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Abstract: This work presents a novel observer design methodology for general hybrid systems
with known jump times. We propose to combine a high-gain flow-based observer estimating the
part of the state that is instantaneously observable from the flow output, with a jump-based
observer estimating the rest of the state from the knowledge of the jump output as well as some
additional fictitious outputs, describing how the instantaneously observable part of the state
impacts the non-observable one at jumps. We give general Lyapunov-based sufficient conditions
for coupling such observers and propose an observer design for a large class of hybrid systems
with nonlinear maps covering mechanical systems with uncertain impact models. Application
to a bouncing ball with an unknown restitution coefficient illustrates the proposed approach.
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1. INTRODUCTION

Observer design for hybrid systems, namely systems com-
bining both continuous and discrete behavior, is widely in-
vestigated in the literature (Bernard and Sanfelice, 2022).
When the times of the discrete events in the solutions,
i.e., the jump times, are known or detected, the observer
jumps can be triggered at the same time as those of the
system, making their solutions have the same (hybrid)
time domain. This allows us to compare them at the same
hybrid time and thus facilitates the convergence analysis of
the observer estimate to the system state. Such hybrid sys-
tems with known jump times include in particular impul-
sive (possibly switched) systems (Medina and Lawrence,
2008, 2009; Tanwani et al., 2013) and continuous-time
systems with sampled measurements (Raff and Allgower,
2007; Ferrante et al., 2016). As surveyed in (Bernard and
Sanfelice, 2022), most observer designs for those hybrid
systems assume either: 1) Observability of the flow or
jump dynamics and output, and Lyapunov/LMI-based
sufficient conditions; or 2) Observability of the full state
during flows from the flow output only, leading to (high-
gain) flow-based observers, relying on high-gain continuous
observers (Gauthier et al., 1992) and persistent flowing;
or 3) Observability of the full state from the jump output
only, leading to jump-based observers, relying on persistent
jumping and discrete observers designed for an equivalent
discrete system modeling the flow-jump combination.

However, state components may exhibit different kinds of
observability properties, associated with the flow and/or
jump output(s), or hidden inside the flow-jump coupling.
In output regulation, (Cox et al., 2016) exploits these ideas
for hybrid systems with linear maps, periodic jumps, and
flow output only, where part of the dynamics is instan-

taneously observable during flows from the flow output,
while part of the non-observable dynamics becomes visible
in the observable part at jumps. A similar phenomenon
is exploited in (Tanwani et al., 2013; Shim and Tanwani,
2014) for (non)linear switched systems where observability
is brought by switching among different non-observable
modes; and in (Tran et al., 2022) for hybrid systems with
linear maps by the interaction of non-observable flows and
jumps. Observer design then relies on a state decomposi-
tion, where state components with different observability
properties are separated. It typically couples a high-gain
flow-based observer estimating the instantaneously observ-
able states during flows, with back-and-forth algorithms
or jump-based observers, estimating the rest of the states
from the jump output and fictitious outputs describing
how those states impact the instantaneously observable
ones at jumps.

In this paper, we generalize the approach in (Tran et al.,
2022) to hybrid systems with nonlinear maps. Assuming
(after a change of coordinates) that a part of the state
is instantaneously observable during flows, we propose
to combine a nonlinear high-gain observer during flows
with a jump-based one estimating the rest of the state
and implicitly exploiting observability conditions from an
ertended output at jumps made of the system’s jump
output as well as some additional fictitious measurements.
We provide general Lyapunov-based sufficient conditions
to perform this coupling, including observability, dwell-
time, and decoupling conditions in the dynamics. For that,
we rely on Input-to-State Stability (ISS) properties in
each observer with respect to the errors coming from the
other observer, similar to (Liberzon et al., 2014). Then,
we propose a constructive observer design achieving this
coupling for a class of hybrid systems with nonlinear



maps, including mechanical systems with uncertain impact
models. Illustrations are provided considering state and
restitution coefficient estimation in a bouncing ball. Our
method differs from (Shim and Tanwani, 2014) mainly in
the way the fictitious output is treated and in the resulting
jump-based observer: instead of estimating the fictitious
output through back-and-forth high-gain observers and
resetting the estimate via asynchronous parallel compu-
tations, we design a synchronized observer with correction
terms implicitly exploiting this hidden information.

Notations. Let R (resp. N) be the set of real numbers
(resp. nmatural numbers, i.e., {0,1,2,...}). For a given
input t — u(t) to & = f(w,u), V. u)(zo,t,7) is the
associated flow operator from initial value xzy at initial
time ¢ evaluated after T time unit(s). Let sat be a Lipschitz
element-wise saturation function with levels to be picked
depending on the context. For a hybrid arc (¢, ) — x(t, j)
(see (Goebel et al., 2012)), we denote dom z its domain,
domy = (resp. dom;z) the domain’s projection on R
(resp. N), and for j € N, ¢;(z) the unique time such that
(tj(x),j) € domz and (t;(z),j — 1) € domz (for hybrid
systems with inputs, see (Sanfelice, 2021)) A solution z
to a hybrid system is complete if domx is unbounded.
The notions of class-K and class-KCL functions used are
from (Khalil, 1996, Definitions 4.2 and 4.3). For a function
V :R™ — R and a hybrid system with state n € R™ and
input u, we denote V(n,u) the derivative of V along the
flows and VT (n, ) the value of V after a jump.

2. PROBLEM FORMULATION

Consider a hybrid system

{ &= f(z,uc) (x,uc) € C Yo = he(x,ue) (1)
xt =g(x,uq) (x,uq) €D yq = ha(x,uq)

where x € R" is the state; y. € R™< (resp. yq € R"v:4)
is the output known during the flow intervals (resp. at
the jump times); u. € R"c and ug € R™¢ are known
exogenous signals; the maps f and g are the flow and jump
maps; h. and hy are the flow and jump output maps; C
and D are the flow and jump sets, respectively. The jump
times of each solution are assumed to be exactly detected.

