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Abstract: This work presents a novel observer design methodology for general hybrid systems
with known jump times. We propose to combine a high-gain flow-based observer estimating the
part of the state that is instantaneously observable from the flow output, with a jump-based
observer estimating the rest of the state from the knowledge of the jump output as well as some
additional fictitious outputs, describing how the instantaneously observable part of the state
impacts the non-observable one at jumps. We give general Lyapunov-based sufficient conditions
for coupling such observers and propose an observer design for a large class of hybrid systems
with nonlinear maps covering mechanical systems with uncertain impact models. Application
to a bouncing ball with an unknown restitution coefficient illustrates the proposed approach.
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1. INTRODUCTION

Observer design for hybrid systems, namely systems com-
bining both continuous and discrete behavior, is widely in-
vestigated in the literature (Bernard and Sanfelice, 2022).
When the times of the discrete events in the solutions,
i.e., the jump times, are known or detected, the observer
jumps can be triggered at the same time as those of the
system, making their solutions have the same (hybrid)
time domain. This allows us to compare them at the same
hybrid time and thus facilitates the convergence analysis of
the observer estimate to the system state. Such hybrid sys-
tems with known jump times include in particular impul-
sive (possibly switched) systems (Medina and Lawrence,
2008, 2009; Tanwani et al., 2013) and continuous-time
systems with sampled measurements (Raff and Allgöwer,
2007; Ferrante et al., 2016). As surveyed in (Bernard and
Sanfelice, 2022), most observer designs for those hybrid
systems assume either: 1) Observability of the flow or
jump dynamics and output, and Lyapunov/LMI-based
sufficient conditions; or 2) Observability of the full state
during flows from the flow output only, leading to (high-
gain) flow-based observers, relying on high-gain continuous
observers (Gauthier et al., 1992) and persistent flowing;
or 3) Observability of the full state from the jump output
only, leading to jump-based observers, relying on persistent
jumping and discrete observers designed for an equivalent
discrete system modeling the flow-jump combination.

However, state components may exhibit different kinds of
observability properties, associated with the flow and/or
jump output(s), or hidden inside the flow-jump coupling.
In output regulation, (Cox et al., 2016) exploits these ideas
for hybrid systems with linear maps, periodic jumps, and
flow output only, where part of the dynamics is instan-

taneously observable during flows from the flow output,
while part of the non-observable dynamics becomes visible
in the observable part at jumps. A similar phenomenon
is exploited in (Tanwani et al., 2013; Shim and Tanwani,
2014) for (non)linear switched systems where observability
is brought by switching among different non-observable
modes; and in (Tran et al., 2022) for hybrid systems with
linear maps by the interaction of non-observable flows and
jumps. Observer design then relies on a state decomposi-
tion, where state components with different observability
properties are separated. It typically couples a high-gain
flow-based observer estimating the instantaneously observ-
able states during flows, with back-and-forth algorithms
or jump-based observers, estimating the rest of the states
from the jump output and fictitious outputs describing
how those states impact the instantaneously observable
ones at jumps.

In this paper, we generalize the approach in (Tran et al.,
2022) to hybrid systems with nonlinear maps. Assuming
(after a change of coordinates) that a part of the state
is instantaneously observable during flows, we propose
to combine a nonlinear high-gain observer during flows
with a jump-based one estimating the rest of the state
and implicitly exploiting observability conditions from an
extended output at jumps made of the system’s jump
output as well as some additional fictitious measurements.
We provide general Lyapunov-based sufficient conditions
to perform this coupling, including observability, dwell-
time, and decoupling conditions in the dynamics. For that,
we rely on Input-to-State Stability (ISS) properties in
each observer with respect to the errors coming from the
other observer, similar to (Liberzon et al., 2014). Then,
we propose a constructive observer design achieving this
coupling for a class of hybrid systems with nonlinear



maps, including mechanical systems with uncertain impact
models. Illustrations are provided considering state and
restitution coefficient estimation in a bouncing ball. Our
method differs from (Shim and Tanwani, 2014) mainly in
the way the fictitious output is treated and in the resulting
jump-based observer: instead of estimating the fictitious
output through back-and-forth high-gain observers and
resetting the estimate via asynchronous parallel compu-
tations, we design a synchronized observer with correction
terms implicitly exploiting this hidden information.

Notations. Let R (resp. N) be the set of real numbers
(resp. natural numbers, i.e., {0, 1, 2, . . .}). For a given
input t 7→ u(t) to ẋ = f(x, u), Ψf(·,u)(x0, t, τ) is the
associated flow operator from initial value x0 at initial
time t evaluated after τ time unit(s). Let sat be a Lipschitz
element-wise saturation function with levels to be picked
depending on the context. For a hybrid arc (t, j) 7→ x(t, j)
(see (Goebel et al., 2012)), we denote dom x its domain,
domt x (resp. domj x) the domain’s projection on R≥0

(resp. N), and for j ∈ N, tj(x) the unique time such that
(tj(x), j) ∈ domx and (tj(x), j − 1) ∈ domx (for hybrid
systems with inputs, see (Sanfelice, 2021)) A solution x
to a hybrid system is complete if domx is unbounded.
The notions of class-K and class-KL functions used are
from (Khalil, 1996, Definitions 4.2 and 4.3). For a function
V : Rnη → R and a hybrid system with state η ∈ Rnη and
input u, we denote V̇ (η, u) the derivative of V along the
flows and V +(η, u) the value of V after a jump.

2. PROBLEM FORMULATION

Consider a hybrid system{
ẋ= f(x, uc) (x, uc) ∈ C yc = hc(x, uc)

x+ = g(x, ud) (x, ud) ∈ D yd = hd(x, ud)
(1)

where x ∈ Rnx is the state; yc ∈ Rny,c (resp. yd ∈ Rny,d)
is the output known during the flow intervals (resp. at
the jump times); uc ∈ Rnu,c and ud ∈ Rnu,d are known
exogenous signals; the maps f and g are the flow and jump
maps; hc and hd are the flow and jump output maps; C
and D are the flow and jump sets, respectively. The jump
times of each solution are assumed to be exactly detected.

Remark 1. The model (1) covers: 1) Time-varying sys-
tems, by including the times t, j in the inputs or the state;
and 2) Impulsive and switched systems with state jumps
as in (Shim and Tanwani, 2014), by treating the switching
signal as a known input; and 3) Continuous-time systems
with sampled sporadic outputs, by treating the sampling
events as jumps triggering the availability of yd.

Definition 1. For a closed subset I of R≥0, we say that a
hybrid arc (t, j) 7→ x(t, j) has flow lengths within I if:

• 0 ≤ t− tj(x) ≤ sup I for all (t, j) ∈ domx;
• tj+1(x)− tj(x) ∈ I holds for all j ∈ N>0 if sup domj x =

+∞, and for all j ∈ {1, 2, . . . , sup domj x−1} otherwise.

