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ABSTRACT
Fault localization is essential to software maintenance tasks such
as testing and automated program repair. Many fault localization
techniques have been developed, the most common of which are
spectrum-based. Most techniques have been designed for tradi-
tional programming paradigms that map passing and failing test
cases to lines or branches of code, hence specialized programming
paradigms which utilize di�erent code abstractions may fail to lo-
calize well. In this paper, we study fault localization in the context
of a class of programs, molecular programs. Recent research has
designed automated testing and repair frameworks for these pro-
grams but has ignored the importance of fault localization. As we
demonstrate, using existing spectrum-based approaches may not
provide much information. Instead we propose a novel approach,
Traceback, that leverages temporal trace data. In an empirical study
on a set of 89 faulty program variants, we demonstrate that Trace-
back provides between a 32-90% improvement in localization over
reaction-based mapping, a direct translation of spectrum-based
localization. We see little di�erence in parameter tuning of Trace-
back when all tests, or only code-based (invariant) tests are used,
however the best depth and weight parameters vary when using
speci�cation based tests, which can be either functional or meta-
morphic. Overall, invariant-based tests provide the best localization
results (either alone or in combination with others), followed by
metamorphic and then functional tests.

CCS CONCEPTS
• Software and its engineering! Software testing and debug-
ging.
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1 INTRODUCTION
Fault localization is a challenging yet essential task used continu-
ously during the software evolution life cycle. Advanced testing
techniques improve our ability to e�ciently �nd and report faults.
However, signi�cant developer time may still be needed to deter-
mine their causes. While automated repair techniques aim to help
the developer in this process by suggesting correct patches, good
fault localization can be a major factor in their success [37, 38].

Designing e�cient and e�ective automated fault localization
techniques has been and still is an active area of research[1, 2, 5, 20,
23, 26, 30, 36, 50–52, 67, 69, 70, 73, 76]. One of the most common ap-
proaches uses spectrum-based fault localization (SBFL) techniques
which assign a suspiciousness score to elements of a program (usu-
ally program statements) based on how often they are executed
when running both passing and failing test cases. There are slight
di�erences in the suspiciousness scores based on which metric
(e.g. Tarantula[26], DStar [66], or Ochiai [2]); however, they all
work under the same assumption. Elements executed more often
by passing test cases are less likely to indicate where the fault lies
than those elements executed more often in failing test cases. We
almost never see a clear division (i.e. failing tests will cover correct
elements and passing tests will cover failing elements). Hence we
rank elements that are the most suspicious so developers can focus
on those elements early in the debugging process.

A key strength is that the idea of a program element used to
calculate these spectrum-based scores generalizes and can be ap-
plied to di�erent types of elements (statements, model components,
program states); therefore, SBFL techniques have been extended to
many types of problems such as localization for Prolog programs
[57], Alloy models [27, 61], and Simulink models [35, 36].

Armed with this knowledge, we turned to SBFL techniques as
the most obvious approach to use while working on program repair
for a non-traditional programming paradigm, molecular program-
ming [46]. We attempted to naively apply SBFL to chemical reaction
networks (one type of molecular program), but quickly realized it
was not providing any bene�t; in fact the localization was poor.
Hence, we took a step back to examine this problem further.

Molecular programs model the interaction of molecules to algo-
rithmically (or programmatically)manipulatematter at the nanoscale
level and have been used to control nanodevices from molecular
robots to targeted drug delivery [3, 11, 22]. This emerging program-
ming paradigm is being leveraged more frequently than it was
perhaps 10 years ago[49, 68, 72], and we expect it will eventually
become mainstream. Molecular programs are often represented by
chemical reaction networks (CRNs), an abstraction of the standard
chemical equations found in most chemistry textbooks[14]. While
these programs can be physically constructed and executed (e.g. in a
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beaker) in practice, most of the programming and debugging occurs
in simulation environments (such as in Matlab) where the devel-
oper can easily run and rerun programs until they have con�dence
the program is correct. Due to the cost of physical experiments,
simulation in environments like MatLab are used to design, test
and debug CRNs. Debugging involves watching variable changes
across the simulation time.

R1 X1 -> H + M + PO
R2 PO + PO -> PE
R3 PE + PO -> PE
R4 PE + PE -> PE
R5 H + H -> D
R6 M -> 6A + 3B
R7 A + A + B + B -> null
R8 D + PE -> CE + PE + Y
R9 A + PO -> CO + PO + Y
R10 CE + PO + Y -> D + PO

R11 CO + PE + Y -> A + CO  // correct R11: CO + PE + Y ->A + PE

Hailstone Function 
--if X1 is even, Y returns ½ X1
--if X2 is even Y returns 3X1+1

T1
F

T2
P

T3
F

T4
P

R1 10 10 10 10
R2 10 10 10 10
R3 8 8 9 8
R4 2 3 6 5
R5 10 10 10 10
R6 10 10 10 10
R7 10 10 10 10
R8 7 8 10 8
R9 10 10 10 10
R10 7 8 10 8

R11 10 10 10 10

R1
.707

R2
.707

R3
.623

R4
.280

R5
.707

R6
.707

R7
.707

R8
.584

R9
.707

R10
.584

R11
.707

Ochiai Scores:

1

3

2

Figure 1: Example faulty molecular program 1�, and the re-
sults of reaction coverage for 4 test cases 2� and resulting
Ochiai scores for each reaction 3�.

In recent work, we have built a testing framework for �nding
faults in these simulated programs [17, 18], and have developed a
prototype for automated program repair of CRNs[46]. While we
assumed SBFL would work for localization based on observations
that di�erent elements of the programs (species and reactions) are
covered by di�erent test cases in some of our experiments [18], we
were wrong.

We began by creating a mapping that directly uses one of the
SBFL approaches for CRN programs, but we quickly realized this
type of program could not easily bene�t from SBFL. Given that
Simulink models have some of the same characteristics as CRNs,
we were surprised. We realized after our initial attempt that the
use of SBFL in Simulink[36] relies on a deterministic, di�erential
equation-based model, and our models are stochastic, hence the
gap in the quality of Simulink localization and our results.

Figure 1 demonstrates some observations we made during this
process. We show a chemical reaction network program 1� for a
function that computes . = -1

2 when-1 is even and . = 3⇥-1+1
when -1 is odd. This is one of our study subjects. We will describe
the representation of CRN programs in the next section, but for
now, the important thing to notice is that there are 11 reactions (R1-
R11) and 11 species (or variables) across the reactions. The program
has a fault in the last reaction (species CO should be species PE).
Even for a seasoned CRN developer, this fault may be hard to spot.