Remark 1. The model (1) covers: 1) Time-varying sys-
tems, by including the times ¢, 7 in the inputs or the state;
and 2) Impulsive and switched systems with state jumps
as in (Shim and Tanwani, 2014), by treating the switching
signal as a known input; and 3) Continuous-time systems
with sampled sporadic outputs, by treating the sampling
events as jumps triggering the availability of yg4.
Definition 1. For a closed subset Z of R>(, we say that a
hybrid arc (t,j) — x(t,j) has flow lengths within T if:

o 0<t—t;(xr) <supZ for all (¢,j) € domu;

o tii1(x)—t;(x) € Z holds for all j € N5 if supdom; z =
+00, and for all j € {1,2,...,supdom; x —1} otherwise.

Assumption 1. There exist compact sets X C R™ and

Z C Ry such that each maximal solution x to (1)

initialized in Xy C R™ with inputs (uc,uq) € Ue. X Uy

is complete, remains in X', and has flow lengths within Z.

As the jump times of the system are known, it is natural to
strive for a synchronized asymptotic observer of the form

C (C Yes Ue) when (1) flows
(t= (C Yd, Ud) when (1) jumps (2)

= (<7ycayd7uc‘7ud)
where é € R™ is the observer state; F, G, and T are
the observer dynamics and output maps designed such
that each maximal solution (z,() to the cascade (1)-(2)
initialized in Xy x R™¢ and with inputs (u., uq) € U x Uy
is complete and verifies

li t,7) —2(t,75)| =0. 3
Jim[o(t,) = a(t. ) 3)

To that end, we assume that there exist integers n, and n,,
and a uniformly left-invertible transformation T : R™= x
[0,400) x N — R™ x R" of the form

T(;E, tvj) = (TO(x7 2 .])v TTLO(xv L, .]))
such that, along each solution x of (1) initialized in Aj
with inputs (ue,uq) € Ue X Ug, (t,5) — z(t,j) defined by
the image of T along =z, i.e., for each (¢,5) € domz,

. Zo(t, J To(z(t,j),t,j .
2(t:4) = (zno((t]})) - (Tno((l'((taj]))atajj))> eR™ @
with n, = n, + 1, is a solution to
Zo = fo(zoauc)
Zno = fno(zm Znos UC)
Zj = go(zm Zno, ud)
Zr-i_o = gno(zm Zno, Ud)
for some maps (fo, frnos 9o, gno), sets C. and D, obtained
from C' and D via T, with the outputs
Ye = ho(zo, Ue), Yd = hno(Zo, Zno, Ud), (5b)
and the given inputs, such that Assumption 2 below holds.

(z,uc) € C,
(5a)
(z,uq) € D,

Assumption 2. The flow pair (f,,h,) is independent of
Zno and is instantaneously observable on C, for any input
ue € Ue, namely, the knowledge of t — hy(2,(t), uc(t)) for
an arbitrarily short time determines the solution ¢ — z,(t)
t0 2o = fo(20, uc) uniquely as long as (z,,u.) € C,.

This observability condition allows us to consider a high-
gain observer of the pair (f,,h,) during flows, which
estimates z, arbitrarily fast from the knowledge of y., and
is ISS with respect to errors in z,, affecting the estimate
of z, at jumps. Then, we propose to estimate z,, via a
jump-based observer from the knowledge of y; as well as
the estimate of z,. More precisely, our observer is

.20 = Jio(éo»pv TyYe, uc)
Zno = fno('%o’ Znos Dy Ty Yes u(‘)
p SDC(ZmZno»PvT yCauc)

T=1
. (6)
g (Zoa Znoy P> Ty Yd, Ud)
= gno(zoa Znos Dy T Yd, Ud)
90 (zm ZA‘ITLO?pa T? yd) ’U,d)
T+ =0
where p € R™ might contain additional observer states
(see Example 1) and 7 is a timer keeping track of the
time elapsed since the previous jump. This timer evolves
in [0, max Z] during flows and is in Z at jumps according to

Assumption 1. The maps fo, fm,, Yes oy Gno, and g are
to be designed such that (6) is an asymptotically stable
observer for (5), namely, given X from Assumption 1,

(2-AS) There exist a class-KCL function 8, and Py C R"»
such that for any solution (z, 2, p, 7) of the cascade

when (5) flows

+

ﬁ .
n when (5) jumps

+o




(5)-(6) initialized in Zy x R™= x Py x {0} where
Z :=T(X,0,0), with inputs (¢, uq) € Ue X Uy,

‘Z(tvj) - ’2(t7.7)‘ < 6z(|z(0a0) - 2(0a0)|at +j)a
V(t,j) € domz. (7)

This asymptotic stability can be brought back to the x-
coordinates if x — T(x,0,0) is continuous on X and T
is injective with respect to x in X, uniformly in (¢,7)
(achieved at least after a certain time). In Section 3, we
start by deriving general Lyapunov conditions to combine
a high-gain flow-based observer (estimating z, during flows
from y.) with a jump-based observer (estimating z,, from
yq and the estimate of z,). Then, in Section 4, we propose
a constructive observer design for a certain class of hybrid
systems. Since z, is estimated arbitrarily fast during flows,
the key idea of this design is to exploit the detectability
of z,, from an extended output at jumps, made of y4, but
also a fictitious output characterizing the way z,, impacts
Zo at jumps, namely ¢, (20, Zno, uq) in (5a).

3. GENERAL LYAPUNOV-BASED SUFFICIENT
CONDITIONS FOR COUPLING OBSERVERS

In this section, we present intermediary technical results,
namely sufficient Lyapunov-based conditions for coupling
an arbitrarily fast high-gain flow-based observer with a
jump-based one. These are general conditions that will
later be applied for, but not limited to, a certain system
class in Section 4. We typically require some ISS properties
from each observer with respect to the error coming
from the other one. Note that Assumption 2 is required
throughout, to satisfy the high-gain flow-based conditions.

