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Abstract

In response to concerns about protocol ossification and pri-

vacy, post-TCP transport protocols such as QUIC and Web-

RTC include end-to-end encryption and authentication at the

transport layer. This makes their packets opaque to middle-

boxes, freeing the transport protocol to evolve but preventing

some in-network innovations and performance improvements.

This paper describes sidekick protocols: an approach to in-

network assistance for opaque transport protocols where in-

network intermediaries help endpoints by sending information

adjacent to the underlying connection, which remains opaque

and unmodified on the wire.

A key technical challenge is how the sidekick connection

can efficiently refer to ranges of packets of the underlying

connection without the ability to observe cleartext sequence

numbers. We present a mathematical tool called a quACK that

concisely represents a selective acknowledgment of opaque

packets, without access to cleartext sequence numbers.

In real-world and emulation-based evaluations, the sidekick

improved performance in several scenarios: early retransmis-

sion over lossy Wi-Fi paths, proxy acknowledgments to save

energy, and a path-aware congestion-control mechanism we

call PACUBIC that emulates a “split” connection.

1 Introduction

In the Internet’s canonical model, transport is end-to-end and

implemented only in hosts. Traditionally, routers and other

network components forwarded IP datagrams without regard

to their payloads or flow membership [12, 58]; only hosts

thought about connections, reliable delivery, or flow-by-flow

congestion control.

In practice, however, the best behavior for a transport pro-

tocol depends on the particulars of the network path. An

appropriate retransmission or congestion-control scheme for

a heavily-multiplexed wired network wouldn’t be ideal for

paths that include a high-delay satellite link, Wi-Fi with bulk

ACKs and frequent reordering, or a cellular WWAN [25, 42].

By the 1990s, many networks had broken from the canon-

ical model by deploying in-network TCP accelerators, also

known as “performance-enhancing proxies” (PEPs) [26]. TCP

PEPs can split an end-to-end connection into multiple con-

catenated connections [10, 17, 23, 28, 34], buffer and retrans-

mit packets over a lossy link [2, 55], virtualize congestion

control [14, 29, 49], resegment the byte stream, and enable

forward error correction, explicit congestion notification, or

other segment-specific enhancements. Because TCP isn’t en-

crypted or authenticated, PEPs can achieve this transparently,

without the knowledge or cooperation of end hosts. Roughly

20–40% of Internet paths cross at least one TCP PEP [21,30].

While many flows benefit from PEPs, their use carries a

cost: protocol ossification [21, 53]. When a middlebox inserts

itself in a connection and enforces its preconceptions about

the transport protocol, it can thwart the protocol’s evolution,

dropping traffic that uses an upgraded version or new options.

TCP PEPs have hindered or complicated the deployment of

many TCP improvements, such as ECN++, tcpcrypt, TCP

extended options, and multipath TCP [30, 46, 56].

In response to this ossification, and to an increased empha-

sis on privacy and security, post-TCP transport protocols have

been designed to be impervious to meddling middleboxes, by

encrypting and authenticating the transport header. We call

these newer transport protocols “opaque.” The most prevalent

is QUIC [32], found in billions of installed Web browsers and

millions of servers [68]; other opaque transport protocols are

used in WebRTC/SRTP [54], Zoom [69], BitTorrent [4], and

Mosh/SSP [63].

This opacity means that middleboxes can’t interpose them-

selves on a connection or understand the sequence numbers

of packets in transit. This prevents PEPs from providing as-

sistance, reducing—in some situations—the performance of

opaque transport protocols [6, 7, 38, 42, 47]. It’s possible to

co-design protocols and PEPs to preserve security and pri-

vacy while permitting assistance from credentialed middle-

boxes [19, 24, 33, 59], but challenging to do so without tightly

coupling these components, risking ossification and fragility.

In this paper, we propose a method for in-network assis-

tance of opaque transport protocols that tries to resolve this

tension. Our approach leaves the transport protocol unchanged

on the wire: a secure end-to-end connection between hosts,

opaque to middleboxes and free to evolve. No PEPs are cre-

dentialed to decrypt the transport protocol’s headers.

