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ABSTRACT

SmartNICs are on the rise as a packet processing platform, with the
trend towards a uniform P4 programming model. However, unleash-
ing SmartNIC packet processing performance in P4 is a formidable
task. Traditional SmartNIC optimizations rely on low-level program
tuning, but P4 abstractions operate at one level above. At the same
time, today’s P4 optimizations primarily focus on resource packing
rather than performance tuning. We develop Pipeleon, an auto-
mated performance optimization framework for P4 programmable
SmartNICs. We introduce techniques that are tailored to the perfor-
mance characteristics of SmartNICs, and further leverage dynamic
workload patterns for profile-guided optimization. Pipeleon pin-
points program hotspots at the P4 level and computes runtime
optimization plans to specialize the program layout based on the
latest profile. We have prototyped Pipeleon and applied it to opti-
mize two popular P4 SmartNICs—Nvidia BlueField2 and Netronome
Agilio CX—as well as a software SmartNIC emulator extended based
on BMv2. Our results show that Pipeleon significantly improves
SmartNIC packet processing performance in realistic scenarios.
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1 INTRODUCTION

SmartNICs have gained popularity in cloud data centers, with
various vendors vying for the market (e.g., Nvidia BlueField [9],
Netronome Agilio [8], Intel IPUs [7], AMD Pensando [1]). By of-
floading a broad range of tasks [26, 38, 43, 53, 65] from host CPUs,
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SmartNICs promise to deliver more efficient packet processing and
reduce the total cost of ownership (TCO). As such, they have al-
ready gained a significant foothold in the industry [2, 3, 16, 18, 26],
with programmability extending from the SmartNIC software (e.g.,
SoC-based CPU cores) to the hardware (e.g., on-NIC packet process-
ing ASICs). Furthermore, requirements of interoperability and open
standards have moved SmartNICs toward a uniform programming
model using P4 as the de-facto language [1, 7, 8, 10, 37].

However, it is well-known that SmartNIC performance requires
intricate tuning [37, 38, 49]. Historically, this was done in a target-
specific manner by the individual SmartNIC compiler or developer,
with various low-level programming optimizations (e.g., C opti-
mizations for Nvidia BlueField and microC for Netronome Agilio).
Lifting SmartNIC programming models to a higher level in P4 is a
promising start, but the ease of programming and a standardized
model does not relieve the burden of extracting performance. This is
because existing P4 compilers [27, 34, 36, 54] focus on switch ASICs,
where resource constraints are the first-order concern, and perfor-
mance guarantees come almost “for free” as long as the packed
program fits inside the device. In other words, the pipelined nature
of switch ASICs ensures that once P4 tables satisfy the resource
constraints, packet processing operates at linespeed. SmartNICs,
however, are a very different target from switch ASICs.

SmartNICs usually opt for a different processing model, where
a packet is assigned to a particular processing engine in a run-to-
completion manner. For instance, Nvidia BlueField uses a “disag-
gregated RMT” architecture [21, 63], where a set of ASIC packet
engines implement header computation, and they fetch match/ac-
tion (MA) entries from SRAM over a memory bus. On the other
hand, Netronome Agilio uses a set of SoC-based CPU cores for packet
processing, and entries are likewise located in a farther memory
hierarchy. Henceforth, we call these packet processing engines
ASIC and CPU cores, respectively. For multicore SmartNICs, pack-
ets may experience variable latency depending on the P4 program
structure, such as the number of MA tables and their match types.
Furthermore, packets traversing different execution paths of the
same program would experience variable latency. Thus, SmartNIC
performance profiles put a significant burden on the optimizing
framework for efficient P4 implementations, and such a framework
is notably missing from today’s landscape.

Pipeleon bridges this gap by contributing an automated Smart-
NIC optimization framework with profile-guided, performance-
oriented P4 optimizations. It adapts the P4 program layout on a
multicore SmartNIC based on the traffic patterns and table entries
at runtime, which we call “runtime profiles”. These profiles play
a crucial role in SmartNIC optimization as they capture the evolv-
ing nature of how packets interact with P4 programs, presenting
new opportunities for dynamic performance tuning. In a similar
vein, Pipeleon is also wary of runtime profile changes—e.g., a new
tenant creation may result in table entry updates, such as access
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control policies and routing rules, and this may reduce the effective-
ness of the current optimization. Therefore, Pipeleon continuously
adapts and optimizes the program to accommodate dynamic profile
changes over time.

Pipeleon operates at the P4 level, taking a P4 program as input
and performing P4-level transformations to realize more efficient
SmartNIC implementations. To adapt the program layout at runtime,
Pipeleon leverages the runtime reconfigurability in two types of
SmartNIC deployment scenarios. (1) Runtime programmable Smart-
NICs: SmartNIC ASIC cores are becoming reconfigurable at runtime
(e.g., the enhanced dRMT architecture [63], which supports live
runtime reconfiguration, has been implemented in Nvidia BlueField
ASIC cores), and this enables on-the-fly program layout updates
with zero downtime. (2) Disaggregated SmartNICs: A trending de-
ployment model (e.g., the DASH project led by Microsoft [5, 18])
is to house a rack of SmartNICs that are disaggregated from the
machines that they serve. The SmartNIC rack can process traffic
flexibly from a varying set of end hosts at runtime, which enables
seamless runtime reconfiguration by draining traffic to neighboring
SmartNICs temporarily.

The high-level challenges that Pipeleon tackles are to determine
how and where to optimize the P4 program for SmartNICs. In terms
of how to optimize SmartNIC programs, Pipeleon needs to go be-
yond P4 optimizations on resource consumption [17, 31, 36, 62]
to performance-oriented optimizations. This further needs to be
guided by an approximate performance cost model of P4 programs
on SmartNICs. Drawing inspiration from prior work, Pipeleon devel-
ops three P4-level performance optimizations to tune the program
layout for better performance. Table reordering saves processing
cycles by dropping packets as early as possible in the program
structure. Table caching creates faster paths for packets to skip
complex table matches (e.g., ternary and range). Table merging im-
proves memory access efficiency by composing small tables into
bigger ones to reduce memory lookups, which are key performance
bottlenecks. The three customized techniques are broadly applica-
ble to SmartNICs with ASIC or CPU processing cores—e.g., Nvidia
BlueField and Netronome Agilio.

The next challenge is to determine where to optimize the program
and which optimizations to apply. Different optimization strategies
will generate distinct performance benefits and introduce different
resource costs. Pipeleon needs to search for the best strategy that
maximizes the performance gain while staying within desired re-
source limits. Searching over the whole program without priority
will result in long optimization times and potentially miss useful
profile changes. Pipeleon addresses the problem by prioritizing
the hotspots that contribute the most to a program’s inefficiency.
Concretely, Pipeleon partitions a P4 program into smaller code
snippets called pipelets. It estimates the cost of each pipelet with
the approximate cost model based on runtime profiles, selects the
top-k “hot” pipelets for timely optimization, and uses a heuristic
search to identify the best optimizations across pipelets.

We have implemented a prototype of Pipeleon! and applied it to
BlueField2 and Agilio CX as well as a software emulator extended
based on BMv2. Our results show that Pipeleon can finish the
runtime optimization search within one minute for the majority of

Pipeleon is available at https://github.com/jiarong0907/Pipeleon.
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Figure 1: P4 is initially designed for programming stage-
based switch ASICs, but multicore SmartNICs are very dif-
ferent and process packets in a run-to-completion style.

programs, and its optimizations significantly improve the SmartNIC
P4 performance in various use cases by up to 5x. This work does
not raise any ethical issues.