Assumption 1. There exist compact sets X ⊂ Rnx and
I ⊂ R>0 such that each maximal solution x to (1)
initialized in X0 ⊂ Rnx with inputs (uc, ud) ∈ Uc × Ud

is complete, remains in X , and has flow lengths within I.

As the jump times of the system are known, it is natural to
strive for a synchronized asymptotic observer of the form


˙̂
ζ =F(ζ̂, yc, uc) when (1) flows

ζ̂+ =G(ζ̂, yd, ud) when (1) jumps

x̂= T (ζ̂, yc, yd, uc, ud)

(2)

where ζ̂ ∈ Rnζ is the observer state; F , G, and T are
the observer dynamics and output maps designed such

that each maximal solution (x, ζ̂) to the cascade (1)-(2)
initialized in X0 ×Rnζ and with inputs (uc, ud) ∈ Uc ×Ud

is complete and verifies

lim
t+j→+∞

|x(t, j)− x̂(t, j)| = 0. (3)

To that end, we assume that there exist integers no and nno
and a uniformly left-invertible transformation T : Rnx ×
[0,+∞)× N → Rno × Rnno of the form

T (x, t, j) = (To(x, t, j), Tno(x, t, j))

such that, along each solution x of (1) initialized in X0

with inputs (uc, ud) ∈ Uc × Ud, (t, j) 7→ z(t, j) defined by
the image of T along x, i.e., for each (t, j) ∈ domx,

z(t, j) =

(
zo(t, j)
zno(t, j)

)
=

(
To(x(t, j), t, j)
Tno(x(t, j), t, j)

)
∈ Rnz , (4)

with nz = no + nno, is a solution to
żo = fo(zo, uc)
żno = fno(zo, zno, uc)

}
(z, uc) ∈ Cz

z+o = go(zo, zno, ud)
z+no = gno(zo, zno, ud)

}
(z, ud) ∈ Dz

(5a)

for some maps (fo, fno, go, gno), sets Cz and Dz obtained
from C and D via T , with the outputs

yc = ho(zo, uc), yd = hno(zo, zno, ud), (5b)

and the given inputs, such that Assumption 2 below holds.

Assumption 2. The flow pair (fo, ho) is independent of
zno and is instantaneously observable on Cz for any input
uc ∈ Uc, namely, the knowledge of t 7→ ho(zo(t), uc(t)) for
an arbitrarily short time determines the solution t 7→ zo(t)
to żo = fo(zo, uc) uniquely as long as (zo, uc) ∈ Cz.

This observability condition allows us to consider a high-
gain observer of the pair (fo, ho) during flows, which
estimates zo arbitrarily fast from the knowledge of yc, and
is ISS with respect to errors in zno affecting the estimate
of zo at jumps. Then, we propose to estimate zno via a
jump-based observer from the knowledge of yd as well as
the estimate of zo. More precisely, our observer is

˙̂zo = f̂o(ẑo, p, τ, yc, uc)
˙̂zno = f̂no(ẑo, ẑno, p, τ, yc, uc)
ṗ = φc(ẑo, ẑno, p, τ, yc, uc)
τ̇ = 1

when (5) flows

ẑ+o = ĝo(ẑo, ẑno, p, τ, yd, ud)
ẑ+no = ĝno(ẑo, ẑno, p, τ, yd, ud)
p+ = φd(ẑo, ẑno, p, τ, yd, ud)
τ+ = 0

when (5) jumps

(6)

where p ∈ Rnp might contain additional observer states
(see Example 1) and τ is a timer keeping track of the
time elapsed since the previous jump. This timer evolves
in [0,max I] during flows and is in I at jumps according to

Assumption 1. The maps f̂o, f̂no, φc, ĝo, ĝno, and φd are
to be designed such that (6) is an asymptotically stable
observer for (5), namely, given X from Assumption 1,

(z-AS) There exist a class-KL function βz and P0 ⊆ Rnp

such that for any solution (z, ẑ, p, τ) of the cascade



(5)-(6) initialized in Z0 × Rnz × P0 × {0} where
Z0 := T (X , 0, 0), with inputs (uc, ud) ∈ Uc × Ud,

|z(t, j)− ẑ(t, j)| ≤ βz(|z(0, 0)− ẑ(0, 0)|, t+ j),

∀(t, j) ∈ dom z. (7)

This asymptotic stability can be brought back to the x-
coordinates if x 7→ T (x, 0, 0) is continuous on X and T
is injective with respect to x in X , uniformly in (t, j)
(achieved at least after a certain time). In Section 3, we
start by deriving general Lyapunov conditions to combine
a high-gain flow-based observer (estimating zo during flows
from yc) with a jump-based observer (estimating zno from
yd and the estimate of zo). Then, in Section 4, we propose
a constructive observer design for a certain class of hybrid
systems. Since zo is estimated arbitrarily fast during flows,
the key idea of this design is to exploit the detectability
of zno from an extended output at jumps, made of yd, but
also a fictitious output characterizing the way zno impacts
zo at jumps, namely go(zo, zno, ud) in (5a).

3. GENERAL LYAPUNOV-BASED SUFFICIENT
CONDITIONS FOR COUPLING OBSERVERS

In this section, we present intermediary technical results,
namely sufficient Lyapunov-based conditions for coupling
an arbitrarily fast high-gain flow-based observer with a
jump-based one. These are general conditions that will
later be applied for, but not limited to, a certain system
class in Section 4. We typically require some ISS properties
from each observer with respect to the error coming
from the other one. Note that Assumption 2 is required
throughout, to satisfy the high-gain flow-based conditions.

3.1 Conditions for Exponential Stability

Theorem 1. Suppose Assumption 1 holds and define τM :=
max I. Consider the cascade (5)-(6) and sets Pc,Pd ⊆ Rnp

such that each solution (z, ẑ, p, τ) initialized in Z0×Rnz ×
P0 × {0} with inputs (uc, ud) ∈ Uc × Ud is such that
p(t, j) ∈ Pc during flows and p(t, j) ∈ Pd at jumps. Assume
that there exist a function Vno : Rnno×Rnno×Rnp×R → R,
scalars ℓ0 > 0, bno > 0, bno > 0, λc > 0, ac, cnoo ≥ 0,
dono ≥ 0, ad and rational functions bo > 0, bo > 0, do ≥ 0,
dnoo ≥ 0 such that acτM +ad < 0 and, for all ℓ > ℓ0, there
exists function Vo,ℓ : Rno ×Rno ×Rnp ×R → R such that:

(1) (Uniform boundedness) For all (uc, ud) ∈ Uc×Ud, z =
(zo, zno) ∈ Rnz such that (z, uc) ∈ Cz or (z, ud) ∈ Dz,
ẑ = (ẑo, ẑno) ∈ Rnz , p ∈ Pc ∪ Pd, and τ ∈ [0, τM ],

bo(ℓ)|zo − ẑo|2 ≤ Vo,ℓ(zo, ẑo, p, τ) ≤ bo(ℓ)|zo − ẑo|2,
bno|zno − ẑno|2 ≤ Vno(zno, ẑno, p, τ) ≤ bno|zno − ẑno|2;

