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ABSTRACT Deep learning (DL)-based RF fingerprinting (RFFP) technology has emerged as a powerful 

physical-layer security mechanism, enabling device identification and authentication based on unique device- 

specific signatures that can be extracted from the received RF signals. However, DL-based RFFP methods face 

major challenges concerning their ability to adapt to domain (e.g., day/time, location, channel, etc.) changes 

and variability. This work proposes a novel IQ data representation and feature design, termed Double-Sided 

Envelope Power Spectrum or EPS, that is proven to significantly overcome the domain adaptation challenges 

associated with WiFi transmitter fingerprinting. By accurately capturing device hardware impairments while 

suppressing irrelevant domain information, EPS offers improved feature selection for DL models in RFFP. 

Our experimental evaluation demonstrates the effectiveness of the integration of EPS representation with a 

Convolution Neural Network (CNN) model, termed EPS-CNN, achieving over 99% testing accuracy in same- 

day/channel/location evaluations and 93% accuracy in cross-day evaluations, outperforming the traditional 

IQ representation. Additionally, EPS-CNN excels in cross-location evaluations, achieving a 95% accuracy. 

The proposed representation significantly enhances the robustness and generalizability of DL-based RFFP 

methods, thereby presenting a transformative solution to IQ data-based device fingerprinting. 

INDEX TERMS RF/device fingerprinting, domain adaptation, RF datasets, deep learning feature design, 

oscillators, RF data representation, envelope analysis, hardware impairments. 
 

 

I. INTRODUCTION 

EEP learning (DL)-based RF fingerprinting (RFFP) 

emerges as a powerful physical-layer security mecha- 

nism [1], [2], [3], [4], [5], [6], enabling device identification 

and authentication through the extraction of unique device 

fingerprints embedded in the devices’ transmitted RF signals. 

These fingerprints arise as a result of inherent hardware man- 

ufacturing imperfections of various RF circuitry components 

(e.g., local oscillators, mixers, power amplifiers) yielding RF 

signal distortions [2], [7] that collectively shape distinctive 

device signatures that can be extracted using DL models. 

Although DL has eliminated the need for data preprocessing 

and domain-knowledge to extract features from raw RF data, 

most of the DL-RFFP approaches rely on the assumption 

that the training and testing data are drawn from the same 

distribution, which falls short of the conditions of realistic 

RF scenarios [8], [9]. In other words, these approaches do 

not perform well in practical scenarios, in which the testing 

data is collected under a domain that is different from that 

used during training, where a domain here refers to a network 

condition (e.g., setting, environment) under which data is 

collected. This includes the collection time, the channel 

condition, the receiver hardware, the device location, and the 

protocol configuration, as well as other aspects. Therefore, 

any considerable change in the testing versus training settings 

yields a different domain, and as such, we define robustness 

to domain changes as the ability of a learning model to 

maintain its training domain performance when tested under 

new domains. This is often referred to as domain adaptation 

in the machine learning community. 

Several experimental studies using LoRa and WiFi devices 

(e.g., [7], [10], [11], [12]) have revealed the sensitivity of DL- 

based RFFP approaches to domain changes, thereby limiting 

their practical adoption to security applications. Unraveling 
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such sensitivity issues is a complex task involving two black 

boxes: the deep learning model and the microelectronic 

circuitry of the RF devices. However, it is widely believed 

that the wireless channel, influenced by various confounding 

factors, plays a significant role in the failure of these 

approaches to adapt and generalize to different domains. 

To address the impact of the channel and enhance domain 

generalization, some studies have focused on removing 

channel dynamics from the raw signal through techniques 

like channel equalization [12], [13], [14], [15] or hardware 

impairment compensation [6]. However, these approaches 

have drawbacks. Channel equalization can inadvertently 

remove crucial device-specific features, resulting in dis- 

criminative information loss and poor RF fingerprinting 

performance [16]. Impairment compensation techniques, 

on the other hand, target specific channel impairments, 

limiting their generalizability across different environments 

and wireless channels. 

Recent advancements in domain adaptation techniques 

have sparked interest for their potential to boost the 

robustness of RF fingerprinting systems by reducing domain- 

related biases in feature vectors. These methods, including 

adversarial learning, adversarial disentanglement learning, 

and cycle-consistent generative adversarial networks, show 

promise in distinguishing device-specific characteristics 

from those tied to the operational domain [17]. Despite 

their potential, these techniques face significant challenges 

that question their practicality in real RF fingerprinting 

contexts. For instance, [18] utilizes adversarial domain 

adaptation paired with a k-NN classifier on a modest dataset 

of 10 HackRF WiFi devices. Its two-day evaluation yields a 

classification accuracy of 64%, underscoring difficulties in 

reaching the accuracy needed for reliable RF fingerprinting. 

Moreover, the dependence on target domain data for effective 

training and fine-tuning presents an additional challenge. 

This reliance is problematic because access to target data may 

not always be available beforehand, and being constrained 

to a single-domain adaptation can lead to biases toward 

that specific target domain. Consequently, this necessitates 

retraining or fine-tuning the system each time there is a 

change in the target domain, such as a different day/location 

in our case studies. Similarly, [19] employs a combination 

of disentanglement representation and adversarial learning, 

tested on 50 WiFi devices. While it shows some success in 

short-term evaluations, its performance drastically declines 

in longer-term assessments, with an average accuracy 

plummeting to 15% over several days, which signals issues 

with maintaining effectiveness over time. Furthermore, [20] 

leverages a cycle-consistent generative adversarial network 

to create an environment translator aimed at separating 

hardware impairments from channel and environmental 

influences. Although this model achieved 83% accuracy in 

tests with a small dataset of 5 WiFi devices, its accuracy fell 

to 34% when applied to a larger group of 20 devices. These 

examples illustrate that while domain adaptation methods 

hold potential, their current applications in RF fingerprinting 

still encounter substantial hurdles that must be addressed 

to enhance their viability and effectiveness in real-world 

scenarios. 