2 OVERVIEW
2.1 Unleashing SmartNIC Performance

SmartNICs are a promising platform for efficient packet processing,
but extracting performance is far from easy [23, 38, 39, 43,49, 51, 53].
SmartNIC toolchains (e.g., programming languages and compilers)
vary across vendors, often with opaque, low-level optimizations,
and require manual tuning based on the traffic workloads. Code
reuse and portability across devices are likewise difficult. Recently,
vendors are embracing P4 as a uniform programming model for
SmartNICs—Nvidia BlueField [9], Netronome Agilio [8], AMD Pen-
sando [1], and Intel IPUs [7] are programmed in P4, and SmartNIC
architecture models (e.g., Portable NIC Architecture) [13] are also
adopting P4 as the de-facto language.

While P4 simplifies and standardizes SmartNIC programming,
it does not relieve the challenge of unleashing performance. Op-
erating at a higher abstraction, P4 programs obscure low-level
performance-tuning opportunities, necessitating the need for inno-
vative P4-level optimizations. This, in turn, introduces new demands
on the P4 compilers to effectively perform program transformations
for better performance. Yet, due to their origin as a switch program-
ming language, today’s P4 compilers excel in resource packing onto
constrained ASICs [27, 34, 36, 54] but not performance-oriented
optimizations. The implicit assumption is that once MA tables fit
inside the device, performance is deterministic and guaranteed to
be line rate. For SmartNICs, however, their architecture commonly
takes a multicore processing model—including SoC CPU cores in
software (e.g., micro-engines on Netronome Agilio) and ASIC cores
in hardware (e.g., JRMT ASICs on Nvidia BlueField). As Figure 1
shows, packets are steered to one of the SmartNIC cores—ASIC or
CPU—and processed in a run-to-completion model. Both types of
cores are P4 programmable, and they operate at different speeds.
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Figure 2: Profile-guided optimizations adapt to traffic profile
changes and achieve higher performance on BlueField2.

Packet performance is therefore subject to significant variation
on SmartNICs, across programs, traffic types, and table entries;
linespeed processing is not an automatic guarantee. For instance,
in dRMT SmartNICs, every MA table incurs additional memory
lookup from the ASIC cores to the disaggregated memory bank.
Packets traversing a different amount of tables, even for the same
P4 program, will vary in their latency characteristics. Furthermore,
many workload characteristics (e.g., traffic types and table entries)
are not known at compile time. Before deployment, the compiler
only has partial knowledge: the program itself, but not the workload
profiles. Thus, even the best optimizations at compile time are
constrained by this incomplete information.

2.2 The Promise of Runtime PGO

Profile-Guided Optimization (PGO) has proven useful for other
languages [19, 24, 40, 42, 45, 46, 61], enabling better performance
optimizations by leveraging knowledge about the input. However,
such techniques have not caught up to P4 compilers except for the
traditional goal of resource packing [62]. To demonstrate its poten-
tial benefits, we conduct a set of motivating experiments. Figure 2
depicts the layout of a P4 program which starts with multiple access
control list (ACL) tables, then a few regular packet processing tables
(not shown), and ends with a routing table. We apply an optimiza-
tion from Pipeleon to this program by reordering the ACL tables
based on their packet dropping rates—which depend on the run-
time profiles and are unknown at compile time. We then measure
the respective performance of the optimized implementation on
an Nvidia BlueField2 SmartNIC. As Figure 2 shows, traffic pattern
changes render any static table order ineffective in providing good
performance. In contrast, by reordering these tables based on the
current traffic profiles, profile-guided optimizations can quickly
bring the performance up to the line rate after workload changes.

2.3 Pipeleon Overview
Pipeleon? is the first automated profile-guided optimization frame-

work for SmartNICs, aiming to unleash the full potential of what

ZPipeleon refers to a pipeline that is capable of adapting to traffic changes, much like
a chameleon adapting to its surrounding environments.
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Figure 3: The workflow of the Pipeleon system.

we see in the above sneak preview. Pipeleon takes a P4 program
as input and transforms it into more efficient implementations at
the source code level; thus, the optimizations are independent of
the specific SmartNIC targets. We address two unique challenges
in the design of Pipeleon.

How: Performance-oriented P4 optimizations. First, we need
a new set of optimization techniques targeting P4 program perfor-
mance. To tackle this challenge, we first develop a cost model to
estimate the performance of P4 programs running on SmartNICs,
using a target-independent methodology. The model further moti-
vates customizing a set of performance-oriented optimization tech-
niques, including table reordering, table caching, and table merging,
which can be further extended to heterogeneous targets such as
ASICs and CPU cores on BlueField, through pipeline partitioning
and packet migration.

Where: Best optimization strategy search. These optimizations
produce different performance gains with different resource over-
heads. Thus, the second challenge Pipeleon needs to address is to
find the best optimization strategy within specified resource con-
straints, while ensuring that the runtime optimizations are timely
enough for dynamic profile changes. We solve this problem by par-
titioning the program into smaller code snippets called pipelets.
Given the runtime profiles and the cost model, Pipeleon selects the
top-k optimization-worthy pipelets and uses efficient heuristics to
find the best optimization strategy.

Pipeleon workflow. Figure 3 shows the workflow of the system.
Pipeleon optimizes SmartNIC programs at the P4 level, functioning
as an independent layer that can be easily integrated with existing
SmartNIC compilers. It instruments the input program with P4
counters to enable runtime profiling. Pipeleon dynamically collects
profiles at runtime and uses them to detect the top-k optimization-
worthy pipelets. It then optimizes these pipelets with the proposed
domain-specific optimizations, producing an optimized P4 program
with a better layout on the SmartNIC to be consumed by the target-
specific P4 compiler toolchains. Pipeleon constantly monitors the
profile; when it varies, a new round of optimization will be triggered.
The optimization process is automated, requiring minimal manual
intervention from network operators. Pipeleon ensures the same
program management APIs (e.g., entry insertion) by mapping the
API calls to the original program to the optimized version.
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3 PERFORMANCE-ORIENTED OPTIMIZATION

In this section, we construct an approximate SmartNIC cost model
and propose a set of domain-specific techniques for optimizing the
performance of P4 programs.

3.1 Approximate P4 Performance Models

To develop performance-oriented optimizations, we need to un-
derstand how P4 programs exhibit different performance charac-
teristics on SmartNIC platforms, while using a target-independent
methodology whenever possible. To the best of our knowledge, this
represents the first study that relates P4 program structures to their
performance profiles. We demonstrate the feasibility of construct-
ing an approximate P4 performance model for a widely available
SmartNIC—Nvidia BlueField2. Using concrete performance bench-
marks as a starting point, our method works by interpolating how
MA program structures affect performance. We further validate the
model with hardware measurements by applying it to a range of
programs for predictive analysis. The model will serve as a guide
for the compiler to perform P4-level transformations in search of
high performance.

To construct a target-independent model, we view a P4 program
as a directed acyclic graph (DAG) where nodes are MA tables or
conditional branches and edges represent packet dataflow, as il-
lustrated in Figure 4. Further, any packet traverses exactly one
path on the graph from the root to the sink, due to the run-to-
completion model of SmartNIC packet processing. The execution
path also determines packet latency. An execution path r is defined
as < o, €9, U1, -.., €g_1, Uk >, where v; and e; represents nodes and
edges on the path, respectively. The path latency L(rr) includes the
cost of each node on the path. P(r) is the cumulative product of
each edge probability on the path. The expected program latency,
denoted as L(G), is the latency sum of each execution path, weighted
by the path probability, as shown in Equation 1.

LG = >, PLx) (1)
rePaths(G)
P(rr) = P(eo)P(e1leo)...P(ex—1]ex—2---€0) (2a)
k
L(m) = > L) (2b)
i=0

Implication #1: L(r) is the accumulated latency across k nodes on
the path. We can optimize it by shortening the path to decrease k or
implementing v; more efficiently to decrease L(v;).