A program simulation for a CRN starts with a concentration, or
number of molecules in the input species (-1). Reactions �re in a
stochastic distributed manner until the system stabilizes, and the
output result can be found in species . . Since this is a distributed
system, the reactions can �re in di�erent orders but will eventually
reach the same result (if the program is correct). It is possible that
a test harness checks the output too soon (false negative), or in
a faulty CRN, it never stabilizes but instead cycles between the
correct (false positive) and incorrect answer. Hence, when testing

these programs, some tests may appear �aky even on the correct
program[17] unless they are given enough time to settle. To handle
this issue, we run all simulations a number of times and if any of
the simulations fail, we consider it a failed test.

2� shows the number of times each reaction is executed for four
di�erent test inputs (T1-T4). Two tests (T2 and T4) pass (one even
and one odd input), and the other two fail (one even and one odd).
We ran each ten times on this program and recorded the number
of runs where an element (in this case, the reaction) is covered.
Reaction 11 (the faulty reaction) is executed by all four test cases
in all ten simulations.

Hence, we are left with no information indicating reaction 11 is
faulty. In fact, reactions 1,2,5,6,7 and 9 and 11 have the exact same
coverage. Only four reactions (3,4,8 and 10) provide any di�erentia-
tion between tests and even then there is disagreement between
passing and failing tests. 3� shows Ochiai SBFL suspiciousness
scores [1] over these four tests. A higher value indicates higher
suspiciousness (e.g. that reaction is more likely to be involved in
the fault). There are seven reactions (of 11) that all have the same
score, providing little guidance. However, clearly there is some
information provided which is guiding the programmer away from
at least 4 of these reactions. Hence, we ask if it is possible to extract
fault localization information from this type of system.

In this paper, we examine this problem in more depth. We evalu-
ate existing SBFL techniques using di�erent types of elements in
CRNs (species and reactions). We then propose a new technique,
Traceback, which leverages simulation traces augmented with reac-
tion instrumentation to identify in�ection points in the trace where
the failure manifests. Traceback (1) identi�es a time of potential
failure in the trace, (2) identi�es the reaction that was closest to
the time of the fault (a suspicious reaction) and then (3) optionally
traces backward in time to locate other potential failure reactions.

We evaluate our work in an empirical study on six benchmark
CRNs, each with multiple faulty versions (89 faulty programs in to-
tal). We �nd that Traceback has the best overall localization results,
but that the di�erent types of tests used can also play a role.

The contributions of this work are:

(1) A new fault localization technique (Traceback) that uses
time-based traces to calculate suspiciousness.

(2) A study on a set of 89 faulty CRN programs that:
• compares Traceback with the state-of-the-art SBFL;
• evaluates the impact of the Traceback parameters; and
• examines the impact of di�erent test types.

The rest of this paper is laid out as follows. In the next section,
we present some background and related work on CRNs and fault
localization. We then present all of our fault localization techniques
and Traceback in Section 3. In Sections 4 – 5 we present the study
and results. We then provide some discussion (Section 5.4) and end
with conclusions and future work.

2 BACKGROUND
In this section, we present some background on testing CRNs and
on fault localization.
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Reaction 1: X + X + X ! V
Reaction 2: Y + Y + Y ! V
Reaction 3: X + Y ! V
Reaction 4: V + X ! X
Reaction 5: V + Y ! Y

Reaction 6: X ! V

Figure 2: Reactions 1 through 5 represent a CRN, mod, that
computes if the input species - and . are congruent modulo
3. The output variable + is non zero if - is congruent to .
modulo 3, otherwise + is 0. Reaction 6 creates a faulty (or
mutant) CRN.

2.1 Chemical Reaction Networks
The Chemical Reaction Network Model (CRN) has been used for
over 50 years to describe natural phenomena relating to the in-
teraction of molecules in a well-mixed solution [12–14, 28, 55].
There are two main variants of the CRN model in use, deterministic
and stochastic, modeled by di�erential equations and Markov pro-
cesses, respectively [4, 14]. In this paper, we use the stochastic CRN
model, where the semantics describe the system in terms of mol-
ecule counts governed by a Markov process. These systems form
large parallel distributed systems that can have complex molecular
interactions. Using DNA nanotechnology, theoretically, any CRN
can be translated to a strand displacement system (even those that
do not model natural systems) and realized in vitro. In fact, the
CRN model is Turing complete, meaning that any algorithm can be
implemented in the CRN model [15, 54]. Hence, the CRN model is
a programming language, and software engineering techniques are
being utilized to verify and test these systems [40, 42, 44].

We present an example CRN, mod, (�rst �ve reactions of Figure 2)
that computes a function to determine if two numbers are congru-
ent modulo 3, i.e., - ⌘ . mod 3. In this example, there are three
species (types of molecules) depicted,- ,. , and+ , and �ve reactions
depicted, with reactants left of the arrow, and products right of the
arrow. We have two input species, - and . which are initialized
by supplying values that are represented by molecular counts or
concentrations. The single output species + contains the answer
when the computation is �nished, i.e, when no more reactions can
�re. When complete, the output species . contains 0 molecules
if - is not congruent to . modulo 3, and it contains at least one
molecule if it is.

We show a trace of simulation for this program using an input
of 10 and 12 in Table 1. At time 0, (step 1), input species - and .
contain initial values of 10 and 12, respectively. Reactions are rules
that transform reactants into products. For example, when Reaction 1
�res, three molecules of type - are removed and a single molecule
V is produced (step 4 in the trace). As time progresses, reactions
�re nondeterministically and stochastically governed by a Markov
process. This trace is just one possible ordering of reactions given
this input. Each simulation of the CRN can (and likely will) yield
a di�erent ordering of reactions. If the CRN always produces the
same output given an input independent of the reaction order, the

CRN is stable. However, not all CRNs are stable and for these we
need to use probabilistic testing approaches. Furthermore, the time
at which reactions �re is stochastic, resulting in variation in the
time stable CRNs complete. This can introduce what appear to be
�aky tests if the simulation is terminated too early[7, 17]

Table 1: Example trace of + = - ⌘ . mod 3. Inputs are -=10
and .=12. Output is +=0 indicating these are not congruent.