(2) (Flow-based conditions) For all uc ∈ Uc, z ∈ Rnz such
that (z, uc) ∈ Cz, ẑ ∈ Rnz , p ∈ Pc, and τ ∈ [0, τM ],

V̇o,ℓ(z, ẑ, p, τ, uc) ≤ −ℓλcVo,ℓ(zo, ẑo, p, τ),
V̇no(z, ẑ, p, τ, uc) ≤ acVno(zno, ẑno, p, τ)

+ cnooVo,ℓ(zo, ẑo, p, τ);

(3) (Jump-based conditions) For all ud ∈ Ud, z ∈ Rnz such
that (z, ud) ∈ Dz, ẑ ∈ Rnz , p ∈ Pd, and τ ∈ I,
V +
o,ℓ(z, ẑ, p, τ, ud) ≤ do(ℓ)Vo,ℓ(zo, ẑo, p, τ)

+ dono|zno − ẑno|2,
V +
no(z, ẑ, p, τ, ud) ≤ eadVno(zno, ẑno, p, τ)

+ dnoo(ℓ)Vo,ℓ(zo, ẑo, p, τ).

Then, there exists ℓ⋆ ≥ ℓ0 such that if ℓ > ℓ⋆, (z-AS) holds
with βz(δ, s) = ρδe−λs for some ρ > 0 and λ > 0.

Notice that f̂o, ĝo, φc, and φd can be chosen first to
guarantee the existence of Vo,ℓ satisfying the inequalities

involving it in Theorem 1 for some ℓ0 > 0, bo > 0, bo > 0,

λc > 0, do > 0, and dono ≥ 0, independently of f̂no, ĝno,
and Vno, which can be designed in a second step.

Proof. Consider the Lyapunov function Wℓ : Rnz ×Rnz ×
Rnp × R → R defined as

Wℓ(z, ẑ, p, τ) = e
λcℓτ

2 Vo,ℓ(zo, ẑo, p, τ)
+ re−ετe−ac(τ−τM )Vno(zno, ẑno, p, τ),

where r > 0 and ε > 0 are analysis parameters. The role

of e
λcℓτ

2 is to bring convergence from flows to jumps, while
that of e−ετ is indeed to bring contraction from jumps to
flows; r is tuned to ensure negativity at jumps despite the
interactions between these components. First, we have for
all (uc, ud) ∈ Uc × Ud, z ∈ Rnz such that (z, uc) ∈ Cz or
(z, ud) ∈ Dz, ẑ ∈ Rnz , p ∈ Pc ∪ Pd, and τ ∈ [0, τM ],

ρ
o
(ℓ)|zo − ẑo|2 + ρ

no
|zno − ẑno|2 ≤Wℓ(z, ẑ, τ)

≤ ρo(ℓ)|zo − ẑo|2 + ρno|zno − ẑno|2, (8)

where ρ
o
(ℓ) = bo(ℓ), ρ

no
= bnore

−ετM , ρo(ℓ) =

bo(ℓ)e
λcℓτM

2 , and ρno = bnore
acτM .

During flows, for all uc ∈ Uc, z ∈ Rnz such that (z, uc) ∈
Cz, ẑ ∈ Rnz , p ∈ Pc, and τ ∈ [0, τM ],

Ẇℓ(z, ẑ, p, τ, uc) ≤ −min

{
λcℓ

2
− rcnoo, ε

}
Wℓ(z, ẑ, p, τ).

At jumps, for all ud ∈ Ud, z ∈ Rnz such that (z, ud) ∈ Dz,
ẑ ∈ Rnz , p ∈ Pd, and τ ∈ I,
W+

ℓ (z, ẑ, p, τ, ud)−Wℓ(z, ẑ, p, τ) ≤

−
(
e

λcℓτm
2 bo(ℓ)− do(ℓ)bo(ℓ)− rdnoo(ℓ)bo(ℓ)

)
|zo − ẑo|2

−
(
rbno(e

−ετM − eacτM+ad)− dono
)
|zno − ẑno|2

where τm := min I > 0. Then, we choose successively

0 < ε < −acτM + ad
τM

, r >
dono

bno(e−ετM − eacτM+ad)
,

and finally ℓ sufficiently large to have both

e
λcℓτm

2 bo(ℓ) > do(ℓ)bo(ℓ) + rdnoo(ℓ)bo(ℓ),
λcℓ

2
> rcnoo,

which is possible because exponential growth wins over
a rational one. Then, (z-AS), with βz(δ, s) = ρδe−λs for
some ρ > 0 and λ > 0, directly follows from (Sanfelice,
2021). ■

Remark 2. Note that while similar results might be ob-
tained via a small-gain methodology as in (Liberzon et al.,
2014), we choose here to follow an explicit Lyapunov proof.

Example 1. Assume that (5) is such that fo and ho take
the following triangular form decoupled from zno:

żo = Azo +Φ(zo, uc), yc = zo,1 = Hzo, (9)

withA =


0 1 0 . . . 0
0 0 1 . . . 0
...
...
. . .

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

, Φ(zo, uc) =

 Φ1(zo,1, uc)
Φ2(zo,1, zo,2, uc)

. . .
Φno(zo, uc)

,

and H = (1 0 . . . 0), where Φ and go are Lipschitz with



respect to z, uniformly in their respective input. The
instantaneous observability of the pair (fo, ho) in Assump-
tion 2 is then automatically guaranteed by (9). When f
and hc in (1) are both autonomous, such a form can be
obtained using the autonomous transformation

To(x) = (hc(x), Lfhc(x), . . . , L
no−1
f hc(x)), (10)

but here we additionally require the decoupling of żo from
zno. A high-gain flow-based observer (Gauthier et al.,

1992) defines (f̂o, ĝo) as{
˙̂zo = Aẑo + sat(Φ(ẑo, uc)) + ℓL(ℓ)K(yc −Hẑo)
ẑ+o = sat(go(ẑo, ẑno, ud)),

(11)

where ℓ > 0, L(ℓ) = diag(1, ℓ, . . . , ℓno−1), and K =
(k1, k2, . . . , kno

) chosen independently of ℓ such that A −
KH is Hurwitz. It can then be checked that the Lyapunov
function

Vo(zo, ẑo) = (zo − ẑo)
⊤L−1(ℓ)PL−1(ℓ)(zo − ẑo), (12)

where the constant matrix P = P⊤ > 0 is a solution to

P (A−KH) + (A−KH)⊤P ≤ −aP, (13)

for some a > 0, verifies the assumptions of Theorem 1. In
another case, if fo and ho are such that

