantees, is more than 10× faster, and
maintains the same level of fairness. When we apply POP
to SWAN, we lose the worst-case guarantee [53] and have
to sacrifice over 10% in fairness to achieve the same speed
as Soroush. We also observe that applying POP to Soroush
results in the same fairness as SWAN for the same number of
partitions (but is also substantially faster).
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FIGURE 15: Increasing the number of paths improves the
fairness and speedup of Soroush compared to SWAN. Results
are on the Cogentco topology and Gravity traffic distribution
(scale factor = 64). (see Fig. A.4 for Poisson)
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FIGURE 16: Impact of topology size. Soroush’s speed up rela-
tive to SWAN improves with the size of the topology.

5 Discussion
Soroush allows operators to adjust the trade-off between fair-
ness, speed, and efficiency. We focus on multi-path alloca-
tions but our solutions apply to single-path settings too [5,54].
Under this setting, our experiments show the Approximate
Waterfiller is an order of magnitude faster than the fastest
single-path allocator with only a slight decrease in efficiency.
We defer the following to future work:

Other fairness metrics. Soroush does not apply to other, less
commonly used, fairness metrics [11, 12, 33].

Other problem domainss. Soroush applies to any graph-
based resource allocation problem which seeks to achieve
max-min fairness. We demonstrate significant benefit of
Soroush using examples from CS and WAN-TE. To use
Soroush in other domains [5, 24, 36, 43, 50, 54, 64, 71], users
need to model the additional constraints in our graph model.
We aim to provide tools to simplify this in future work.

Distributed extension. Soroush applies to centralized re-
source allocation problems. Our future work aims to extend it
to distributed settings [36, 61, 70, 74].

6 Related Work
TE and CS resource allocation. Prior approaches to both
TE and CS aim to produce fast and efficient allocations [14,
16, 17, 23, 30, 34, 36, 37, 42, 56, 59]. In §4, we show Soroush
outperforms the sate-of-the-art in multi-resource max-min
fair allocation (SWAN, Danna, B4, waterfilling, and Gavel).
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FIGURE 17: Impact of POP [55]. The results are on 3 randomly
generated traffic, following Poisson distribution with a scale factor
64, on the Cogentco topology. Consistent with POP, we use client
splitting (ratio= 0.75) for this traffic distribution. ["X" indicates
that POP is not used, and "Numbers" = number of POP partitions.]

Prior work employs ML in TE [58, 68, 72] to optimize
objectives that are already solved using a single LP (e.g., max
flow). These objectives are either convex or quasi-convex [58].
However, the exact from of max-min fairness is sequential and
we are unaware of any work that considers end-to-end training
on a sequence of LPs. In fact, it may be more tractable for ML
methods to learn our GB which is a single LP. Applying ML
to further speed up Soroush is an interesting future direction.

Recent work [4,55] uses decomposition techniques to scale
resource allocation problems. However, they focus on sim-
pler objectives such as max flow or max concurrent flow that
require single LPs and do not explicitly support max-min
fairness. Extending NCFlow to max-min fairness is non-
trivial as the authors mentioned [4]. We have extended POP
to support max-min fairness and empirically compare it with
Soroush. Our results show POP’s performance depends on the
traffic distribution, whereas Soroush works consistently well.
POP also does not have worst-case fairness guarantees [53],
whereas Soroush has allocators that do (GB).

Algorithms for computing max-min fair rates. Prior work
has expanded our understanding of max-min fair resource al-
location [57, 60]. These are largely theoretical and do not pro-
vide a practical and fast solution. Bandit-based solutions [9]
lack worst-case guarantees and do not allow users to control
the trade-off between fairness, efficiency and speed.

7 Conclusion
Soroush enables fast max-min fair resource allocation for
graph-based problems such as traffic engineering and clus-
ter scheduling. It provides a suite of allocators that Pareto-
dominate state-of-the-art in both of these domains. Some of
the allocators in Soroush have theoretical guarantees, and all
of them have parameters for users to control the trade-offs.
We have deployed Soroush in Azure’s WAN traffic engineer-
ing pipeline. Future work can explore other applications and
other notions of fairness.
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FIGURE A.1: Sorting Network Example.