Instead, we propose a second protocol to be spoken on an

adjacent connection between an end host and a PEP. We call

this the sidekick protocol, and its contents are about the pack-

ets of the underlying, or “base,” connection. Sidekick PEPs

assist end hosts by reporting what they’ve observed about the
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packets of the opaque base connection, without coupling their

assistance to the details of the base protocol. End hosts use

this information to influence decisions about how and when

to send or resend packets on the base connection, approximat-

ing some of the performance benefits of traditional PEPs. A

similar functional separation was first proposed by [67], but

this paper presents the first concrete realization of the idea

and its nuanced interactions with real transport protocols.

One key technical challenge with this approach is how the

sidekick can efficiently refer to ranges of packets in an opaque

base connection. These packets appear random to the middle-

box, and referring to a range of, e.g., 100 opaque packets in

the presence of loss and reordering is not as simple as saying

“up to 100” when there are cleartext sequence numbers. In

Section 3, we present and evaluate a mathematical tool called

a quACK that concisely represents a selective acknowledg-

ment of opaque, randomly identified packets. The quACK is

based on the insight that we can model the problem as a sys-

tem of power sum polynomial equations if there is a practical

bound on the maximum number of “holes” among the packets

being ACKed. We created an optimized implementation [65],

building on related theoretical work [22, 35, 50].

A second challenge is how the end host should use infor-

mation from a sidekick connection to obtain a performance

benefit for its base connection. Since the performance benefit

comes from changing behavior at the end host rather than the

middlebox, transport protocols need to incorporate this infor-

mation into their existing algorithms for, e.g., loss detection

and retransmission, which have gotten increasingly complex

over time. To explore this, we designed a sidekick protocol

we call Robin, and implemented it in three scenarios:

• A low-latency audio stream over an Internet path that in-

cludes a Wi-Fi path segment (low latency with loss), fol-

lowed by a WAN path segment (higher latency with low

loss). Can the sidekick PEP reduce the de-jitter buffer

delay by triggering earlier retransmissions on loss?

• An upload over the same path. Can an opaque transport

protocol like QUIC, aided by a sidekick PEP at the point

between these two path segments, match the throughput

of TCP over a connection-splitting PEP?

• A battery-powered receiver, downloading data from the

Internet over Wi-Fi. If the Wi-Fi access point sends side-

kick quACKs on behalf of the receiver, can it reduce the

number of times the receiver’s radio needs to wake up to

send an end-to-end ACK?

A third technical challenge is how knowledge about where

loss occurs along a path should influence a congestion-control

scheme. The challenge in any such scheme is how to maxi-

mize the congestion window while sharing the network fairly

with competing flows. We present a path-aware modification

to the CUBIC congestion-control algorithm [27], which we

call PACUBIC, that approximates the congestion-control be-

havior of a PEP-assisted split TCP CUBIC connection while

making its decisions entirely on the host.

Summary of results. Concretely realized, the quACK ex-

presses the equivalent of TCP’s cumulative + selective ACK

over opaque (randomly identified) packets in 48 bytes, tolerat-

ing up to 10 missing packets before the last “selective ACK.”

On a recent x86-64 CPU, it takes 33 ns/packet for a sidekick

PEP to encode a quACK, and 3 µs for an end host to decode

it. These overheads compared well with several alternatives

(Section 3.5).

We implemented Robin in a low-latency media client

based on the WebRTC standard, and an HTTP/3 client us-

ing the Cloudflare implementation of QUIC [13] and the

libcurl [45] implementation of HTTP/3. We evaluated the

three scenarios in real-world and emulation experiments. In

real-world experiments using an unmodified local Wi-Fi net-

work to access our nearest AWS datacenter, the sidekick was

able to trigger early retransmissions to fill in gaps in the audio

of a latency-sensitive audio stream, reducing the receiver’s

de-jitter delay from 2.3 seconds to 204 ms—about a 91%

reduction (Figure 8). The sidekick was also able to improve

the speed of an HTTP/3 (QUIC) upload by about 50%.

In emulation experiments of the “battery-powered receiver”

scenario, the sidekick PEP was able to reduce the need for the

receiver to send ACKs by sending proxy acknowledgments on

its behalf—ACKs the sender used to advance its flow-control

and congestion-control windows. The receiver only needed to

wake up its radio to send occasional end-to-end ACKs, which

the sender used to discard data from its buffer (Figure 4c).