żo = A(uc, yc)zo +Φ(zo, uc), yc = H(uc)zo, (14)

still with A, H, Φ of the same shape as (9) (but varying in
uc, yc) and Φ, go Lipschitz, a Kalman-like high-gain flow-

based observer (Besancon, 1999) defines (f̂o, φc, ĝo, φd) as

˙̂zo = A(uc, yc)ẑo + sat(Φ(ẑo, uc))
+ ℓL(ℓ)P−1H⊤(uc)(yc −H(uc)ẑo)

Ṗ = −ℓ(µP −A⊤(uc, yc)P − PA(uc, yc)
+H⊤(uc)H(uc))

ẑ+o = sat(go(ẑo, ẑno, ud))
P+ = P0,

(15)

initialized with P0 > 0, for µ large enough. In this case,
the extra observer state in (6) is p = P . The observability
in Assumption 2 is linked to the existence of ℓ⋆ > 0 and
α > 0 such that for all ℓ > ℓ⋆ and for all t > 1

ℓ ,∫ t

t− 1
ℓ
⋆⊤H(uc(s))ψA(uc,yc)(s, t)︸ ︷︷ ︸

⋆

ds ≥ α
ℓ (L

−1(ℓ))2,

where ψA(uc,yc)(s, t) is the transition matrix of the linear
continuous dynamics v̇ = A(uc, yc)v from time t to time
s. It can then be checked that the Lyapunov function

Vo(zo, ẑo, P ) = (zo − ẑo)
⊤L−1(ℓ)PL−1(ℓ)(zo − ẑo), (16)

with the varying gain P admitting a strictly positive
uniform lower bound thanks to observability, verifies the
assumptions of Theorem 1.

While the flow-based part of the observer characterized by
Vo,ℓ is standard via well-known high-gain constructions as
shown in Example 1, the choice of the jump-based part
related to Vno is more intricate. A constructive design is
presented in Section 4 for a certain class of hybrid systems.

Remark 3. With the high-gain designs in Example 1, an

error zo− ẑo appearing in f̂no would typically make cnoo in
Theorem 1 depend on ℓ, which is not allowed. Therefore,

we may need to require fno and f̂no to be independent of
zo and ẑo. This can always be done by taking zno = x
or any left-invertible function of x, meaning that zo is
somehow estimated twice, through both zo and zno. This

obstruction to handle coupling during flows with a high-
gain design was similarly noticed in the linear output
regulation context (Cox et al., 2016, Proposition 6). Note
also that with the existing high-gain designs in Example
1, bo does not depend on ℓ (and the same for Theorem 2
below).

3.2 Conditions for Arbitrarily Fast Exponential Stability

Under certain conditions, as shown in Theorem 2 below,
the coupling of an arbitrarily fast high-gain flow-based
observer and an arbitrarily fast jump-based one that has
an ISS property can actually result in arbitrarily fast
exponential stability of the error (in the z-coordinates).

Theorem 2. Suppose Assumption 1 holds and define τM :=
max I. Consider the cascade (5)-(6) and sets Pc,Pd ⊆ Rnp

such that each solution (z, ẑ, p, τ) initialized in Z0×Rnz ×
P0 × {0} with inputs (uc, ud) ∈ Uc × Ud is such that
p(t, j) ∈ Pc during flows and p(t, j) ∈ Pd at jumps. Assume
there exist scalars ℓ0 > 0, γ0 > 0, λc > 0, cno ≥ 0, and
λd ≥ 0, rational functions bo > 0 and bo > 0, functions
bno > 0 and bno > 0, functions cnoo ≥ 0 and dono ≥ 0,
and functions do ≥ 0 and dnoo ≥ 0 rational in their first
argument such that, for all ℓ > ℓ0 and 0 < γ < γ0, there
exist functions Vo,ℓ : Rno × Rno × Rnp × R → R and
Vno,γ : Rnno × Rnno × Rnp × R → R such that:

(1) (Uniform boundedness) For all (uc, ud) ∈ Uc×Ud, z =
(zo, zno) ∈ Rnz such that (z, uc) ∈ Cz or (z, ud) ∈ Dz,
ẑ = (ẑo, ẑno) ∈ Rnz , p ∈ Pc ∪ Pd, and τ ∈ [0, τM ],

bo(ℓ)|zo − ẑo|2 ≤ Vo,ℓ(zo, ẑo, p, τ) ≤ bo(ℓ)|zo − ẑo|2,
bno(γ)|zno − ẑno|2 ≤ Vno,γ(zno, ẑno, p, τ)

≤ bno(γ)|zno − ẑno|2;
(2) (Flow-based conditions) For all uc ∈ Uc, z ∈ Rnz such

that (z, uc) ∈ Cz, ẑ ∈ Rnz , p ∈ Pc, and τ ∈ [0, τM ],

V̇o,ℓ(z, ẑ, p, τ, uc) ≤ −ℓλcVo,ℓ(zo, ẑo, p, τ),
V̇no,γ(z, ẑ, p, τ, uc) ≤ cnoVno,γ(zno, ẑno, p, τ)

+ cnoo(γ)Vo,ℓ(zo, ẑo, p, τ);

(3) (Jump-based conditions) For all ud ∈ Ud, z ∈ Rnz such
that (z, ud) ∈ Dz, ẑ ∈ Rnz , p ∈ Pd, and τ ∈ I,
V +
o,ℓ(z, ẑ, p, τ, ud) ≤ do(ℓ, γ)Vo,ℓ(zo, ẑo, p, τ)

+ dono(γ)|zno − ẑno|2,
V +
no,γ(z, ẑ, p, τ, ud) ≤ γe−λdVno,γ(zno, ẑno, p, τ)

+ dnoo(ℓ, γ)Vo,ℓ(zo, ẑo, p, τ).

Then, for any λ > 0, there exists 0 < γ⋆ ≤ γ0 such that
there exists ℓ⋆ ≥ ℓ0 such that if 0 < γ < γ⋆ and ℓ > ℓ⋆,
(z-AS) holds with βz(δ, s) = ρδe−λs for some ρ > 0.

Note that the dependence of the functions on γ is arbitrary.

Proof. Consider the following Lyapunov function Wℓ,γ :
Rnz × Rnz × Rnp × R → R (with r > 0 and ε > 0):

Wℓ,γ(z, ẑ, p, τ) = e
λcℓτ

2 Vo,ℓ(zo, ẑo, p, τ)
+ re−ετVno,γ(zno, ẑno, p, τ).

First, we have for all (uc, ud) ∈ Uc×Ud, z ∈ Rnz such that
(z, uc) ∈ Cz or (z, ud) ∈ Dz, ẑ ∈ Rnz , p ∈ Pc ∪ Pd, and
τ ∈ [0, τM ],

ρ
o
(ℓ)|zo − ẑo|2 + ρ

no
(γ)|zno − ẑno|2 ≤Wℓ,γ(z, ẑ, p, τ)

≤ ρo(ℓ)|zo − ẑo|2 + ρno(γ)|zno − ẑno|2, (17)



where ρ
o
(ℓ) = bo(ℓ), ρno(γ) = bno(γ)re

−ετM , ρo(ℓ) =

bo(ℓ)e
λcℓτM

2 , and ρno(γ) = bno(γ)r.
During flows, for all uc ∈ Uc, z ∈ Rnz such that (z, uc) ∈
Cz, ẑ ∈ Rnz , p ∈ Pc, and τ ∈ [0, τM ],

Ẇℓ,γ(z, ẑ, p, τ, uc) ≤ −min

{
λcℓ

2
− rcnoo(γ),

ε− cno

}
Wℓ,γ(z, ẑ, p, τ).