A Max-min fair allocation optimization
Soroush offers a range of general algorithms that can solve any
max-min fair resource allocation problem expressed using
the model described in §2.1. In this section, we present the
formulation behind this model. Table A.1 describes all the
notations, their meanings, and their mappings to WAN Traffic
Engineering (WAN-TE) and Cluster Scheduling (CS).

Feasible Allocation. Given a set of demands and a set of
paths over a group of resources, an allocation is feasible if
it satisfies demand and capacity constraints. We define the
feasible allocation as:

FeasibleAlloc(E ,D,P,Q,R) ≜
{︁

f | (5)

fk =
∑︂

p∈Pk

qp
kfp

k , ∀k ∈ D(allocation for demand k)

∑︂
p∈Pk

fp
k ≤ dk, ∀k ∈ D(allocation below volume)

∑︂
k,p|p∈Pk,e∈p

re
kfp

k ≤ Ce ∀e ∈ E(allocation below capacity)

fp
k ≥ 0 ∀p ∈ Pk,k ∈ D(non-negative allocation)

}︁
Max-Min Fairness. Among all the feasible allocations, the
optimal max-min fair solution seeks:

OptFair(E ,D,P,Q,R) ≜ argmax
f

fair(f/w) (6)

s.t. f ∈ FeasibleAlloc(E ,D,P,Q,R)

where the function fair(x) encodes the max-min fairness
objective. To our knowledge, prior works do not present a
closed form of this function. In §B, we introduce two potential
candidates (one exact and one that converges in the limit).

B Closed-form max-min fair objective
We present two closed form representations of the max-min
fair objective: one exact, and one that converges to the max-
min fair objective in the limit. The exact form is the following:

fair(f) = argmax
f

⋃︂
{FA|FA⊆f}

min({fk | fk ∈ FA}) (7)

Intuitively, this is a collection of maximization problems,
where each maximizes the smallest flow in a given subset
of f (a total of 2|f | maximizations). We next prove that this
objective, in the instance that f are bounded, results in max-
min fair allocations.

Proof. Without loss of generality, we assume if i < j then
fi ≤ fj for all fi,fj ∈ f .

Suppose the theorem is not true: there exists an allocation
f∗ which is optimum as measured by the objective in 7 but is
not max-min fair. Three scenarios might have caused this;

Case 1. A flow i exists with unbounded f∗
i , which can not

be true as we assume all the flows are bounded.
Case 2. A flow i exists that we can improve its rate with-

out hurting other flows with ≤ rate. One of the constraints
in Eqn. 7 is to maximize fi as a result such i can not exist.

Case 3. Two flows i and j exist (i < j) with optimal max-
min fair rates of f̂ i and f̂ j such that f̂ j < f∗

j and f∗
i < f̂ i.

This means that in the solution from Eqn. 7, flow j is receiving
more than its share and is hurting flow i. This also can not
happen since it violates one of the constraints in Eqn. 7 that
maximizes the minimum of i and j. (Note that this holds
even if f̂ i = f̂ j since maximizing the minimum of these two
ensures they get equal rates.)

As a result, each flow is guaranteed to be bounded, achieve
its maximum possible rate, and can not hurt any other flow
with less than or equal rate. This is the definition of max-min
fairness (f∗ is max-min fair).

An alternate closed form representation of max-min fair is
the following:

fair(f) = argmax
f

∑︂
i

ϵ

∑︁
j ̸=i

I(fi≤fj)
fi (8)

We can prove this converges to the max-min fair rate allo-
cations as ϵ → 0 similar to the proof of Theorem 1.

C SWAN as a sequence of LPs
The original formulation of the bth iteration of SWAN [30] is
the following:

SWANMaxMinb(E ,D,P) ≜ argmax
∑︂
k∈D

fkb (9)

s.t. fkb ≤ Uαb−1, ∀k ∈ D

fkb

{︃
= fk(b−1) if fk(b−1) < Uαb−2

≥ fk(b−1) otherwise
, ∀b > 1

(f1, . . . , fb−1) ∈ SWANMaxMinb−1,

f ∈ FeasibleAlloc(E ,D,P).

where fkb is the total allocated rate to demand k up to itera-
tion b.