Step time Reaction X Y V
1. 0.0000 Init 10 12 0
2. 0.0007 Reaction 2 10 9 1
3. 0.0014 Reaction 3 9 8 2
4. 0.0018 Reaction 1 6 8 3
5. 0.0050 Reaction 2 6 5 4
6. 0.0080 Reaction 1 3 5 5
7. 0.0110 Reaction 4 3 5 4
8. 0.0193 Reaction 5 3 5 3
9. 0.0204 Reaction 2 3 2 4
10. 0.0300 Reaction 4 3 2 3
11. 0.0490 Reaction 4 3 2 2
12. 0.0933 Reaction 1 0 2 3
13. 0.4050 Reaction 5 0 2 2
14. 0.5445 Reaction 5 0 2 1
15. 1.0164 Reaction 5 0 2 0

2.2 Testing CRNs
We have been working on build a testing framework for CRNs.[17,
18] as well as on applying automated repair approaches[46]. In
this line of work, we have created a framework built on top of
the Matlab simulator. We utilize a property-driven test approach.
Abstract tests are written using a temporal logic and these are then
concretized over a set of values. The logic uses operators such as
Future Globally (i.e. at all points in the future that property holds).
In practice these properties are evaluated at a single point in time
and the future global operator is inferred (without guarantees).
In ChemTest we use the test speci�cation language[47] to select
values for the abstract tests and partition the input space based on
equivalence classes. In this work we do not write tests, but utilize
existing ones from ChemTest artifacts. A test case in ChemTest
evaluates the program behavior by reading the outputs of a trace (all
species and their values will be listed at each time step as shown in
Table 1). The test chooses a time for evaluation, usually set at some
number (# simulation seconds) which is internal to the simulator
and di�ers from clock time. # is expected to be su�cient for the
program to stabilize on a result. If the result matches the test passes.
If it does not match it fails.

ChemTest uses di�erent types of test cases. Functional and Meta-
morphic test cases are based on the program speci�cations and
manually created. Given the di�culty of writing these, in follow-on
work, [18], we designed Invariant tests which are structural and are
extracted from the static model of a correct CRN. These are useful
during regression testing or when we have an implementation, but
no formal speci�cations.

If we return to our example trace (Table 1), and we have an
abstract test for the mod function which requires the initial value of
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the species - and . do not satisfy - ⌘ .<>3 3, we can concretize
this with the input values, 10 and 12. Then we would expect+ to be
zero at the end. In this simulation, at step 15 (the end of the trace),
the concrete test would pass. At step 14, however, it would fail (we
have 1 instead of 0).

We may oscillate before converging; it is possible we have a 0
at some point (see Figure 4) and then return to a positive value
before the reactions are stable. In testing we aim to give enough
time for stabilization to avoid this type of time-dependent issue.
In our localization algorithms, we utilize this oscillation, however,
since incorrect CRNs often fail to converge and we try to identify
points where the test changes from passing to failing as possible
suspiciousness locations.

2.3 Spectrum-Based Fault Localization
Spectrum-based fault localization (SBFL) is one of the most popular
approaches [1, 2, 20, 23, 26, 30, 51, 52, 67, 70, 73] used in traditional
programs. It works by running the target program against a test
suite partitioned by passing and failing tests. The target for local-
ization (e.g. a statement, branch, method) is called an element. The
use of SBFL is broad, being applied to types of program models
such as Alloy [27] and Simulink[36].

SBFL tracks which elements were executed in both the passing
and failing buckets and then assigns each element a suspiciousness
score based on the number of times it appeared in each bucket. If
the element was executed during the test case in a particular bucket,
the test result is added to the element’s count. If the element was
not executed, it would be included as part of the non-element count.
We collect four counts: element failing (⇢5 ), element passing (⇢? ),
non-element failing (=⇢5 ), and non-element passing (=⇢? ). We then
sum across all tests, getting values for each of the groups. These
values are passed to the spectrum-based fault localization metric.
Many available metrics utilize these counts; thirty-one are listed in
a recent survey [67]. Some of the most popular ones are Tarantula
[26], DStar [66], and Ochiai[2, 48]. We performed a small pre-study
and determined the exact SBFL metric used did not impact our
results, hence we focus on one, Ochiai[2, 48] and leave a deeper
dive into the subtleties of these metrics in CRNs as future work.

Ochiai works by applying Equation 1 to the counts from the full
test suite where ⇢5 , ⇢? , etc. are the elements involved in failing,
passing, etc.

Ochiai ( 9 ) =
 

⇢5 ( 9 )p
(⇢5 ( 9 ) + =⇢5 ( 9 ) ) ⇤ (⇢5 ( 9 ) + ⇢? ( 9 ) )

!
(1)

The metric is evaluated for each element 9 in the program and
a list in descending order is created, with values from 1 to 0. The
higher the value, the more suspicious the element is. In a perfect
case, the fault is found at the �rst element returned. If there are no
failures, Ochiai returns no localization.

3 FAULT LOCALIZATION TECHNIQUES
We utilize three di�erent techniques for performing fault localiza-
tion in this paper. The �rst two map elements of the CRN to Ochiai.
These are the state of the art. We then present our new approach
called Traceback.

Figure 3 shows the overall process and details how the di�erent
techniques vary. We split localization into three steps. The �rst step

( 1�) is the program simulation which collects traces for all tests in
the test suite. There are two ways to perform the simulation. The
�rst is based on ChemTest [17]. It runs the test cases and collects
trace information which consists of the species values at each point
in time. We call this No Reaction Counting (NRC), and it is the
simplest approach. In follow-on work [18], we added instrumen-
tation to the simulations, called Reaction Counting, (or RC). We
used this to evaluate inequality invariants. We implemented both
approaches.

Step 2� is the evaluation step where the oracles for tests are
applied to traces at di�erent points in time. For testing, this is
usually performed one time at the end of the traces (1x). However,
as we will see, we may want to do this at every step (Tx), where T
is the total number of steps in the trace.

The last step ( 3�) is localization itself. Our �rst and simplest
approach, Species uses the native traces and is evaluated at the end
(1x) Our second technique, Reaction, requires reaction counting
(RC) but only evaluates once at the end of the trace (1x). Our new
technique, Traceback, uses both reaction counting (RC) and eval-
uation at each step in the trace (Tx). This is our most expensive
localization technique.

3.1 Species-based Fault Localization
Our �rst technique uses species of the CRN as the element measured
in Ochiai. For each test we examine all runs of that test case, and if
any fail, we mark them as a failing test case. We partition failing and
passing tests and then count the elements. For a test ) , a species*
is executed by test) if it is used in the evaluation of) . For example,
looking at the test ) = “if input - is congruent mod . , then output
+ > 0” used to test the mod function in [18], species + is executed
by the test) . Note that species involved in the precondition (in this
case it is “- and . ”) does not count as being executed.

