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Abstract8

The coordinated motion of animal groups through fluids is thought to reduce the9

cost of locomotion to individuals in the group. However, the connection between the10

spatial patterns observed in collectively moving animals and the energetic benefits11

at each position within the group remains unclear. To address this knowledge gap,12

we study the spontaneous emergence of cohesive formations in groups of fish,13

modeled as flapping foils, all heading in the same direction. We show in pairwise14

formations and with increasing group size that (1) in side-by-side arrangements,15

the reciprocal nature of flow coupling results in an equal distribution of energy re-16

quirements among all members, with reduction in cost of locomotion for swimmers17

flapping inphase but an increase in cost for swimmers flapping antiphase, and (2)18

in inline arrangements, flow coupling is non-reciprocal for all flapping phase, with19

energetic savings in favor of trailing swimmers, but only up to a finite number of20

swimmers, beyond which school cohesion and energetic benefits are lost at once.21

We explain these findings mechanistically and we provide efficient diagnostic tools22

for identifying locations in the wake of single and multiple swimmers that offer op-23

portunities for hydrodynamic benefits to aspiring followers. Our results imply a24

connection between the resources generated by flow physics and social traits that25

influence greedy and cooperative group behavior.26

Keywords: Fish schooling, underwater locomotion, hydrodynamics, cost of transport, group dynam-27

ics, greed and cooperation.28
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Introduction32

Flow interactions are thought to allow flying and swimming animals to derive energetic benefits when33

moving in groups [1]. However, direct assessment of such benefits is challenging, chiefly because animal34

groups do not generally conform to regular patterns – individuals in these groups dynamically change35

their position relative to their neighbors [2–6]. Also, because direct energetic measurements in moving36

animals, flying or swimming, are notoriously difficult and often unreliable as proxy for hydrodynamic37

energy savings [4, 7–13]. These difficulties hinder a direct mapping from the spatial pattern of the group38

to the energetic benefits or costs incurred at each position within the group.39

An understanding of how the spatial arrangement of individuals within a group influences their cost40

of locomotion can provide insights into the evolution of social structures, resource allocation, and overall41

fitness of each individual in cooperative activities such as foraging, mating, and evasion [14–20]. It could42

also guide the design of bio-inspired engineering systems and algorithms that steer groups of entities,43

such as swarms of autonomous robotic vehicles, underwater or in flight, that collaborate to achieve a44

desired task while minimizing energy consumption and improving the overall system efficiency [21–25].45

To understand the potential energetic benefits of group movement, various direct and indirect ap-46

proaches have been employed. Li et al. [9] associated energy savings in pairs of flapping robotic swim-47

mers with a linear relationship between their flapping phase lag and relative distance. Based on this,48

a strategy, called Vortex Phase Matching, was extrapolated for how fish should behave to maximize49

hydrodynamic benefits: a follower fish should match its tailbeat phase with the local vorticity created50

by a leader fish. Pairs of freely swimming fish seemed to follow this linear phase-distance relationship51

even with impaired vision and lateral line sensing, that is, in the absence of sensory cues about their52

relative position and neighbor-generated flows. Interestingly, the same linear phase-distance relation-53

ship was uncovered independently in flapping hydrofoils and accredited solely to flow interactions [26–54

28]. It is therefore unclear whether vortex phase matching is an active strategy, mediated by sensing55

and feedback control, that fish employ to minimize energy expenditure, or if it arises passively through56

flow interactions between flapping swimmers. Importantly, active or passive, it is unclear if this strategy57

scales to groups larger than two.58

In an effort to directly gauge the energetic benefits of schooling, metabolic energetic measure-59

ments were recently performed in solitary and groups of eight fish, and impressive energetic savings60
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were attributed to schooling compared to solitary swimming when the fish were challenged to swim at61

high speeds [12]. Lamentably, the study made no mention of the spatial patterns assumed by these62

physically-thwarted individuals [12]. In an independent previous study [5], changes in spatial patterns63

and tailbeat frequencies were reported in similar experiments, albeit with no energetic measurements.64

Specifically, [5] showed that, when challenged to sustain higher swimming speeds, the fish in a group65

rearranged themselves in a side-by-side pattern as the speed increased, presumably to save energy.66

Taking together the results of [5, 12], are we to conclude that side-by-side formations are more67

energetically beneficial than, say, inline or diagonal formations? The answer is not simple! The metabolic68

measurements of [4] in a school of eight fish report that side-by-side formations, though beneficial,69

produce the least energetic savings compared to diagonal formations [1]. In an experimental study of70

a single fish interacting with a robotic flapping foil, the freely-swimming fish positioned itself in an inline71

formation in the wake of the flapping foil, supporting the hypothesis that swimming in the wake of one72

another is an advantageous strategy to save energy in a school [11]. Why did the fish in the experiments73

of [5] self-organize in a side-by-side formation when challenged to swim at higher swimming speeds?74

The answer is not simple because ample hydrodynamic mechanisms for energy savings in fish75

schools have been stipulated for each possible configuration – side-by-side, inline and diagonal (see,76

e.g., Fig. 1 of [12]) – but no assessment is provided of the relative advantage of these configurations.77

For example, side-by-side formations, where fish mirror each other by flapping antiphase, are thought to78

create a wall-like effect that reduces swimming cost [12, 29]. A fish swimming in the wake between two79

leading fish encounters a reduced oncoming velocity, leading to reduced drag and thrust production [1].80

Inline formations, where fish swim in tandem, are thought to provide benefits to both leader and follower,81

by an added mass push from follower to leader [29, 30] and a reduced pressure on the follower [31]. All82

of these mechanisms can in principle be exploited by schooling fish as they dynamically change their83

relative spacing in the group. But are these mechanisms equally advantageous? Or is there a hierarchy84

of hydrodynamic benefits depending on the relative position within the school? The literature offers no85

comparative analysis of the energetic savings afforded by each of these configurations.86

The study of [4] is arguably the closest to addressing this question, but, to map the energetic ben-87

efits for pairwise configurations, the authors employed statistical averages in a school of eight fish, thus88

inevitably combining the various hydrodynamic mechanisms at play and cross-polluting the estimated89

benefits of each configuration. A cleaner analysis in pairs of flapping foils shows that these relative90