Most DL-based RFFP approaches use the time-domain 

IQ representation of the received RF signal as the input 

for the learning models. This is because of the ability 

of these models to extract relevant features from the raw 

IQ data without needing preprocessing or prior domain 

knowledge. However, recent studies [7], [21] have indicated 

that DL models relying solely on IQ values fail to adapt to 

domain changes, such as changes in the wireless channel 

and/or receiver hardware [22]. This phenomenon may arise 

because I/Q data representations often include a substantial 

amount of extraneous information that does not pertain 

directly to hardware fingerprinting, such as conveyed content 

and other domain-specific features. As a result, models 

are prone to overfitting to specific training environments 

like the communication channel, receiver hardware, and 

device placement, rather than effectively learning the unique 

hardware characteristics of each device [11]. Additionally, 

deep learning models that utilize neural network layers 

originally designed for image processing often struggle 

to extract relevant information from time-domain signal 

samples [23]. This mismatch in model design can lead 

to poor generalization when faced with new I/Q data that 

slightly varies in signal parameters from the training set. Our 

discussion does not seek to entirely dismiss the value of deep 

learning models from other domains. Instead, it emphasizes 

the need for a nuanced approach to adapting these models 

for RF fingerprinting. This adaptation is crucial to address 

the unique challenges posed by RF data, underscoring the 

importance of developing novel RF data representations that 

effectively capture the hardware impairments of devices 

and align more closely with the operational strengths of 

these models. Such tailored representations can enhance the 

feature selection process, enabling the models to focus on 

relevant and reliable features and reducing their reliance on 

misleading data. 

To fulfill this need, this paper proposes a novel RF data 

representation that significantly enhances the robustness of 

DL-based RFFP methods to domain changes. Our motivation 

stems from the realization that raw IQ data representation 

contains a significant amount of device-irrelevant informa- 

tion. Consequently, extracting meaningful fingerprints from 

this raw IQ data becomes akin to finding a needle in a 

haystack filled with numerous deceptive needle-like objects. 

We overcome this limitation by proposing a novel RF data 

representation that vividly captures the device’s hardware 

impairments while suppressing device-irrelevant informa- 

tion [24]. Specifically, the proposed data representation 

closely mirrors the impaired behavior of a key RF hardware 

component, the oscillator, whose impairment substantially 

contributes to the device’s unique fingerprint [25], [26], [27]. 

To generate this representation, we extract the outer shape or 

envelope of the IQ signal, eliminate the resulting amplitude 

offset, and calculate the double-sided envelope’s power 
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spectrum or simply EPS, yielding a novel data representation 

of the IQ signal that serves as an effective input for machine 

learning classifiers. 

Through extensive evaluation on a testbed of 15 Pycom 

devices, running IEEE 802.11b WiFi protocol, we demon- 

strate the effectiveness of our proposed approach in real- 

world scenarios. Our experimental results show that when 

combined with standard CNN (Convolution Neural Net- 

work) models, the proposed EPS-based device fingerprint- 

ing framework achieves outstanding performance. Notably, 

it achieves a testing accuracy of over 99% in same-domain 

(day or location) scenarios, where training and testing are 

done on the same day/location. More importantly, in cross- 

location scenarios, the proposed framework maintains a 

testing accuracy of over 95%, whereas the same model 

trained with the conventional IQ representation achieves 

only 55%. Therefore, our EPS representation offers a 

transformative solution that significantly advances the RF 

fingerprinting field by substantially improving the accuracy 

and generalizability of DL-based RFFP approaches. 

Our key contributions can thus be summarized as follows: 
• We propose EPS, a novel RF signal representation 

input to DL-based RFFP approaches that substantially 

enhances the accuracy, robustness, and generalizability 

across various domains and hardware configurations. 

• We demonstrate through extensive experimentation the 

distinguishability and reliability of the EPS repre- 

sentation across time, channel, location, and receiver 

domains, justifying its applicability to RF fingerprinting 

applications. 

• We release massive 8TB IEEE 802.11b WiFi datasets 

of 15 Pycom devices that include both raw and processed 

files for more than 5000 packets for each device for 

four scenarios: Wired Setup, Wireless Setup, Different 

Locations Setup, and Random Deployment Setup. 

• We extensively assess the performance of EPS when 

used as an input to a standard CNN, EPS-CNN, for 

classifying Pycom devices and showcase an exceptional 

cross-domain performance in real-world scenarios, 

achieving an average testing accuracy of 93% and 

95% respectively for the cross-days and cross-location 

scenarios. 

• We evaluate the effectiveness of integrating the EPS rep- 

resentation with other models, using the ResNet-18 

model as a case study. This integration demonstrated a 

significant improvement, achieving a +50% increase in 

accuracy compared to the traditional ResNet-18 model 

which uses an IQ input. 

• We demonstrate the impact of the carrier frequency 

instability during device hardware warm-up and stabi- 
lization on the performance of DL-based RFFP. 

The rest of the paper is organized as follows. Sec. II 

presents the related works. Sec. III studies the impact of 

carrier frequency offset and inaccuracy on the behavior of IQ 

signals. Sec. IV presents the proposed IQ data representation 

approach, EPS. Sec. V presents the proposed EPS-based 

device fingerprinting framework. Sec. VI describes the 

testbed and the WiFi datasets used for the proposed frame- 

work evaluation, presented in Sec. VII. After that, Sec. VIII 

discusses the computational efficiency and inference latency 

of the EPS representation, and Sec. IX highlights the impact 

of hardware warm-up and stabilization on RF fingerprinting 

accuracy. Finally, the paper is concluded in Sec. X. 

 
II. RELATED WORK 

Prior works that aimed to address the domain generalizability 

challenges of DL-based RFFP can be broadly categorized 

into two approaches: data-centric and architecture-centric. 

For the data-centric approaches, various data augmentation 

techniques have been explored to expose the DL models to a 

wider range of wireless channel instances, thereby enhancing 

their robustness against channel variations. For instance, 

Soltani et al. [28] and Al-Shuwaili et al. [29] integrated 

data augmentation engines into the training process. These 

engines incorporated WLAN TGn and ITU-R channel 

models, respectively, along with an additive white noise 

model. While these techniques demonstrated a marginal 

improvement in testing accuracy, they do not offer a 

practical and scalable solution suitable for commercial 

deployment. Additionally, due to the intrinsic nature of 

wireless channels, it is challenging and impractical to devise a 

universal channel-augmenting model capable of significantly 

improving performance across a wide range of wireless 

channels. Other data-centric approaches mitigate the impact 

of the channel through channel equalization [12], [13], [14] 

or impairment compensation [6]. 