The species counts are summed over all inputs and all tests to
determine a total failure count and passing count for each species. In
the last step, the species counts are mapped to reactions by a Species
Mapping Function, which sums the counts for all species involved in
each reaction. Given a CRN # = ((,'), a species* 2 ( is involved
with reaction d 2 ' if the species* is a noncatalytic species in the
reaction. For example, only + is involved in + + - ! - , since -
is a catalyst (both a reactant and product). With this mapping, we
can use Ochiai where ⇢5 is the failing evaluation count, and ⇢? is
the passing evaluation count.

3.2 Reaction-based Fault Localization
This method determines if a reaction is �red during any failed trace
of a test case and any passed trace of a test case. Since we have
some nondeterminism it is possible that the reaction appears in both
passing and failing buckets for a single test case (in di�erent traces).
The Ochiai program elements are reactions, hence this requires
the reaction counting sca�olding to be enabled during simulation.
If the test failed, a failed reaction count is incremented for each
reaction; likewise, if the test passed, a similar pass reaction count is
incremented. The passing and failing (⇢5 and ⇢? ) are sums over all
of the failing/passing traces and we feed this directly into Ochiai.
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Simulation Evaluation Localization

Reaction Counting (RC)

No Reaction Counting (NRC) End of Trace (1x)

At each Time step (Tx)

Species

Traceback

Reaction 1x

1x

Tx

NRC

RC

RC

tests

model

1 2 3

Figure 3: Overview of Localization Techniques and Process. Step 1 is the simulation technique, Step 2, the evaluation time and
Step 3 is the localization approach.

3.3 Traceback Fault Localization
Our intuition for Traceback is that a CRN will stabilize over time
(Gerten et al.[17]). We showed if a test is evaluated too soon, it
will give either a false positive or false negative result. CRNs also
compute numerically, meaning they slowly converge toward a cor-
rect numerical result. Furthermore, in Gerten et al.[18], we showed
that di�erent invariant tests covered di�erent reactions and species.
Together, this may mean we can look for points of change (or in�ec-
tion) in a trace to gain information about which reactions occurred
before that in�ection point. This has some similarity with the work
of Beszédes et al. where they enhance statistical fault localization
with function call information[8]. It also is similar to work on using
partial invariants for dynamic fault localization [5, 50, 69]. However,
those studies use traditional program constructs and slicing tech-
niques (which are code-based) or focus on changes in runtimes[69].
We use dynamic traces which represent the order of reaction �rings,
and we use other types of tests besides invariants.

Traceback works on individual traces of a test case. Traceback
�rst identi�es a single suspicious reaction in the trace. This is the
last reaction that �red when in�ection occurs, and then additional
reactions are identi�ed by examining prior reactions in the trace
(traceback) to a depth : (: � 0). It uses a weight (parameterF ) to
assign importance to the : reactions. Since the algorithm produces
localization data for each trace generated by the test suite, the
localization data must be summarized in order to give a single
suspiciousness value for each reaction. This summarization of the
data is accomplished by averaging, summing, or maximizing results
�rst at the abstract test case level (this gives equal weight in the
test suite to each abstract test despite di�erent numbers of inputs)
and then at the concrete and evaluation levels.

We demonstrate Traceback through examples and begin by de-
scribing how to �nd an initial suspect reaction given a trace of a
faulty program derived from our example program in our motivat-
ing example (Figure 1). This program includes Reaction 6: X! V.
We use a concrete test with inputs X and Y as 10 and 12, respectively,
and an abstract test (or property) + = 0 if - is not congruent to
. mod 3. Figure 4 shows the trace of + output values over time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5

M
ol

ec
ul

e 
Co

un
t

Time

Species V (Output)

Figure 4: Trace of example mutant with inputs -=10 and
.=12, showing output + with respect to a passing value for
property if - . + mod 3 then + = 0.

during simulation. The correct output value for this function is
+ = 0; however, the CRN failed since the �nal value is + = 4.

To locate the initial suspicious reaction, we evaluate the property
at the end of the simulation when + = 4 and continue evaluating
the property on + until the property does not fail. The red box
in Figure 4 depicts where this happens. While this may be a false
positive, our assumption is that it is more suspicious. This occurs
when the value of + = 1 (failing) transitions to the value of + =
0 (passing). Hence we mark the initial reaction that caused the
species + to change from 0 to 1 as the initial suspicious reaction.
Note that some properties contain equality relationships. In this
case, the property is broken into two properties: one that tests a 
relationship and one that tests a � relationship.

We now de�ne the data structures used in our algorithm for
locating additional suspicious reactions in a trace once an initial
suspicious reaction is found in the trace. A trace of a CRN # is a
�nite execution sequence from some initial state x0 with parameter
< that speci�es the maximum length of the trace as follows.

trace#< = (x0, x1, . . . x<<),
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where x0, x1, . . . is the sequence of species states (molecular counts)
at increasing time steps. We also introduce one additional sequence
useful for describing our localization algorithm.

Rtrace#< = (?, d1, d2, . . . )

is the sequence of reactions �red associated with a speci�c trace.
Note that the initial state has no �red reaction and is not de�ned.
For a trace ) and associated Rtrace, the ith element (step) of the
sequence is denoted using square brackets. For example, for a trace
) , ) [8] denotes the state of the CRN after the ith reaction �res.

We describe a useful data structure based on a trace of the CRN,
the reaction dependency graph, a key component of our technique.
For a trace ) , the reaction dependency graph for the 8th reaction of
the trace is a linear graph of reactions in reverse order of reactions
that �red previously to the 8th reaction de�ned by Algorithm 1.

Algorithm 1 Reaction Dependency Sequence

function R�������D���������(8)
6 'CA024#< [x8 ]
BC4?  8 � 1
(r, p,:)  'CA024#< [x8 )]
3B?4284B  {( | r(() � p(() < 0}
while BC4? > 0 do

(r, p,:)  'CA024#< [xBC4? ]
if {( | r(() � p(() < 0} \ 3B?4284B < ; then

3B?4284B  3B?4284B [ {( | r(() � p(() < 0
6 6 · 'CA024#< [xBC4? ]

end if
BC4?  BC4? � 1

end while
return linear graph g

end function

Intuitively, the algorithm determines prior reactions that have
�red that could have a�ected a speci�ed reaction of interest. This
is computed by scanning the CRN trace from the speci�ed reaction
backward through time, looking for reactions that may a�ect the
reactants of the speci�ed reaction. This creates a dependency graph.
We show this in Figure 5 (left). A proper dependency graph, Figure 5
(right) is now computed in which a reaction may only appear once
in the graph traversal when it is encountered for the �rst time in
the backward scanning.