3



positions – side-by-side, inline, and diagonal – all emerge spontaneously and stably due to flow inter-91

actions [28], but provides no method for estimating the energetic requirements of these formations, let92

alone comparing them energetically. Even vortex phase matching makes no distinction between side-93

by-side, inline, or diagonal pairs of fish [9]. It simply postulates that an unknown amount of energetic94

benefit is acquired when the linear phase-distance relationship is satisfied. Thus, to date, despite the95

widespread notion that group movement saves energy, a direct comparison of the energetic savings96

afforded by different spatial formations remains lacking. Importantly, it is unknown whether and how the97

postulated benefits scale with increasing group size.98

Here, to circumvent the challenges of addressing these questions in biological systems, we formu-99

late computational models that capture the salient hydrodynamic features of single and pairs of swim-100

ming fish. Namely, we represent each fish as a freely-swimming hydrofoil undergoing pitching oscil-101

lations about its leading edge. A single flapping hydrofoil shares many hydrodynamic aspects with its102

biological counterpart, including an alternating, long-lived pattern of vorticity in its wake [32–36]. These103

similarities have been demonstrated repeatedly, within biologically relevant ranges of flapping parame-104

ters [32, 37], for different geometries [38–41], material properties [41–43], and flapping kinematics [44–105

46]. In this study, we show, based on our own simulations and by conducting a thorough literature106

survey, that flow interactions, with no sensing and feedback control, lead to emergent formations that107

preserve the linear phase-distance relationship uncovered independently in live and robotic fish [9, 11]108

and in flapping hydrofoils [26–28]. This relationship is preserved irrespective of geometry [27, 28, 47],109

material properties [26, 48–50], and flapping kinematics [51, 52]. The universality of this relationship110

serves as strong validation of our models and anchors our subsequent exploration of the opportunities111

for hydrodynamic benefits available in a given flow field.112

Importantly, we go beyond two swimmers to investigate flow interactions in larger groups and find that113

inline formations differentially distribute hydrodynamic savings to members within the school, favoring114

trailing swimmers, but only up to a certain school size, while side-by-side formations equally distribute115

hydrodynamic savings and scale to arbitrary number of swimmers without loss of cohesion. Our findings116

provide a direct mapping from the school’s spatial pattern to the energetic savings experienced by its117

members. Importantly, our results raise an interesting hypothesis that the dynamic repositioning of118

members within a fish school could be driven by greed and competition to occupy hydrodynamically119

advantageous positions and open up opportunities for analyzing the role of flow physics in the evolution120
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of cooperative versus greedy behavior in animal groups.121

Results122

Mathematical models of flow-coupled flapping swimmers123

Inspired by the experiments of [9, 27], we study self-organization in the context of flapping swimmers,124

coupled passively via the fluid medium, with no mechanisms for visual [53–57], flow sensing [58–61], or125

feedback control [24, 62, 63] (Fig. 1). The swimmers are rigid, of finite body length L and mass per unit126

depth m, and undergo pitching oscillations of identical amplitude A and frequency f in the (x, y)-plane127

of motion, such that the pitching angle for swimmer j is given by θj = A sin(2πft + ϕj), j = 1, 2, . . . , N ,128

where N is the total number of swimmers. In pairwise interaction, we set ϕ1 = 0 and ϕ2 = −ϕ, with ϕ129

being the phase lag between the oscillating pair. We fixed the lateral distance ℓ between the swimmers to130

lie in the range ℓ ∈ [−L,L], and allowed the swimmers to move freely in the x-direction in an unbounded131

two-dimensional fluid domain of density ρ and viscosity µ.132

When unconstrained, the swimmers may drift laterally relative to each other, as illustrated in dipole133

models [64, 65] and high-fidelity simulations of undulating swimmers [62, 66]. However, this drift oc-134

curs at a slower time scale than the swimming motion, and can, in principle, be corrected by separate135

feedback control mechanisms [67]. Here, we focus on the dynamics in the swimming direction.136

Hereafter, all parameters are scaled using the body length L as the characteristic length scale,137

flapping period T = 1/f as the characteristic time scale, and ρL2 as the characteristic mass per unit138

depth. Accordingly, velocities are scaled by Lf , forces by ρf2L3, moments by ρf2L4, and power by139

ρf3L4.140

The equations governing the free motion xj(t) of swimmer j are given by Newton’s second law (here,141

the downstream direction is positive),142

mẍj = −Fj sin θj +Dj cos θj . (1)

The hydrodynamic forces on swimmer j are decomposed into a pressure force Fj acting in the direction143

normal to the swimmer and a viscous drag force Dj acting tangentially to the swimmer. These forces144
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depend on the fluid motion, which, in turn, depends on the time history of the states of the swimmers.145

To maintain their pitching motions, swimmers exert an active moment Ma about the leading edge,146

whose value is obtained from the balance of angular momentum. The hydrodynamic power P expended147

by a flapping swimmer is given by P = Maθ̇.148

To compute the hydrodynamic forces and swimmers’ motion, we used two fluid models (Figs. 1, 1.S1,149

1.S2 and 1.S3). First, we employed a computational fluid dynamics (CFD) solver of the Navier-Stokes150

equations tailored to resolving fluid-structure interactions (FSI) based on an adaptive mesh implemen-151

tation of the immersed boundary method [68–70]. Then, we solved the same FSI problem, in the limit152

of thin swimmers, using the more computationally-efficient inviscid vortex sheet (VS) model [51, 71–74].153

To emulate the effect of viscosity in the VS model, we allowed shed vorticity to decay after a dissipation154

time τdiss; larger τdiss correlates with larger Reynolds number Re in the Navier-Stokes model; see SI for155

a brief overview of the numerical implementation and validation of both methods.156