A node v; can be an MA table or a conditional branch. The
cost of a table includes key match and action execution. A key
match produces several hashes and memory accesses (dominate
the latency), and the numbers depend on the match types and table
entries. Specifically, an “exact” match is a basic operation that can
be implemented as a hash table. It completes the key match with
one hash to compute an index and one memory access to read the
data (m = 1). The “longest prefix match” (LPM) and “ternary match”
are usually implemented using multiple hash tables, which could
involve more than one memory access (m > 1). The action cost
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O If-else branch @ Switch-case table
Edge probability

ipv4.dip: ternary;
tcp.sport: exact;

Key match

ipva.ttl = ipva.ttl - 1;
tcp.dport = 100;

Action primitives

Figure 4: Pipeleon models a P4 program as a directed acyclic
graph (DAG). A MA table node includes key match and ac-
tion primitives. Each edge is associated with a probability
representing the portion of traffic going through it.

Symbol | Description
G The directed acyclic graph of a P4 program
b An end-to-end execution path in a P4 program
L(obj) | The latency of the input object
P(obj) | The probability of the input object

My, Number of memory accesses for the key match of table v;

Na Number of primitives in action a
Lmat The constant latency of one memory access (one exact match)
Lact The constant latency of one action primitive

Table 1: The main symbols used in the cost model.

is the sum of each action cost weighted by its probability.? For a
specific action, its cost is proportional to the number of associated
primitives. Most conditional branches are simple and require no
memory access, so we ignore their cost. Equations 4a and 4b repre-
sent this approximate model, where parameters can be extracted
via benchmarking.

L(vi) = Liparch i) + Laction(vi), v; is a table (3)
Linaren(0i) = my; - Lnay (4a)
Laction(vi) = Z P(a) - ng - Lact (4b)

acvy;

Implication #2: The value of n, is fixed by the needed operations
for packet processing, so my; affords more potential for optimization.
Optimizing my, requires implementing the key match more efficiently.

Methodology and results. In the above model, the probability
P(e;j|...) and P(a) can be calculated by measuring the traffic going
through each edge/action with P4 counters, and n, can be counted
from the source code. Thus, unknown parameters are Lyqr, Lact,
and m,,, which we approximate by profiling a range of programs
with different sizes, match types, and action primitives. For each
program, we measure its maximum throughput by sending traffic
using TRex [15]. We use its reciprocal as the approximate average
latency, since the cost model estimates relative latency differences
across optimization options, instead of their absolute values. We
3A switch-case table transits to different next tables based on the executed action, so

it is located on multiple execution paths. In this case, only the cost of actions leading
to the current path should be included.
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Figure 5: Performance measured on BlueField2 vs. perfor-
mance predicted by the cost model. (a) compares different
numbers of exact tables in a program, each with two actions.
(b) validates the impact of action primitives using programs
with 20 exact tables. (c) and (d) test different amounts of LPM
and ternary tables with fixed actions. All data are normalized
to the corresponding hardware measurement.

then extrapolate Ly,q; and Lg¢; with linear regression, using the
performance results obtained with programs composed of exact
match tables as a baseline. This gives us the latency of x exact
matches in the format of Y; = A;x+Bj and the latency of y actions in
the format of Yo = Apy+ By, where Aj, Az corresponds to Linat, Lact
in Equations 4a and 4b, respectively, and B1, By are constants. The
value of m for LPM and ternary matches is related to the number of
different prefixes and masks in table entries. We use three different
prefixes for LPM tables and five different masks for ternary tables in
the measurement. We then estimate m by normalizing the observed
packet performance using the performance of exact match tables
as the baseline.

We apply this methodology to Nvidia BlueField2, with a bench-
marking suite containing more than 300 P4 programs to obtain a
stable model. We further validate the obtained model by measuring
its ability to estimate new program scenarios. Figure 5 shows the
performance difference between estimated program costs using our
model and that obtained by hardware measurements with 16 differ-
ent scenarios. Our cost model estimates the hardware performance
within a 5% deviation on average compared to the actual measure-
ment. Nvidia engineers have also confirmed that the predicted
numbers lie in an expected range from the hardware perspective.
Although this approximate model only estimates performance dif-
ferences, without having a “whitebox” view of all SmartNIC details,
it is able to guide Pipeleon to find optimizations that achieve line
rate in later experiments. Moreover, since the benchmarking strat-
egy does not require having vendor details, it can be applied to
other SmartNICs and program features as well.

3.2 P4 Performance Optimizations

Driven by the cost model, we have customized three techniques
that cater to the unique demands of P4 performance optimization
on multicore SmartNICs. These techniques transform the code
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into more efficient implementations while preserving the program
semantics by table dependency analysis [34].

3.2.1 Table reordering. Continuing our earlier example in §2.2,
we describe in more detail the table reordering optimization. Unlike
switch ASICs (e.g., Intel Tofino [6]) where dropped packets are sim-
ply tagged with a bit and only discarded at the end of the pipeline,
SmartNICs are not constrained by this pipelined processing. When-
ever we can make a decision to drop a packet, the corresponding
execution halts, and the ASIC/CPU core fetches the next packet.
Thus, when SmartNIC programs drop packets, it is beneficial to
drop them as early as possible. This shortens the execution path and
decreases L(rr) in the cost model for dropped packets. Therefore,
whenever possible, Pipeleon promotes tables with higher dropping
rates to earlier parts of the program.

Consider a pipeline with multiple ACL tables, where a packet
is accepted only if none of the tables denies the packet. At any
given time, these tables could produce different packet-dropping
rates due to the ACL rules and traffic composition. In this case,
Pipeleon will shuffle their order by promoting ACL tables with
higher dropping rates to earlier places. In addition to reordering
ACL tables, table reordering can also enable more opportunities
for other optimizations. For example, changing the order from
Ty — Tp — Tc to Ty — T — Tp makes it possible to cache or
merge T4 and T, as described later.

Original pipeline Reordered pipeline

0-0-6; -@.6-6

Dropped traffic

Optimization considerations. Table reordering does not incur
resource overhead. It alters the table sequence when there are
no dependencies across these tables (e.g., the ACL tables above).
Nevertheless, this may affect the applicability of other optimizations.
In addition, the dropping rate will vary with the actual traffic and
table entries; Pipeleon will reorder tables accordingly at runtime.

3.2.2 Table caching. Another performance optimization is to
realize complex table matches in a more efficient way. Pipeleon
accomplishes this by creating flow caches, which are implemented
as fast, exact-match tables. These simpler tables record the match
result of the more complex tables (e.g., LPM or ternary tables) in
the original program and reuse it for following packets in the same
flow. This decreases L(rr) by reducing the path length when caching
multiple tables, and by implementing the key match more efficiently
using exact matches.

While inspired by the “flow cache” idea used in today’s sys-
tems [47, 66], Pipeleon enhances the cache in several aspects. First,
existing designs use one cache for the entire program, leading to
the cache key cross-product problem. That is, n header fields could
produce up to Sj - Sz... - S, cache entries, where S; is the number
of different values of the i-th field. Moreover, this exacerbates the
cache invalidation problem because an update in any of the original
tables will invalidate the entire cache, resulting in a low cache hit
rate. Pipeleon addresses this problem by allowing an adjustable
number of caches—it can cache the whole program with one cache
if that achieves the best performance; it may also create multiple
smaller caches, each covering different program areas. The figure
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below shows a scenario where two smaller caches produce better
performance than a single cache for the entire program. This can
happen when table C’s match keys have a large value space, which
will amplify the cross-product problem, or when it has frequent en-
try updates, which will lead to frequent cache invalidation. The best
caching strategy varies for different programs and runtime profiles.
Therefore, Pipeleon computes the optimal solution at runtime.

o006 _ 0

Miss i Miss Hit
t i
Cache A+B I Cache D

Optimization considerations. The performance of a cache is di-
rectly influenced by its hit rate, which is very challenging to predict
in advance. At runtime, the cache hit rate is affected by many fac-
tors, such as traffic locality, cache keys, and cache entries. Therefore,
runtime adaptation is indispensable for maintaining good cache
performance. When Pipeleon computes a caching optimization, it
uses a default estimated hit rate for calculation but continuously
monitors its actual performance at runtime. If the performance is
not expected, Pipeleon will adjust the implementation by using
different caching strategies or adopting other optimizations. Cache
tables consume extra memory space. Pipeleon reserves a fixed bud-
get for each cache and adopts LRU eviction when the cache is full.
Moreover, cache tables install entries upon cache misses, consum-
ing more entry insertion bandwidth. Similarly, Pipeleon sets an
insertion rate limit for each cache; insertions beyond the limit will
be dropped.