Also in an emulation experiment, we confirmed that PACU-

BIC’s performance approximates a split CUBIC connection

(two TCP CUBIC connections separated by a PEP), respond-

ing to loss events on the different path segments similarly

to how the individual CUBIC flows would (Figure 6). The

results indicate that the sidekick protocol’s gains do not come

at the expense of congestion-control fairness relative to a split

CUBIC connection.

The rest of this paper describes the sidekick’s motivating

scenarios (Section 2), explores the quACK’s design and im-

plementation (Section 3), discusses the concrete sidekick pro-

tocol we built around quACKs (Section 4) and its implementa-

tion in two base protocols (Section 5), and then evaluates the

protocol in real-world and emulation experiments (Section 6).

2 Motivating Scenarios

We focus on three scenarios where end hosts benefit from

in-network assistance. In each one, a proxy server provides

feedback, called a quACK, to an end host: the data sender

(Figure 1). Recall that a quACK is a “cumulative ACK +

selective ACK” over encrypted sequence numbers. The data

sender uses this feedback to influence its behavior on the base

connection, without altering the wire format.

To be clear: the sidekick protocol is not tied to a specific

base protocol nor to how the end hosts use the quACK infor-
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use too much space or computation. Finally, we present an

efficient construction of a quACK based on the insight that we

can model the problem as a system of power sum polynomial

equations when we have a bound on the maximum number of

missing elements, a threshold t. This solution is most similar

to the deterministic solution to the straggler identification

problem [22], and also builds on related theoretical work in set

reconciliation [50], and coding theory and graph theory [35].

3.1 The QuACK Problem

We first describe the quACK problem. A data sender transmits

a multiset1 of elements S (these correspond to packets). At any

given time, a receiver (such as a proxy server) has received a

subset R ⊆ S of the sent elements. We would like the receiver

to communicate a small amount of information to the sender,

who then efficiently decodes the missing elements—the set

difference S \R—knowing S. We call this small amount of

information the “quACK”, and the problem is: what is in a

quACK and how do we decode it?

3.2 Packet Identifiers

In a networking context, how exactly do we refer to the ele-

ments in the quACK problem that have been sent or received?

Traditional TCP middleboxes have been able to interpose

their own concise, cumulative acknowledgments using clear-

text sequence numbers, but this is not possible with modern,

secure transport protocols. Even if a connection did expose

an unencrypted numerical field, we would not want to refer

to that field at risk of ossifying that protocol.

Instead, we need a function that deterministically maps a

packet to a random b-byte identifier. The most trivial solution

that applies to all base protocols is to hash the entire payload.

Another option if the payload is already pseudorandom (e.g.,

QUIC) is to take the first b bytes from a fixed offset of that

payload. Although the latter option would rely on those bytes

to remain pseudorandom, it is computationally more efficient

because it does not require reading the entire payload.

Collisions. The main considerations when selecting the

number of bytes, b, in an identifier is the tolerance for colli-

sions compared with the extra data needed to refer to these

packets on the link. The larger b is, the lower the collision

probability but the greater the link overhead.

Define the collision probability to be the probability that

a randomly-chosen b-byte identifier in a list of n packets

maps to more than one packet in that list. If we assume that

identifiers are uniformly distributed, this probability is equal

to 1−(1−1/256b)n−1. When n = 25, using 4 bytes results in

an almost negligible chance of collision while using 2 bytes

results in a 0.04% chance (Table 1).

When handling collisions, a sender who is decoding a

quACK has a list of n packets it is trying to classify as re-

ceived or missing (Section 3.5). Note that collisions are also

1A “multiset” means the same element can be transmitted more than once.

Identifier Bytes 1 2 4 8

Collision Prob. 0.090 0.0004 5.6e-09 ≈0

Table 1: Collision probabilities for n = 25.

known to the sender beforehand. If there is a collision be-

tween a packet that is received and a packet that is missing,

the fate of that identifier is considered indeterminate. In our

scenarios (Section 2), either the protocol can still function

with approximate statistics (e.g., congestion control) or it can

fall back to an end-to-end mechanism (e.g., retransmission).

3.3 Strawman Solutions

A problem that is simple with cumulative and selective ac-

knowledgments of plaintext sequence numbers is deceivingly

challenging for pseudorandom packet identifiers. Consider

the following strawman solutions to the quACK problem:

Strawman 1: Echo every identifier. Strawman 1a, similar

to [41, 44], echoes the identifier of every received packet in a

new UDP packet to the data sender. Decoding is trivial given

the identifiers are unmodified. This strawman adds significant

link overhead in terms of additional packets. Additionally,

since the strawman is not cumulative, losing a quACK means

the end host could falsely consider a packet to be lost, creating

a congestion event or spurious retransmission.