3.1 Conditions for Exponential Stability

Theorem 1. Suppose Assumption 1 holds and define 757 :=
maxZ. Consider the cascade (5)-(6) and sets P., P4 C R™
such that each solution (z, 2, p, 7) initialized in Zy x R™= x
Po x {0} with inputs (ue,uq) € U, x Uy is such that
p(t,7) € P, during flows and p(t, j) € Py at jumps. Assume
that there exist a function V;,, : R"m° xR""e xR"» xR — R,
scalars lop > 0, b,,, > 0, bpo > 0, A\e > 0, ¢, Cnoo > 0,
dono > 0, agq and rational functions b, > 0, b, > 0, d, > 0,
dnoo > 0 such that a.mas +ag < 0 and, for all £ > £y, there
exists function V, ¢ : R™ x R™ x R"» x R — R such that:

(1) (Uniform boundedness) For all (uc,uq) € U x Ug, z =
(zo,zno) € R"= such that (z,u.) € C, or (z,uq) € D,,
2= (20,%n0) ER™ peP.UPy, and 7 € [0, Tps],
,0( )‘Zo - Zo|2 < Vo,Z(ZmZOapaT) > o£ )|Zo - Zo|27
bno‘zno - Zn0|2 S Vno(znm Znos D, T) S bno|zno -

(2) (Flow-based conditions) For all u. € U, z € R™ such
that (z,u.) € C,, 2 € R p e P,., and T € [0, /],
‘:/o,l(za éap7 T, uc) S _EACVO,Z(ZO7 207pa T)a
Vno(zv 27p7 T? UC) S aCVnO(ZTLO7 277/07p? T)

+ Cnoovo,f(zoa éoypa T);

(3) (Jump-based conditions) For all ug € Uy, z € R™= such
that (z,uq) € D,, 2 € R p € Py, and 7 € Z,

VOD(Zv 27p7 7—7 ud) S do(g)vf)l(zov 2Oapa T)
+ dono|zno - 2no|27
Vi (2, 2,p,7,ud) < € Vio(Znos Zno, Dy T)
+ dnoo(g) o Z(zov oy P> T )

Znol?;

Then, there exists £* > £y such that if £ > ¢*, (2-AS) holds
with 3,(d,s) = pde=** for some p > 0 and A > 0.

Notice that fo, oy @, and g can be chosen first to
guarantee the existence of V, o satisfying the inequalities

involving it in Theorem 1 for some ¢y > 0, b, > 0, b, > 0,

Ae >0, d, > 0, and dyn, > 0, independently of f,w, Jnos
and V,,,, which can be designed in a second step.

Proof. Consider the Lyapunov function W, : R™= x R™= x
R™ x R — R defined as
A Actt A
WZ(Za z, P, T) =€ 2 VO,E(Zov Zos Py T)
+ Te_STe_aC(T_TM)Vno(an Znos Ds 7-)7
where 7 > 0 and € > 0 are analysis parameters. The role
Aclr . . .
of ez is to bring convergence from flows to jumps, while
that of e™¢" is indeed to bring contraction from jumps to
flows; r is tuned to ensure negativity at jumps despite the
interactions between these components. First, we have for
all (ue,uq) € U X Ug, z € R™* such that (z,u.) € C, or
(z,uq) € Dy, 2€ R, p € P, UPy, and 7 € [0, Tps],
P,z — 2ol +p, |20 — Znol? < Wi(2, 2,7)

SEO(ZN’ZO_20|2+ﬁno|z’ﬂ0_2?n0|2’ (8)
where p,() = b0 p,, = bure . 7,(0)
_ AelT _
bo(0)e~ =", and p,,, = bpore®™ .
During flows, for all u. € U.., z € R™ such that (z,u.) €
sz PAS an, pe PC7 and 7 € [077—]\/1]a

- rcnooag} Wf(zaévpa T)'

At jumps, for all ug € Uy, z € R™= such that (z,uy) € D,,
z2eR™, pePy,and 7 €1,

Wiz 2,p.7) <
— (555, (0) = do(OBo(0) = oo DB(0)) |20 =

- (Tgno(eigTM - GGCTNIJrad) - dono) |Zno - 2no|

. AL
WZ(ng»vaqu) S _mln{2

W, (2, 2,p, 7 uq) —

where 7, := minZ > 0. Then, we choose successively
a:.Ty + aq

0<e< — =< r> =

™ bno

and finally ¢ sufficiently large to have both

dono

(6—671\/1 _ eaCTM-&-ad)’

clTm

€5 b, (0) > do(0)bo(€) + Tdpoo ()bo(0),
which is possible because exponential growth wins over
a rational one. Then, (2-AS), with 3.(d,s) = pde=* for
some p > 0 and A > 0, directly follows from (Sanfelice,
2021). |
Remark 2. Note that while similar results might be ob-
tained via a small-gain methodology as in (Liberzon et al.,
2014), we choose here to follow an explicit Lyapunov proof.
Ezample 1. Assume that (5) is such that f, and h, take
the following triangular form decoupled from z,,:

Zo = Az, + (I)(Zovuc)a Ye = 20,1 = Hz,, (9)

010 ...0
001 ...0 D1 (20,1, tc)
with A = ] @20, ue) = ®2(20,1, 20,2, )
000 .1 By (20 12)
000 ...0
and H = (10 ...0), where ® and g, are Lipschitz with



respect to z, uniformly in their respective input. The
instantaneous observability of the pair (f,, h,) in Assump-
tion 2 is then automatically guaranteed by (9). When f
and h. in (1) are both autonomous, such a form can be
obtained using the autonomous transformation

To(x) = (he(®), Lyhe(), ..., L} he()), (10)
but here we additionally require the decoupling of 2, from
Zno- A high-gain flow-based observer (Gauthier et al.,
1992) defines (fo, Go) as