Flow coupling leads to stable emergent formations157

We found, in both CFD and VS models, that pairs of swimmers self-organize into relative equilibria at a158

streamwise separation distance d that is constant on average, and swim together as a single formation159

at an average free-swimming speed U (Figs. 1 and 2). We distinguished four types of relative equilibria:160

inline, diagonal, side-by-side inphase and side-by-side antiphase (Fig. 1).161

Inline formations at ℓ = 0 arise when the follower positions itself, depending on its initial distance162

from the leader, at one of many inline equilibria, each with its own basin of attraction (Fig. 2A). These163

inline equilibria occur at average spacing d that is approximately an integer multiple of UT , consistent164

with previous experimental [27, 47, 75] and numerical [26, 49–51, 76, 77] findings.165

When offsetting the swimmers laterally at ℓ ̸= 0 (Fig. 2B), the leader-follower equilibria that arise166

at ℓ = 0 shift slightly but persist, giving rise to diagonal leader-follower equilibria [28]. Importantly,167

at a lateral offset ℓ, inphase swimmers (ϕ = 0) that are initially placed side-by-side reach a relative168

equilibrium where they travel together at a close, but non-zero, average spacing d ≤ L. That is, a169

perfect side-by-side configuration of inphase flapping swimmers is unstable but the more commonly-170

observed configuration [9] where the two swimmers are slightly shifted relative to each other is stable.171

This configuration is fundamentally distinct in terms of cost of transport from the mirror-symmetric side-172
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by-side configuration that arises when flapping antiphase at ϕ = π (Fig.3A). Both side-by-side equilibria173

were observed experimentally in heaving hydrofoils [28], albeit with no assessment of the associated174

hydrodynamic power and cost of transport.175

We next examined the effect of varying the phase ϕ on the emergent traveling formations. Starting176

from initial conditions so as to settle on the first equilibrium d/UT ≈ 1 when ϕ = 0, and increasing ϕ, we177

found, in both CFD and VS simulations, that the spacing d/UT at equilibrium increased with increasing178

ϕ (Fig. 2C). This increase is linear, as evident when plotting d/UT as a function of ϕ (Fig. 3B). Indeed,179

in Fig. 3B, we plotted the emergent average separation distance d/UT as a function of ϕ for various180

values of ℓ. Except for the antiphase side-by-side formation, the linear phase-distance relationship181

ϕ/2π ∝ d/UT persisted for ℓ ̸= 0.182

The key observation, that pairs of flapping swimmers passively self-organize into equilibrium forma-183

tions, is independent of both scale and fluid model. In our CFD simulations (Fig. 1.S1 and 1.S3), we184

tested a range of Reynolds number Re = ρUL/µ from 200 to 2000, which covers the entire range of exist-185

ing CFD simulations [50, 75], where Re ∼ O(102), and experiments [27, 28, 75], where Re ∼ O(103). In186

our VS simulations, we varied τdiss from 2.45T to ∞ (Figs. 1.S2 and 1.S3). Note that the separation dis-187

tance d is scale-specific and increases with Re; at low Re, a compact inline formation is reached where188

the two swimmers “tailgate” each other, as observed in [49]. However, the scaled separation distance189

d/UT remains nearly constant for all Re and τdiss (Fig. 1.S3).190

The fact that these equilibria emerge in time-forward simulations is indicative of stability [78]. A more191

quantitative measure of linear stability can be obtained numerically by perturbing each equilibrium, ei-192

ther by applying a small impulsive or step force after steady state is reached [28] or by directly applying a193

small perturbation to the relative equilibrium distance between the two swimmers and examining the time194

evolution of d and F to quantify variations in hydrodynamic force δF as a function of signed variations195

in distance δd from the equilibrium [51]. In either case, we found that the force-displacement response196

to small perturbations at each equilibrium exhibited the basic features of a linear spring-mass system,197

where δF/δd is negative, indicating that the hydrodynamic force acts locally as a restoring spring force198

that causes the initial perturbation to decay and that stabilizes the two swimmers together at their equilib-199

rium relative position. Larger values of |δF/δd| imply faster linear convergence to the stable equilibrium200

and thus stronger cohesion of the pairwise formation. Results of this quantitative stability analysis are201

discussed in subsequent sections.202
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Emergent formations save energy compared to solitary swimming203

We evaluated the hydrodynamic advantages associated with these emergent formations by computing204

the hydrodynamic power Psingle of a solitary swimmer and Pj of swimmer j in a formation of N swimmers.205

We calculated the cost of transport COTj = Pj/mU , of swimmer j and the change in COT compared206

to solitary swimming ∆COTj = (COTsingle − COTj)/COTsingle (Fig. 3A). We also calculated the average207

change in cost of transport ∆COT =
∑N

j ∆COTj/N for each formation (Fig. 3B). In all cases, except208

for the antiphase side-by-side formation, in both CFD and VS simulations, the swimmers traveling in209

equilibrium formations save power and cost of transport compared to solitary swimming. The savings210

are larger at tighter lateral spacing ℓ.211

For inline and diagonal formations, these hydrodynamic benefits are granted entirely to the follower,212

whose hydrodynamic savings can be as high as 60% compared to solitary swimming (Fig. 3A) [51]. In-213

tuitively, because in 2D flows, vortex-induced forces decay with the inverse of the square of the distance214

from the vortex location, flow coupling between the two inline or diagonal swimmers is non-reciprocal;215

the follower positioned in or close to the leader’s wake interacts more strongly with that wake than the216

leader interaction with the follower’s wake (Figs. 1A, B and 1.S4A, B).217

In side-by-side formations, by symmetry, flow coupling between the two swimmers is reciprocal, or218

nearly reciprocal in inphase flapping (Figs. 1C, D and 1.S4C, D). Thus, hydrodynamics benefits or costs219

are expected to be distributed equally between the two swimmers. Indeed, for inphase flapping, the220

hydrodynamic benefits are shared equally between both swimmers. For antiphase flapping the cost is221

also shared equally (Fig. 3A).222

The biased distribution of benefits in favor of the follower in inline and diagonal formations could be223

a contributing factor to the dynamic nature of fish schools [3, 6]. The egalitarian distribution of benefits in224

the inphase side-by-side formation could explain the abundance of this pairwise configuration in natural225

fish populations [9] and why groups of fish favor this configuration when challenged to swim at higher226

speeds [5, 57].227
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Linear phase-distance relationship in emergent formations is uni-228

versal229

To probe the universality of the linear phase-distance relationship, we compiled, in addition to our CFD230

and VS results, a set of experimental [9, 27, 47] and numerical [48–52] data from the literature (Table S.1231

and Suppl. Excel Table). Data including CFD simulations of deformable flapping flags (9) [48], (□) [26]232

and flexible airfoil with low aspect ratio (▷) [50], physical experiments with heaving (⃝) [27, 47] and233

pitching (▽) [52] rigid hydrofoils, fish-foil interactions (∗) [11], and fish-fish interactions (△) measured in234

pairs of both intact and visually- and/or lateral line-impaired live fish [9] are superimposed on Fig. 3B.235