Term Meaning CS WAN-TE

w inverse of coefficient vector in the objective of fair(.)
where wk indicates the weight for the k-th demand and
encodes the desired proportional max-min fair allocations.

priority of job k (In [56] = user specified prior-
ity × effective average throughput / number
of workers)

priority of different services
(e.g., search and ads)

qp
k

the utility obtained by demand k when assigned 1 unit on
path p.

progress rate of the k-th job when assigned 1
unit on server p

= 1

re
k capacity consumed on resource e (i.e., link or GPU) when

allocating 1 unit to demand k
capacity consumed by job k from resource e
(CPU, GPU or memory)

= 1

ce capacity of resource e ∈ E capacity of CPU, GPU or any other resources
on a server

capacity of link e

dk the resource requested by the k-th demand job k’s requested duration of time (= 1 in
[56])

flow k’s requested rate

fk,fp
k

fk : demand k’s total utility
fp

k
: demand k’s obtained allocation from path p

fk : job k’s total progress rate
fp

k
: fraction of time server p is assigned to job

k

fk: flow k’s total rate
fp

k
: flow k’s rate on path p

TABLE A.1: Additional notation for the general multi-resource max-min fair formulation in §A.

D Proofs of results for AdaptiveWaterfiller
We present the proofs of the various results mentioned in §3.2
for Adaptive Waterfiller.

D.1 Proof of Theorem 3
If we denote by f(θ), the solution of solving the weighted
waterfilling sub-flow problem with weights θ = {θp

k}, then
convergence implies that

θp
k =

fp
k (θ)

fk(θ) , (10)

so that θp
k(t + 1) = θp

k(t) for all p,k. From the definition
of single-path weighted waterfilling, it must be that if fp

k is

bottlenecked at link l, then
f

p
k

θ
p
k

≥
f

p̂
j

θ
p̂
j

for all non-zero f p̂
j going

through that link. Using Eqn. 10 to replace the weights in
this inequality, it immediately follows that fk ≥ fj . Since
this must hold for every j such that there exists a non-zero
subflow f p̂

j going through link l, it must be that f is bandwidth-
bottlenecked (see definition before Theorem 3).

D.2 Other results
In the discussion after Theorem 3, two results are stated
without proof: the max-min fair rate allocation is bandwidth-
bottlenecked and the adaptive waterfiller converges when it
finds a bandwidth-bottlenecked rate allocation. Here, we pro-
vide their proofs in the form of the two following lemmas:

Lemma 1. If f is a max-min fair rate allocation then it must
be bandwidth-bottlenecked.

Proof. Suppose that this is not true and a max-min rate alloca-
tion is not bandwidth-bottlenecked. This must mean that for
some subflow fp

k bottlenecked on link l, there is another non-
zero subflow f p̂

j going through that link and fj > fk. This

implies that we can increase the subflow fp
k at the expense

of f p̂
j . Ultimately, this increases the allocation of fk without

reducing the allocation of any other equal or smaller alloca-
tion (only reducing the allocation of fj , which was larger to
start with). We arrived at a contradiction since this violates
the definition of max-min fair allocation.

Lemma 2. Every bandwidth-bottlenecked rate allocation f
is a fixed point of the adaptive waterfiller algorithm.

Proof. Assume that f is bandwidth-bottlenecked and we use
these flows (and subflows) to construct weights θp

k = fp
k /fk.

Let us denote by f̃ the solution of solving the weighted water-
filling with those weights. We want to show that f = f̃ . Notice
that the following must hold for a subflow fp

k bottlenecked at
link l:

fp
k

θp
k

=
fp

k

fp
k

fk = fk ≥ fj = fj

f p̂
j

f p̂
j

=
f p̂

j

θp̂
j

, (11)

where the inequality follows from the definition of bandwidth
bottleneck (prior to Theorem 3) and the equality after that one
assumes that f p̂

j is a non-zero subflow also going through link
l. Hence, we have established that for every fp

k bottlenecked

at link l, it must hold that
f

p
k

θ
p
k

≥
f

p̂
j

θ
p̂
j

for all non-zero flows f p̂
j

going through that link. This implies that f is a solution to the
weighted waterfilling problem. However, we denoted by f̃ the
solution to this problem. From uniqueness of the weighted
waterfilling solution, it must be that f = f̃ .