3.2.3 Table merging. Table merging combines multiple tables
into a larger table, so that the merged table performs several actions
with one key match. From the cost model perspective, this reduces
L(r) by making the path shorter. To maximize the performance
benefits, Pipeleon distinguishes match types when merging tables as
it could potentially alter the match type and thus result in different
numbers of memory accesses for the key match (different m values
in Equation 4a). For instance, when merging two exact tables T4 and
Tp, in order to preserve the program semantics, multiple ternary
entries with “*” must be inserted to express the case where one table
is missed but the other is hit or both tables are missed. Thus, table
merging may change exact tables into a ternary table, amplifying
the processing cost. Figure 6 shows a concrete example. The cost
model captures this by representing the latency reduction as (mr, +
mry — M7, ) Lmar. Merging tables into ternary tables introduces a
larger mr, ,, so the performance improvement could be negative.
Pipeleon addresses this by generating a merged exact table without
ternary entries as a cache. Packets missing the cache (the merged
table) will fall back to the original tables. Note that this cache differs
from the one generated by table caching. Its cache entries are the
result of table merging, and it will not initiate entry insertion upon
cache misses.

In contrast, previous work [20, 33, 36] employs techniques that
resemble Pipeleon’s table merging, but they serve different pur-
poses. For example, earlier SDN work [33] proposes to compose
OpenFlow tables for coordination across multiple controllers with-
out considering performance optimization. A more recent work,
Cetus [36], utilizes table merging to reduce the diameter of the
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table A{
key= { srcIP: exact; }
actions={ al; a2; }
default_action = a2;
} }
10.0.0.1=>al 1.1.0.0=>b1l

table B {
key= { dstIP: exact; }
actions={ b1; b2; }
default_action = b2;

table AB {
key= { srcIP: ternary; dstIP: ternary; }
actions={albl; alb2; a2bl; a2b2; }
}
10.0.0.1 OxFFFFFFFF 1.1.0.0 OXFFFFFFFF =>albl priority=2
10.0.0.1 OxFFFFFFFF *  0x00000000 =>alb2 priority=1
A 0x00000000 1.1.0.0 OXFFFFFFFF =>a2b1l priority=1
* 0x00000000 *  0x00000000 => a2b2 priority=0

Figure 6: The naive merge of two exact tables will generate a
ternary table which could have worse performance.

dependency graph. It is worth noting that the table merging in
Cetus does not necessarily merge two tables; instead, its goal is to
pack more tables into one stage by eliminating their dependency.
In other words, Cetus focuses on resource optimization, which is
the first-order consideration for RMT architectures. On the other
hand, table merging in Pipeleon is performance-driven. Pipeleon
enhances the technique by taking table types into consideration to
fully unleash its benefits.

Optimization considerations. Table merging can lead to a Carte-
sian product of entries in original tables, which enlarges the table
sizes and amplifies the entry update rates. For instance, when merg-
ing table T4 and Tp, in the worst case, each entry in table T4 needs
to be combined with all entries in table Tp, so Pipeleon estimates
the number of entries in the merged table N(T4p) as N(T4) - N(Tp).
Similarly, inserting a new entry in T4 can end up with inserting
N(Tg) entries in the merged table, so Pipeleon approximates the
insertion rate I(Tag) as I(T4) - N(Tg) + I(Tg) - N(T4). Therefore,
compared to table caching, table merging targets small tables with
infrequent entry updates. Pipeleon thus monitors the table sizes
and entry update rates of the merged tables at runtime. If they
dramatically increase at runtime, Pipeleon will reverse the merge
and recompute the optimizations.

3.2.4 Extending to heterogeneous targets. Pipeleon’s optimiza-
tion techniques can be extended to SmartNICs with a mix of ASIC
and CPU cores. In this case, Pipeleon partitions the program onto
ASIC/CPU cores to achieve both high performance and flexibility.
Packets can migrate between ASIC/CPU cores to finish their pro-
cessing with intermediate data piggybacked as a special header. One
problem here is to restore the processing context when a packet
(re-)enters a core because its state will be cleaned once it leaves
the core. Pipeleon addresses this by inserting a navigation table
and a migration table at the front and end of each program compo-
nent that is assigned to an ASIC/CPU core. The navigation table
matches on special metadata named next_tab_id that records the
next table for its processing. Thus, Pipeleon can resume processing
by jumping to the stored next table directly. The migration table
updates next_tab_id before packets migrate to the other core.
Packet migration between ASIC/CPU cores could potentially in-
cur additional latency. As a result, besides the consideration of flexi-
bility (e.g., ASIC-unsupported operations should run on CPU cores),
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the partition should also consider the migration overhead. Pipeleon
employs three techniques to minimize the migration overhead: (1)
Table reordering. Pipeleon minimizes unnecessary migrations by
rearranging the order of tables, ensuring consecutive processing
of more tables on the ASIC/CPU core. (2) Table caching. For tables
on CPU cores that have ASIC-unsupported match keys, Pipeleon
maintains a flow cache on the ASIC cores to store the match re-
sults. This allows subsequent packets to be processed by ASICs
without requiring migration. (3) Table copying. When packets mi-
grate between ASIC/CPU cores multiple times, Pipeleon considers
duplicating the table needed by both to reduce migration. Figure 7
demonstrates these optimizations with simplified examples.

4 PIPELET-BASED OPTIMIZATION

With the above optimizations, Pipeleon transforms the input graph
G into an optimized graph G* where L(G*) < L(G). However, a
range of transformations may be possible with different perfor-
mance gains, and these transformations may consume additional
resources—e.g., a cache table requires extra memory and may lead
to more entry insertions upon cache misses. Moreover, they could
conflict with each other—e.g., merging Ty with Tg will prevent
swapping the order of Tg and T¢. Therefore, Pipeleon needs to
solve an optimization problem to find the best optimization option
with the highest performance within the resource limits. We define
it as follows:

min L(G¥)
s.t. (Memory) Z M(;) <M
v;€G* (5)
(Entry update rate) Z E(v;) <E
v;€G*

where M(v;) and E(v;) represent the memory size and entry up-
date rate of node v; on the optimized graph, and M and E denote
the memory and update bandwidth constraints. These are part of
the formulation because Pipeleon’s optimizations will alter their
consumption. For the memory, users can specify the maximum
memory size that Pipeleon can utilize for the optimization process.
Pipeleon approximates the memory consumption of a MA table
using the total size of its table entries. Given that LPM tables and
ternary tables are implemented as multiple hash tables, Pipeleon
multiplies the entry size with the same parameter m as in Equa-
tion 4a. Pipeleon determines the entry update rate of each table
by monitoring its invocation of the entry update APIs (i.e., entry
insertion/deletion/modification) in the control plane.
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The naive solution. One naive solution to the problem is to
compute all possible optimization options across the entire program
to find the global optimum. However, this approach leads to a large
search space and significant computation time. For instance, in the
case of table caching optimization, a P4 program with 10 tables
would result in 2!° options if we examine whether to create a
cache for each table. Likewise, table reordering optimization could
result in up to 10! (factorial) options of different table orders. The
space will further increase exponentially when considering other
strategies and their combinations. This extensive computation time
incurs significant delays, leading to a potential lag in timeliness
and a risk of missing important profile changes.