All data collapsed onto the linear phase-distance relationship ϕ/2π ∝ d/UT , with the largest variability236

exhibited by live fish with close streamwise distance, where the interaction between fish bodies may play237

a role. The side-by-side inphase formations trivially satisfy this linearity because d/UT ≈ ϕ/2π = 0, but238

the side-by-side antiphase formations don’t satisfy; in the latter, d/UT = 0 while ϕ/2π = 1.239

These findings strongly indicate that flow-coupled flapping swimmers passively organize into stable240

traveling equilibrium formations with linear phase-distance relationship. This relationship is independent241

of the geometric layout (inline versus laterally-offset swimmers), flapping kinematics (heaving versus242

pitching), material properties (rigid versus flexible), tank geometry (rotational versus translational), fi-243

delity of the fluid model (CFD versus VS versus particle model), and system (biological versus robotic,244

2D versus 3D). Observations that are robust across such a broad range of systems are expected to have245

common physical and mechanistic roots that transcend the particular set-up or system realization.246

Importantly, this universal relationship indicates that flow physics passively positions a swimmer at247

locations d where the swimmer’s flapping phase ϕ matches the local phase of the wake ϕwake = 2πd/UT ,248

such that the effective phase ϕeff = ϕ − ϕwake is zero. Importantly, because the quantity UT is nearly249

equal to the wavelength of the wake of a solitary swimmer, the phase ϕwake = 2πd/UT is practically250

equal to the phase of a solitary leader. These observations have two major implications. First, they251

are consistent with the vortex phase matching introduced in [9] as a strategy by which fish maximize252

hydrodynamic benefits. However, they proffer that vortex phase matching is an outcome of passive flow253

interactions among flapping swimmers, and not necessarily an active strategy implemented by fish via254

sensing and feedback mechanisms. Second, they led us to hypothesize that emergent side-by-side255

formations can be predicted from symmetry arguments, while emergent inline and diagonal formations256
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can be predicted entirely from kinematic considerations of the leader’s wake without considering two-way257

flow coupling between the two swimmers.258

Leader’s wake unveils opportunities for stable emergent formations259

To challenge our hypothesis that the leader’s wake contains information about the emergent pairwise260

equilibria, we examined the wake of a solitary swimmer in CFD and VS simulations (Fig. 4A, B). By ana-261

lyzing the wake of a solitary swimmer, without consideration of two-way coupling with a trailing swimmer,262

we aimed to assess the opportunities available in that wake for a potential swimmer, undergoing flapping263

motions, to position itself passively in the oncoming wake and extract hydrodynamic benefit.264

Therefore, in the following analysis, we treated the potential swimmer as a “virtual" particle located265

at a point (x, y) in the oncoming wake and undergoing prescribed transverse oscillations A sin(2πft−ϕ)266

in the y-direction, at velocity v(t;ϕ) = 2πAf cos(2πft− ϕ)ey, where ey is a unit vector in the y-direction.267

The oncoming wake is blind to the existence of the virtual particle. Guided by our previous findings that268

stable equilibrium formations in pairwise interactions occur at zero effective phase ϕeff = ϕ − ϕwake =269

0, where the net hydrodynamic force on the trailing swimmer is zero and where small perturbations270

lead to negative force gradients, we introduced two assessment tools: a flow agreement parameter271

field V(x, y;ϕ) that measures the degree of alignment, or matching, between the flapping motion of the272

virtual particle and the transverse flow of the oncoming wake, and a thrust parameter field T(x, y;ϕ) that273

estimates the potential thrust force required to undergo such flapping motions.274

Specifically, inspired by [50] and following [51], we defined the flow agreement parameter V(x, y;ϕ)275

using 1
T

∫ t+T

t
v ·u dt′, where t is chosen after the oncoming wake has reached steady state, normalized276

by 1
T

∫ t+T

t
v ·v dt′ (Sec. S.4). The normalized V(x, y;ϕ) describes how well the oscillatory motion v(t;ϕ)277

of the virtual particle matches the local transverse velocity u(x, y, t) of the oncoming wake [51]. Positive278

(negative) values of V indicate that the flow at (x, y) is favorable (unfavorable) to the flapping motion of279

the virtual follower.280

In Fig. 4A and B, we show V(x, y;ϕ = 0) as a field over the physical space (x, y) for ϕ = 0. Blue281

regions indicate where the local flow favors the follower’s flapping motion. In both CFD and VS simula-282

tions, the locations with the maximum flow agreement parameter closely coincide with the stable equi-283

libria (black circles) obtained from solving pairwise interactions. These findings imply that hydrodynamic284
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coupling in pairs of flapping swimmers is primarily non-reciprocal – captured solely by consideration of285

the effects of the leader’s wake on the follower. This non-reciprocity allows one, in principle, to efficiently286

and quickly identify opportunities for hydrodynamic benefits in the leader’s wake, without the need to287

perform costly two-way coupled simulations and experiments.288

Importantly, our findings suggest a simple rule for identifying the locations of stable equilibria in any289

oncoming wake from considerations of the flow field of the wake itself: a potential swimmer undergoing290

a flapping motion at phase ϕ tends to position itself at locations (x∗, y∗) of maximum flow agreement291

V(x, y;ϕ) between its flapping motion and the oncoming wake.292

To verify this proposition, we show in Fig. 5A, as a function of phase ϕ, the streamwise locations of293

the local maxima of V(x, y;ϕ) computed based on the CFD and VS models, and scaled by UT , where U294

is the speed of the solitary swimmer. We superimpose onto these results the equilibrium configurations295

obtained from pairwise interactions in the context of the CFD (♦), VS (■), and time-delay particle (⃝)296

models, where we modified the latter to account for non-zero lateral offset ℓ (Sec. S.3 and Fig. 5.S1).297