Traceback uses the proper dependency graph to assign a weight
to each reaction in the CRN by utilizing tests to �nd a possible
reaction that initiated the error. While tests can identify a single
reaction per trace as suspicious, the proper dependency graph can
be used to spread that suspiciousness to other reactions. The idea
is that the identi�ed faulty reaction may have been caused by the
�ring of a previous reaction in the trace, which propagated forward
in time to the speci�ed reaction. We could have also used the depen-
dency graph instead to spread the suspiciousness to other reactions.
However, when a series of duplicate reactions occur in succession,
they may hide a latent reaction in the past that was responsible for
the error. Such information might add to the spectral data and may
be worth investigating in the future.

Dependency Graph Proper Dependency Graph

{X}

{X, Y}
{X, Y, V}
{X, Y, V}
{X, Y, V}
{X, Y, V}
{X, Y, V}
{X, Y, V}
{X, Y, V}
{X, Y, V}
{X, Y, V}
{X, Y, V} Y + Y + Y → V

X + Y → V
X + X + X → V
X + V → X
Y + V → Y
Y + V → Y
Y + Y + Y → V
Y + V → Y
X + Y → V
Y + V → Y
X + Y → V
Y + V → Y
X → V
X + Y → V
X + Y → V
X + Y → V

{X}

{X, Y}
{X, Y, V}

{X, Y, V}

{X, Y, V}

Y + Y + Y → V
X + Y → V
X + X + X → V
X + V → X
Y + V → Y
Y + V → Y
Y + Y + Y → V
Y + V → Y
X + Y → V
Y + V → Y
X + Y → V
Y + V → Y
X → V
X + Y → V
X + Y → V
X + Y → V

Figure 5: Dependency Graph and Proper Dependency Graph
for a CRN trace.

There are many strategies for adding weights to additional re-
actions in the trace based on the proper dependency graph. Two
methods, which we combine, are described below.

(1) The suspicious reaction is weighted 1, and subsequent re-
actions in the graph are weighted by some scheme (in this
work we use an exponential decay) from the start node of
the graph. For example, each subsequent reaction in the
dependency graph traversal is 0.5 the weight of the previ-
ous reaction. If the weighting factor is 1, all reactions are
equally weighted with a value of 1. If the weighting factor
is 0, then no spreading is performed, and only the original
error reaction is given any weight.

(2) Only the �rst : reactions (depth) are used from the depen-
dency graph traversal for assigning suspiciousness.

If the dependency graph is not weighted as in item 1,F = 0, the
localization results may not be diverse and yields a single suspicious
reaction, and this may not identify the fault. We examine the impact
of : and F in RQ2 (and RQ3). We see that for some types of test
cases (but not all) their values matter.

Table 2: Suspiciousness values using the Traceback method
of a set of traces for a single input for three summarization
strategies, sum, maximum, and average.

Sum Max Average
R1 X + X + X! V 14.1758 1.0 0.22256
R2 Y + Y + Y! V 10.8984 0.75 0.11162
R3 X + Y! V 14.2032 0.75 0.25225
R4 V + X! X 19.3593 0.75 0.24873
R5 V + Y! Y 13.1133 0.75 0.24873
R6 X! V 32.8125 1.0 0.80625

We now describe how traces are combined over abstract and
concrete tests. First, as in [17], for each input, we simulate the CRN
to produce # traces. These traces may yield di�erent localizations
since the reaction order will likely di�er between simulations. There
are many ways to combine the localization data. We explore three
methods: sum, average, and maximum. These methods combine
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all trace localization values with the function, giving one set of
values for the set of traces. We can use the same summarization
techniques on the concrete tests. Similarly, we can combine the
results of several concrete tests partitioned by abstract tests to yield
a �nal localization value for each reaction.

Table 2 shows the suspiciousness scores using di�erent strategies.
A higher score indicates the reaction is more likely to be faulty. In
all cases, R6 appears to be in the top two reactions with respect to
suspicious.

4 EMPIRICAL STUDY
We conducted an empirical study to evaluate the quality of the
di�erent fault localization techniques. Artifacts can be found on
our supplementary website.1

We ask the following research questions.
RQ1. How e�ective is Traceback localization compared to
the state of the art?
RQ2. How does tuning : andF impact Traceback?
RQ3. What is the impact of test type on localization?

4.1 Study Subjects
We use six benchmark CRN subjects covering a variety of behaviors
with existing test cases and faulty mutants from prior work [17, 18].
These were archived for the community to use for replicability
[19]. They have functional (speci�cation-based, metamorphic) test
cases which were manually written using a specialized temporal
logic and instantiated (they are abstract tests) using concrete in-
puts modeled using the test speci�cation language [47]. There are
also invariant test cases which were automatically derived [18]to
cover the structure of the programs. Each program has between 20
and 25 randomly created mutants (faulty) programs for evaluating
fault detection. The mutants each consist of a single change to the
original program, i.e. adding, removing or changing a species and
adding removing or changing a reaction. While there is no formal
set of benchmarks for CRNs, the data set we have used represents
an aggregation of multiple papers on this topic and consists of
di�erent types of programs and test cases.

We dropped subjects with two or fewer reactions since localiza-
tion would be trivial. We also kept only one version of the Hailstone
program which implements the same function in di�erent ways.
We chose the �rst one (the one which was used in ChemTest (H1))
[17]. We removed the Molecular Watchdog Timer program since
its inputs use a wave signal and were not straightforward to inte-
grate into our testing process (we have rebuilt our test harness for
this work). Last, we chose only one of the subjects with invariant
only test cases as a representative subject. We selected the E. Coli
Glucose Pathway. We describe each one next.

(1) Approximate Majority (AM). Probabilistically computes
which species -1 -2 has an initial majority by converting
the smaller species into the majority. The probability of cor-
rectness depends on the di�erence between -1 and -2.

(2) Modolus 3 (Mod). Computes if two input species - and .
are congruent modulo three. If - ⌘ .<>3 3, then output
species + is greater than 0.

1https://doi.org/10.5281/zenodo.10900920

(3) Maximum (Max). Computes the maximum of two input
species - and . , and outputs the result in species / .

(4) At least 1 (AL1). Determines if there is at least one mole-
cule in both of the species A1 and A2 and if true, the output
species . contains at least one molecule and otherwise con-
tains no molecules.