2y = Ay +sat(B(2, ue)) + LLIOK (y. — HZ,)
éj = Sat(go(éoa Znos Ud))7
where ¢ > 0, L(¢) = diag(1,¢,...,£%7 1), and K =
(k1,ka,...,kn,) chosen independently of ¢ such that A —
K H is Hurwitz. It can then be checked that the Lyapunov
function
Vo(20, 20) = (20 — 20) ' L™HOPLT (0) (20 — %),  (12)
where the constant matrix P = PT > 0 is a solution to
P(A-KH)+(A—KH)'P < —aP, (13)
for some a > 0, verifies the assumptions of Theorem 1. In
another case, if f, and h, are such that
Z.o - A(Um yc)zo + (P(Zoy uc)a Ye = H(UC)ZO, (14)
still with A, H, ® of the same shape as (9) (but varying in
Ue, Ye) and @, g, Lipschitz, a Kalman-like high-gain flow-
based observer (Besancon, 1999) defines (f,, @e, Jo, 0d) as
2o = A(Uc,Ye)2o + sat(P(Z,, ue))
' +LLOPYH T (ue)(ye — H(ue)2o)
P = *K(MP - AT(umyc)P - PA(ucvyc)
+ HT(UC)H(“C))

(11)

(15)
é;i_ = Sat(go(éoyénoaud))
Pt =Py,

initialized with Py > 0, for p large enough. In this case,
the extra observer state in (6) is p = P. The observability
in Assumption 2 is linked to the existence of ¢* > 0 and
« > 0 such that for all £ > ¢* and for all ¢ > %,

s #T Hue()bau, o (s:1) ds = §(L71(0)?,

*

where 1 4(y,,4.)(5,1) is the transition matrix of the linear
continuous dynamics © = A(ue, y.)v from time t to time
s. It can then be checked that the Lyapunov function

V(205 20y P) = (20 — 20) LY PLTY) (2 — 25), (16)
with the varying gain P admitting a strictly positive

uniform lower bound thanks to observability, verifies the
assumptions of Theorem 1.

While the flow-based part of the observer characterized by
Vo, is standard via well-known high-gain constructions as
shown in Example 1, the choice of the jump-based part
related to V,,, is more intricate. A constructive design is
presented in Section 4 for a certain class of hybrid systems.

Remark 3. With the high-gain designs in Example 1, an
error z, — 2, appearing in fno would typically make ;00 in
Theorem 1 depend on ¢, which is not allowed. Therefore,
we may need to require f,, and fno to be independent of
z, and Z,. This can always be done by taking z,, = =
or any left-invertible function of x, meaning that z, is
somehow estimated twice, through both z, and z,,. This

obstruction to handle coupling during flows with a high-
gain design was similarly noticed in the linear output
regulation context (Cox et al., 2016, Proposition 6). Note
also that with the existing high-gain designs in Example
1, b, does not depend on ¢ (and the same for Theorem 2
below).

8.2 Conditions for Arbitrarily Fast Exponential Stability

Under certain conditions, as shown in Theorem 2 below,
the coupling of an arbitrarily fast high-gain flow-based
observer and an arbitrarily fast jump-based one that has
an ISS property can actually result in arbitrarily fast
exponential stability of the error (in the z-coordinates).

Theorem 2. Suppose Assumption 1 holds and define 77 :=
max Z. Consider the cascade (5)-(6) and sets P, Py C R"»
such that each solution (z, Z, p, 7) initialized in Zy x R™= x
Po x {0} with inputs (uc,uq) € U, x Uy is such that
p(t,7) € P, during flows and p(¢, j) € Py at jumps. Assume
there exist scalars £y > 0, 79 > 0, Ac > 0, ¢y > 0, and
Ad > 0, rational functions b, > 0 and b, > 0, functions
b,o > 0 and by, > 0, functions c,p, > 0 and dyne > 0,
and functions d, > 0 and d,,,, > 0 rational in their first
argument such that, for all £ > {5 and 0 < v < 7q, there
exist functions V,, : R™ x R x R" x R — R and
Vio,y : RMmo x R0 x R™ x R — R such that:

(1) (Uniform boundedness) For all (uc,uq) € Us X Uy, 2z =
(%20, Zno) € R™= such that (z,u.) € C, or (z,uq) € D,

2= (%0,%n0) ER"*, p € P.UPy, and 7 € [0, Tas],
bo(€)|zo - 720|2 S VO,E(ZOa 207p7 T) S Bo(£)|zo - 720|2;
bno(’y)lzno - 2n0|2 S Vnow(zno» 2710;137 T)
S bno(7)|zno - 2n0‘2;
(2) (Flow-based conditions) For all u. € U,, z € R™* such
that (z,u.) € C,, 2 € R p € P, and 7 € [0, Tp],

'VO,Z(Za 27pa T, uc) S
Vno,’y(za 27]7, T, uc) S

_e)\cvo,é(zm 20, s 7—)7
CnoVno,’y(Znoa én()apv T)
+ cnoo(’y)vo,f(zov 207 b, T);
(3) (Jump-based conditions) For all ug € Uy, z € R™= such
that (z,uq) € D,, 2 € R" p € Py, and 7 € Z,
VOD(Z,E,p, T,uq) < do(l,7)Vo (20, 20,p,T)
+ dono(7)|zno - 2n0|27
Vnt;;y(za 7:'7]), T, ud) < ’Yei)\d' Vno,fy(znoa énoa b, T)
+ dnoo(& 'Y)Vo,l(zov 20, P T)'
Then, for any A > 0, there exists 0 < v* < g such that

there exists £* > £y such that if 0 < v < 4* and £ > ¢*,
(2-AS) holds with 3,(d,s) = pde=** for some p > 0.

Note that the dependence of the functions on =y is arbitrary.
Proof. Consider the following Lyapunov function W, , :
R™ x R™ x R™ x R — R (with 7 > 0 and € > 0):
Weq(2,2,p,7) = e%Vo,z(zm 20,DyT)
+ re_ETVnO,’y(Znoa ’277/07p’ T)
First, we have for all (uc, uq) € U. X Uy, z € R™= such that
(z,u.) € C, or (z,uq) € D, 2 € R", p € P.UPy, and
T € [0, 7as],
BO(£)|ZO — %|? +Bno(7)‘zno — Zol* < Weq(2,2,p,7)
< Po(O)]20 — 20|2 + Pro(M)2no — 2n0‘2a (17)



where p (£) = b,(0), p, (1) = bu(yre=™, 7,(¢) =

Eo(f)eML;TM , and p,,,(7) = bpo(Y)r.
During flows, for all u, € U., 2 € R™= such that (z,u.) €
C,, 2R peP.,and 7 €[0,7n],

!