At jumps, for all ud ∈ Ud, z ∈ Rnz such that (z, ud) ∈ Dz,
ẑ ∈ Rnz , p ∈ Pd, and τ ∈ I,
W+

ℓ,γ(z, ẑ, p, τ, ud)−Wℓ,γ(z, ẑ, p, τ) ≤

−
(
e

λcℓτm
2 bo(ℓ)− do(ℓ, γ)bo(ℓ)− rdnoo(ℓ, γ)bo(ℓ)

)
|zo−ẑo|2

−
(
rbno(γ)(e

−ετM − γe−λd)− dono(γ)
)
|zno − ẑno|2,

with τm := min I > 0. Then, given any λ > 0, we choose
successively

ε > cno + 2λ

(
1

τm
+ 1

)
, 0 < γ < eλd−ετm ,

r >
dono(γ)

bno(γ)(e−ετM − γe−λd)
,

and finally ℓ sufficiently large to have both

e
λcℓτm

2 bo(ℓ) > do(ℓ, γ)bo(ℓ) + rdnoo(ℓ, γ)bo(ℓ),

λcℓ

2
> rcnoo(γ) + 2λ

(
1

τm
+ 1

)
,

which is possible because exponential growth wins over a
rational one. We then obtain during flows and at jumps
respectively,

Ẇℓ,γ(z, ẑ, p, τ) ≤ −2λ

(
1

τm
+ 1

)
Wℓ,γ(z, ẑ, p, τ),

W+
ℓ,γ(z, ẑ, p, τ)−Wℓ,γ(z, ẑ, p, τ) ≤ −ad,o|zo − ẑo|2

−ad,no|zno − ẑno|2,
for some ad,o > 0 and ad,no > 0. That implies that

Wℓ,γ(z(t, j), ẑ(t, j), p(t, j), τ(t, j)) ≤

e−2λ( 1
τm

+1)tWℓ,γ(z(0, 0), ẑ(0, 0), p(0, 0), τ(0, 0)),

for all (t, j) ∈ dom z = dom ẑ. From Assumption 1, we

have j ≤ t
τm

+1 or t ≥ t+j−1
1

τm
+1

for all (t, j) ∈ dom z = dom ẑ.

Therefore, we have

Wℓ,γ(z(t, j), ẑ(t, j), p(t, j), τ(t, j)) ≤
e2λe−2λ(t+j)Wℓ,γ(z(0, 0), ẑ(0, 0), p(0, 0), τ(0, 0)),

for all (t, j) ∈ dom z = dom ẑ. Then (z-AS), with
βz(δ, s) = ρδe−λs for some ρ > 0, directly follows from
(Sanfelice, 2021). ■

Remark 4. It is seen that ρ in βz increases as λ increases,
characterizing the peaking phenomenon typically encoun-
tered in high-gain designs when we push convergence arbi-
trarily fast. Discrete observers satisfying the conditions in
Theorem 2 include (Ţiclea and Besançon, 2013) and (Tran
and Bernard, 2023), where the former requires linearity in
the dynamics and output. Note that we can only recover,
under the uniform injectivity of T , asymptotic stability in
the x-coordinates. To recover arbitrarily fast exponential
stability, we must require a stronger injectivity from T .

4. OBSERVER DESIGN FOR A CLASS OF SYSTEMS

In this section, we use Theorem 1 to design a full observer
for the class of hybrid systems (1) that can be put, via some
uniformly left-invertible transformation, into the form

żo = fo(zo, uc)

ξ̇no = Anoξno +Bno

}
(zo, ξno, uc) ∈ Cz,ξ

z+o = Jo(zo, ud) + Jono(zo, ud)ξno
ξ+no = Jno(zo, ud)ξno + Jnoo(zo, ud)

}
(zo, ξno, ud) ∈ Dz,ξ

(18a)
with the outputs

yc = ho(zo, uc), yd = Hd,noo(zo, ud)+Hd,no(zo, ud)ξno.
(18b)

The model (18) covers a wide class of hybrid systems,
including the case of (mechanical) systems with uncertain
impacts, where we need to estimate the state zo observable
during flows and some impact parameters contained in ξno,
which affect zo at jumps in an affine way but not during
flows. These parameters then typically become detectable
from yc through the way they affect zo at jumps, namely
from the fictitious output Jono(zo, ud)ξno. Examples of
hybrid systems that fit into the form (18) range from a
bouncing ball (Example 2) to walking robots (Short and
Sanfelice, 2018) and spiking neurons (Izhikevich, 2003).

Remark 5. The results in this section can be seen as the
nonlinear version of those in (Tran et al., 2022) for hybrid
systems with linear maps, where we have fo = 0, Ano = 0,
and Bno = 0 thanks to an appropriate time-varying linear
transformation. Note that for the case of nonlinear maps
treated in this paper, nz can be larger than nx.

Following Assumption 1, solutions to (18) of interest,
initialized in some set Z0, are complete. We also define a
compact set Zo×Ξno where the solutions of (18) of interest
remain. For simplicity, we take Cz,ξ ⊆ Zo × Ξno × Uc and
Dz,ξ ⊆ Zo × Ξno × Ud. Denote Do := {zo ∈ Rno : ∃ξno ∈
Rnno , ud ∈ Rnu,d : (zo, ξno, ud) ∈ Dz,ξ}.
Assumption 3. The maps fo, Jo, Jono, Jno, Jnoo, Hd,noo,
andHd,no are Lipschitz with respect to zo on Zo, uniformly
in (uc, ud) ∈ Uc × Ud. The maps Jno, Jono, and Hd,no are
bounded on Zo × Ud.

The observer we propose for (18) takes the form

˙̂zo = f̂o(ẑo, p, τ, yc, uc)
˙̂
ξno = Anoξ̂no +Bno + eAnoτKd

d
dtΨfo,sat(·,uc)(ẑo, t,−τ)

ṗ = φc(p, τ, yc, uc)
τ̇ = 1

ẑ+o = Jo(sat(ẑo), ud) + Jono(sat(ẑo), ud)ξ̂no
ξ̂+no = Jno(sat(ẑo), ud)ξ̂no + Jnoo(sat(ẑo), ud)

+ Ld(sat(ẑo), ud, τ)(yd −Hd,noo(sat(ẑo), ud)

−Hd,no(sat(ẑo), ud)ξ̂no)
p+ = φd(p, τ, yd, ud)
τ+ = 0,

(19)
where fo,sat is globally Lipschitz with respect to zo, uni-
formly in uc ∈ Uc, and equal to fo on Zo×Uc; sat(ẑo) = ẑo
on Zo; and Kd and Ld are the gains to design.