Predictions of the equilibrium configurations based on maximal flow agreement parameter agree re-298

markably well with actual equilibria based on pairwise interactions, and they all follow the universal299

linear phase-distance relationship shown in Fig. 2B.300

The wake of a solitary swimmer contains additional information that allows us to evaluate the relative301

power savings of a potential follower and relative stability of the pairwise formation directly from the302

leader’s wake, without accounting for pairwise interactions. Assessment of the relative power savings303

follows directly from the maximal value of the flow agreement parameter: larger values imply more power304

savings and reduced cost of transport. To verify this, we calculated the maximal V(x∗, y∗;ϕ) in the wake305

of the solitary swimmer, where we expected the follower to position itself in pairwise interactions. In306

Fig. 5B, we plotted these V values as a function of lateral distance ℓ for ϕ = 0. We superimposed307

the power savings ∆P based on pairwise interactions of inphase swimmers using the CFD and VS308

simulations and normalized all quantities by the maximal value of the corresponding model to highlight309

variations in these quantities as opposed to absolute values. Power savings are almost constant for310

ℓ < 0.25L, but decrease sharply as ℓ increases. This trend is consistent across all models, with the most311

pronounced drop in the CFD-based simulations because the corresponding velocity field u decays more312

sharply when moving laterally away from the swimmer.313

Next, to assess the stability of the virtual particle based only on information in the oncoming wake of314
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a solitary swimmer, we estimated the thrust force based on the fact that the thrust magnitude scales315

with the square of the swimmer’s lateral velocity relative to the surrounding fluid’s velocity [27, 32,316

79]. We defined the thrust parameter field T(x, y;ϕ) = − 1
T

∫ t+T

t
|(v − u).ey|2 dt′, normalized using317

1
T

∫ t+T

t
|v.ey|2 dt′. At the locations of the maxima of V(x∗, y∗;ϕ), a negative slope ∂T/∂d of the thrust318

parameter is an indicator of linear stability or cohesion of the potential equilibria; that is, emergent pair-319

wise formations are expected to be stable if a small perturbation in distance about the locations (x∗, y∗)320

of maximal V is accompanied by an opposite, restorative change in T. Indeed, in both CFD and VS321

wakes, ∂T/∂d at (x∗, y∗) is negative (Fig. 4).322

In Fig. 5C, we plotted |∂T/∂d| as a function of lateral distance ℓ for ϕ = 0. We superimposed the323

magnitude of the eigenvalues |δF/δd| obtained from the linear stability analysis of pairwise interactions324

in inphase swimmers using the VS and time-delay particle models. As in Fig. 5B, all quantities are325

normalized by the maximal value of the corresponding model to highlight variations in these quantities326

as opposed to absolute values. Also, as in Fig. 5B, all models produce consistent results: pairwise327

cohesion is strongest for ℓ < 0.25L, but weakens sharply as ℓ increases, with the most pronounced drop328

in the CFD-based simulations.329

A few comments on our virtual particle model and diagnostic tools in terms of the flow agreement330

and thrust parameters are in order. Our model differs from the minimal particle model used in [27,331

75], which treated both swimmers as particles with minimal ‘wakes’ and considered two-way coupling332

between them (see Sec. S.3). In our analysis, the oncoming wake can be described to any desired333

degree of fidelity of the fluid model, including using experimentally constructed flows when available.334

Indeed, our flow agreement and thrust parameters are agnostic to how the flow field of the oncoming335

wake is constructed. Additionally, these diagnostic tools are equally applicable to any oncoming wake,336

not necessarily produced by a single swimmer, but say by multiple swimmers (as discussed later) or337

even non-swimming flow sources. Thus, the approach we developed here could be applied broadly to338

analyze, predict, and test opportunities for schooling and hydrodynamic benefits for live and robotic fish339

whenever measurements of an oncoming flow field are available.340
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Parametric analysis over the entire space of phase lags and lateral341

offsets342

Having demonstrated consistency in the emergence of flow-mediated equilibria in both CFD and VS343

simulations, we next exploited the computational efficiency of the VS model to systematically investigate344

emergent pairwise formations over the entire space of phase lag ϕ ∈ [0, 2π) and lateral offset ℓ ∈ [−L,L],345

excluding side-by-side antiphase formations.346

Equilibrium configurations are dense over the entire range of parameters: for any combination of347

phase lag ϕ and lateral offset ℓ, there exists an emergent equilibrium configuration where the pair of348

swimmers travel together at a separation distance d/UT (Fig. 6A). Perturbing one or both parameters,349

beyond the limits of linear stability, causes the swimmers to stably and smoothly transition to another350

equilibrium at different spacing d/UT . Importantly, increasing the phase lag ϕ shifts the equilibrium351

positions in the streamwise direction such that d/UT depends linearly on ϕ, but the effect of lateral352

distance for ℓ ≤ L is nonlinear and nearly negligible for small ℓ: increasing the lateral offset ℓ by an353

entire bodylength L changes the pairwise distance d/UT by about 15%. Our results explored emergent354

equilibria up to d/UT ≤ 2.5 and are consistent with the experimental findings in [28], which explored up355

to nine downstream equilibria.356

To assess the hydrodynamic advantages of these emergent formations, we calculated the average357

change in hydrodynamic power per swimmer. The pair saves power compared to solitary swimming358

(Fig. 6B). Power savings vary depending on phase lag ϕ and lateral distance ℓ: for the entire range of ϕ359

from 0 to 2π, the school consistently achieves over 20% power reduction, as long as the lateral offset is360

ℓ ≤ 0.25L. However, increasing ℓ from 0.25L to L reduces significantly the hydrodynamic benefit. That361

is, swimmers can take great liberty in changing their phase without compromising much the average362

energy savings of the school, as long as they maintain close lateral distance to their neighbor.363