(5) Hailstone 1 (H1). Computes one iteration of the Collatz con-
jecture which is the function 5 (=) = =/2 if = is even, and
3=+1 if = is odd. The CRN computes the function with input
species X1 and output species . .

(6) Escherichia coli Glucose Pathway (ECG). Model of E. coli
glycolysis pathways was extracted from the E. coli metabolic
network. The species in the media of the biological model
de�ne the input species.

Table 3: Number of program mutants (Num Mut) species
(Spec) and reactions in the (correct) CRN as well as average
across all mutants, followed by the size of the test set: All,
Functional(Func), Metamorphic(Meta), and Invariant(Invar).
The test suite sizes are concrete test counts.

Num Reaction Test Suite Size
Subj Mut Spec Base Avg. All Func Meta Invar
AM 12 3 4 4.6 558 279 - 279
Mod 20 3 5 5.6 188 50 - 138
Max 19 5 3 3.4 390 38 122 230
AL1 17 7 5 5.6 471 196 51 224
H1 16 11 11 11.8 88 8 25 55
ECG 5 23 12 12.6 46 - - 46

Table 3 summarizes key aspects of the CRNs in our study. First
it shows the number of mutants. We only kept mutants with faults
found by all runs of our testing step (#2 evaluation step in Figure 3).
In total, we keep 89 of 138 faults from the benchmark for localization.
Next is the number of species, followed by the number of reactions
in the original program and the average number in the mutants (we
can have at most 1 additional reaction beyond the correct program
based on Gerten et al.[18]). Next are the total number of concrete
test cases per subject (All) followed by a breakdown of functional
(Func), metamorphic (Meta) and invariant (Invar) tests. All tests
were obtained from the companion website for Gerten et al. [19].

4.2 Independent and Dependent Variables
Our independent variables for RQ1 are the three localization tech-
niques, Species (SP), Reaction (R) and Traceback (TB). In RQ2 we
vary the parameters : andF of the Traceback algorithm. In RQ2
and RQ3 we include the type of test case as another independent
variable, Functional, Metamorphic, Invariant and All. For the depth
of Traceback we have 6 values of : , {0, 1, 2, 3, 4, 5}, for F we there
are 7 values, {0,0.1,0.25,0.5,0.75,0.9,1}.

For the dependent variables, we consider both e�ectiveness and
e�ciency. For e�ciency, we measure the runtime of the di�erent
algorithms. For e�ectiveness, we use several metrics described next.

4.2.1 Metrics. We measure the e�ectiveness by ranking each reac-
tion in a subject by its suspiciousness score with the highest suspi-
ciousness score assigned a rank of 1. This is a common method for
relating the suspiciousness scores to di�erent program elements

https://doi.org/10.5281/zenodo.10900920
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in localization[48]. For reactions with the same score, all reactions
are given the worst rank. For example, if the top three reactions all
have a suspiciousness score of 0.43, then all three reactions would
receive a rank of 3 rather than 1.

Some authors use the relative position of a rank within a pro-
gram (e.g. 5th position of 10 elements is .50) to evaluate localization,
but given that we have di�ering numbers of reactions in our pro-
grams, and the total numbers are relatively small (compared with
a program of 1,000+ statements), we will see a large variation be-
tween scores if we try to compare between subjects with di�ering
numbers of reactions. Furthermore, a rank of 1 should always be
the same since it is the best we can do. Hence, we normalize the
localization ranking metric with I = (G � 1)/(A � 1), where I is
the normalized value, G is the input rank to normalize, and A is the
number of reactions. This gives us a value between 0 and 1, with
0 indicating a rank of 1 (perfect localization) and 1 indicating the
worst possible rank (no information). For example, if we have a
rank of 2 and 10 reactions, this gives us 1/9 = 0.11, and 2 out of 3
reactions gives us a score of .50. Now, if we have a rank of 1, both
the 10 reaction and the 3 reactions ranks will be zero.

4.3 Method
We follow the process in Figure 3. For simulation we run each test
case 10 times (as in Gerten et al.)[18]. We use a cluster of Intel Xeon
Gold 6244 processors, with 366 gigabytes in a 2-core environment.
Since we need instrumentation for reaction counting we cannot
use the existing traces from Gerten et al., but re-run all of the
simulations and evaluations on their models (with their test cases)
using Matlab R2022b[21]. We run each of our experiments 5 times
and allow 8 hours for each subject to complete simulation and
another 8 hours to complete evaluation. At the end of this process
we selected those subjects where we found the fault in all �ve runs
(some runs timed out during at least one of the 5 runs). We then
complete the �nal step (localization) on all of the faulty subjects.
This gives us 5 localization results for each mutant of each subject.
We use :=5 andF=0.75 for RQ1. We experiment with these in RQ2
and RQ3.We use max for the evaluation summarization and average
for the other two stages of summarization in all experiments. These
were chosen heuristically in a pre-study.

4.4 Threats to Validity
With respect to generality, we used only 6 CRN subjects, however,
these have been used in prior work and represent a range of types
of CRN behavior and sizes and total 89 individual programs. With
respect to internal validity we acknowledge that our programs
may have faults. We did not �nd all of the faults from Gerten et al.
in this work, because we required all 5 runs to fail to be eligible
for localization. We did validate however, that all faults we found
were also found by Gerten et al., con�rming our fault detection is
working correctly. We have also carefully checked our data and
have unit tests for our programs. We also provide our data on the
artifacts website for others to use and re-validate. With respect to
construct validity, we could have used other metrics, however some
metrics, such as rank and time are standard, and we believe our
normalization metric makes sense for our research questions.

5 RESULTS
In this section, we present results from three research questions.

5.1 RQ1: Localization E�ectiveness
To evaluate the e�ectiveness of our localization techniques, we
examine Table 4. The top portion shows ranks by subject and the
bottom half shows normalized ranks. Species and Reaction data
represent the state-of-the-art SBFL applied to CRNs. Traceback
identi�es the top one or two reactions in almost all subjects. For
instance AM and ECG always produce a rank of 1. It has an average
of 0.10 overall (when normalized) where 0 would be a rank of 1
every time. Species localization on the other hand has an overall
normalized rank close to 1.0 (0.92) suggesting it provides almost no
localization information. Reaction localization sits in the middle.
It performs slightly better than Species (overall of 0.66) but worse
than Traceback. Figure 6 shows a boxplot of the normalized rank by
technique. Reaction localization only provides marginal informa-
tion, while Traceback appears to include the faulty reaction ranked
highly, and often as the �rst element (normalized rank of 0.0).