For the DL architecture-centric approaches, researchers 

have formulated the RFFP generalizability challenge as a 

domain adaptation problem [22], [30] and capitalized on the 

advancement in transfer learning to address it. The underlying 

assumption in these frameworks is that the source and target 

domains exhibit slightly different distributions. One notable 

domain adaptation framework, ADL-ID [19], integrates dis- 

entangled representation learning with adversarial learning to 

tackle the challenge of short-term temporal generalization in 

RFFP. ADL-ID involves segregating the feature vector into 

two distinct components: device-specific (fingerprints) and 

domain-specific features. During the inference stage, only 

the device-specific features, which encompass characteristics 

that remain invariant across the source and target domains, 

are utilized. Similarly, SignCRF [20] leverages a cycle- 

consistent generative adversarial network to construct an 

environment translator that effectively decouples hardware 

impairments from channel and environmental conditions. 

Adversarial domain adaptation techniques have also been 

employed in this context. For instance, RadioNet [18] 

adopts an adversarial learning scheme, utilizing a domain 

discriminator and a reversal gradient layer to minimize 

the domain-related information in the feature vector. The 

trained feature extractor is subsequently connected to a KNN 

classifier fine-tuned using the target data. Following a similar 

calibration approach, the Tweak approach, proposed by 
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Gaskin et al. [22], combines metric learning with lightweight 

calibration using the target data to enhance generalization 

across hardware, channel, and configuration dimensions. 

While these domain adaptation methods provide valu- 

able insights in enhancing RFFP generalizability, they 

exhibited limitations in providing satisfactory performance 

for medium-scale testbeds. Furthermore, they encounter 

challenges when faced with significant distribution gaps 

between the enrollment and deployment datasets or when 

confronted with unseen environmental conditions that differ 

from the target domain employed during adaptation. 

 
III. UNDERSTANDING THE IMPACT OF CARRIER 

FREQUENCY INACCURACY ON IQ SIGNAL BEHAVIOR 

Local oscillators are the transceiver hardware components 

that are responsible for producing oscillating signals needed 

for signal up-conversion at the sender side and for signal 

down-conversion at the receiver side. The inaccuracy and 

instability of the oscillating signal’s frequency, typically 

caused by external factors like temperature, vibration, and 

electromagnetic interference, impact the overall system 

performance behavior. As such, in an effort to improve 

their robustness to these external factors, various types of 

different crystal oscillators have been developed over the 

years, including temperature-controlled crystal oscillators 

(TCXOs), which feature temperature compensation, and 

oven-controlled crystal oscillators (OCXOs), which place 

the crystal in a temperature-controlled environment to keep 

their temperatures at a constant level, thereby improving the 

accuracy of their oscillating frequencies [31]. 

 
A. THE CARRIER FREQUENCY OFFSET (CFO) 

IMPAIRMENT 

This study concentrates on hardware impairments caused 

by oscillator frequency inaccuracies, specifically the Carrier 

Frequency Offset (CFO), which often results in signal 

distortion. This focus is driven by a comprehensive review 

of existing literature, which consistently identifies oscillator- 

caused impairments as notably distinguishable hardware 

imperfections. For instance, [25] ranks ‘‘frequency error’’ 

as the most effective metric for establishing radiometric 

identity. Similarly, [26] emphasized the distinctiveness of 

CFO imperfections, considering them the most identifiable. 

Moreover, findings from [27] underscore that CFO, linked 

to crystal imperfection, varies significantly across devices 

while remaining consistent over time, making it an ideal 

fingerprinting feature due to its immunity to software 

spoofing. This is echoed in the context of WiFi fingerprinting, 

where studies, including [32], [33], have identified CFO 

and IQ imbalance as the most separable features for WiFi 

fingerprinting. Moreover, [34], [35] further support this, 

indicating that oscillator imperfections can be accurately 

identified, even under challenging conditions such as low 

SNRs or short observation sequences. 

Building on this understanding, it becomes clear that while 

CFO information is inherently present in the time-domain 

IQ representation of RF signals, the challenge arises when 

DL-based RFFP frameworks attempt to generalize this data 

across different domains. Recent findings, [7], [11], reveal 

significant shortcomings in these frameworks’ ability to 

adapt when tested under varied conditions. For example, 

models trained on data from one day often exhibit a marked 

decrease in testing accuracy when evaluated on data collected 

from a different day [22]. These observations underscore 

the necessity for developing new RF signal representations 

that not only enhance feature selection processes but also 

bolster the domain adaptation capabilities of DL models. 

Our work responds to this need by proposing robust RF 

signal representations that effectively capture and utilize 

CFO impairments as distinctive features, thereby improving 

the adaptability of RFFP systems to domain variations. 

To effectively address this, it is crucial to thoroughly 

study and comprehend how carrier frequency offset and 

inaccuracies impact the behavior of received IQ signals. 

 
B. THE IMPACT OF CARRIER FREQUENCY INACCURACY 

To acquire a good understanding of the impact of the 

oscillating frequency inaccuracy on the IQ signal behavior, 

we leveraged our experimental testbed of 15 Pycom/IoT 

devices to observe, analyze, and compare the IQ signals 

collected from multiple different (but identical in hardware) 

off-the-shelf devices. This is done by having each of 

the 15 Pycom devices transmit multiple IEEE 802.11b WiFi 

packets after being powered on for more than 12 minutes 

to ensure hardware stabilization. We want to emphasize 

here the importance of waiting until the end of the warm- 

up/stabilization period of the devices’ hardware before 

performing data collection to ensure robust and consistent 

measurements; we provide further explanation and illustra- 

tion on this in Sec. IX. The transmitted signals are then 

captured and sampled at 45MSps using a USRP B210 

receiver. More description and details on the testbed are 

provided later in Sec. VI. 