A calculation of the linear stability of each equilibrium in Fig. 6A shows that these emergent for-364

mations are linearly stable (Fig. 6C), and the degree of stability is largely insensitive to phase lag, with365

strongest cohesion achieved at lateral offset ℓ ≤ 0.25L. The results in Fig. 6A-C are constructed using366

pairwise interactions in VS simulations, but can be inferred directly from the wake of a solitary leader, as367

discussed in the previous section and shown in Fig. 6D-F.368
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Analysis of larger groups of inline and side-by-side swimmers369

How do these insights scale to larger groups? To address this question, we systematically increased the370

number of swimmers and computed the emergent behavior in larger groups based on flow-coupled VS371

simulations.372

In a group of six swimmers, all free to move in the streamwise x-direction, we found that the last three373

swimmers split and form a separate subgroup (Fig. 7A). In each subgroup, swimmer 3 experiences the374

largest hydrodynamic advantage (up to 120% power saving!), swimmer 2 receives benefits comparable375

to those it received in pairwise formation (65% power saving), and swimmer 1 no benefit at all (Fig. 7C).376

We asked if loss of cohesion is dependent on the number of inline swimmers. To address this377

question, we gradually increased the number of swimmers from two to six (Fig. 7.S1). We found that in a378

school of three inline swimmers, flow interactions led to a stable emergent formation with hydrodynamic379

benefits similar to those experienced by the three swimmers in each subgroup of Fig. 7A and C. When380

computing the motion of four inline swimmers (Fig. 8A), we found that the leading three swimmers381

maintained cohesion, at hydrodynamic benefits similar to a formation of three, but swimmer 4 separated382

and lagged behind, receiving no advantage in terms of power savings because it split from the formation383

(Figs. 8D and 7.S1). In a group of five, the last two swimmers split and formed their own subgroup. That384

is, in all examples, swimmer 4 consistently lost hydrodynamic advantage and served as local leader of385

the trailing subgroup. These observations are consistent with [49] and demonstrate that flow interactions386

alone are insufficient to maintain inline formations as the group size increases.387

We next explored the robustness of the side-by-side pattern to larger number of swimmers start-388

ing from side-by-side initial conditions (Fig. 7B). The swimmers reached stable side-by-side formations389

reminiscent of the configurations observed experimentally when fish were challenged to swim at higher390

swimming speeds [5]. The swimmers in this configuration saved power compared to solitary swimming391

(Fig. 7C): swimmers gained equally in terms of hydrodynamic advantage (up to 55% power saving for392

the middle swimmers in a school of six), except the two edge swimmers which benefited less. We tested393

these results by gradually increasing the number of swimmers from two to six (Fig. 7.S2). The robust-394

ness and overall trend of power saving among group members is robust to the total number of swimmers395

in these side-by-side formations.396
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Mechanisms leading to loss of cohesion in larger inline formations397

To understand why three swimmers form a stable inline formation but four don’t, we extended the analysis398

in Fig. 4 to analyze the wake created behind two-swimmer (Fig. 9A) and three-swimmer (Fig. 9B) groups.399

Specifically, we computed pairwise interactions in a two-swimmer school and considered the combined400

wake of both swimmers after they had settled onto an equilibrium state. Similarly, we computed the401

behavior of a three-swimmer school and analyzed the combined wake at steady state. Compared to the402

single leader wake in Fig. 4B, in the wake of a two-swimmer school, positive flow agreement in the (blue)403

region is enlarged and enhanced, corresponding to swimmer 3 receiving the largest power savings. On404

the other hand, behind three inline swimmers, the region of positive flow agreement is weakened and405

shrunk, indicating weaker potential for energy saving by a fourth swimmer.406

Importantly, in the wake of the pairwise formation, the downstream jet is modest at the location of407

maximum V, where swimmer 3 is expected to position itself for hydrodynamic benefit, thus allowing408

swimmer 3 to reach this position and stay in formation (Fig. 9E). Also, at this location, the wake has409

a substantial transverse velocity u · ey (Fig. 9G), which aids thrust production at a diminished cost. In410

contrast, three inline swimmers generate a much stronger downstream jet at the location of maximum411

V where swimmer 4 is expected to position itself (Fig. 9F). This jet prevents swimmer 4 from stably412

staying in formation, and the transverse flow velocity u · ey is nearly zero for the entire flapping period413

(Fig. 9H) indicating little opportunity for exploiting the flow generated by the three upstream swimmers414

for thrust generation. This limitation is fundamental; it results from the flow physics that govern the415

wake generated by the upstream swimmers. There is not much that a trailing swimmer can do to extract416

hydrodynamic benefits from an oncoming flow field that does not offer any.417

Critical size of inline formations beyond which cohesion is lost418

We sought to understand what determines the critical group size, here three, beyond which inline for-419

mations lose cohesion and split into subgroups. Because we have established that the flow agreement420

parameter V plays an important role in predicting emergent formations, we first examined V in the wake421

of a pair of flapping swimmers in CFD (Fig. 1.S1) and VS (Fig. 1.S2) simulations. These results show422

that at lower Re and smaller dissipation time τdiss, the flow agreement parameter V decays rapidly423

downstream of the flapping swimmers, thus diminishing the opportunities for downstream swimmers to424
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passively stay in cohesive formation and achieve hydrodynamic benefits. We thus hypothesized that the425

number of swimmers that passively maintain a cohesive inline formation is not a universal property of426

the flow physics, but depends on the flow regime.427

We tested this hypothesis in VS simulations with increasing number of swimmers and increasing428

τdiss. As we increased τdiss, the number of swimmers that stayed in cohesive inline formation increased429

(Fig. 8B,C). These findings confirm that this aspect of schooling – the maximal number of swimmers that430

passively maintain a cohesive inline formation – is indeed scale-dependent. Interestingly, an analysis431

of the power savings in these formations shows that, although swimmers 4 and 5 stay in formation at432

increased τdiss, swimmer 3 always receives the most hydrodynamic benefit (Fig. 8D).433