Table 4: The results of the three methods of fault localiza-
tion. The top is the average rank of the faulty reaction for
each subject. The bottom half presents the normalized ranks
normalized based on the size of the subject.

Ranks
Species Reaction Traceback

Avg. Std. Avg. Std. Avg. Std.
AM 4.58 0.50 3.00 1.43 1.00 0.00
Mod 5.60 0.49 3.39 1.92 1.04 0.40
Max 3.47 0.50 3.00 0.98 1.37 0.74
AL1 4.12 1.79 3.47 1.66 2.35 1.69
H1 11.78 0.50 10.68 2.71 1.08 0.27
ECG 8.00 3.42 4.40 1.66 1.00 0.00
Overall 5.97 3.16 4.64 3.37 1.36 0.98

Normalized Ranks
Species Reaction Traceback

Avg. Std. Avg. Std. Avg. Std
AM 1.00 0.00 0.58 0.43 0.00 0.00
Mod 1.00 0.00 0.52 0.41 0.01 0.10
Max 1.00 0.00 0.84 0.37 0.16 0.33
AL1 0.69 0.39 0.54 0.37 0.30 0.38
H1 1.00 0.02 0.90 0.25 0.01 0.03
ECG 0.59 0.27 0.29 0.13 0.00 0.00
Overall 0.92 0.23 0.66 0.40 0.10 0.26
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Figure 6: Normalized ranks for each localization technique.
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Table 5: Average time in minutes for each localization step
over all mutants by subject. Reaction counting (RC), no reac-
tion counting (NRC) are the simulation methods. Evaluation
methods are once (1x) or at all timesteps (Tx). Species (S),
Reactions (R), and Traceback (T) are localization methods.
Median Tot. Time is the total median time across all steps
for each localization method.

Simulation Evaluation Localization Median Tot. Time
Subj. RC NRC 1x Tx S R T S R T
AM 227.7 17.0 29.6 32.5 11.0 11.2 10.9 5.4 5.4 5.5
Mod 42.1 11.8 20.6 22.0 11.2 11.4 11.8 2.2 2.2 2.3
Max 317.4 15.4 88.2 88.0 11.7 11.9 12.0 4.9 4.8 4.9
AL1 72.8 15.8 76.5 76.6 12.2 11.7 11.6 4.2 3.6 3.4
H1 967.0 13.9 283.8 267.9 16.0 14.8 16.3 14.0 46.0 45.6
ECG 10.3 9.6 18.5 16.8 12.5 13.0 13.8 1.5 1.5 1.6

Table 5 shows the runtimes of the di�erent steps (Figure 3) used
in our study. The numbers are averages over 5 runs in minutes.
Each subject includes the time to complete each step for all of
its mutants. The last 3 columns are the total median times for
each localization method. In the simulation step reaction counting
(RC) adds signi�cant time in some subjects. For instance, H1 using
reaction counting has an average simulation time of almost 16 hours
to complete all mutants (about an hour per mutant) compared to 14
minutes overall (or less than 1 minute per mutant). In the evaluation
step, we do not see much di�erentiation between the evaluation at
one point in time versus at each step (used only in Traceback). H1 is
again an outlier. Last, all of the localization techniques are relatively
even time-wise, taking between 11 to 16 minutes to complete. The
performance of the localization process seems to be even across
all techniques. Overall, the simulation and evaluation are the most
expensive steps, with reaction counting as the bottleneck.

Table 6: Average normalized rank per subject and all subjects
for parameters : andF . Bold entries indicate the best results.

Subject
AM Mod Max AL1 H1 ECG ALL

k
0 0.00 0.01 0.13 0.32 0.02 0.00 0.08
1 0.02 0.08 0.19 0.26 0.05 0.00 0.12
2 0.08 0.12 0.24 0.31 0.08 0.00 0.16
3 0.08 0.12 0.25 0.33 0.10 0.00 0.17
4 0.10 0.12 0.25 0.34 0.11 0.00 0.18
5 0.10 0.14 0.25 0.35 0.11 0.00 0.19
w
0 0.00 0.01 0.13 0.32 0.02 0.00 0.08
0.1 0.02 0.07 0.19 0.29 0.06 0.00 0.12
0.25 0.02 0.07 0.19 0.29 0.06 0.00 0.13
0.5 0.02 0.08 0.20 0.30 0.06 0.00 0.13
0.75 0.03 0.10 0.21 0.31 0.08 0.00 0.14
0.9 0.05 0.11 0.21 0.32 0.09 0.00 0.15
1 0.31 0.26 0.41 0.40 0.19 0.00 0.3

Summary of RQ1. Traceback is the most e�ective local-
ization method outperforming the two SBFL techniques.
Reaction based localization provides some di�erentiation,
while Species based localization provides none. The most
computationally expensive part of the process is the reac-
tion counting based simulation which is required both by
Reaction and Traceback localization.

5.2 RQ2: Traceback Parameter Tuning
We conducted a parameter tuning study to evaluate the e�ect of
parameters on Traceback localization. Table 6 shows the ranks for
the depth parameter (:) and weight parameter (F ) for 6 values of :
and 7 values ofF . We see that a : value of 0 performs slightly better
(bold is the best rank) in almost all subjects, except AL1 where : = 1
is the best result. ForF we see a similar result with a weight of 0
giving the best result except in AL1. We note, that when either : or
F is set to zero, the other one automatically becomes zero as well
(F is a multiplier, and if : is zero there is no weight.)

We then evaluated the e�ect of : andF broken out by the di�er-
ent types of test suites to see if this has an impact on the results.
Figure 7 shows the Hailstone subject using the three di�erent test
suite types for : (top row) and F (bottom row). Figure 8, shows
similar data for the Mod subject for : (we do not have metamorphic
tests for this program). The data for F is on our website. We can
see that increasing : andF do not impact the overall localization,
however, when using some types of tests, increasing these values
may help. With the functional and metamorphic tests, higher : and
F was needed to achieve the best ranks (0 performs worst).

Summary of RQ2. The parameter choice for Traceback
has a small impact on the resulting ranks when we use all
tests. However, we see di�erences when using the func-
tional or metamorphic tests.