We show in Fig. 1 the time behavior of both the I (in- 

phase) and Q (quadrature) signal components collected from 

Devices A, B, and C. Two key observations we draw from 

this experiment. First, observe the ‘sinusoidal’ behavior that 

the envelopes1 of both the I and Q signals exhibit. More 

importantly, note that the number of ‘humps’ of the envelope 

changes across the devices: 12.5 for Device A, 19.5 for 

Device B, and 5 for Device C. Second, observe that the I and 

Q envelopes of a given device vary in the opposite direction— 

i.e., shifted by 180 degrees, though still exhibiting the same 

number of ‘humps’. It is also worth mentioning that although 

shown for only three devices here, these reported sinusoidal 

behaviors of the IQ signals’ envelopes are observed across all 

of the 15 tested Pycom devices, with each device exhibiting 

a slightly different number of humps. 

 
1The envelope of an oscillating signal is the smooth boundary function 

that outlines the extremes of the signal (e.g., see [36], Appendix C). 
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The questions that arise now are: (i) what is the cause of the 

observed sinusoidal behavior of the IQ signal envelope? and 

(ii) why does the number of ‘humps’ differ from one device 

to another? We will show that the main cause behind such 

behavior is the CFO (carrier frequency offset) between the 

Pycom device’s oscillating frequency and that of the USRP 

receiver that exists due to the instability and inaccuracy of the 

device’s local oscillator. Specifically, we will next show that 

the number of humps in the sinusoidal envelope depends on 

the CFO value. This explains that the reason why different 

devices exhibit different numbers of humps is because 

each device presents a different CFO, which varies across 

devices due to the device’s oscillator hardware imperfections 

incurred during manufacturing. Later in Sec. IX, we will also 

demonstrate that the CFO value (and hence the number of 

humps) of a given device keeps changing over time until 

the device hardware is stabilized; i.e., the CFO value keeps 

varying over time until the end of the hardware warm-up 

period. This is due to the instability that the carrier frequency 

exhibits when the oscillator hardware of the device is still 

warming up. 

expressed as: 

s(t) = a(t) cos(2π (fc + f..f )t + φ(t)) 

At the receiver side, the In-phase (I) component, rI (t), 

of the received signal can be recovered (demodulated) as: 

rI (t) = s(t) cos(2π fct) 

Due to the CFO (i.e., the carrier frequency at the receiver 

is slightly different from the carrier frequency used by the 

sender), the phase of the wave shifts over time, causing the 

amplitude of the received signal to vary sinusoidally over 

time. This can be seen by rewriting rI (t) as 

rI (t) = 
a(t)

[cos(2π (2fc + f..f )t + φ(t)) 

+ cos(2πf..ft + φ(t))] 

While the left term in the equation above represents the 

frequency sum of the two frequencies, typically filtered out 

by a bandpass filter, the right term represents the frequency 

difference which is, in this case, the carrier frequency 

mismatch or CFO, f..f , between the local oscillators of the 

transmitter and the receiver. When CFO  f..f  0, the 

second term becomes 1 and the signal maintains a scaled 

version of its original amplitude, a(t) (e.g. corresponding 

to Fig. 2a in the simulation case). However, a frequency 

mismatch will cause the received signal to be modulated at the 

frequency f..f , resulting in an amplitude of a(t) cos(2πf..ft 

φ(t)). This analysis clearly illustrates how the CFO, when 

nonzero, modulates the amplitude of the received signal, 

directly impacting its characteristics. 
 

 

 

 

 

 

 

 

FIGURE 1. The time-domain IQ signal behavior across three 

different Pycom devices. The number of ‘humps’ are: 12.5 for 

Device A; 19.5 for Device B; and 5 for Device C. 

 

 

C. THE CAUSE OF THE OBSERVED ENVELOPE 

BEHAVIOR 

We now demonstrate and affirm that the CFO impairment 

is what is behind the sinusoidal behavior of the IQ signal’s 

Envelope illustrated in Sec. III-B above. 

 
1) ANALYTIC AFFIRMATION 

In this subsection, we analytically examine the sinusoidal 

behavior of the IQ signal’s envelope, focusing specifically on 

how the CFO impairment is responsible for this phenomenon. 

This analytical exploration will reveal the underlying mech- 

anisms by which CFO influences the signal’s characteristics. 

To illustrate, consider a baseband signal a(t) exp (jφ(t)) 

modulated by an oscillating signal with a carrier frequency 

fc and a CFO, f..f . The passband transmitted signal can be 

2) SIMULATED AFFIRMATION 

To further substantiate our analysis, we now extend our 

affirmation into a practical scenario by simulating the 

impact of CFO within an actual WiFi system. Using 

MATLAB’s WLAN toolbox, we crafted a model to simulate 

IEEE 802.11b WiFi DSSS waveforms with various CFO 

impairments, including 0 Hz, 50 Hz, 100 Hz, and 200 Hz. 

The CFO-impaired transmitted signal is first passed through 

an AWGN channel, and then down-converted and sampled 

by the receiver to generate IQ data samples. For each case, 

we collected 10 WiFi frames, with each frame having a size 

of 1000 bits. Then, we extracted the real (I) components of the 

signals and plotted them separately for CFO 0 in Fig. 2a, 

CFO  50Hz in Fig. 2b, CFO  100Hz in Fig. 2c, and 

CFO 200Hz in Fig. 2d. The simulated results clearly show 

the dependency between the CFO values and the number of 

observed ‘humps’ in the I signal’s envelope, and that the CFO 

is what causes the observed Envelope shape. The same trends 

were observed for the Q signal components as well, but we 

did not include them here to limit redundancy. 

We want to mention that we also experimented with 

varying other hardware impairments, including IQ imbal- 

ance, Phase Noise, and DC offset, but have not noticed any 

‘sinusoidal’ behavior of the envelopes. This confirms that 

other transceiver hardware impairments, though do manifest 
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themselves in other types of distortions, do not yield the 

envelope behavior we observed with the CFO impairment. 

r(t). The analytic signal z(t) is a complex-valued signal, 

comprising the original signal, r(t), as its real part and the 

Hilbert transform (HT) of r(t) as its imaginary part, and can 
hence be written as z(t) = r(t)+jHT (r(t)) where HT (r(t)) = 
1 

J ∞ r(t−τ) d τ . Formally, the envelope e(t) of r(t) is the 
π  −∞ τ 

 
 
 
 

 
  

 

 

FIGURE 2. The I component of WiFi packets generated using a 

simulated WiFi system with CFO impairment blocks. 