We additionally tested the stability of inline formations in CFD simulations at Re = 1645 (Fig. 9.S1)434

and observed the same trend: an inline school of 3 swimmers remains cohesive, but a fourth swimmer435

collides with the upstream swimmer. These observations imply that the loss of cohesion does not depend436

on the specific fluid model. This is consistent qualitatively with existing results [49]. In [49], the authors437

employed flexible heaving foils at Re = 200 and observed stable inline formations with larger number438

of swimmers. The flexible foil model and smaller Re make the swimmer more adaptive to changes in439

the flow field, by passively modulating the amplitude and phase along its body, thus diverting some440

of the hydrodynamic energy into elastic energy and stabilizing the larger inline formation. This, again,441

emphasizes that the number of swimmers in a stable inline group is not a universal property of the442

formation, rather it is model and scale-dependent.443

Mapping emergent spatial patterns to energetic benefits444

We next returned to the school of four swimmers, which, when positioned inline and flapped inphase,445

lost cohesion as the trailing swimmer separated from the school. We aimed to investigate strategies for446

stabilizing the emergent school formation and mapping the location of each member in the school to the447

potential benefit or cost it experiences compared to solitary swimming.448

Inspired by vortex phase matching as an active strategy for schooling [9, 24], we tested whether449

phase control is a viable approach to maintain cohesion and gain hydrodynamic benefits. We devised an450

active feedback control strategy, where the swimmer senses the oncoming transverse flow velocity at its451

location and adjusts its flapping phase to maximize the agreement V between its flapping motion and the452
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local flow (see S.5 for more details). When applied to swimmer 4 (Fig. 10A), this phase controller led to a453

stable formation, albeit at no benefit to swimmer 4; in fact, swimmer 4 spent 100% more power compared454

to solitary swimming, whereas the power savings of swimmers 2 and 3 remained robustly at the same455

values as in the formation without swimmer 4. The inability of swimmer 4 to extract hydrodynamic456

benefits from the oncoming flow is due to a fundamental physical limitations, as explained in Fig. 9; by457

the non-reciprocal nature of flow interactions, changing the phase of the trailing swimmer has little effect458

on the oncoming flow field generated by the upstream swimmers. If the oncoming wake itself presents459

no opportunity for hydrodynamic benefit, phase control cannot generate such benefit.460

We next investigated whether collaborative phase modulation could aid in maintaining school cohe-461

sion by imposing that each swimmer flaps at a phase lag ∆ϕ relative to the swimmer ahead (Fig. 10B,C).462

We found a range of values of ∆ϕ at which the school became passively stable, but without providing463

much hydrodynamic benefit to the trailing swimmer; in fact, at certain ∆ϕ, cohesion came at a hydrody-464

namic cost to swimmer 4, much like the active phase control strategy.465

Lastly, we investigated whether a lateral offset of some of the swimmers could passively stabilize the466

emergent formation. The choice of which swimmers to displace laterally and by how much is not unique.467

Thus, we probed different scenarios and obtained multiple stable formations (Fig. 10D and Fig. 10.S1).468

For example, pairing any two of the four swimmers side-by-side, say at the leading, middle, or trailing469

end of the school, led to cohesive formations. The distribution of hydrodynamic cost or benefit varied470

depending on the spatial pattern of the school and the individual position within the school. Staggering471

the swimmers in a zigzag pattern also stabilized the school, but did not always allow the trailing swimmer472

to improve its cost of transport. Staggering the swimmers in a "Diamond" formation stabilized the school473

and, of all the stable formations we tested, led to the highest savings in cost of transport for the entire474

school (Fig. 10D). These results are consistent with existing evidence that diamond formations are both475

stable [64] and energetically optimal [1, 77]. But unlike individuals in an infinite diamond lattice [1],476

individuals in a finite diamond formation do not receive equal energetic benefits.477

Our findings highlight the versatility and fluidity of the emergent spatial patterns in groups of flapping478

swimmers and emphasize that energetic benefits vary depending on the position of the individual within479

the school. Importantly, these findings imply that, although many emergent formations do not globally480

optimize the savings of the entire school, hydrodynamic interactions within these formations offer indi-481

viduals numerous opportunities to achieve varying levels of energetic savings [13], potentially creating482
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competition among school members over advantageous positions in the school.483

Discussion484

We analyzed how passive flow interactions mediate self-organization in groups of flapping swimmers,485

all heading in the same direction. Our approach relied on a hierarchy of fluid-structure interaction mod-486

els and aimed to distill which aspects of self-organization are universal and those which are scale-487

dependent.488

We found that a pair of flapping swimmers self-organize into inline, diagonal, or side-by-side forma-489

tions (Fig. 1). The emergent formation depends on the swimmers’ flapping phase and initial conditions.490

In fact, the distinction between these types of formation is somewhat arbitrary because, as phase varies,491

the emergent equilibria are dense over the space of lateral offset and separation distance (Fig. 6). These492

findings are consistent with experimental observations [9, 11, 27, 28], but go beyond these observations493

to quantify the hydrodynamic benefits to each member in these formations. Two side-by-side swimmers494

flapping inphase save energy, compared to solitary swimming, and share the hydrodynamic benefits495

nearly equally. When flapping antiphase, the side-by-side swimmers exert extra effort compared to496

solitary swimming, contrary to a common misconception that this configuration saves hydrodynamic en-497

ergy [12]. In leader-follower formations, whether inline or diagonal, hydrodynamic benefits are bestowed498

entirely on the follower (Fig. 3A).499

Importantly, we showed that the wake of a solitary leader contains information that unveils opportuni-500

ties for the emergence of stable and energetically-favorable formations in pairs of swimmers. Equilibrium501

locations and trends in power savings and school cohesion can all be predicted entirely from kinematic502

considerations of the leader’s wake with no consideration of the two-way coupling between the two503

swimmers (Fig. 5). These results are important because they highlight the non-reciprocal or asymmet-504

ric nature of flow coupling in leader-follower configuratoins, inline or diagonal, at finite Re and open505

new avenues for future studies of non-reciprocal flow-coupled oscillators. These oscillators have distinct506

properties from classic mechanical and biological oscillators, such as Huygens pendula or viscosity-507

dominant oscillators, where the coupling between the oscillators is reciprocal; see, e.g., [80–84].508