5.3 RQ3: Test Type E�ectiveness
Wenow drill down a bit more and examine the di�erence in test case
type for all of the approaches. We show this data in the boxplots
in Figures 9 and 10. Figure 9 shows the rank by test suite type for
the Hailstone (H1) subject and Figure 10 shows the normalized
ranks across all subjects. In these graph Sp stands for Species, R for
Reaction and TB for Traceback. All indicates the full test suite, F
are functional tests, M are metamorphic tests and I are invariant
tests. Based on the results from RQ2 we included data for both
: = 0 and : = 5 (TB-F-k0, TB-F-k5, TB-M-k0, TB-M-k5) for the
functional and metamorphic tests. We show the : = 5 plots in light
blue; this is the value of : used in RQ1. In Species and Reaction
there is no signi�cant di�erence between test types. In Reaction
localization the ALL test suite shows the best localization results
(slightly) suggesting that all di�erent types of tests together give
the most information. In Traceback, the type of test appears to
have impact on the quality of localization. The metamorphic tests
provide slightly better localization than the functional tests for both
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Figure 7: Normalized localization ranks for Traceback by test suite type for the Hailstone subject. Shows the di�erent values of
k (top) and w (bottom). A lower score is better.
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Figure 8: Normalized localization ranks with di�erent values
of : for Traceback by test suite type for the Mod subject. A
lower score is better.

values of : . However, : = 5 gives the best result for both functional
and metamorphic tests.

Summary of RQ3. The test type plays a role in the local-
ization performance of Traceback, however, individual test
types perform the same or worse in Species and Reaction.
Within functional and metamorphic tests, the parameter :
also impacts the results.

5.4 Discussion
The invariant tests provide the best localization overall, and these
do not require : to be greater than zero. When we have invari-
ants present they seem to provide the best localization, even in the
presence of other types of tests. This is not too surprising since
invariants are extracted directly from the CRN reactions, and have
the most structural information. However, invariant tests may not
always exist. They can only be generated during regression testing,
when a valid program exists. And as shown in Gerten et al. [18],
some types of faults cannot be found by invariant tests; they require
metamorphic or functional tests to �nd. As in most types of testing,
we recommend using both types of test cases (structural vs. speci�-
cation) when possible. However, when performing localization it is
worthwhile noting which type of tests are being run since we can
avoid setting parameter weights if we only have invariant tests.

In both the metamorphic and functional tests, parameter weight-
ing seems to be important for localization, hence this connection
should be evaluated by additional studies. We intend to explore this
along with the idea of automated parameter tuning in future work.

6 RELATEDWORK
Molecular programming is an interdisciplinary �eld encompassing
computer science, mathematics, chemistry, and biology and the
CRN model is a commonly used representation [4, 14, 16, 24, 28,
29, 55, 64, 65]. Researchers have been exploring ways to apply
requirements engineering [40, 41, 43, 45],veri�cation[6, 25, 31, 33,
34, 42, 44, 56, 59] and software testing [17, 18, 59] to CRNs, as
well as building new programming languages [60] and automating
program repair[46].

Many spectrum-based methods for fault localization have been
developed (see [52, 67, 73] for surveys detailing more than 30 di�er-
ent techniques).Well-known SBFL techniques include Tarantula[26],
DStar[66] and Ochiai[2]. We don’t attempt to expand on all here,
but comment that Ochiai has shown to have consistently good
results[48]; hence we use it as our exemplar. These techniques
have been heavily evaluated, extended and improved [10, 20, 23,
39, 53, 63, 70, 71, 75, 76]. Examples of fault localization in other do-
mains include machine learning [9, 62], model transformations[58],
and Simulink automotive models[35, 36]. Alternative (earlier) ap-
proaches include statistical debugging[10] and delta debugging[74].

There has also been a line of research that uses dynamic pro-
gram slicing [77] and partial invariants (dynamically inferred invari-
ants) [5, 50]. The invariants we use are statically inferred (always
hold on the original program), that can only be obtained from an
existing, correct program (i.e. during regression). Traceback does
not require invariants, but can use any type of test. We also use
speci�cation based functional and metamorphic tests in this work.
Traceback has a similar �avor to the dynamic slicing work of Sahoo
et al.[50], however, they repeatedly regenerate and rerun invariants
to narrow the failing input space which is too expensive in CRNs
and unnecessary for Traceback. Last they leverage control �ow and
dependency graphs during slicing to remove candidate program
elements, however, there is no notion of control �ow in a CRN; our
dependence graph is independent of �ow. In CRNs almost all reac-
tions will occur in all traces (passing and failing) and in di�erent
orders, even on the same input, hence we can’t use a single trace.
Instead we use a statistical summarization to �rst aggregate over
multiple runs of a single test, and then over all failing tests.

Petri nets have long been used to model physical processes from
industrial automation to medical devices. It is not surprising that
numerous variants of Petri nets have emerged in order to address
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Figure 9: Ranks by technique for each test suite for the H1 subject. Sp stands for species, R stands for reaction, and TB for
Traceback. All represent all tests, F are functional tests, M are metamorphic tests, and I are invariant tests. Lower is better.
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Figure 10: Normalized localization ranks by technique for by test suite for all subjects. Sp stands for species, R for reaction, and
TB for Traceback. All represents all tests, F are functional tests, M are metamorphic tests and I are invariant tests. Lower is
better.

speci�c issues and weaknesses in the model. The Place/Transition
(P/T) Petri net is one of the most commonly used version, but other
varieties such as Colored Petri nets, Timed Petri nets, Stochas-
tic Petri nets, Real-valued Petri nets, Dynamic Petri nets, Object-
oriented Petri nets, and many others are commonly used to model
physical systems as well[32]. As a physical system, the CRN model
is equivalent to a hybrid Petri model that combines Stochastic Petri
(not Generalized Stochastic) nets and Colored Petri nets. Within
this model (and to some degree more generally) methods for fault
localization utilize model checking techniques, which in general do
not scale well (see Gerten et al. [17]), and would be di�cult if not
impossible to apply to even small or moderate size CRN systems.

7 CONCLUSIONS AND FUTUREWORK
We explored the use of fault localization in chemical reaction net-
works. We applied two SBFL techniques directly to elements of the
CRN (species and reactions) and proposed a new approach called
Traceback. We found that Traceback provides the best localization
results ranging from a 32-90% improvement over the reaction based
method. Traceback is relatively stable with respect to its parameters
: andF , however we learned that the test type has an impact both
on localization and on the parameter settings. In general, invariant
tests provide the best localization results. When we use functional
or metamorphic tests, we may bene�t from using non-zero values
of : andF .

In future work, we plan to explore other types of CRNs such
as those that use waveforms and those with multiple faults. We

also plan to apply this localization to stochastic Simulink models
which have some similarities with CRNs. We will also perform
larger parameter tuning experiments and explore automated turn-
ing approaches.
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