In conclusion, we confirm that these observed device- 

dependent, sinusoidal envelope behaviors of the IQ signals 

collected from the different off-the-shelf PyCom devices 

are indeed attributed to the CFO impairments. These CFOs 

exist because the carrier frequency generated by the local 

oscillator at the USRP receiver is (slightly) different from that 

generated by the local oscillator at the Pycom device. These 

demonstrations also confirm that devices with (even slightly) 

different oscillating frequencies yield different numbers of 

‘humps’ in the received signals’ envelope. And this work 

leverages such a difference in the number of humps across 

different devices to propose efficient IQ representations 

that are shown to significantly improve the accuracy and 

robustness of DL-based RF fingerprinting to domain changes. 

 
IV. NOVEL IQ DATA REPRESENTATION FOR 

DISTINGUISHABLE NEURAL NETWORK FEATURES 

In this section, we begin by presenting a novel IQ signal rep- 

resentation/feature extracted from the oscillator’s envelope 

shape (observed and explained in the previous section) that 

substantially improves the robustness of device fingerprinting 

to domain changes and variations. We then evaluate the 

effectiveness of the proposed feature design vis-a-vis of its 

fingerprinting ability to (i) distinguish between devices and 

(ii) adapt to domain changes by maintaining high accuracy 

performance under varying domains. 

 
A. CAPTURING THE OSCILLATOR’S ENVELOPE 

BEHAVIOR 

In order to extract the CFO value resulting from the mismatch 

between the sender’s and receiver’s oscillating frequencies, 

which is embedded in the signal’s envelope shape as observed 

and explained in Sec. III, we first create the analytic signal, 

z(t), of the time-domain representation of the receiver packet, 

magnitude of its analytic signal; i.e., 

e(t) ≜ |z(t)| = 
J
r(t)2 + HT (r(t))2 (1) 

B. THE PROPOSED IQ DATA REPRESENTATION: THE 

DOUBLE-SIDED ENVELOPE’S POWER SPECTRUM (EPS) 

After extracting the envelope of the IQ signal using the 

analytic signal presentation as described in Sec. IV-A, 

we remove the DC offset of the envelope and compute 

its normalized double-sided power spectrum, which results 

in one main sideband and its harmonics on each side. 

We propose this double-sided envelope’s power spectrum, 

termed EPS for short, as the new IQ data representation to 

use as input to the deep learning models. As we show later, 

this improves the models’ accuracy significantly and makes 

them highly robust to the domain adaptation challenges we 

described in Sec. I. Fig. 3 shows the three stages involved 

in extracting EPS from a WiFi frame sent by one of the 

Pycom devices. The figure at the top displays the time- 

domain I component values of the WiFi frame, which exhibits 

sinusoidal variations in amplitude due to the impairments 

of the crystal oscillator. The figure in the middle depicts 

the extracted envelope of the frame using the analytic signal 

representation. The figure at the bottom shows the double- 

sided envelope’s power spectrum, EPS. 

 

 

 

FIGURE 3. Extracting the EPS feature from a WiFi frame. 

 

 

C. EPS DISTINGUISHABILITY ACROSS DIFFERENT 

DEVICES 

In the context of RF fingerprinting, a signal representation 

that exhibits distinctive device-specific characteristics is 

critical. The proposed EPS feature possesses this property, 

as it captures the local oscillator’s behavior, which is affected 

by the oscillator’s unique hardware impairments. To validate 

this hypothesis, we conducted an experimental evaluation 

using our testbed consisting again of 15 Pycom devices, 

running the IEEE802.11b protocol and a USRP B210 receiver 
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FIGURE 4. The EPS representation of 10 devices. 

 

 
FIGURE 5. The t-SNE visualization of the complete testbed. 
 

 

(more testbed details are provided later in Sec. VI). Our 

results depicted in Fig. 4 reveal that the EPS representation is 

indeed unique for each device, as evidenced by the discernible 

differences, across the 10 studied devices, in the shape and 

location of the main sideband and its harmonics. Moreover, 

this representation or feature contains thousands of samples, 

making it a high-dimensional data type that can benefit 

from non-linear dimensionality reduction techniques such 

as t-distributed stochastic neighbor embedding (t-SNE) [37]. 

By visualizing the representation of 3000 packets from each 

device using t-SNE, as shown in Fig. 5, we demonstrate 

that the EPS representation extracted from more than 

40, 000 packets is well-separated and suitable as an effective 

input for device classification. This will be further validated 

through experimental results that are presented later in 

Sec. VII. 

 
D. EPS ROBUSTNESS TO DOMAIN CHANGES 

Exhibiting unique device-specific features is necessary but 

insufficient for a representation to serve as a good fingerprint 

for device classification. If a representation of a device 

varies randomly each time the signal is captured, it cannot 

offer a reliable fingerprint and therefore cannot be utilized 

as an input for the device classification system. Hence, 

after we showcased the distinguishability property of the 

EPS representation using our testbed, we now test its domain- 

adaptation ability by examining its robustness to maintaining 

device separability when there is a change across domains. 

And we do so by considering three domains: time, channel, 

and location. 