Strawman 1b echoes a sliding window of identifiers over

UDP such that there is overlap in the identifiers referred to by

consecutive quACKs. This solution is slightly more resilient

to loss, but uses more bytes and is still not guaranteed to

be reliable. Another variant batches identifiers to reduce the

number of packets, but this solution is even less resilient to

loss.

We also consider a Strawman 1c that echoes every identifier

over TCP with TCP_NODELAY to send every identifier in its

own packet. This ensures there are no false positives when

detecting lost packets, but adds even more link overhead in

terms of TCP headers and additional ACKs from the data

sender (every other packet by default in the Linux kernel).

Strawman 2: Cumulative hash of every identifier. Straw-

man 2 sends a SHA-256 hash of a sorted concatenation of all

the received packets in a UDP packet, and the sender hashes

every subset of the same size of sent packets until it finds

the subset with the same hash (assuming collision resistance).

The strawman includes a count of the packets received to

determine the size of the subset to hash. As the number of

missing packets exceeds even a moderate amount, the num-

ber of subsets to calculate explodes, making the strawman

impractical to decode.

One might also suggest the receiver send negative acknowl-

edgments of the packets it has not received. However, unlike

sequence numbers where one can determine a gap in received

packets, there is no way to tell with random identifiers what

packet is missing or should be expected next.
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Num Additional Packet Payload Cumu-

Per-Packet Encode Time Decode Time Proxy Packets Size (bytes) lative?

Strawman 1a Parse identifier N/A n b No

Strawman 1b Parse identifier, move sliding N/A n b ·window No

window

Strawman 1c Parse identifier N/A n (TCP headers) b No

Strawman 2 Parse identifier, Concatenate and hash 1 32+4 Yes

concatenate and hash
(

n
m

)

subsets (hash and count)

Power Sums Parse identifier, t modular Plug n candidate roots into a 1 4+b+b · t Yes

multiplications and additions degree-m polynomial OR solve (count, last value,

system of m polynomial equations t power sums)

Table 2: Strawmen compared to the power sum quACK representing n packets sent by the data sender, m missing packets, and

b-byte identifiers. The power sum quACK uses the threshold t. The total data overhead of each quACK must consider the packet

payload size along with transport headers. We evaluate the overheads in practice in Section 6.4.

3.4 The Power Sum Solution

Now we describe a solution to the quACK problem based

on the insight that we can model the problem as a system

of power sum polynomial equations when we have a bound

on the maximum number of missing elements, a threshold t.

Unlike the previous strawmen, this construction is efficient to

decode, and its size is proportional only to t.

Consider the simplest case, when the receiver is only miss-

ing a single element. The receiver maps packet identifiers to

a finite field, i.e. modulo the largest prime that fits in b bytes,

and communicates the sum ∑x∈R x of the received elements

to the sender. The sender computes the sum ∑x∈S x of the sent

elements and subtracts the sum from the receiver, calculating:

∑
x∈S

x− ∑
x∈R

x = ∑
x∈S\R

x,

which is the sum of elements in the set difference. In this case,

the sum is exactly the value of the missing element.

In fact, we can generalize this scheme to any number of

missing elements m. Instead of transmitting only a single

sum, the receiver communicates the first m power sums to the

sender, where the i-th power sum of a multiset R is defined

as ∑x∈R xi. The sender then computes the first m power sums

of S and calculates the respective differences di for i ∈ [1,m],
producing the following system of m equations:

{

∑
x∈S\R

xi = di | i ∈ [1,m]

}

.

Instead of transmitting an unbounded number of power

sums, the receiver only maintains and sends the first t power

sums. Efficiently solving these t power sum polynomial equa-

tions in t variables in a finite field is a well-understood algebra

problem [22]. The solutions are exactly x ∈ S\R.

Efficiency. The power sum quACK is efficient to decode,

adds reasonable link overhead, and is a cumulative represen-

tation of the packets seen by the receiver (Table 2). Compared

to Strawman 2, the power sum quACK can be decoded with

simple algebraic techniques. Its link overhead is proportional

only to the number of missing packets between consecutive

quACKs, up to a configurable threshold. In comparison, the

link overhead of Strawman 1 is necessarily proportional to

the number of received packets. The power sum quACK is

also resilient to mis-identifying a received packet as dropped,

in the case a quACK is lost in transmission.