One reason leading to the slowness is that the naive solution
treats each MA table in the program equally. However, MA tables
contribute to the program’s inefficiency differently, depending on
their implementations and the proportion of traffic flowing through
them. Accordingly, the performance gain achieved by optimizing
them also varies. For instance, optimizing a piece of complicated
code serving 90% traffic is more likely to produce more performance
improvements than enhancing an already-simple code snippet serv-
ing only 10% traffic. The global search approach, lacking the ability
to distinguish between important and less significant MA tables,
may spend a considerable amount of time exploring options that
yield minimal benefits.

4.1 Top-k Pipelet Formation and Detection

Inspired by prior region-based compilers [30, 45, 55], Pipeleon re-
duces the complexity by splitting the program into smaller pieces
and prioritizing pieces that contribute the most to the program cost.
The intuition is that optimizing program bottlenecks is more likely
to yield higher gains.

4.1.1 Pipelet formation. Pipeleon proposes to use pipelets as its
basic optimization units. A pipelet is a piece of P4 code without con-
trol flow branches, akin to a “basic block” in traditional code [22].
However, pipelets are a domain-specific concept and they are com-
posed of only MA tables; each table could have multiple actions,
generating different execution paths in the pipelet. As shown in
Figure 8, Pipeleon partitions a program into pipelets by checking
two program elements: conditional branches and switch-case ta-
bles, both creating multiple dataflows in the program. Pipeleon
regards a switch-case table as an individual pipelet while ignoring
the conditional branches because they contribute less overhead.
However, when a P4 program has many branches, it will be
partitioned into very short pipelets (e.g., only with one table), and
this would restrict the optimizations Pipeleon can perform. We
solve this issue by allowing multiple neighboring pipelets to form a
pipelet group for joint optimizations. Concretely, if several pipelets
for optimization (top-k pipelets) can form a larger code block with
a common branch node, Pipeleon will view them as a pipelet group
and optimize them together. To simplify the computation, Pipeleon
restricts the pipelet group to having only one node receiving all
incoming traffic, and the traffic is required to move to the same node
after leaving the group. Moreover, long pipelets could form when a
program has few conditional branches, which diminishes the bene-
fits of pipelet partition. Pipeleon further partitions large pipelets
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Figure 8: The illustration of pipelet partition in Pipeleon.

Pipelets

into smaller ones in this case. Figure 8 illustrates the partitioning
with a concrete example.

4.1.2 Hot pipelet detection. After pipelet partitioning, Pipeleon
prioritizes its optimization towards pipelets that contribute the
most latency, or the top-k “hot” pipelets. Pipeleon pinpoints these
pipelets in a program by combining the cost model and runtime
profiling. Concretely, it calculates the cost of a pipelet by treating it
as a subgraph G’ and reusing the cost model in §3.1. The latency of
a pipelet is then computed as L(G’) - P(G’), the subgraph’s latency
weighted by its probability. P(G’) is the probability that a packet can
reach the pipelet, which can be calculated as the sum of probabilities
for all reachable paths from the graph root to the pipelet.

For this calculation, Pipeleon needs to know the edge probabil-
ity P(e;|...) and action probability P(a) as defined in Equations 2a
and 4b, respectively. To this end, Pipeleon instruments the input
program by associating a counter with each conditional branch and
action. These counters increment by one whenever a packet hits
the corresponding branch or action. Therefore, for a table with n
actions, the probability of action a; can be calculated as c;/ Z{’ cjs
where ¢; is the counter value of a;. One problem, however, is that
when the input program undergoes transformations by Pipeleon,
its original structure will be modified. To obtain the counter values
for the original program, Pipeleon maintains a counter map that
links the optimized program to its original counterpart. For exam-
ple, when a table is optimized by table caching, its traffic is split
into two parts: traffic that hits the cache, and traffic that misses
the cache and falls back to the original table. In this case, Pipeleon
computes the counter values before optimization by summing up
the corresponding counters in the cache table and original table.

The above steps serve as the foundation for Pipeleon to select
top-k pipelets, with k being adjustable based on the available time
budget and program size. The top-k pipelets are dynamic and can
change in response to variations in traffic patterns and updates to
table entries. Pipeleon periodically recomputes the top-k pipelets
and generates new optimizations if they have changed.

4.2 The Best Optimization Search

Pipeleon solves Equation 5 in two steps. First, it performs a lo-
cal search to compute all possible optimizations for each top-k
pipelet. Then, it conducts a global search to find the best combina-
tion that minimizes L(G*) within the specified resource limits. In
the first step, for each top-k pipelet, Pipeleon computes all possible
optimizations for each technique independently. For instance, a
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pipelet with two tables, T4 and Tp, will generate four table caching
candidates [T4], [Tg], [Tal[Tg], and [T4, Tg], where [-] denotes
applying the corresponding optimization to the enclosed tables.
Similarly, it will generate one merging candidate, [T4, Tg], and two
table reordering options, Ty — Tp and Tg — T4. Next, Pipeleon
enumerates all valid combinations of these candidates. Notably,
since Pipeleon does not consider applying merging and caching to
the same table, the merging candidate cannot co-exist with other
caching candidates, e.g., merging [T4, Tg] and caching [T4] is not a
valid combination. Consequently, the above example results in five
cases for each table order. For valid combinations, Pipeleon com-
putes their performance gain and overhead based on the cost model.
Without resource limits, the best global plan can be determined by
selecting the candidate with the highest performance gain for each
pipelet. With resource limits, however, Pipeleon formulates it as a
knapsack problem—determining which optimization candidate to
apply so that the total overhead remains within the resource limits
and the performance gain is as large as possible. Pipeleon solves the
problem by adapting the classic knapsack dynamic programming
solution. We defer the algorithm pseudocode to Appendix A.1.

5 EVALUATION

We evaluate Pipeleon comprehensively to answer three key re-
search questions: (1) how effective are Pipeleon’s P4 performance
optimizations? (2) how well can Pipeleon adapt to runtime pro-
file changes? (3) how effective is the top-k pipelet algorithm in
terms of profiling overhead, optimization speed, and performance
improvement?

5.1 Prototype and Setup

We have implemented a prototype of Pipeleon in about 9800 lines
of code in Python. The system takes the intermediate file generated
by the P4 compiler as input (e.g., a P4 .json representation), converts
it to a graph-based IR, transforms the graph using the proposed
optimizations, and finally converts the optimized graph back to the
intermediate file. Thus, Pipeleon performs source-to-source com-
pilation and eventually relies on the vendor compilers to compile
the program into the device. Runtime profiling is achieved by re-
trieving the P4 counter values (for probability) and monitoring the
invocation of entry update APIs (for entry update rates). The cost
model is implemented as an independent module with configurable
performance parameters, responding to the queries issued by the
optimizer. We evaluate Pipeleon with three setups:

(1) Nvidia BlueField2 (2 portsx100Gbps). BlueField2 has a set
of ASIC MA cores and an array of ARM CPU cores. We use an
early vendor prototype for programming BlueField2 ASIC cores
which is based upon the DOCA framework [10] with DPDK APIs.
The DPDK code executes on the same P4-programmable ASIC
cores and Nvidia is working toward upgrading the DPDK APIs
to more flexible P4 APIs. Runtime reconfiguration is achieved by
altering the DPDK flows in the pipeline; the P4 framework will
also support live reconfiguration using the same techniques for
Nvidia programmable switches [63]. We connect two BlueField2
NICs back-to-back using a 100Gbps QSFP cable. One port of each
NIC is used, so the maximum throughput of this setup is 100Gbps.
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Figure 9: The benefits of Pipeleon’s performance-oriented optimizations on Nvidia BlueField2 and Netronome Agilio CX.