1) TIME-AGNOSTIC FINGERPRINTING 

The establishment of stability over time in any proposed 

representation is of paramount importance for the practical 

implementation of RF fingerprinting systems, particularly in 

dynamic real-world environments where temporal changes 

are expected. Factors such as the movement of people, and 

varying usage of surrounding WiFi access points, contribute 

to a variable RF landscape over time. Such environmental 

changes, compounded by shifts in office occupancy and 

ambient temperature throughout the day, underscore the 

importance of assessing the robustness of RF fingerprinting 

systems across temporal variations. Additionally, it’s note- 

worthy that the power cycling of radios - turning devices 

off and then on - has been identified as a factor affecting 

RF fingerprints [38]. These conditions demonstrate that even 

within the same physical setting, time itself is a dimension 

where different variables can impact system performance, 

highlighting the need for time-agnostic properties in RF 

fingerprinting technologies. To ascertain the robustness and 

temporal reliability of our proposed Double-Sided Envelope 

Power Spectrum (EPS) representation, a comprehensive set 

of experiments was performed on our testbed, comprising 
15 devices transmitting 802.11b packets. To capture the 

stability of the devices over time, we employed a wired 

connection as described in Sec. VI-C.1 and initiated the 

data-capturing process 20 minutes after the devices were 

activated, so as to ensure hardware settling and stabilization. 

Precisely, packet captures were obtained at specific intervals, 

namely 1 minute, 3 minutes, 8 minutes, 1 hour, 2 hours, 

1 day, and 2 days, spanning three consecutive days. For each 

individual device, the EPS representation was extracted from 

the recorded packets at the aforementioned time points over 

the three-day period. Fig. 6 depicts the plotted results for 

four representative devices, clearly showcasing that for each 

device, all the EPS representations extracted at the different 

time intervals overlap. This demonstrates that the proposed 

EPS representation is time agnostic and remains unchanged 

over time. This uniformity in the EPS representation 

was consistently observed across all 15 devices (though 

shown only for 4 devices in the paper), thus providing 

compelling evidence of the stability and reliability of our 

proposed EPS representation over time. Furthermore, these 

findings underscore the efficacy of EPS in mitigating the 

sensitivity to temporal variations encountered in DL-based 

RF fingerprinting techniques. 

 
2) CHANNEL-AGNOSTIC FINGERPRINTING 

To investigate the impact of the wireless channel on the 

stability and consistency of EPS, we conducted the following 

experiment in an indoor environment. The devices were 

positioned at a fixed distance of 1 meter from the receiver, 

and packet captures were performed over a duration of 

three consecutive days, as detailed later in Sec. VI-C.2. The 

objective of this investigation was to compare the EPS rep- 

resentations of packets corresponding to each individual 



1411 VOLUME 2, 2024 

Elmaghbub and Hamdaoui: Distinguishable IQ Feature Representation 
 

 

 

 

 

FIGURE 6. Time-domain scenario showing the EPS representations of 4 devices extracted at 7 different time marks. 

 

 
FIGURE 7. Channel-domain scenario showing the EPS representations of 4 different devices extracted under both wired and 

wireless setups, each over three days. 

 

device across both the wired and wireless channels over 

time, thereby discerning the influence of channel variations 

over time. Fig. 7 presents the graphical representations of 

the EPS features obtained from four distinct devices under 

both wired and wireless channel conditions. Notably, the 

figures effectively demonstrate that the EPS representation 

of each device remains unaltered regardless of the underly- 

ing channel characteristics. This observation unequivocally 

establishes the inherent stability and reliability of our 

proposed EPS representation, even in the presence of wireless 

channel effects, over the course of three consecutive days. 

Importantly, this behavior was consistently observed across 

all 15 devices, thereby fortifying the empirical evidence 

supporting the robustness and efficacy of our proposed EPS. 

Consequently, these findings firmly substantiate the ability 

of the EPS representation to effectively mitigate the potential 

sensitivity to channel variations encountered in DL-based RF 

fingerprinting methods. 

 
3) LOCATION-AGNOSTIC FINGERPRINTING 

Changing the distance between the transmitting devices 

and the receiver after training can also lead to a drastic 

drop in performance. To evaluate the robustness of the 

EPS representation to such distance changes, we captured 

data at three different locations with the devices being placed 

1m-away (Location A), 2m-away (Location B), and 3m- 

away (Location C) from the USRP receiver; this setup is 

shown in Fig. 13 and discussed in more detail in Sec. VI-C.3. 

Fig. 8 shows the EPS representation of WiFi packets from 

four devices over the three different locations. To extend the 

reliability test with regard to location and distance, we also 

considered another realistic scenario in which the devices 

were randomly deployed within a radius of 3m from the 

receiver as shown in Fig. 14 (refer to Sec. VI-C.4 for more 

details). The corresponding EPS representations are depicted 

as Location D (random) in Fig. 8. The plots in Fig. 8 manifest 

the stability of the EPS feature representation over the 

four studied location scenarios as the signal representations 

of the four locations completely overlap. To evaluate the 

EPS representation’s consistency across locations under 

different environmental conditions, we conducted outdoor 

tests near the Kelley Engineering building on the Oregon 

State University campus. These experiments were carried out 

at distances of one, two, and three meters from the receiver 
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FIGURE 8. Location-domain scenario showing the EPS representations of 4 devices extracted at 4 different locations. Devices in 

Locations A/B/C are all placed at fixed distances; devices in Location D are placed at random distances. 

 

and close to a main pedestrian path–on a busy day to simulate 

a dynamic environment. The resulting consistency of the 

EPS representations of four different devices, depicted in 

Fig. 9, confirms the robustness of our representation even 

in varied outdoor environments. Our findings confirm the 

stability of the EPS representation in indoor and outdoor 

scenarios in which the location, distance, and time of the 

training and testing sets are different, again making the 

proposed EPS a more reliable and robust input for DL-based 

RF fingerprinting methods. 

 

 
4) RECEIVER-AGNOSTIC FINGERPRINTING 

To investigate the robustness of the EPS representation 

against variations in receiver hardware, we designed and 

executed a controlled experiment using two USRP B210 

receivers, each known for its reliable RF performance 

and flexibility in various signal processing tasks. The test 

involved data collection from four FiPy devices, randomly 

selected from our testbed. Data acquisition was carried 

out sequentially—first with one receiver and subsequently 

with the other—under indoor conditions. All transmitters 

were connected through a wired setup and powered via 

a USB hub, ensuring consistency in the power supply. 

Each receiver operated independently on its own internal 

clock, thus varying the only variable, the receiver unit. The 

EPS representations of all captured packets were generated 

and subsequently analyzed to determine the consistency of 

the EPS representation across the two different receivers. 