WZW(Z? Z,p,7, UC) < —min { - Tcnoo('Y)v

g — cno}WZ,’y<Za éap7 T)'

At jumps, for all ug € Uy, z € R™* such that (z,uy) € D,,
z2eR™ pePy,and T €1,

WZ,’Y(Za éapa 7_) S
~ (T, (0) = ol 1)8ol6) = Tnoo(£,1)Bo(0)) 12020

- (TETLO(’Y) (e7e™ — 767”) - donO('V)) |2no — Znol”,
with 7., := minZ > 0. Then, given any A > 0, we choose
successively

1
5>cno+2)\(+1),

Wef,y(z,é,p, T, ud) -

0<y<et e,
Tm

_ dono(7)
bro () (€™M — Ve_kd)’
and finally ¢ sufficiently large to have both

(E) + ranO(&V)BO(E)v
AZCK (7) + 27 <T11n + 1) :

which is possible because exponential growth wins over a

rational one. We then obtain during flows and at jumps
respectively,

. 1
W£,7(272apa7—) S —2\ ( + 1) W&»Y(Z,é,p, T)a

Tm
Wéty(za éapa )

AcbTm

e~z b, () > do(£,7)bs

W£ ’y(z z ' D, T ) —aq o|Zo *ZO|2

_ad,no|zno - Zno|2;
for some a4, > 0 and aq,n, > 0. That implies that
WZ,’Y(Z(tmj)? é(taj)7p(t7])? T(tv.])) S
W, 4 (2(0,0), £(0,0), p(0,0), (0, 0)),
for all (¢,
have j <

) € domz = dom 2. From Assumption 1, we
+1 ort > tﬂ 1 for all (¢,) € domz = dom 2.

Therefore we have

Wiy (2(t,4), 2(t, 5), p(t, 5), 7(t,§)) <
e? e HIW, 4 (2(0,0), 2(0,0),p(0,0), 7(0,0)),
for all (t,j) € domz = dom2z. Then (2-AS), with
B.(3,s) = pde=* for some p > 0, directly follows from

(Sanfelice, 2021). [ |

Remark 4. It is seen that p in 3, increases as A increases,
characterizing the peaking phenomenon typically encoun-
tered in high-gain designs when we push convergence arbi-
trarily fast. Discrete observers satisfying the conditions in
Theorem 2 include (Ticlea and Besangon, 2013) and (Tran
and Bernard, 2023), where the former requires linearity in
the dynamics and output. Note that we can only recover,
under the uniform injectivity of T, asymptotic stability in
the z-coordinates. To recover arbitrarily fast exponential
stability, we must require a stronger injectivity from 7.

4. OBSERVER DESIGN FOR A CLASS OF SYSTEMS

In this section, we use Theorem 1 to design a full observer
for the class of hybrid systems (1) that can be put, via some
uniformly left-invertible transformation, into the form

Zo = fo(Zoauc) } (207£7L0’uc) 6 qu,5

éno = An0§n0 + Bno
Z+ =J, (Zo,ud) + Jono(zo, Ud)&no)} (ngnmud) eD, 13
(18a)

no = Jno(zoa ud)&no + Jnoo<zoa Ud

with the outputs

Yd = Hd,noo(zo; ud)+Hd,no(ZO7 ud)§n0~
(18b)
The model (18) covers a wide class of hybrid systems,
including the case of (mechanical) systems with uncertain
impacts, where we need to estimate the state z, observable
during flows and some impact parameters contained in &,,,
which affect z, at jumps in an affine way but not during
flows. These parameters then typically become detectable
from y. through the way they affect z, at jumps, namely
from the fictitious output Jono(2e,ud)&ne. Examples of
hybrid systems that fit into the form (18) range from a
bouncing ball (Example 2) to walking robots (Short and
Sanfelice, 2018) and spiking neurons (Izhikevich, 2003).

Remark 5. The results in this section can be seen as the
nonlinear version of those in (Tran et al., 2022) for hybrid
systems with linear maps, where we have f, =0, A,,, =0,
and B,, = 0 thanks to an appropriate time-varying linear
transformation. Note that for the case of nonlinear maps
treated in this paper, n, can be larger than n,.

Ye = hO(Zm uc),

Following Assumption 1, solutions to (18) of interest,
initialized in some set Zj, are complete. We also define a
compact set Z, x =, where the solutions of (18) of interest
remain. For simplicity, we take C. ¢ C Z, x Z,, X U, and
D.¢ C 2, X E,5 X Ug. Denote D, := {z, € R" : 3¢, €
R™nme gy € R™ud : (zo,fnmud) S Dz,g}.

Assumption 3. The maps fo, Jo, Jono, Jnor Jnoos Hd,noos
and H ,,, are Lipschitz with respect to z, on Z,, uniformly

in (uc,uq) € Ue x Uy. The maps Jyo, Jono, and Hg p, are
bounded on Z, x Uj.

The observer we propose for (18) takes the form

_ZO = f0(207pa T, ycvuc)
gn? = Anogno + Bno + eAﬂoTKd%\I}fo,sat(‘,uc)(207 t’ —7-)
b= @c(p, TyYcs 'U'c)
F=1
25 = J,(sat(2,),u
&to = Jno(sat(
+ Ld( sat

) t Jono(sat(25), Ud)€no
o) U )gno + Jnoo(sat(zo) d)
(20), uas T)(Ya — Hanoo(sat(Zo), uq) X
- Hd,no(sat( 0)7 ud)§7lo)

= ©d (p7 Ty Yd, ud)
0,

(19)
where f,sat is globally Lipschitz with respect to z,, uni-
formly in u. € U,, and equal to f, on Z, xU,; sat(Z,) = 2,
on Z,; and Ky and Ly are the gains to design.
Assumption 4. Under Assumption 2, assume that z, €
R™ can be estimated with a high-gain flow-based observer.
Thus, the maps f,, ¢., and g in (19) are such that there



exist Po, Pe, Pay Vors Loy by, boy Aey do, and doy, satisfying
the conditions in Theorem 1 with &,, replacing z,,.