Interface. The actual format of the power sum quACK in-

cludes three fields: (i) t b-byte power sums, (ii) a 4-byte count

of received elements, and (iii) the b-byte identifier of the last

element received. We assume power sum quACKs to be sent

over UDP, though the actual mechanism is not tied to the

design. Since the decoder does not know m ahead of time, the

decoder takes the difference between the number of packets it

has sent and the count in the quACK to calculate m. Sending

the last element received is an optimization that allows m to

represent just the “holes” among the packets being selectively

ACKed, excluding the possibly many consecutive elements

that are in-flight (Section 4.3.1).

3.5 Microbenchmarks

We benchmark our optimized implementation of the power

sum quACK [65] to demonstrate its practicality for in-line

packet processing. Our microbenchmarks used an m4.xlarge

AWS instance with a 4-CPU Intel Xeon E5 processor @ 2.30

GHz and 16 GB memory.

Encode Time Decode Time

Strawman 1a/1c 1 ns/pkt 0

Strawman 1b 51 ns/pkt 0

Strawman 2 27 ns/pkt 830 ms

Power Sum 33 ns/pkt 2.82 µs

Table 3: The CPU overheads of power sums are comparable

to those of the strawmen, while being more efficient in space

and computation. The encode time includes constructing and

serializing the quACK(s), given n identifiers. The decode time

includes finding the identifiers of either R or S\R, given the

quACK(s) and S. Parameters: n = 25, t = 10, b = 4.
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PEP cannot actively manipulate traffic any more than outside

a sidekick setting.

4.2 Configuration Messages

The data sender can send various other messages to the proxy

to configure the connection or reset bad state.

Protocol parameters. The sender configures (i) the quACK

interval of the PEP and (ii) the threshold number of missing

packets t, or otherwise selects sidekick-specific settings such

as how an identifier is computed.

The quACK interval is expressed in terms of time or num-

ber of packets, e.g., every N milliseconds or every N packets,

as in a TCP delayed ACK. The sender determines the desired

interval based on its estimated RTT of the base connection and

its application objectives, e.g., more frequently for latency-

sensitive applications or lower-RTT paths.

The threshold represents the bound on the number of miss-

ing packets between quACKs, in practice the number of

“holes” among the packets that are selectively ACKed. The

threshold depends on the quACK interval, and should be set

based on how precise loss detection needs to be and other

qualities of the link. For example, the threshold is larger to

detect congestive loss in the queue of a bottleneck link, or

smaller to still detect transmission error on a lossy link.

Resets. Robin allows the sender to tell the PEP to reinitial-

ize the quACK. This is helpful if the quACK becomes invalid,

e.g., if m exceeds the threshold t. It is always safe to reset the

quACK, or even to ignore the sidekick entirely and fall back

to the base protocol’s end-to-end mechanisms.

4.3 Sender Behavior

In this section, we discuss two particular sender-side behav-

iors that are enabled by the sidekick protocol and which are

helpful across several scenarios: detecting packet loss from a

decoded quACK and congestion control.

4.3.1 Detecting Loss

The sender knows definitively which packets have been re-

ceived by the proxy from a decoded quACK. Next, it must

determine from the remaining packets which ones have been

dropped and which are still in-flight, including if there has

been a reordering of packets. In-flight packets are later classi-

fied as received or dropped based on future quACKs.

When there is no reordering, the packets that are dropped

are just the “holes” among the packets that are selectively

ACKed by the quACK. In particular, these are the holes when

considering sent packets in the order they were sent up to

the last element received, which represents the last selective

ACK. To identify these dropped packets, the sender encodes

t cumulative power sums of its sent packets up to the last

element received. The difference between these power sums

and the power sums in the quACK represents the dropped

packets. The sender “removes” the identifiers of dropped

packets from its cumulative power sums, ensuring that the

only packets that contribute to the threshold limit are those

that went missing since decoding the last quACK.

To account for reordering in loss detection, Robin imple-

ments an algorithm similar to the 3-duplicate ACK rule in

TCP [5, 60]. In TCP, if three or more duplicate ACKs are

received in a row, it is a strong indication that a segment

has been lost. Robin considers a packet lost only if three or

more packets sent after the missing packet have been received.