The analysis, visually summarized in Fig. 10, illustrates 

a remarkable stability of the EPS representation for the 

four tested devices across both receivers, as shown by 

the perfectly overlapping EPS plots. This visual evidence 

underscores the EPS representation’s robustness to changes 

in receiver hardware within the confines of our experimental 

setup. Although the results are promising, they should be 

considered preliminary in establishing the EPS’s universal 

receiver-agnostic properties. Further comprehensive testing 

with receivers from different manufacturers is essential to 

fully validate and confirm the receiver variability robustness 

of the EPS representation. 

 
V. THE EPS-BASED FINGERPRINTING FRAMEWORK 

FOR DOMAIN-AGNOSTIC DEVICE CLASSIFICATION 

Maintaining good performances of RF fingerprinting when 

faced with domain shifts due to changes in channel 

conditions and/or device location/distance has proven to 

be very challenging, hindering the widespread adoption 

of RF fingerprinting technology in real-world applications. 

Our proposed fingerprinting framework, based on the pro- 

posed EPS feature representation, has demonstrated stable 

behavior across various settings and increased resiliency to 

domain changes, thereby overcoming the aforementioned 

challenges. 

In this section, we evaluate the effectiveness of the 

proposed EPS feature representation vis-a-vis of its ability to 

adapt to domain (channel, time, and location) changes when 

the EPS data is used as an input to a typical Convolutional 

Neural Network (CNN) device classifier [2], [14], [39], [40]. 

 
A. AN OVERVIEW OF THE PROPOSED EPS-CNN 

FRAMEWORK 

At its high level, the proposed EPS-CNN framework, shown 

in Fig. 11, consists of an EPS generator, which takes the 

complex-valued IQ representation of a received frame, r(t), 

as an input and then processes the I (In-phase) and Q 

(Quadrature) components separately. For each frame, the 

EPS generator first extracts the envelope of the signal, 

e(t), and then generates the EPS representation of the two 

components: EPS(I) and EPS(Q). Refer to Sec. V-B for 

details about the EPS representation generation. The two 

EPS representations are then concatenated into a tensor (e.g., 

of size 2 4096) and passed to the CNN network that 

extracts the suitable features using the six convolution blocks 

followed by three fully connected layers and a Softmax layer. 

The CNN is also responsible for learning a classifier from 

the extracted features to accurately predict the corresponding 

device of the incoming frame (Device i). 
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FIGURE 9. Outdoor Location-domain scenario showing the EPS representations of 4 devices extracted at 3 different locations. 

 

 
FIGURE 10. Receiver-domain scenario showing the EPS representations of 4 devices extracted using two different receivers. 

 

 
FIGURE 11. EPS-CNN framework overview. 

 

B. EXTRACTION OF EPS REPRESENTATION 

The implementation we used to extract the signal’s envelope, 

e(t), from the received signal, r(t), is shown in Fig. 11; 

refer back to Sec. IV-A for the derived e(t) expression. 

We construct the analytic signal by first passing the IQ values 

of the received frame through an FIR Hilbert transform filter 

based on the Parks-McClellan algorithm [41] implemented in 

MATLAB Signal Processing Toolbox. The output of the filter 

is then multiplied by 
√
−1 (the imaginary unit) and added to 

the time-delayed original signal. It is important to introduce 

a delay in the input signal because the FIR filter implemen- 

tation of the Hilbert transform introduces a delay equivalent 

to half the length of the filter. The signal’s envelope, e(t), 

is calculated by taking the absolute value of the analytic 

signal, which is characterized by a lower frequency compared 

to the original signal. Consequently, we first downsample the 

signal’s envelope by a factor of 15, an empirically determined 

rate that optimally balances data rate reduction with the 
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preservation of essential fingerprint features. Following this, 

the downsampled signal is passed through a lowpass filter 

to effectively eliminate ringing and smooth the envelope. 

Once the envelope is extracted, we center the envelope’s 

amplitude around zero before generating the corresponding 

normalized double-sided envelope’s power spectrum, i.e., 

EPS, representation using the power spectrum estimator. The 

decision to utilize a double-sided representation over a single- 

sided one allows for capturing the full spectral information 

inherent in these signals. This comprehensive approach 

enhances the discriminative capability of our classifier and 

consistently improves classification accuracy by 2-3% across 

all testing scenarios, demonstrating the value of including 

a more extensive feature set derived from the complete 

spectrum of complex-valued signals. 

 
C. CNN ARCHITECTURE 

We train our CNN, using the PyTorch library, on an NVIDIA 

Cuda-enabled NVIDIA GeForce RTX 2080 Ti GPU system 

for 30 epochs. The input to the model is the EPS rep- 

resentation with a dimension of 2  4096, representing 

the EPS representation of the In-phase and quadrature 

components. The first layer applies a 2D convolution with 

a filter size of 1  65, followed by batch normalization, 

and LeakyReLU activation. The kernel size was empirically 

determined to optimize performance, ensuring symmetric 

padding and preserving the spatial dimensions of the input 

volume post-convolution. We systematically tested a range 

of kernel sizes spanning [2, 5, 7, 9, 17, 33, 65, 129, 

257, 513, 1025] samples, and found that a kernel size of 

1  65 consistently yielded the best performance. Then, 

a max-pooling layer with kernel size 1 2 and stride 1 2 is 

applied to reduce the dimensions of the feature maps. The 

same pattern is repeated five more times, with increasing 

numbers of output channels (32, 48, 64, 76, 96, and 110) and 

decreasing feature map sizes, until a final feature map size 

of 2 64 is obtained. Then, two fully connected layers with 

output sizes equal to 100 and 64 are applied, each followed by 

a dropout layer and LeakyReLU activation. Finally, the output 

of the second fully-connected layer is passed to another fully- 

connected layer that maps it to the 15 output classes, which 

is passed to a softmax layer to produce the predicted label. 

We experimentally chose a learning rate of 3e-4 which decays 

by decaying factor after every 3000 steps. Finally, we use 

the stochastic gradient descent optimizer with momentum 

and a weight decay parameter that adds an L2 regularization 

on the weights to avoid overfitting. The code used in this 

paper is publicly available for researchers to use and can be 

downloaded at https://github.com/NetSTAR-Lab. 