To estimate &,,,, we propose to design the gains Ky and Ly
exploiting the detectability brought by an extended output
made of Hy no(20,Ud)Eno I Y as well as Jono (20, Ud)Eno
affecting z, at jumps. For this, we assume the following.

Assumption 5. There exist a symmetric positive defi-
nite matrix @ € R"meXMme gaing Ky € R"re*Me and
(2o, ud, 7) — Lg(20,uq,7) € R™e*"v.d hounded on Z, X
Uy x T such that for all z, € Z,N D, uq € Uy, and T € T:

®T(207ud7T)Qq)(Zo7uduT) - Q < 07 (20)
where

(I)(Zm Ud, T) = (Jno(zo» Ud)

— (K4 La(z0,ua,7)) (Jono(zmud) ) >6AMT.

Hd,no (Zoa ud)

Contrary to Lg, which may depend on z,, ug4, and the timer
7, Kg is required to be constant to perform the analysis
(in the proof of Theorem 3). This extra requirement is
similar to the one we made in (Tran et al., 2022) for hybrid
systems with linear maps. Assumption 5 is thus a nonlinear
version of the LMI-based one in (Tran et al., 2022), which
is stronger than quadratic detectability (Wu, 1995) by the
constant nature of Ky. To solve (20), we can use gridding
(grid-based solving) assuming a particular structure of Lg,
possibly with checking of the obtained gains using a much
denser grid (Wu, 1995). If the form of ® allows it, we
may also solve (20) using the polytopic method thanks
to residue matrix expansion as in (Ferrante et al., 2016),
or still gridding but with a theoretical proof of stability
extended from (Sferlazza et al., 2019).

Theorem 3. Under Assumptions 1, 3, 4, and 5, the cas-
cade (18)-(19) verifies (2-AS) (with (£,0,&n0) replacing

(Znov éno)

Proof. By Assumption 3 and (McShane, 1934, Corollary
1), there exists an extension f, ¢at 0f fo that is defined and
globally Lipschitz on R™ x R™. To use the fictitious out-

put, we use the transformation (2., &no, 2o, Enos D T, t,j) —
(Zo; Znos 2oy Znos Ps T)a with
Ao — Ka¥y, () (0, b, —T)

+ fo T et T Bods,
AmT{no - Kd\I/fo,sat(-,uc) (203 t, _T)

[T AT B, ds.
This change of coordinates is well-defined by the global
Lipschitzness of f,sat and there exists a compact set Z,,

Zno — €

Zno = €~

such that for any (zo,éno,éo,ém,p,nuj) € Z, X Epp X
R™ x R™m x R™ X [0, Tas] X R>g x N, we have z,, € Zpp.
In the new coordinates, the dynamics of (z,, 2,,p,7) are
obtained by replacing &,, and &,, with
€no = €T (2o + KaW, 0u(- ) (20,6 =)
+ Jy €t Byods,
AnoT (2, + KaVy, . (uo)(Zo,t, —T))
+f07— Ano(T é)B’I’LOd‘Sa
and considering the extended inputs ucexy = (uc,t) €
uc,ext and Ud,ext = (udut) S ud,ex‘m with uc,ext = Z/[c X RZO
and Ugexty = Ug X R>g. Concerning the dynamics of 2y,

gno =e (21)

and Z,,, we start by showing that Wy (. u.)(20,t,—7))
is constant along solutions. To do that, pick a solution
resulting from the interconnection (18)-(19) initialized in
Zo xR™ x Py x {0}. Since the solution component z, flows
according to fo with input u., for each j € dom; z,, and
each s € [0,t — t;], we have

Uy, (o) (Zo(ts ), 8 —8) = 2o(t — 5, ),

and since the trajectory ¢ — 2,(t, j) remains in Z, and 7
is initialized as 7(0,0) = 0, we have for all (¢,7) € dom z,,

‘Ilfo,sat('7uc)(zo(t’j)’ L, _T(taj)) = \I’fo(-,uc)(ZO(taj)’ L, _T(t7j))'
Besides, by definition of the dynamics, 7 initialized as
7(0,0) = 0 is the time elapsed since the previous jump,
namely 7(t,j) = t —t; for all j € dom;z, There-
fore, exploiting again that z, evolves according to f,
with input u., we have Wy, . u.)(20(t, 7).t —7(t, 7)) =
Vs ue) (2ot J), t, = (t—=15)) = 20(t4, j) for all j € dom; z,
and t € [tj,t;41],s0 that t — \I’fo,sat(~,uc)(zo(t J),t,—7(t, 7))
is constant. Therefore, solutions of the interconnection
(18)-(19) that are initialized in Zp x R™= x Py x {0} are
such that the variable z,, takes the dynamics

: —Ano —AnoT¢ —Ano
Zno = — Apoe Tno € Tno — € "B
- - Anoe_A"(ﬂ—gno + e_AnOT(AnOSnO + Bno) - e_AnOTBno
+ oo+ +
Zno = gno - Kdzo

- Jno(zo» ud)gno + Jnoo(Zoa ud)
- Kd(Jo(Zoa Ud) + JOTLO(ZO7 ud)gno)
= (Jno(zm ud) - KdJono(Zm ud))gno
+ Jnoo(zov ud) - KdJo(Zm ud)
= @20, ud, T)(Zno + Ka¥s, .. (- ue)(Zost, —T)
+ fOT e7A"OS-BnodS) + Jnoo(zo; ud) - KdJo(Zov ud)v

where (b(ZO,Ud,T) = (JnO(ZO7ud) - KdJono(Zovud))eAnoTa
and the variable Z,, takes the dynamics