Assumption 4. Under Assumption 2, assume that zo ∈
Rno can be estimated with a high-gain flow-based observer.

Thus, the maps f̂o, φc, and φd in (19) are such that there



exist P0, Pc, Pd, Vo,ℓ, ℓ0, bo, bo, λc, do, and dono satisfying
the conditions in Theorem 1 with ξno replacing zno.

To estimate ξno, we propose to design the gains Kd and Ld

exploiting the detectability brought by an extended output
made of Hd,no(zo, ud)ξno in yd as well as Jono(zo, ud)ξno
affecting zo at jumps. For this, we assume the following.

Assumption 5. There exist a symmetric positive defi-
nite matrix Q ∈ Rnno×nno , gains Kd ∈ Rnno×no and
(zo, ud, τ) 7→ Ld(zo, ud, τ) ∈ Rnno×ny,d bounded on Zo ×
Ud ×I such that for all zo ∈ Zo ∩Do, ud ∈ Ud, and τ ∈ I:

Φ⊤(zo, ud, τ)QΦ(zo, ud, τ)−Q < 0, (20)

where

Φ(zo, ud, τ) =

(
Jno(zo, ud)

− (Kd Ld(zo, ud, τ))

(
Jono(zo, ud)
Hd,no(zo, ud)

))
eAnoτ .

Contrary to Ld, which may depend on zo, ud, and the timer
τ , Kd is required to be constant to perform the analysis
(in the proof of Theorem 3). This extra requirement is
similar to the one we made in (Tran et al., 2022) for hybrid
systems with linear maps. Assumption 5 is thus a nonlinear
version of the LMI-based one in (Tran et al., 2022), which
is stronger than quadratic detectability (Wu, 1995) by the
constant nature of Kd. To solve (20), we can use gridding
(grid-based solving) assuming a particular structure of Ld,
possibly with checking of the obtained gains using a much
denser grid (Wu, 1995). If the form of Φ allows it, we
may also solve (20) using the polytopic method thanks
to residue matrix expansion as in (Ferrante et al., 2016),
or still gridding but with a theoretical proof of stability
extended from (Sferlazza et al., 2019).

Theorem 3. Under Assumptions 1, 3, 4, and 5, the cas-

cade (18)-(19) verifies (z-AS) (with (ξno, ξ̂no) replacing
(zno, ẑno)).

Proof. By Assumption 3 and (McShane, 1934, Corollary
1), there exists an extension fo,sat of fo that is defined and
globally Lipschitz on Rno ×Rnuc . To use the fictitious out-

put, we use the transformation (zo, ξno, ẑo, ξ̂no, p, τ, t, j) 7→
(zo, zno, ẑo, ẑno, p, τ), with

zno = e−Anoτ ξno −KdΨfo,sat(·,uc)(zo, t,−τ)
+
∫ −τ

0
eAno(−τ−s)Bnods,

ẑno = e−Anoτ ξ̂no −KdΨfo,sat(·,uc)(ẑo, t,−τ)
+
∫ −τ

0
eAno(−τ−s)Bnods.

This change of coordinates is well-defined by the global
Lipschitzness of fo,sat and there exists a compact set Zno

such that for any (zo, ξno, ẑo, ξ̂no, p, τ, t, j) ∈ Zo × Ξno ×
Rno ×Rnno ×Rnp × [0, τM ]×R≥0×N, we have zno ∈ Zno.
In the new coordinates, the dynamics of (zo, ẑo, p, τ) are

obtained by replacing ξno and ξ̂no with

ξno = eAnoτ (zno +KdΨfo,sat(·,uc)(zo, t,−τ))
+
∫ τ

0
eAno(τ−s)Bnods,

ξ̂no = eAnoτ (ẑno +KdΨfo,sat(·,uc)(ẑo, t,−τ))
+
∫ τ

0
eAno(τ−s)Bnods,

(21)

and considering the extended inputs uc,ext = (uc, t) ∈
Uc,ext and ud,ext = (ud, t) ∈ Ud,ext, with Uc,ext = Uc ×R≥0

and Ud,ext = Ud × R≥0. Concerning the dynamics of zno

and ẑno, we start by showing that Ψfo,sat(·,uc)(zo, t,−τ))
is constant along solutions. To do that, pick a solution
resulting from the interconnection (18)-(19) initialized in
Z0×Rnz ×P0×{0}. Since the solution component zo flows
according to fo with input uc, for each j ∈ domj zo, and
each s ∈ [0, t− tj ], we have

Ψfo(·,uc)(zo(t, j), t,−s) = zo(t− s, j),

and since the trajectory t 7→ zo(t, j) remains in Zo and τ
is initialized as τ(0, 0) = 0, we have for all (t, j) ∈ dom zo,

Ψfo,sat(·,uc)(zo(t, j), t,−τ(t, j)) = Ψfo(·,uc)(zo(t, j), t,−τ(t, j)).
Besides, by definition of the dynamics, τ initialized as
τ(0, 0) = 0 is the time elapsed since the previous jump,
namely τ(t, j) = t − tj for all j ∈ domj zo. There-
fore, exploiting again that zo evolves according to fo
with input uc, we have Ψfo,sat(·,uc)(zo(t, j), t,−τ(t, j)) =
Ψfo(·,uc)(zo(t, j), t,−(t− tj)) = zo(tj , j) for all j ∈ domj zo
and t ∈ [tj , tj+1], so that t 7→ Ψfo,sat(·,uc)(zo(t, j), t,−τ(t, j))
is constant. Therefore, solutions of the interconnection
(18)-(19) that are initialized in Z0 × Rnz × P0 × {0} are
such that the variable zno takes the dynamics

żno = −Anoe
−Anoτ ξno + e−Anoτ ξ̇no − e−AnoτBno

= −Anoe
−Anoτ ξno + e−Anoτ (Anoξno +Bno)− e−AnoτBno

= 0
z+no = ξ+no −Kdz

+
o

= Jno(zo, ud)ξno + Jnoo(zo, ud)
−Kd(Jo(zo, ud) + Jono(zo, ud)ξno)

= (Jno(zo, ud)−KdJono(zo, ud))ξno
+ Jnoo(zo, ud)−KdJo(zo, ud)

= ϕ(zo, ud, τ)(zno +KdΨfo,sat(·,uc)(zo, t,−τ)
+

∫ τ

0
e−AnosBnods) + Jnoo(zo, ud)−KdJo(zo, ud),

where ϕ(zo, ud, τ) = (Jno(zo, ud) − KdJono(zo, ud))e
Anoτ ,

and the variable ẑno takes the dynamics

˙̂zno = −Anoe
−Anoτ ξ̂no + e−Anoτ ˙̂

ξno
−Kd

d
dtΨfo,sat(·,uc)(ẑo, t,−τ)− e−AnoτBno

= −Anoe
−Anoτ ξ̂no + e−Anoτ (Anoξ̂no +Bno

+ eAnoτKd
d
dtΨfo,sat(·,uc)(ẑo, t,−τ))