Our analysis has practical importance in that it provides efficient diagnostics and predictive tools that509

are equally applicable to computational models and experimental data and could, therefore, be applied510
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broadly to analyze, predict, and test opportunities for schooling and hydrodynamic benefits in live and511

robotic fish when flow measurements are available.512

Case in point, we used these diagnostic tools to explain the mechanisms leading to scattering in513

larger groups of inline swimmers and to predict when the wake of a leading group of swimmers offers514

no opportunities for a follower to benefit from passive hydrodynamics (Fig. 9). At an increasing number515

of flow-coupled swimmers, side-by-side formations remain robust, but inline formations become unsta-516

ble beyond a critical number of swimmers (Figs. 7 and 8). The critical number depends on the fluid517

properties and can be predicted by analyzing the wake of the leading group of swimmers. Future work518

will focus on testing these findings experimentally and in CFD simulations with increasing number of519

swimmers, together with accounting for body deformations [74], lateral dynamics [52, 85], and variable520

flapping amplitudes and frequencies [27, 86].521

Our findings could have far-reaching consequences on our understanding of biological fish schools.522

Field and laboratory experiments [2, 4, 5, 57] have shown that actual fish schools do not generally con-523

form to highly regularized patterns, and schooling fish dynamically change their position in the school.524

Neighboring fish vary from side-by-side to inline and diagonal configurations. Importantly, in laboratory525

experiments that challenged groups of fish to sustain high swimming speeds, the fish rearranged them-526

selves in a side-by-side pattern as the speed increased, much like the pattern in Fig. 7B, presumably to527

save energy [5]. These empirical observations, together with our findings that side-by-side formations528

provide the fairest distribution of efforts among school members (Fig. 7B and C), offer intriguing inter-529

pretations of the results in [5, 57]: when the fish are not challenged by a strong background current to530

sustain high swimming speeds, they position themselves as they please spatially, without much consid-531

eration to equal sharing of hydrodynamic benefits. But when challenged to swim at much higher speeds532

than their average swimming speed, fish are forced to cooperate.533

To expand on this, our results suggest a connection between flow physics and what is traditionally534

thought of as social traits: greed versus cooperation. We posit that there is a connection between the535

resources that arise from flow physics – in the form of energetic content of the wake of other swimmers536

– and greedy versus cooperative group behavior. In cohesive inline formations, the leader is always537

disadvantaged and hydrodynamic benefits are accorded entirely to trailing swimmers (Figs. 3A and 7C).538

Importantly, flows generated by these inline formations present serious impediments for additional swim-539

mers to join the line downstream (Figs. 7 and 8). Thus, we could call these formations greedy, leaving540
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no resources in the environment for trailing swimmers. This thought, together with our interpretation of541

the observations in [5] that cooperation to achieve an egalitarian distribution of hydrodynamic benefits542

is forced, not innate, raise an interesting hypothesis. The dynamic repositioning of members within the543

school (e.g., Fig. 10) could be driven by greed and competition to occupy hydrodynamically advanta-544

geous positions, much like in peloton of racing cyclists [87]. On a behavioral time scale, these ideas,545

besides their relevance to schooling fish, open up opportunities for analyzing and comparing the collec-546

tive flow physics in cooperative versus greedy behavior in animal groups from formations of swimming547

ducklings [88] and flying birds [89, 90] to peloton of racing cyclists [87]. From an evolutionary perspec-548

tive, it is particularly exciting to explore the prospect that flow physics could have acted as a selective549

pressure in the evolution of social traits such as cooperation and greed in aquatic animal groups.550
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in cohesive formation depends on parameter values. A-C. For dissipation time τdiss = 2.45T , 3.45T
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swimmer in panels A-C, respectively. On average, all schools save equally in cost of transport, but the
distribution of these savings vary significantly between swimmers. In all case, swimmer 3 receives the
most hydrodynamic benefits.
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Figure 9: Prediction of equilibrium formations, cohesion, and power savings from the wake of
upstream swimmers. A., B. Snapshots of vorticity fields created by two inline inphase swimmers, and
three inline inphase swimmers. C., D. shows the corresponding flow agreement parameter V fields.
Contour lines represent flow agreement parameter at ±0.25,±0.5. E., F. plots the corresponding period-
averaged streamwise velocity. Separation distances d/UT predicted by the locations of maximal V are
marked by circles in the flow agreement field. In the left column, separation distances d/UT based on
freely swimming triplets are marked by black circles and coincide with the locations of maximal V. In
the right column, the orange marker shows the prediction of the location of a fourth swimmer based on
the maximum flow agreement parameter. In two-way coupled simulation, swimmer 4 actually separates
from the leading 3 swimmers as illustrated in Fig 8A. CFD simulation shows swimmer 4 will collide with
swimmer 3 as in Fig. 9.S1. G. , H. shows the transverse flow velocity in a period at the location predicted
by the maximum flow agreement parameter and with a lateral offset ℓ = 0, 0.5L,L, in comparison to the
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Figure 10: Passive and active methods for stabilizing an emergent formation of four swimmers.
A. In an inline school of four-swimmers, the leading three swimmers flap inphase, but swimmer 4 actively
controls its phase in response to the flow it perceives locally to match its phase to that of the local flow
as proposed in [9]. The phase controller stabilizes swimmer 4 in formation but at no hydrodynamic
benefit. B. Sequentially increasing the phase lag by a fixed amount ∆ϕ = −30o in an inline school of
four-swimmers stabilizes the trailing swimmer but at no hydrodynamic benefit. C. Gradually tuning the
phase lag ∆ϕ in a school of four swimmers as done in panel B. At moderate phase lags, the school stays
cohesive (top plot) but swimmer 4 barely gets any power savings (bottom plot). D. By laterally offsetting
the swimmers, four swimmers, all flapping inphase, form cohesive schools with different patterns, e.g.
with side-by-side pairing of two swimmers, staggered, and diamond patterns. The time evolution of
separation distances is shown in Fig. 10.S1. Individual in each pattern receive a different amount of
hydrodynamic benefit. Diamond formation provides the most power saving for the school as anticipated
in [1] for a school in a regular infinite lattice. In panels A, B and D, % values indicate the additional saving
or expenditure in cost of transport relative to solitary swimming.
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