Zno = — Anoe nOT§ +e” nOTgno
—KaB Uy, oy Gt —) AT,
= - Anoe_Am)Tg + e_AWOT( nogno + Bno
+ e T Ky Gy, (e (Fort, =)
- Kd%qun,sat('vuc)(éo7 t,—7) —e AT By,
”2’;’;0 = - Kdgj

= Jno(sat(éo)a ud)gno + Jnoo(sat(éo) d)
+ La(sat(Zo), ud, T )(yd —Hy nOO(Sat(é )5 u )
- Hd,no(sat(éo); udzfno) - ( ( (2 )
+ Jono(sat(éo)a Ud)gno)
= (Jno(sat(25), uq) — La(sat(Z,), ug, 7) Ha no(sat(2,), uq)
- KdJono(Sat(éo)7 ud))gno
+ Jnoo(5at(25), ug) — KqJo(sat(2,), uq)
+ Ly(sat(Z0), ud, 7)(Ya — Ha,noo(sat(Z,), ua)
= ®(sat(2,), ud, 7)(Zno + Ka¥s, .. (o) (Zost, —T)
+ [y € 4m* Bpods)
+ Jnoo(sat(2,), uq) — KaJo(sat(2,), uq)
+ La(sat(Z5), ua, 7)(Ya — Hanoo(sat(20), uq)),
where ® is defined in Assumption 5. The flow and jump
sets are subsets of Z, x Z,, x U. and Z, X Z,, X Uy,
respectively. Now we deduce the error dynamics. For
brevity, let us denote

? = Zno + Kd\:[jfo,sat(‘vuc)(zo’ t?
T = éno + Kd\]:jfo,sat(‘vuc)('é’:o’ t?
We then see that

7) + [y € 4" Bpods,
)+ [y e Ao Bpods.



Ya = Hd,noo(zoa Ud) + Hd,no(zoa ud)eAnoTTa
Z:o = ¢(207 Ud, T)T + JTIOO(Z07 ud) - KdJO(ZO7 Ud)a
2t = ®(sat(Z,), ug, 7)Y

+ Jnoo(sat(2,),uq) — KaJo(sat(3,), uq)

+ Ly(sat(Z5), ud, ) (Hd,noo(Z0s td)

- Hd,noo(sat(éo)a Ud) + Hd,no(zoa Ud)e
Zno- We then get

2t = G20, uaq, 7)Y — D(sat(Z,), ug, 7)1

— Li(sat(2,), ud, T) Hano(Zo, ug)edneTY

+ (Jnoo<zoaud) - Jnoo(sat(éo)y ud))

— Ki(Jo(z0,uq) — Jo(sat(,),uq))

- Ld(sat(éo)a Ud, T) (Hd,noo(zoa Ud)

— Hy noo(sat(Z5), uq))-

Now add and subtract both the terms ¢(sat(2,), uq, 7)Y
and Lg(sat(Z,), ua, 7)Ha,no(sat(Z,), ug)e ™Y to get

A"OTT).
Define the error Z,,, := 2,0, —

zZh=®(sat(Z,),uq, 7)(T — T)
+ (¢(20, ua, 7) — d(sat(2,), uq, 7) — La(sat(Z,), uq, T)
x (Hd,no(zo,ud) - Hd,no(sat(éo)’ud )eAnoT)T

+ (Jnoo(zm ud) - Jnoo(satgéo)y ud))

— Kg(Jo(20,ua) — Jo(sat(2,), uq))

— La(sat(2,), ud, T

X (Hd,noo(zm ud) - Hd,noo(sat(éo)7 ud))

Now see that T — T = Z,, + Ka(y, o(ue)(Zost, —T) —
Vs, cui(-ue)(Zos t, —7)) and use the expression of Y. The
erTor Zn, ‘takes the dynamics

Zno=0
Zt = (sat(2,), Ud, T)Zno + P(sat(Z,), ua, 7) Ky
X (\Ilfo,sat('wuc)(zo7 t, _T) - \ijo,sat('vuc)(207 t, _T))
+ (d(20, ua, 7) — P(sat(2,), ug, 7) — La(sat(Zs), g, T)
X (Hano(20, ua) — Hano(sat(2o), ug))edneT)x
(Zno + Ka¥y, . (uc) (2o t, —T) + fOT e~ Anos B, ,ds)
+ (Jnoo(zoa ud) - Jnoo(sat(éo); ud)) - Kd
X (Jo(20, ua) — Jo(sat(25), uq)) — La(sat(Z,), ug, 7)
X (Hd,noo(zov Ud) - Hd,noo(sat(éo)v Ud))
Consider the Lyapunov function Vi,o(2no, 2no) = (Zne —
2n0) ' Q(2no — Zno), With @Q in (20). By the global Lip-
schitzness of f,sat With respect to z,, uniformly with
respect to u., Gronwall’s inequality allows to show that
Wy, aelue) (5, —7)) is Lipschitz, uniformly with respect
to (t,7) € Rsg x [0,7a]. Indeed, we have for any
(Zo,aa Zo,bvucat77_) € R x R™ x uc X RZO X [OaTM]>

g’fo,sat(',’uq;)('ZO,LL’ ty _T) = Z(),a
t—
+ ft T fo7sat(quo,sat('7uc)(Zo7a7 t,s —t),u.(s))ds,
\Ilfo‘sat(‘yuc)(zo bvt T) — ZO b

f " fosat (Us, i Cue) (Zopy B8 — 1), uc(s))ds.
By subtracting both sides and using the triangle inequality,
W syt ) (Zoar b =T) = W (o) (Zo,pr = T))
< 200 = Zopl + i, [fosat (U, ue) (Zoarts s = £), ()
— fosat (W, i (ue) (Zops B8 — 1), ue(s))|ds.
Denoting L as the Lipschitz constant of f, sa¢ With respect
to z,, we get

|\I’fo,sat('7uc)(zova’ t, _T) - Wfo,sat('7uc)(zovb7 t, _T)|

t
S |Zo’a - Zoab| + j\tfr L|\ijo,sat('7uc)(zova’ t? §—= t)
= U5, i (ue) (o By s — 1)|ds.
Using Gronwall’s inequality, we get
|\Ilfo,sat(‘»71«c) (20:a7 t’ _T) - \Ilfo)sat(-,uc) (ZO,IM t7 _T)|