Other mechanisms could involve timeouts for individual pack-

ets similar to the RACK-TLP loss detection algorithm for

TCP [11].

4.3.2 Path-Aware CUBIC Congestion Control

Congestion-controlled base protocols must have a congestion

response to lost packets that they retransmit due to quACKs,

similar to if the loss were discovered by the end-to-end ACK.

This ensures friendliness with end-to-end congestion control

algorithms that do consider the loss, such as CUBIC [27] in

the presence of a connection-splitting TCP PEP. Here, we

propose PACUBIC, an algorithm that emulates this “split

CUBIC” behavior. PACUBIC uses knowledge of where loss

occurs to improve connection throughput compared to end-

to-end CUBIC, while remaining fair to competing flows.

Recall that CUBIC [27] reduces its congestion window by a

multiplicative decrease factor, β = β∗ = 0.7, when observing

loss (a congestion event), and otherwise increases its window

based on a real-time dependent cubic function with scaling

factor C =C∗ = 0.4:

cwnd =C(T −K)3 +wmax where K =
3

√

wmax(1−β)

C
.

Here, cwnd is the current congestion window, wmax is the

window size just before the last reduction, and T is the time

elapsed since the last window reduction.

While a split CUBIC connection has two congestion win-

dows, end-to-end PACUBIC only has one window represent-

ing the in-flight bytes of the end-to-end connection. Concep-

tually, we want an algorithm that enables PACUBIC’s single

congestion window to match the sum of the split connection’s

two congestion windows.

PACUBIC effectively makes it so that we reduce and grow

cwnd proportionally to the number of in-flight bytes on the

path segment of where the last congestion event occurred. Let

r be the estimated ratio of the RTT of the near path segment

(between the data sender and the proxy) to the RTT of the

entire connection (between end hosts). We use r as a proxy

for the ratio of the number of in-flight bytes. If the last con-

gestion event came from a quACK, we use the same real-time

dependent cubic function but with the following constants2

β = 1− r(1−β∗) and C =
C∗

r3
.

2See Appendix A for more intuition behind β′ and C′.
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If the last congestion event came from an end-to-end ACK,

then we use the original β and C as above.

While this algorithm resembles the congestion behavior of

split CUBIC, it is simply an approximation. PACUBIC does

not know the exact number of bytes in-flight on each path seg-

ment, and the sum of the two congestion windows is simply

a heuristic for an inherently different split connection. The

main takeaway is that knowing where loss occurs can inform

congestion control. We generally hope that quACKs can lead

to the development of smarter, path-aware algorithms.

5 Implementation

Module Language LOC

QuACK library (Section 3.5) Rust 1772

Media server/client + integration Rust 478

quiche client integration Rust 1821

libcurl client integration C 1459

Proxy sidekick binary Rust 833

Table 4: Lines of code.

We now describe our implementation of Robin [66] for sev-

eral applications. We integrated sidekick functionality with a

simple media client for low-latency streaming and an HTTP/3

(QUIC) client. The total implementation of the quACK library,

and proxy and client integrations used 6363 LOC (Table 4).

5.1 Baselines and Applications

The baselines we evaluated against were the performance of

two opaque transport protocols without proxy assistance, and

the fairness of a split CUBIC connection.

Low-latency media application. We implemented a simple

server and client in Rust for streaming low-latency media. The

client sends a numbered packet containing 240 bytes of data

every 20 milliseconds, representing an audio stream at 96

kbit/s. The sequence number is encrypted on the wire.

The server receives packets. If it receives a nonconsecutive

sequence number, it sends a NACK back to the client that

contains the sequence number of each missing packet. The

client’s behavior on NACK is to retransmit the packet. The

server retransmits NACKs, up to one per RTT, until it has

received the packet.

The server’s application behavior is to store incoming pack-

ets in a buffer and play them as soon as the next packet in the

sequence is available. The de-jitter buffer delay is the length

of time between when the packet is stored to when it can be

played in-order. Some packets can be played immediately.

HTTP/3 file upload application. We used the popular

libcurl [45] file transfer library as the basis for our

HTTP client, and an nginx webserver. The client makes an

HTTP POST request to the server. Both are patched with

quiche [13], a production implementation of the QUIC pro-

tocol from Cloudflare, to provide support for HTTP/3.