E Equi-depth binner formulation
In this section, we present two variants of Equi-depth bin-
ner — one where boundaries are elastic but the demands
get allocation from exactly one bin, and the other where the



bin boundaries are fixed but the demands are allowed to get
allocation from multiple bins.

Equi-depth binner with elastic bin boundaries. In this vari-
ant, we use the output of AdaptiveWaterfiller to sort demands
by their estimated max-min fair rates. We then divide the
demands from smallest to largest into equal-sized bins (Db),
each assigned to one specific bin. The order of bins is main-
tained using bin boundaries ℓb, which are determined by the
optimization. During the allocation process, we prioritize
bins with smaller demands, following a similar linearization
technique described in §3.1:

ElasticBoundaryEquiBinning(E ,D,P) ≜ (12)

argmax
f ,ℓ

∑︂
bins b

∑︂
k∈Db

ϵb−1fk

s.t. fk < ℓb + sb, ∀b < Nβ ,∀k ∈ Db

fk ≥ ℓb−1, ∀b > 1,∀k ∈ Db

ℓb ≥ 0, ∀b
f ∈ FeasibleAlloc(E ,D,P).

where Nβ is the number of bins, Db denotes the set of de-
mands in bin b, ℓb shows the boundary of bin b (determined by
the optimization), and sb is the slack in quantization boundary
of bin b (input to the optimization).

Equi-depth binner with multi-bin allocations. In this vari-
ant, we use the output of AdaptiveWaterfiller to compute the
bin boundaries ℓb that result in roughly the same number of
demands per bin. Then, we reuse the Geometric Binner’s for-
mulation from Eqn. 4 but with the estimated bin boundaries
instead of geometrically increasing sizes:

MultiBinEquiBinning(E ,D,P,{ℓb}) ≜ (13)

argmax
f

∑︂
k∈D

∑︂
bins b

ϵb−1fkb

s.t. fk =
∑︂

bins b

fkb, ∀k ∈ D

fk1 ≤ ℓ1, ∀k ∈ D
fkb ≤ ℓb− ℓb−1, ∀b > 1,∀k ∈ D
f ∈ FeasibleAlloc(E ,D,P).

F Expected Run-time Benefit of GB and EB
Solving a linear program (with #constraints = Ω(#variables) –
holds for resource allocation problems such as TE and CS) has
worst-case time complexity of O(νa) where a ≈ 2.373 [15]
and ν is the number of variables in the optimization.

One can argue that simply solving a single optimization (as
in the case of EB and GB) does not guarantee lower run-times
compared to solving multiple optimizations (e.g., SWAN).
Solving multiple optimizations adds a multiplicative term to

the time complexity. However, a naive single-shot optimiza-
tion may use too many additional variables and ends up being
slower. In this part, we theoretically analyze the expected
run-time benefit of GB and EB. We show that the speed up
of Soroush’s optimization-based methods is due to their care-
fully designed approaches that only require a small number
of additional variables compared to each optimization in the
multi-shot variant.

SWAN uses 1 variable per demand per path to demonstrate
the allocation from an specific path (ν = PK where P is the
number of paths and K is the number of demands). Therefore,
if SWAN needs NS

β iterations, its worst-case complexity is
O(NS

β P aKa).

GB needs 1 extra variable per demand per bin to measure
the allocation from each bin (ν = (NG

β + P )K – note that
the number of bins in GB (NG

β ) is the same as the number
of iterations in SWAN (NS

β )). This leads to a worst-case
complexity of O((NG

β +P )aKa). Compared to SWAN, the

run-time saving of GB is proportional to Nβ

[︁
1+ Nβ

P

]︁−a. For
P = 16 paths and Nβ = 8 bins, we expect GB to be ∼ 3.06×
faster.