−Kd
d
dtΨfo,sat(·,uc)(ẑo, t,−τ)− e−AnoτBno

= 0

ẑ+no = ξ̂+no −Kdẑ
+
o

= Jno(sat(ẑo), ud)ξ̂no + Jnoo(sat(ẑo), ud)
+ Ld(sat(ẑo), ud, τ)(yd −Hd,noo(sat(ẑo), ud)

−Hd,no(sat(ẑo), ud)ξ̂no)−Kd(Jo(sat(ẑo), ud)

+ Jono(sat(ẑo), ud)ξ̂no)
= (Jno(sat(ẑo), ud)− Ld(sat(ẑo), ud, τ)Hd,no(sat(ẑo), ud)

−KdJono(sat(ẑo), ud))ξ̂no
+ Jnoo(sat(ẑo), ud)−KdJo(sat(ẑo), ud)
+ Ld(sat(ẑo), ud, τ)(yd −Hd,noo(sat(ẑo), ud)

= Φ(sat(ẑo), ud, τ)(ẑno +KdΨfo,sat(·,uc)(ẑo, t,−τ)
+
∫ τ

0
e−AnosBnods)

+ Jnoo(sat(ẑo), ud)−KdJo(sat(ẑo), ud)
+ Ld(sat(ẑo), ud, τ)(yd −Hd,noo(sat(ẑo), ud)),

where Φ is defined in Assumption 5. The flow and jump
sets are subsets of Zo × Zno × Uc and Zo × Zno × Ud,
respectively. Now we deduce the error dynamics. For
brevity, let us denote

Υ = zno +KdΨfo,sat(·,uc)(zo, t,−τ) +
∫ τ

0
e−AnosBnods,

Υ̂ = ẑno +KdΨfo,sat(·,uc)(ẑo, t,−τ) +
∫ τ

0
e−AnosBnods.

We then see that



yd = Hd,noo(zo, ud) +Hd,no(zo, ud)e
AnoτΥ,

z+no = ϕ(zo, ud, τ)Υ + Jnoo(zo, ud)−KdJo(zo, ud),

ẑ+no = Φ(sat(ẑo), ud, τ)Υ̂
+ Jnoo(sat(ẑo), ud)−KdJo(sat(ẑo), ud)
+ Ld(sat(ẑo), ud, τ)(Hd,noo(zo, ud)
−Hd,noo(sat(ẑo), ud) +Hd,no(zo, ud)e

AnoτΥ).

Define the error z̃no := zno − ẑno. We then get

z̃+no = ϕ(zo, ud, τ)Υ− Φ(sat(ẑo), ud, τ)Υ̂
− Ld(sat(ẑo), ud, τ)Hd,no(zo, ud)e

AnoτΥ
+ (Jnoo(zo, ud)− Jnoo(sat(ẑo), ud))
−Kd(Jo(zo, ud)− Jo(sat(ẑo), ud))
− Ld(sat(ẑo), ud, τ)(Hd,noo(zo, ud)

−Hd,noo(sat(ẑo), ud)).

Now add and subtract both the terms ϕ(sat(ẑo), ud, τ)Υ
and Ld(sat(ẑo), ud, τ)Hd,no(sat(ẑo), ud)e

AnoτΥ to get

z̃+no=Φ(sat(ẑo), ud, τ)(Υ− Υ̂)
+ (ϕ(zo, ud, τ)− ϕ(sat(ẑo), ud, τ)− Ld(sat(ẑo), ud, τ)
× (Hd,no(zo, ud)−Hd,no(sat(ẑo), ud))e

Anoτ )Υ
+ (Jnoo(zo, ud)− Jnoo(sat(ẑo), ud))
−Kd(Jo(zo, ud)− Jo(sat(ẑo), ud))
− Ld(sat(ẑo), ud, τ)
× (Hd,noo(zo, ud)−Hd,noo(sat(ẑo), ud)).

Now see that Υ − Υ̂ = z̃no + Kd(Ψfo,sat(·,uc)(zo, t,−τ) −
Ψfo,sat(·,uc)(ẑo, t,−τ)) and use the expression of Υ. The
error z̃no takes the dynamics
˙̃zno =0
z̃+no =Φ(sat(ẑo), ud, τ)z̃no +Φ(sat(ẑo), ud, τ)Kd

× (Ψfo,sat(·,uc)(zo, t,−τ)−Ψfo,sat(·,uc)(ẑo, t,−τ))
+ (ϕ(zo, ud, τ)− ϕ(sat(ẑo), ud, τ)− Ld(sat(ẑo), ud, τ)
× (Hd,no(zo, ud)−Hd,no(sat(zo), ud))e

Anoτ )×
(zno +KdΨfo,sat(·,uc)(zo, t,−τ) +

∫ τ

0
e−AnosBnods)

+ (Jnoo(zo, ud)− Jnoo(sat(ẑo), ud))−Kd

× (Jo(zo, ud)− Jo(sat(ẑo), ud))− Ld(sat(ẑo), ud, τ)
× (Hd,noo(zo, ud)−Hd,noo(sat(ẑo), ud)).

Consider the Lyapunov function Vno(zno, ẑno) = (zno −
ẑno)

⊤Q(zno − ẑno), with Q in (20). By the global Lip-
schitzness of fo,sat with respect to zo, uniformly with
respect to uc, Grönwall’s inequality allows to show that
Ψfo,sat(·,uc)(·, t,−τ)) is Lipschitz, uniformly with respect
to (t, τ) ∈ R≥0 × [0, τM ]. Indeed, we have for any
(zo,a, zo,b, uc, t, τ) ∈ Rno × Rno × Uc × R≥0 × [0, τM ],

Ψfo,sat(·,uc)(zo,a, t,−τ) = zo,a
+
∫ t−τ

t
fo,sat(Ψfo,sat(·,uc)(zo,a, t, s− t), uc(s))ds,

Ψfo,sat(·,uc)(zo,b, t,−τ) = zo,b
+
∫ t−τ

t
fo,sat(Ψfo,sat(·,uc)(zo,b, t, s− t), uc(s))ds.