For our TCP baselines, we used the same file upload appli-

cation with the default HTTP/1.1 server and client. We used a

split-connection TCP PEP [10] that intercepts the TCP SYN

packet in the three-way handshake, pretends to be the other

side of that connection, and initiates a new connection to the

real endpoint. Both clients use CUBIC congestion control.

5.2 Client Integration

In each application, we modified only the client to speak

Robin and respond to in-network feedback. The server re-

mained unchanged. The modifications were in two parts: fol-

lowing the discovery mechanism to establish bi-directional

communication with the proxy, and using the information in

the quACK to modify transport layer behavior.

Low-latency media client. The media client has two open

UDP sockets: one for the base connection and one for the

sidekick connection. When it receives a quACK, it detects lost

packets without reordering and immediately retransmits them.

The protocol does not have a congestion window nor a flow-

control window. The client also sends reset and configuration

messages over the sidekick connection.

HTTP/3 file upload client. The HTTP/3 client similarly

has an adjacent UDP socket for the sidekick connection on

which it receives quACKs and sends reset and configura-

tion messages. The client passes the quACK to our modified

quiche library, which interprets the quACK and makes trans-

port layer decisions. From the client’s perspective, quiche

tells libcurl exactly what bytes to send over the wire.

Our modified quiche library uses the quACK to inform

the retransmission behavior, congestion window, and flow-

control window. The library immediately retransmits lost

frames in a newly-numbered packet, as opposed to the lost

packet, similar to QUIC’s original retransmission mechanism.

We implement PACUBIC, described in Section 4.3.2. We also

move the flow-control window (without forgetting packets

in the retransmission buffer), but only in the ACK reduction

scenario, when the congestion window is nearly representative

of that of the sidekick connection’s path segment.

5.3 Proxy Integration

Our proxy sniffs incoming packets of a network interface

using the recvfrom system call on a raw socket. It stores a

hash table using Rust’s standard library HashMap that maps

socket pairs to their respective quACKs, and incrementally

updates the quACKs for flows that have requested sidekick as-

sistance. It also sends quACKs at their configured frequencies

and listens for configuration messages.

6 Evaluation

We evaluated Robin to answer the following questions:

1. Can sidekicks improve the performance of opaque trans-

port protocols in a variety of scenarios while preserving

the opaque behavior of the base protocols?
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7 Limitations

The sidekick approach, and our experiments, are subject to

some limitations, which we describe briefly here.

Multipath scenarios. We have only considered sidekick

proxies along a single path, and not thought extensively

about how quACKs would interact with protocols such as

TCPLS [57] that use multiple paths or streams, or even mul-

tipath QUIC [18]. To begin thinking about this question, we

would have a more complex model of the network: multiple

PEPs along a single path, multiple paths each with varying

numbers of PEPs, and so on. The proxy can include additional

information in the sidekick-reply packet to indicate which

path the PEP assistance is on, and the sender can infer from

the RTT how far along a path each PEP is relative to others.

New sidekick algorithms that come from this model could di-

agnose troublesome paths, or better allocate network traffic in

a multipath connection. Existing algorithms could be applied

to individual paths as if they were single-path connections.

Even more diverse network scenarios. The three scenar-

ios we explored all consisted of a lossy Wi-Fi link and a

high-latency WAN link. Not all scenarios will be favorable to

the sidekick protocol we designed. If the “lossy” section of a

network path were on the far path segment from the sender,

the sender would not have any more information about the

problematic link. To accomodate scenarios like this, sidekick

protocols will need more features. For example, the proxy

would need some way to receive quACKs from the data re-

ceiver, as well as a mechanism to buffer and retransmit pack-

ets [2, 10].

There are likely other scenarios that could benefit from side-

kick protocols as described, but we did not evaluate them. For

example, if we replaced the lossy Wi-Fi link with a modern

wireless link that has a fluctuating physical capacity [9,37,52],

the sender may be able to more quickly adapt and make data

available for transmission whenever capacity intermittently

becomes available.

Practical deployment. The implementation of Robin exists

as a research system that has been evaluated in emulation and

a limited set of real-world scenarios. Since sidekick protocols

require the cooperation of middleboxes and client applica-

tions, more work will be needed to standardize the discovery

protocol and wire format of sidekick messages described in

Section 4, ideally with interest from the IETF. The standards

will need to establish several design choices such as how iden-

tifiers are computed, how quACKs are transmitted, and the

exact mechanisms for security and backwards compatibility.