Our analysis of GB is only valid when the number of bins
is small. When there are many bins, GB’s allocation may have
too many zero variables. For example, if we have 128 bins,
and a demand only needs allocation from the first bin, the
remaining 127 bin variables will be zero. Existing solvers
such as Gurobi [27] exploit this sparsity to improve their
runtime.

EB15 only uses 1 extra variable per bin to show the bin bound-
aries (ν = NE

β +PK). Therefore, its worst-case complexity
is O((NE

β +PK)a). Compared to SWAN, EB has a run-time

saving proportional to NS
β

[︁
1+ NE

β

P K

]︁−a. Since the number of
demands is usually substantially larger than the number of
bins NE

β , we can approximate the run-time saving by NS
β .

For NS
β = 8, we expect EB to be ∼ 8× faster.

Although theoretical analysis can help us understand the
speedup of Soroush, solvers can typically perform better than
their worst-case and can take advantage of the structure of the
optimization (e.g., sparsity). In §4, we empirically show that
the speedup of GB compared to SWAN is larger than what
our theoretical analysis predicted. In fact, it is even faster than
EB. Similarly, we found that the speed up of EB compared to
SWAN is only slightly less than the theoretical analysis.

G Extended Evaluation
In this section, we provide both additional experiment details
as well as an extended evaluation of Soroush.

15We analyze the variant with elastic bin boundaries. The other multi-bin
variant has the same complexity as GB since it uses the same optimization.



Model Task App/Dataset #Batch sizes

ResNet-18 Image CIFAR-10 [40] 16, 32, 64,
[29, 41] Classification 128, 256
ResNet-50 Image ImageNet [18] 16, 32,
[2, 29] Classification 64, 128
CycleGAN Image-to-Image monet2photo [76] 1
[44, 76] Translation
LSTM Language Wikitext2 [48] 5, 10, 20,
[63] Modeling 40, 80
Transformer Language Multi30k [20] 16, 32, 64,
[31, 69] Translation (de-en) 128, 256
A3C [26, 49] Deep RL Pong 4

512, 1024,
Autoencoder Recommendation ML-20M [28] 2048, 4096,
[51] 8192

TABLE A.2: Type of jobs used for the evaluation of Soroush. We
use Gavel’s job generator [56].

G.1 Tuning benchmarks for performance
• We warm start SWAN’s and Danna’s optimizations for

iterations > 1 to reduce the run-times. We further tune
Gurobi’s solver parameters using 5% of the traffic demands
to achieve the best run-time.

• Our Danna’s implementation is that of Figure 2 in [17] (i.e.,
binary and linear search): we found this algorithm is faster
than the other proposed by the same work (i.e., binary then
linear search in Figure 4) as it can find and eliminate more
demand-constrained flows.

• Our modified K-waterfilling algorithm uses K=1 which
is the fastest and most parallelizable version of the K-
waterfilling [36].

• For cluster scheduling (CS), we changed Soroush’s imple-
mentation to use CVXPY [19] to match Gavel’s implemen-
tation and ensure fair run-time comparisons.

G.2 Evaluation on CS

Experiment details. We consider 3 different types of GPUs
(V100, P100, K80) and base the number of GPUs on the
number of jobs. We randomly select jobs from a set of 26
different job types available in Gavel (see Table A.2). Each
job has a specific priority and requires a certain number of
workers. We determine the number of workers by randomly
sampling from the distribution obtained from the Microsoft
public trace [3] – 70% of jobs need a single worker, 25%
need between 2 and 4, and the remaining 5% need 8. We also
sample job priorities uniformly from {1,2,4,8}. To compute
the weights in the weighted max-min fair objective, we use
the job throughput estimations from Gavel.

Results. In Fig. A.2, we compare Soroush to two variants of
Gavel (with and without waterfilling) in 40 different scenarios.
The number of competing jobs in each scenario is selected
from the set {1024,2048,4096,8192} – 10 scenarios from
each. Following Gavel, we set the number of each type of
GPU to one-fourth of the total number of jobs and generate
each job using the methodology explained above.
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FIGURE A.2: Soroush empirically Pareto-dominates Gavel.
These results are on 40 different scenarios with varying number
of jobs and GPUs.