(2) Netronome Agilio CX (1 portx40Gbps). Netronome NICs
are equipped with a set of specialized CPU cores (micro-engines)
programmable in P4. Netronome SmartNICs do not have native
support for runtime reconfiguration, so reloading programs requires
micro-engine reflashes and causes service interruption. This use
case represents a disaggregated SmartNIC scenario as pursued by
the DASH project [5, 18]. Before a SmartNIC is reconfigured, traffic
needs to be redirected to other SmartNICs in the same cluster to
avoid downtime. We skip traffic redirection in our setup, as it is not
the focus of this work.
(3) BMv2-based emulator. To test a more diverse range of poten-
tial SmartNIC platforms and cost models, we implement an emulator
by extending the BMv2 software codebase [11] in about 5300 LoC.
Specifically, we use the original BMv2 pipeline to emulate the ASICs
and add another pipeline to emulate the general-purpose CPU cores.
Packets are allowed to migrate between the two pipelines for pro-
cessing. The emulator can be configured with different SmartNIC
parameters to support different cost models, and it times its own ex-
ecution based on the configured parameters (e.g., CPU core speeds).
Live reconfiguration is accomplished by integrating the runtime
programmable Nvidia ASIC emulator developed by prior work [63].
We generate traffic workloads at line speed using TRex [15] and
trafgen [14]. All traffic workloads use the packet size of 512 Bytes.

5.2 Benefits of the Optimizations

5.2.1 Performance on BlueField2 and Agilio CX. We first eval-
uate the effectiveness of Pipeleon’s performance-oriented optimiza-
tions on BlueField2 and Agilio CX in a set of microbenchmarks. The
microbenchmark programs are constructed using pipelets with four
tables, replicated with a scale factor N as the control parameter.
Table reordering. To evaluate the benefits of table reordering,
we convert the last table of the program into an ACL table, which
drops traffic with a configured rate. It has no data dependency with
other tables so it can be freely reordered. Figures 9a-9b demonstrate
the performance improvement when the ACL table is reordered
to earlier positions. As we can see, promoting the table to earlier
positions leads to higher and higher performance until it achieves
the line rate. Moreover, higher percentages of dropped traffic lead
to higher performance gain.

Table caching. To evaluate table caching, we adopt a similar bench-
marking strategy. Figure 9c presents the results of different caching
strategies, where [¢;...t;] denotes caching tables ¢; to ¢; together. For
example, [1,2,3][4] means that tables T; to T3 are cached together,
and table Ty is in a second cache. As the figure shows, caching more
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Figure 10: Pipeleon’s performance on synthesized programs.

tables with fewer caches leads to greater performance. BlueField2 al-
most reaches the line rate at [1,2,3][4], which is 2.5x higher than the
case without a cache. In this experiment, we used a different match
key for T; to Ty and sent 40000 different flows. With this setup,
[1][2][3][4] maintains a 90% hit rate by using 54 cache entries in
total while [1,2,3,4] will need 36k entries to sustain the same hit rate
because it needs to do a cross product of all the match keys. Agilio
CX demonstrates the same trend (right y-axis). It is worth noting
that Netronome SmartNICs have a vendor-native “flow cache” fea-
ture for the whole program, and all our benchmarks are conducted
with it enabled. We can see that our cache optimization improves
its native performance even with the built-in cache.

Table merging. Figure 9d shows the results of different table merg-
ing options using the same evaluation methodology. We have ob-
served 1.3x-2.1x throughput improvements on BlueField2 and 1.2x-
1.8x on Agilio CX. Similar to table caching, table merging will incur
more overhead when merging more tables. For instance, on Agilio
CX, the strategy [t1, t2, 3, t4] achieves 26% higher throughput than
[t1, t2, t3], but it generates 45.6k (19x) more table entries.

5.2.2 Performance on broader P4 programs. We next measured
the performance of Pipeleon on broader types of P4 programs,
adapting a recent tool [50] that can synthesize P4 programs. To-
gether with a runtime profile synthesizer, we generated programs
in three categories: programs with heavy packet drops, programs
composed of small static tables, and programs with high traffic
locality. To minimize the impact of traffic distribution, we restricted
each program to having only one pipelet. For each category, we syn-
thesized 100 programs with different pipelet lengths (PL). Figure 10
summarizes the average optimization performance computed by
the cost model. It demonstrates that Pipeleon can improve pro-
gram performance using different optimization techniques. Longer
pipelets tend to have higher improvements because they provide
more optimization opportunities. The improvement produced by
table merging is not as significant as the other two techniques. One
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reason is that we restrict Pipeleon to merge at most two tables to
control the memory overhead. Overall, Pipeleon can reduce the
latency by 27% to 52% across different types of programs.

5.2.3 Extending to heterogeneous ASIC/CPU cores. Our opti-
mizations can be extended to heterogeneous ASIC/CPU cores with
packet migration. Here, we evaluate one of our techniques, table
copying, proposed to minimize the packet migration overhead. We
perform the experiment using our BMv2 emulator which supports
this feature. The program in this experiment contains several in-
terleaving tables with unsupported actions. The naive partition
leads to multiple migrations for each packet. Pipeleon optimizes
the partition by copying the needed tables to the software pipeline.
We measured the performance with different migration overhead
and the proportion of traffic going to the software. Detailed results
are included in Appendix A.2.

5.3 Runtime Performance Optimization

Next, we evaluate the runtime optimization ability of Pipeleon
on BlueField2, Agilio CX, and an emulated NIC model using our
BMv2 emulator. We conducted three end-to-end case studies with
different profile changes; all use cases are adapted from real-world
scenarios as discussed below.

5.3.1 Service load balancing on BlueField2. We built a load
balancer pipeline on BlueField2 which distributes incoming requests
to several replicated service providers to balance the workload. The
program has a sequence of MA tables starting with eight tables for
regular packet processing, followed by two tables for load balancing,
and ending with two ACL tables. The baseline optimization caches
the whole program without runtime adaptation.

Frequent entry insertion. In the beginning, both systems cached
the whole program and achieved line rate, as shown in Figure 11a.
However, starting at time t=16s, the load balancer tables experi-
enced a higher entry insertion rate, which caused frequent cache in-
validation; thus, the throughput dropped to around 20Gbps. Pipeleon
performed runtime profiling every five seconds. When it detected
the problem, it adapted the pipeline by removing the cache, which
increased the throughput back to the line rate.

Packet dropping rate change. Next, we tested traffic pattern
changes, which lead to different packet dropping rates in the ACL
tables. The throughput dropped again because more traffic was
dropped by the second ACL table. Pipeleon reoptimized the pro-
gram by reordering the ACL tables after detecting the dropping rate
change, which improved the throughput up to 100Gbps again. In
contrast, the baseline program delivered low throughput through-
out the experiment.

5.3.2 Packet routing on Agilio CX. We created a packet routing
program for Agilio CX following the main functionality in DASH
pipeline [5], which is composed of direction lookup, metadata setup
including appliance ID, ENI, and VNI, connection tracking, three
levels of ACLs, and routing. Since connection tracking changes the
flow behavior, it is not compatible with Netronome’s built-in cache
which records the flow behavior by observing the first packet. Thus,
we disable it for this experiment. We use the original program with
no optimization as our baseline and show the result in Figure 11b.
Static small tables + biased ACL dropping rates. We started by
deploying the original program and monitoring the traffic profile
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every 10 seconds. After running for 10 seconds, Pipeleon found
that the direction lookup and metadata setup tables were small and
static, so it merged them; it also reordered the ACL tables based on
their dropping rates. This improved the performance by 43.5%.