< |Zo,a — 2op|€ET <200 — zoplel™,

which means Wy, . (. (-, —7)) is Lipschitz, uniformly
with respect to (¢,7) € R>g x [0, 7as]. Thanks to Assump-
tions 3 and 5 and Young’s inequality on the cross terms,
there exist ¢; € [0,1) and ca, ¢3,¢4 > 0 such that for any
k>0,2 € Z, X Zpo, 2 €R™ | and (7,t, e, uq) € [0, Tar] X
R x U, x Z/{d,

Vio(2, 2,7, t, 1) =0,
Vnt)(za 27 T, t, ud) S (Cl + %) Vno(znoa éno, T)

+ (cak + c4))z0 — 20|%
Picking & large enough so that c; +<2 € [0, 1), V;,, satisfies

the second item of each condition of Theorem 1. Besides,

gno - éno = 6AnOT(Zno - éno)

+Kd(\:[lfo,sat(';uc)(zo7 t, _T) - \Ilfo,sat(';uc)(207 t, _T))v
and since 7 remains in [0, 7a] and Wy (o (t, —7)) is
Lipschitz, uniformly with respect to (¢,7) € R>¢ x [0, 7],
using Young’s inequality, there exist ¢; > 0 and c¢g > 0
such that for all (2o, Zno, Z0s Znoy Ts Ues ) € Zo X Zpo X R™ x
R™me % [0, 7as] X Ue X R0, (Eno, Eno) defined in (21) verifies

‘gno - 5no| S CS‘Zno - 2no| + 66|zo - (22)
so that V, , satisfies the inequalities involving it in The-
orem 1 in the new coordinates. Since ¢, and ¢4 are
independent of (2,, Z,0), solutions (2, Zno, 20, Znos P, T) t0
the cascade initialized in Zp x R™= x Py x {0} with inputs
(Ue,exts Udyext) € Ue,ext X Udexy are such that p(t,j) € Pe
during flows and p(t, j) € Py at jumps. Applying Theorem
1, the result follows from the uniform invertibility of the
change of coordinates (deduced from (22)). [

20|7

Remark 6. When f, and h, are linear, for example if

%0 = Aozo + B, and y. = H,z,, with the pair (4,, H,)

observable, the observer (19) takes the much simpler form

o= AoZo + Bo+ T(0)(ye — Ho%,)

éno = Anoéno + Bpo + eAnOTKde_AOTF(ExyC -

7=1

25 = J,(sat(2,), uq) + Jono(sat(Zs), uaq)no

§no = Jno(sat(2,), ud)fm, + Jnoo(sat(2,),u d)A
+ La(sat(25), ua, 7)(Ya — Hanoo(sat(Zs), uq)

Hd,’rLo(Sat( Ao)v Ud

Hoz,)

)é"())

(23)
where ¢ — I'(¢) € R™*™.c is an appropriate high-gain
(see (Bernard and Sanfelice, 2022, Example 4.2)). This
form is similar to (Tran et al., 2022) for linear maps.

Tt =0,

Example 2. Consider a bouncing ball with an unknown
restitution coeflicient, described by

& = (z2, —cyxa + U, 0),
T = (21, —T2x3 + ug, T3),

when 1 > 0
when 21 =0 and x5 <0

with flow output y. = x; and no jump output, where x;
and x5 are the ball’s height and velocity, instantaneously
observable through y.; x3 = 0.5 is the restitution coeffi-
cient at the impact that we also want to estimate using
its interaction with z2 at jumps; ¢y = 0.1 is the friction
coefficient; u, = —9.8 is the gravitational acceleration; and
ug = 5 is a pulse at the impact which serves to: 1) Uni-
formly bound (z1,z2) in a compact set Z, not containing
0 (otherwise x3 would not be uniformly detectable); and
2) Uniformly bound the flow lengths away from 0 and
providing enough flowing to estimate z,.

By choosing z, = (%0,1;%0,2) = (z1,22) and &, = w3,



we obtain the form (18) with the maps fo(2o,uc) =
(Z0727 —CfZ0,2 + uc)a Ano = 0, Bno = 0, Jo(Zozud) =
(Zo,l7ud)7 Jono(zmud) = (O, 720,2), Jno(zmud) = 1,
Jnoo(Zosud) = 0, and Hg noo(%0, uq) = 0. Notice that here
these maps are linear and hence Lipschitz with respect
t0 z,, uniformly in (ue,uq), so Assumption 3 is satisfied.
Since yq; = 0, we take Ly = 0 and estimate &,, using
the fictitious output Jone(zo, %d)éno- Assumption 5 now
becomes (1 — K4(0, 72072))T Q(1—K40,—2,2))—Q <0
for z, € Z,N D,, with @ a positive scalar and D, :=
{20 € R? : 2,7 = 0,2,2 < 0}. Supposing for instance
that z, 2 € [—10, —0.5] at jumps, Assumption 5 is satisfied
by taking Ky = (0 0.1). Because the maps f, and h, are
linear time-invariant in this application, Remark 6 applies.
Simulation results are in Figure 1. Here, &,, is estimated
without using yg4, but only the fictitious output —zsx3.
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Fig. 1. State and parameter estimation in a bouncing ball.

5. CONCLUSION

This paper presents detectability necessary conditions and
Lyapunov-based sufficient conditions for coupling flow-
and jump-based observers for hybrid systems with known
jump times. We also apply these to design an observer for a
wide class of hybrid systems, followed by an application to
state and parameter estimation in a bouncing ball. Future
work includes finding implementable approzimations of

the innovation term in &,, in (19) (which is possible
since this term vanishes asymptotically) and building a
nonlinear jump-based observer to estimate z,, (or &,.)
with a fully nonlinear jump map. A candidate for this is
the nonlinear Luenberger observer (Brivadis et al., 2019),
which can have both an arbitrarily fast convergence rate
and an ISS property, hence coherent with the results
developed in Theorem 2.
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