The results are in line with our observations from WAN-
TE; (a) Gavel with waterfilling is an optimal max-min fair
algorithm, but it is more than 20× slower than other methods,
(b) Gavel is ∼ 100× faster than the Gavel w waterfilling but
at the cost of ∼ 40% drop in fairness and ∼ 15% drop in
efficiency, and (c) Soroush’s algorithms empirically Pareto-
dominate both Gavel and Gavel w waterfilling.

We also observe that GB is slower than the rest of the meth-
ods except (Gavel with waterfilling), but it provides worst-
case per-demand fairness guarantees.

G.3 Evaluation of POP
POP [55] is a decomposition technique used to scale granular
resource allocations. It involves dividing demands uniformly
at random into partitions, assigning an equal share of each
resource to each partition, and then, solving the resource allo-
cation for each partition in parallel. This procedure is called
resource splitting.

For large demands, POP incorporates an additional method
called client splitting, where demands are divided among mul-
tiple partitions. [55] recommends using client splitting for
Poission traffic distribution, as this can improve resource uti-
lization. However, it is unnecessary for the other distributions
such as Gravity.

POP focuses on objectives such as maximizing utilization
or maximizing the minimum allocation, a different objective
than max-min fairness. To assess the impact of POP on max-
min fairness, we adapt POP to work with both Soroush and
SWAN; We use the same procedure for partitioning the prob-
lem (resource splitting and client splitting as needed). We
then allocate resources in each partition using a max-min fair
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FIGURE A.3: Impact of number of bins on fairness and effi-
ciency of GB and EB. These results are on the Cogentco topology
and Poisson traffic distribution (scale factor = 64).

4 8 12 16 20 24 28
#paths

1.00
1.05
1.10
1.15
1.20

fa
irn

es
s

 w
rt 

SW
AN

Adapt Water EB SWAN

4 8 12 16 20 24 28
#paths

100

101

102

sp
ee

d 
up

 w
rt 

SW
AN

FIGURE A.4: Impact of number of paths in TE. These results
are on the Cogentco topology and Poisson Traffic distribution
(scale factor = 64).

solver such as SWAN or Soroush.

Theoretical Guarantee. POP results in losing all the theo-
retical guarantees (α-approximation for Soroush and SWAN).
In fact, [53] shows a substantial worst-case optimality gap
for POP. However, Soroush is faster than SWAN because of
its single optimization reformulation, while maintaining the
same theoretical guarantees.

Empirical Evaluation. In Fig. A.6, we evaluate the perfor-
mance of POP when applied to Soroush (specifically, GB) and
SWAN for two different topologies, two load factors and two
traffic distributions.

We find that the performance of POP depends on the traf-
fic distribution whereas Soroush maintains the same level
of fairness in all cases while being up to 15× faster than
SWAN. For distributions with granular demands such as Grav-
ity, POP speeds up both SWAN and Soroush with only a minor
drop in fairness. However, using POP causes significant fair-

FIGURE A.5: Example of imbalanced bins in GB for the TE
usecase.

ness degradation – more than 10% to match the run-time of
Soroush– for traffic distributions such as Poisson that are not
granular and require client splitting to avoid resource under-
utilization. This unfairness is a result of per-partition max-min
fairness in POP, which differs from global max-min fairness
in Soroush or SWAN.

We also observe that applying POP to Soroush results in
the same fairness level as SWAN for the same number of
partitions. In each partition, Soroush is guaranteed to produce
an allocation similar to SWAN (see §3.1), and therefore, the
aggregated allocation is guaranteed to be the same. Since
Soroush is faster in each partition, the overall run-time of
Soroush + POP is substantially lower.
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FIGURE A.6: Impact of POP [55]. POP is not designed for max-min fair allocation and can cause drop in fairness depending on the traffic
distribution (both on Soroush and SWAN). In contrast, Soroush achieves lower runtime compared to SWAN while maintaining the same
level of fairness and theoretical guarantees. The figure reports the average over 3 randomly generated demands. "X" indicates that POP is
not used, and the "Numbers" represent the number of POP partitions.
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