We may also want to standardize sender behavior for specific

base protocols, though this could be opaque except to the

sender.

The deployment of sidekick protocols can be gradual and

backwards-compatible with parties that are either unaware of

or do not want to participate in sidekick protocols. To migrate

existing client applications, one needs to modify the code to

discover a PEP and use information in a quACK to inform

the base protocol. To migrate middleboxes, they would need

to be modified to listen for sidekick-request markers, then

accumulate and send quACKs for participating connections.

Deeper analysis of path-aware congestion control. The

correspondence between endpoint-driven PACUBIC and

“split CUBIC” is good, and both are better than end-to-end

CUBIC in Figure 6), but not exact. The appropriateness of

the PACUBIC heuristic, and in general the idea of path-aware

congestion control, needs to be further explored. We discuss

this more in Appendix A.

8 Conclusion

We presented sidekick protocols: an alternate approach to

PEPs that leaves the underlying protocol opaque and unmod-

ified on the wire. We described a mathematical technique

called a quACK that enables middleboxes to refer to packets

of the underlying connection without the ability to observe

cleartext sequence numbers. We augmented a streaming pro-

tocol and a production QUIC implementation (Cloudflare

quiche) to make use of information arriving from a proxy

on a sidekick connection, including a path-aware congestion-

control mechanism called PACUBIC. In emulation and a real-

world evaluation, the sidekick protocol was able to improve

the performance—tail latency, throughput, or energy usage—

of these end-to-end base protocols without modifying the wire

format or security properties.
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A Intuitive Analysis of PACUBIC

Here, we dive deeper into the intuition behind the PACUBIC

constants (Section 4.3.2), including how they were derived

and why the PACUBIC algorithm achieves similar congestion

behavior to the CUBIC algorithm in a split connection—we

call this behavior “split CUBIC”.

Consider the same network topology as Figure 1 in which

a data sender uploads a large file to a data receiver, with help

from a sidekick proxy in the middle of the connection. The

near path segment connects the sender to the proxy, and the

far path segment connects the proxy to the receiver. The near

segment is low-delay with varying random loss, and the far

segment is high-delay with no random loss. The far segment

is the bottleneck link in terms of bandwidth. The actual link

parameters are the same as in Scenario #2 of Table 5.

We first discuss how split CUBIC would behave in this

setting to conceptually motivate PACUBIC. Consider the con-

gestion windows of each half of the split connection, one taken

at the data sender and one at the proxy (Figures 9a and 9d).

The far path segment experiences only congestive loss, lead-

ing the window at the proxy to fluctuate around the segment’s

BDP regardless of the loss on the near path segment. The

window at the data sender independently determines whether

the packets that reach the proxy will be able to fully utilize

the window set at the far path segment. The data sender is

able to achieve this at low random loss rates, but becomes the

bottleneck as loss rates increase (Figure 6).

While split CUBIC has two windows, PACUBIC only has

one window representing the in-flight bytes of the end-to-

end connection. PACUBIC considers loss detected from both

quACKs and end-to-end ACKs. Conceptually, we want an

algorithm that would enable PACUBIC’s single congestion

window to match the sum of CUBIC’s two congestion win-

dows, or the total number of in-flight bytes.

With no random loss on the near path segment, PACUBIC

(Figure 9b) behaves the same as normal CUBIC (Figure 9c).

The congestion window is entirely governed by end-to-end

ACKs since the far path segment is the bottleneck link. Note

that while the sender may be able to deduce that a loss oc-

curred on the far path segment by combining info from the

quACK with the end-to-end ACK, PACUBIC conservatively

treats the loss as occurring anywhere on the path.

With some random loss on the near path segment, PACU-

BIC grows and reduces cwnd based on where the last con-

gestion event occurs (Figure 9e). Note that if the congestion

window cwnd represents the bytes in-flight in the end-to-end

connection, then r · cwnd represents the proportion of bytes

in-flight on the near path segment. At a high level, if the data

sender discovers loss on the near path segment via the quACK,

it holds the (1− r) · cwnd portion of the “far window” con-

stant while applying the CUBIC algorithm to the remaining

r ·wmax of the “near window,” representing the bottleneck

link.
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