By subtracting both sides and using the triangle inequality,

|Ψfo,sat(·,uc)(zo,a, t,−τ)−Ψfo,sat(·,uc)(zo,b, t,−τ)|
≤ |zo,a − zo,b|+

∫ t

t−τ
|fo,sat(Ψfo,sat(·,uc)(zo,a, t, s− t), uc(s))

− fo,sat(Ψfo,sat(·,uc)(zo,b, t, s− t), uc(s))|ds.
Denoting L as the Lipschitz constant of fo,sat with respect
to zo, we get

|Ψfo,sat(·,uc)(zo,a, t,−τ)−Ψfo,sat(·,uc)(zo,b, t,−τ)|
≤ |zo,a − zo,b|+

∫ t

t−τ
L|Ψfo,sat(·,uc)(zo,a, t, s− t)

−Ψfo,sat(·,uc)(zo,b, t, s− t)|ds.
Using Grönwall’s inequality, we get

|Ψfo,sat(·,uc)(zo,a, t,−τ)−Ψfo,sat(·,uc)(zo,b, t,−τ)|
≤ |zo,a − zo,b|eLτ ≤ |zo,a − zo,b|eLτM ,

which means Ψfo,sat(·,uc)(·, t,−τ)) is Lipschitz, uniformly
with respect to (t, τ) ∈ R≥0 × [0, τM ]. Thanks to Assump-
tions 3 and 5 and Young’s inequality on the cross terms,
there exist c1 ∈ [0, 1) and c2, c3, c4 > 0 such that for any
κ > 0, z ∈ Zo ×Zno, ẑ ∈ Rnz , and (τ, t, uc, ud) ∈ [0, τM ]×
R× Uc × Ud,

V̇no(z, ẑ, τ, t, uc) = 0,
V +
no(z, ẑ, τ, t, ud) ≤

(
c1 +

c2
κ

)
Vno(zno, ẑno, τ)

+ (c3κ+ c4)|zo − ẑo|2.
Picking κ large enough so that c1+

c2
κ ∈ [0, 1), Vno satisfies

the second item of each condition of Theorem 1. Besides,

ξno − ξ̂no = eAnoτ (zno − ẑno)
+Kd(Ψfo,sat(·,uc)(zo, t,−τ)−Ψfo,sat(·,uc)(ẑo, t,−τ)),

and since τ remains in [0, τM ] and Ψfo,sat(·,uc)(·, t,−τ)) is
Lipschitz, uniformly with respect to (t, τ) ∈ R≥0× [0, τM ],
using Young’s inequality, there exist c5 > 0 and c6 > 0
such that for all (zo, zno, ẑo, ẑno, τ, uc, t) ∈ Zo×Zno×Rno×
Rnno × [0, τM ]×Uc×R≥0, (ξno, ξ̂no) defined in (21) verifies

|ξno − ξ̂no| ≤ c5|zno − ẑno|+ c6|zo − ẑo|, (22)

so that Vo,ℓ satisfies the inequalities involving it in The-
orem 1 in the new coordinates. Since φc and φd are
independent of (ẑo, ẑno), solutions (zo, zno, ẑo, ẑno, p, τ) to
the cascade initialized in Z0 ×Rnz ×P0 ×{0} with inputs
(uc,ext, ud,ext) ∈ Uc,ext × Ud,ext are such that p(t, j) ∈ Pc

during flows and p(t, j) ∈ Pd at jumps. Applying Theorem
1, the result follows from the uniform invertibility of the
change of coordinates (deduced from (22)). ■

Remark 6. When fo and ho are linear, for example if
żo = Aozo + Bo and yc = Hozo, with the pair (Ao, Ho)
observable, the observer (19) takes the much simpler form

˙̂zo = Aoẑo +Bo + Γ(ℓ)(yc −Hoẑo)
˙̂
ξno = Anoξ̂no +Bno + eAnoτKde

−AoτΓ(ℓ)(yc −Hoẑo)
τ̇ = 1

ẑ+o = Jo(sat(ẑo), ud) + Jono(sat(ẑo), ud)ξ̂no
ξ̂+no = Jno(sat(ẑo), ud)ξ̂no + Jnoo(sat(ẑo), ud)

+ Ld(sat(ẑo), ud, τ)(yd −Hd,noo(sat(ẑo), ud)

−Hd,no(sat(ẑo), ud)ξ̂no)
τ+ = 0,

(23)
where ℓ 7→ Γ(ℓ) ∈ Rno×ny,c is an appropriate high-gain
(see (Bernard and Sanfelice, 2022, Example 4.2)). This
form is similar to (Tran et al., 2022) for linear maps.

Example 2. Consider a bouncing ball with an unknown
restitution coefficient, described by{

ẋ = (x2,−cfx2 + uc, 0), when x1 ≥ 0
x+ = (x1,−x2x3 + ud, x3), when x1 = 0 and x2 ≤ 0

with flow output yc = x1 and no jump output, where x1
and x2 are the ball’s height and velocity, instantaneously
observable through yc; x3 = 0.5 is the restitution coeffi-
cient at the impact that we also want to estimate using
its interaction with x2 at jumps; cf = 0.1 is the friction
coefficient; uc = −9.8 is the gravitational acceleration; and
ud = 5 is a pulse at the impact which serves to: 1) Uni-
formly bound (x1, x2) in a compact set Zo not containing
0 (otherwise x3 would not be uniformly detectable); and
2) Uniformly bound the flow lengths away from 0 and
providing enough flowing to estimate zo.
By choosing zo = (zo,1, zo,2) = (x1, x2) and ξno = x3,



we obtain the form (18) with the maps fo(zo, uc) =
(zo,2,−cfzo,2 + uc), Ano = 0, Bno = 0, Jo(zo, ud) =
(zo,1, ud), Jono(zo, ud) = (0,−zo,2), Jno(zo, ud) = 1,
Jnoo(zo, ud) = 0, and Hd,noo(zo, ud) = 0. Notice that here
these maps are linear and hence Lipschitz with respect
to zo, uniformly in (uc, ud), so Assumption 3 is satisfied.
Since yd = 0, we take Ld = 0 and estimate ξno using
the fictitious output Jono(zo, ud)ξno. Assumption 5 now

becomes (1−Kd(0,−zo,2))⊤Q (1−Kd(0,−zo,2))−Q < 0
for zo ∈ Zo ∩ Do, with Q a positive scalar and Do :=
{zo ∈ R2 : zo,1 = 0, zo,2 ≤ 0}. Supposing for instance
that zo,2 ∈ [−10,−0.5] at jumps, Assumption 5 is satisfied
by taking Kd = (0 0.1). Because the maps fo and ho are
linear time-invariant in this application, Remark 6 applies.
Simulation results are in Figure 1. Here, ξno is estimated
without using yd, but only the fictitious output −x2x3.

Fig. 1. State and parameter estimation in a bouncing ball.

5. CONCLUSION

This paper presents detectability necessary conditions and
Lyapunov-based sufficient conditions for coupling flow-
and jump-based observers for hybrid systems with known
jump times. We also apply these to design an observer for a
wide class of hybrid systems, followed by an application to
state and parameter estimation in a bouncing ball. Future
work includes finding implementable approximations of

the innovation term in
˙̂
ξno in (19) (which is possible

since this term vanishes asymptotically) and building a
nonlinear jump-based observer to estimate zno (or ξno)
with a fully nonlinear jump map. A candidate for this is
the nonlinear Luenberger observer (Brivadis et al., 2019),
which can have both an arbitrarily fast convergence rate
and an ISS property, hence coherent with the results
developed in Theorem 2.
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