Even ACL dropping rates + long-lived flows. Then, we changed
the traffic pattern to create even packet dropping rates in the ACLs
with long-lived flows. After Pipeleon observed the change in the
next optimization window, it reoptimized the program by caching
the ACL tables instead, which improved the throughput by 35.2%.

5.3.3 Network function composition. As our last case study,
we investigate a more sophisticated scenario where multiple net-
work functions are composed together. The program integrates the
load balancer and packet routing in previous case studies, and the
L2/L3/ACL program used in prior work [52]; this produces nine
pipelets in total. We evaluated Pipeleon with a different NIC model
using our BMv2 emulator. On this emulated NIC, LPM and ternary
matches have the same cost, which is 3x slower than exact matches;
conditional branches have 1/10 the cost of an exact table.
Dynamic top-k pipelet change. We dynamically change the traf-
fic pattern to create top-k pipelets in different network functions.
Pipeleon periodically selects the top-30% costly pipelets for opti-
mization. We use the original program as the baseline. Figure 11c
presents the average latency change over time. As we can see,
Pipeleon can dynamically reoptimize the program when the traffic
pattern changes, which reduces the latency by 49% on average.

5.4 The Top-k Pipelet Optimization

Pipeleon balances the optimization time and effectiveness by pri-
oritizing the top-k hot pipelets selected based on runtime profiles.
Here, we evaluate the profiling overhead as well as the top-k opti-
mization speed and effectiveness.

5.4.1 Profiling overhead. Pipeleon profiles the traffic distribution
by instrumenting each conditional branch and table action with a
programmable counter. The counter updates incur extra latency
to the data path. We study its impact on latency and throughput
with different counter updates. We measured the latency using
ib_write_lat and observed the throughput using the traffic gen-
erator. Figure 12a and 12b show the latency increase and throughput
degradation with different numbers of per-packet counter updates,
corresponding to the numbers of conditional branches as well as
the number of table actions that a packet traverses. The results indi-
cate that the overhead is similar across different counter quantities
and action complexities. Moreover, as Pipeleon only utilizes the
counter values to compute probabilities, sampling a small fraction
of traffic with the same sampling rate to update the counter will
not alter the result. Consequently, Pipeleon uses packet sampling
to further reduce the profiling overhead. As shown in the figure, by
sampling 1/1024 traffic, the overhead for latency and throughput is
only 4.3% and 5.0% on Agilio CX respectively. We performed the
same experiment on BlueField2 and found that its counter updates
are more efficient (Figure 12c). Even without sampling, the maxi-
mum throughput degradation is only 2.0%. We did not observe a
noticeable latency increase on BlueField2.

5.4.2 Optimization speed. We next evaluate the optimization
speed of Pipeleon. The computation time depends on the number
of pipelets (PN) and the pipelet lengths (PL) of the program. To
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Figure 11: Pipeleon significantly improves the performance through runtime profile-guide optimization.
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Figure 12: Pipeline’s runtime profiling adds minimal overhead on both Agilio CX and BlueField2.

evaluate the algorithm with various inputs, therefore, we synthe- 10 _P'::ZIOEA')S' PL=2.0 FN=126,PL=3.0 PN=150.PL=3.0
sized 300 P4 programs and divided them into three groups based 0.8~ k=30% A

on their PN and PL values. We measured the top-k optimization " 0.6l E:igg“/

turnaround time and compared them against the exhaustive search 8o4 'y

(ESearch, i.e., top-100%) baseline. As shown in Figure 13, the opti- 02 2

mization time increases with PN, PL, and k. In all cases, Pipeleon 00 ,"/;{,u'" .

is significantly faster than ESearch. Concretely, the median com- 1oﬂ_|_ime(1so)1 10 101Time(150) o Timleo(s) °

putation time for top-20% search is 3, 8, and 19 seconds for each
group while the ESearch takes 13, 87, and 179 seconds. By selecting
the top 20% costly pipelets for optimization, Pipeleon speeds up
the optimization by 8.2x, which enables runtime optimization for
traffic profiles with sub-minute-level changes.

Figure 13: The optimization time with different k values.
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5.4.3 Top-k effectiveness. We also verified that the top-k algo-
rithm can achieve similar optimization effectiveness to the ESearch.
The optimization benefit is influenced by the traffic distribution & i
across pipelets. The top-k approach performs better if more traffic OO 08 T8 07 08 09 T0 o7 o5 o9 T
is aggregated in a few pipelets. We use entropy to describe the Top-k gain / ESearch gain Top-k gain / ESearch gain Top-k gain / ESearch gain
degree of traffic aggregation in the program, which is calculated
using the pipelet traffic distribution. High entropy means packets
are distributed more evenly among pipelets. We reused the first
group of programs in Figure 13 (leftmost) for this experiment. To
test Pipeleon with a variety of profiles, we randomly synthesized

O 0.4
0.2

Pl

Figure 14: The impact of k on optimization performance.

As we can see in Figure 14, for the 10th entropy profile, top-20%
can achieve higher than 70% performance of the ESearch for all

2000 runtime profiles for each program and computed their entropy
values. We used the profile with 10th, 50th, and 90th entropy values
for this evaluation. In Appendix A.3, we visualize the pipelet traffic
distribution and show the performance of ESearch with different
traffic distributions. Here, we normalized the performance of top-k
search to the ESearch, e.g., the result of 0.8 means the top-k search
achieves 80% of performance improvement found by the ESearch.

programs. When using top-50%, 80% of the programs can achieve
higher than 95% benefits of the ESearch. The trend does not change
much for the 50th and 90th entropy profiles.

5.4.4 Cross-pipelet optimization. Pipeleon further performs
cross-pipelet optimization to increase optimization opportunities
when the selected top-k pipelets can form a pipelet group. We eval-
uated this by synthesizing programs dominated by short pipelets
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Figure 15: Pipelet group optimization can further improve
performance via cross-pipelet optimization.

(i.e., one table). Results are shown in Figure 15. On average, the
group optimization further reduces the latency by 6.7% on top of
the pipelet-based optimization, which increases the total latency
reduction up to 37.9% when k=60%. For pipelets that are optimized
as a group, their performance is further improved by 26.5% on the
basis of pipelet-based optimization.

6 DISCUSSIONS AND FUTURE WORK

Adaptability to runtime profile changes. The turnaround time
of Pipeleon is influenced by the program size and the top-k pa-
rameter, which directly impact the algorithm computation time as
demonstrated in §5.4.2. Additionally, Pipeleon requires invoking
SmartNIC’s toolchains for compiling and deploying the optimized
program, and the time taken for this process is implementation-
specific. Thus, our current design aims to effectively handle runtime
changes occurring at a frequency of seconds or greater. Compared
to today’s state of the art, without the possibility of runtime adap-
tation, this is already a significant advancement. To further adapt
to faster changes, one future step would be to compute new opti-
mizations as well as compile and deploy updates incrementally as
proposed by recent works [48, 63, 64].

Hierarchical memory support. Our current design does not
consider the performance difference across memory hierarchies
offered by certain SmartNICs (e.g., Netronome Agilio CX). Pipeleon
operates at the P4 layer, and the P4 language does not have native
support for controlling the memory location of tables. For example,
Netronome’s compiler places all P4 tables into the external memory
(EMEM), which aligns with our current memory model. In the
future, if SmartNICs provide support for explicitly specifying the
memory location of a table at the P4 level, Pipeleon could explore
the benefits of hierarchical memory by enhancing the cost model
and the optimization constraints to achieve even better performance.
We view this as our future work.

Beyond SmartNIC packet processing. SmartNICs can provide a
wide range of uses beyond packet processing, such as application
acceleration [38, 51], encryption/decryption [57], and deep packet
inspection [32]. Although these functions are not currently the
primary functions supported by P4, we believe that Pipeleon can
be extended to handle them if the P4 language incorporates the
necessary features in the future. In addition to SmartNICs, Pipeleon
could also benefit a broader range of P4 programmable devices
that have performance variances, such as dRMT switches [21, 63],
FPGAs [60], P4-OVS [4, 44], and P4-DPDK [12].

Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, et al.

7 RELATED WORK

SmartNIC systems. The research community has offloaded a
plethora of end host functions onto SmartNICs [23, 25, 26, 35, 38,
41, 43, 49, 51, 53, 65, 68], but optimizations are usually low-level,
scenario-specific, and manual. As P4 emerges as the prevailing lan-
guage for SmartNIC programming, the demand for optimizing sys-
tem performance at the P4 level has grown significantly. Pipeleon
alleviates the burden of developers by providing an automated
optimization framework for P4 SmartNIC programs.

P4 compilation and optimization. A line of P4 compilers for
RMT-based programmable ASICs exists [17, 27-29, 31, 34, 36, 54, 58,
62], simplifying the programming process and optimizing resource
utilization. One noteworthy example is Cetus [36], which reduces
the dependency diameter by packing multiple tables into a single
stage. In contrast, P4 performance optimizations remain relatively
understudied. B-Cache [66] accelerates P4 processing by employing
a cache for the entire program. MATReduce [20] reduces duplicated
match operations by merging tables with common match keys.
Pipeleon draws inspiration from these studies but enhances these
techniques for better performance. There are also studies that com-
pile P4 to heterogeneous targets [56, 59, 67]. Similarly, Pipeleon
supports extending to heterogeneous targets by partitioning the
pipeline between ASIC and CPU cores on SmartNICs.
Profile-guided optimization. Profile-guided optimization has
proven successful for general-purpose applications [19, 45, 46, 61].
Similar ideas have been explored for optimizing network programs.
Morpheus [40] and NetReducer [24] optimize end host packet pro-
cessing in general-purpose languages using traffic statistics col-
lected at runtime or high-level policies. ESwitch [42] optimizes the
OpenvSwitch implementation dynamically based on the configu-
ration rules. P2GO [62] optimizes P4 programs with pre-collected
profiles by packing programs better onto switch ASICs. In contrast,
Pipeleon optimizes the performance of P4 SmartNIC programs
guided by the runtime-collected traffic and configuration profiles.

8 CONCLUSION

SmartNICs have the potential of delivering unmatched packet pro-
cessing performance, but unleashing their performance requires
substantial program optimizations. We have presented Pipeleon, an
automated performance-oriented optimization framework for P4
programmable multicore SmartNICs. Pipeleon proposes a set of P4
performance optimization techniques that rewrite the program for
higher performance. It overcomes the challenge of dynamic traffic
change by adopting a runtime profile-guided approach which spe-
cializes the program layout based on the recent traffic pattern and
configuration rules. Our evaluation on BlueField2, Agilio CX, and
BMv2-based emulator demonstrates that Pipeleon can significantly
improve the system performance with minimal profiling overhead.
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A APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A.1 The Best Optimization Search Algorithm

Figure 16 shows the algorithm Pipeleon uses to search for the best
global optimization plan. Pipeleon first performs a local search for
each top-k pipelet (Line 1-13). Concretely, it computes all possible
options for each optimization method and then combines them
together. If certain combinations result in conflicts—e.g., a merge
option [Ty, Tg] is not compatible with a cache option [T¢, T4 ]—they
will be omitted. For each valid combination, Pipeleon evaluates its
performance gain and cost by invoking the cost model (Line 11).
The results are stored in the combination attributes, cb.g and cb.c.
The evaluated combination will be added as a possible candidate
for the pipelet. Pipeleon computes the best global optimization plan
by modeling the problem as a group-based knapsack problem. Each
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1: function LocarOprTIMIZE(topk_pipelets)
2 for p € topk_pipelets do
3 options«{}; p.opts«{}
4 Compute all possible options for each pipelet
5: for o € opt_methods do
6 options <« options U GETOPTIONS(p, 0)
7 Get all valid combinations of the options
8 combs«— ALLVALIDCOMBS(options)
9 Evaluate each combination using the cost model
10: for cb € combs do
11: cb.g, cb.c « GETOPTGAINCOST(prob, cb)
12: p-opts«— p.opts U {cb}
13: return topk_pipelets
14: function GLoBALOPTIMIZE(topk_pipelets, M, E)
15: M and E are available memory and entry update bandwidth
16: topk_pipelets«— LocaLOPTIMIZE(topk_pipelets)
17: Get the global optimal plan
18: for p € topk_pipelets do
19: for m«M to 0 do
20: for e«—E to 0 do
21: for o € p.opts do
22: Update the plan if the new one is better
23: if O[[m,e]-o0.c].g + 0.g > O[m,e].g then
24: O[m,e].g = O[[m,e]-o.c].g+ o.g
25: O[m,e].opt =0

26: return O[M, E].opt // The best plan for M and E

Figure 16: The algorithm used by Pipeleon to compute the
best optimization plan.
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Figure 17: Pipeleon can reduce the migration overhead by
copying tables to the CPU cores.

pipelet is a group, and it has several options with various gains
and costs. Our goal is to find the best way of selecting at most one
option from each pipelet to maximize the total gain while ensuring
the total cost is within the resource constraints. The function GLoB-
ALOPTIMIZE (Line 14-26) fulfills this task. It iterates over all pipelet
options with available resources and uses O[m, e] to remember the
best plan found so far for available memory m and entry update
bandwidth e. O[m, e] will be updated whenever a better plan is
found (Line 23-25). Finally, the function returns the best plan for
the given resource limits.

A.2 Packet Migration Optimization

Pipeleon’s optimizations can be extended to heterogeneous packet
processing on ASIC/CPU cores with packet migration. The migra-
tion incurs non-negligible overhead, so Pipeleon minimizes the
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Figure 18: The traffic distribution of a program with three
levels of entropy values. They are selected from 2000 ran-
domly generated distributions.
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migration overhead with several techniques. One way is to dupli-
cate tables in the CPU cores when they are needed by the traffic
migrated to the software. We evaluated this by creating a program
with two types of tables. One type is fully supported by the ASIC
cores while the other requires CPU cores for unsupported actions.
They are interlaced with each other, so a naive partition that puts
only unsupported actions in CPU cores will lead to multiple times
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of packet migration. However, Pipeleon can reduce the needed mi-
gration by copying tables needed by the software processing at
the CPU cores. We evaluate this in our BMv2 emulator and show
the results in Figure 17. As we can see, by copying more tables to
CPU software, the average packet latency drops significantly. The
benefits increase with the migration latency and the percentage of
traffic migrating to software. Interestingly, copying only one table
in this case does not reduce the latency. This is because it does not
reduce the needed migration, and performing the copied table on
CPU cores is slower than on ASIC cores. Pipeleon will capture this
scenario automatically and avoid copying only one table.

A.3 Different Traffic Distributions

We use entropy as a metric to describe the traffic distribution across
pipelets. It is calculated over the pipelet probability distribution,
namely the portion of traffic going through the pipelet. Figure 18
shows a program’s traffic pattern of 10th, 50th, and 90th of 2000
randomly generated traffic distributions. As we can see, when en-
tropy is small (10th), traffic is more aggregated on a small portion
of pipelets. On the contrary, the traffic is distributed more evenly
when entropy is large (90th). Note that it is very hard to create
an even traffic distribution because there are always some critical
pipelets in the program receiving more traffic than others. For ex-
ample, the first pipelet connecting to the program root will always
receive 100% of traffic. And a pipelet followed by a conditional
branch will receive the sum of traffic got by each branch. Figure 19
shows the performance improvement achieved by Pipeleon with
different traffic distributions. We found that, when using ESearch,
Pipeleon can achieve similar optimization benefits. The average
throughput improvement for the three profiles is 1.32x, 1.37x, and
1.43x, respectively.
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