 
VI. TESTBED, DATASETS AND EXPERIMENTAL 

SCENARIOS 

In this section, we describe the testbed setup, the exper- 

imental scenarios, and the collected WiFi datasets used 

for evaluating the effectiveness and robustness of the 

proposed techniques. The WiFi datasets, their description and 

 

  
 

FIGURE 12. IoT Testbed consisting of 15 Pycom transmitting 

devices and a USRP B210 receiving device. 

 

 

their download information can be found at http://research. 

engr.oregonstate.edu/hamdaoui/datasets. 

 

FIGURE 13. Different-Location setup. 

 

 

FIGURE 14. Random-Location setup. 
 

 

A. TESTBED SETUP 

The testbed used for our evaluation, depicted in Fig. 12, 

consists of 15 Pycom devices, including 10 FiPy boards 

and 5 LoPy boards. Both the FiPy and LoPy boards are 

equipped with the ESP32 chip, which supports WiFi and 

Bluetooth. Additionally, both boards feature the Semtech 

SX1276 chip, enabling LoRa and Sigfox communications. 

The FiPy boards also include a Sequans Monarch LTE 

module for cellular connectivity, further enhancing their 

capability to support a wide range of network protocols 

including LTE. The data acquisition was performed using 

an Ettus USRP B210 receiver, which was synchronized 

with an external OCXO for improved sampling accuracy 

http://research/
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and stability. All devices were powered via USB from an 

HP laptop and configured to transmit IEEE802.11b WiFi 

packets using the high-rate direct-sequence spread-spectrum 

(HR/DSSS) physical layer in the 2GHz spectrum. The 

transmitting devices transmitted at a rate of 1Mbps with a 

carrier frequency of 2.412GHz and a bandwidth of 20MHz, 

while connected to the same 1/2 Wave Whip antenna. 

 
B. DATASET COLLECTION 

We initiated the data-capturing process 12 minutes after 

devices were activated, so as to ensure hardware stabilization; 

see Sec. IX for further details on the impact of device 

stabilization and warm-up time. Each device was configured 

to operate over WiFi Channel 1 with a center frequency of 

2412MHz and a bandwidth of 20MHz. The transmitters were 

programmed to transmit identical IEEE 802.11b frames with 

a duration of 559us back to back, separated by a small gap. 

We captured the first two minutes of transmissions using 

the USRP B210 at a sample rate of 45MSps, generating 

more than 5000 identical packets from each device at each 

capturing event. The captured signals were then digitally 

down-converted to the baseband and stored as IQ samples on 

our computer. To avoid any data dependency on the identity 

of the WiFi transmitter, all transmitters were configured to 

broadcast the same packets, which include the same spoofed 

MAC address and a payload of zero bytes. Finally, WiFi 

packets were extracted from the raw IQ samples and stored in 

HDF5 formats to maintain the integrity and accuracy of the 

captured signals. 

 
C. EXPERIMENTAL SCENARIOS 

Our WiFi dataset contains more than 8TB of WiFi 

transmissions from 15 Pycom devices captured in four 

different setups/scenarios: Wired Setup, Wireless Setup, 

Different-Locations Wireless, and Random-Location Wire- 

less. Notably, all data collection scenarios were conducted 

in an open/shared lab environment, simulating typical office 

conditions where environmental factors are uncontrolled. 

This approach ensures that our findings are applicable to 

real-world situations, reflecting the complexities of everyday 

wireless communication environments. 

 
1) WIRED SETUP 

To rule out the impact of the wireless channel, we connected 

our transmitters directly to the USRP receiver via SMA 

cabling, and collected data over three days, generating more 

than 5000 WiFi frames per device every day. 

 
2) INDOOR WIRELESS SETUP 

Instead of wiring the transmitters to the USRP receiver 

as done in the Wired Setup, we placed them at a fixed 

location, 1m away from the USRP receiver which uses a 

VERT900 antenna to capture the signal. We repeated this 

experiment over three days to assess the generalizability of 

the proposed technique over time. This setup generated more 

than 5000 WiFi frames per device every day. 

3) DIFFERENT-LOCATIONS WIRELESS SETUP 

The location from where the transmitter sends its data impacts 

the characteristics of the received signal, as signals trans- 

mitted from different distances/locations usually experience 

different channel conditions, which is considered in this work 

as another varying domain. For each transmitter, we then 

collected data at three different locations, A, B, and C, 

which are 1m, 2m, and 3m away from the USRP receiver, 

respectively, as shown in Fig. 13. This was carried out in one 

day and generated more than 5000 WiFi frames per device at 

each location. 

 
4) RANDOM-LOCATION WIRELESS SETUP 

From a practical viewpoint, when the fingerprinting frame- 

work is used for device authentication, the messages that are 

sent by the devices and are to be used for authentication are 

likely to come from different random locations, and these 

random locations are also likely to be different from the 

locations used in the enrollment (training) stage. Therefore, 

we considered collecting datasets for two random-location 

scenarios on two different days, each consisting of an 

enrolment phase (data used for training) and a deployment 

phase (data used for testing). In both enrolment phases, 

all the transmitters transmitted from the same location, 1m 

away from the receiver, and in both deployment phases, the 

transmitters were located randomly within a radius of 3m 

away from the receiver as shown in the floor plan in Fig. 14. 

The enrollment datasets were collected in the morning while 

the random deployment datasets were collected on the night 

of that same day, generating more than 5000 WiFi frames per 

device for each dataset. 

 
VII. DEVICE IDENTIFICATION RESULTS 

To assess the effectiveness of our proposed EPS feature rep- 

resentation in improving the performance of DL-Based RFFP 

methods across domains, we considered two performance 

metrics: same-domain accuracy and cross-domain accuracy. 

Same-domain accuracy measures the ability of the DL models 

to identify devices accurately when the testing data/packets 

(unseen in the training phase) are drawn from the same 

training domain. On the other hand, cross-domain accuracy 

evaluates the models’ ability to generalize across different 

domains, such as different locations, channels or days. For 

temporal domain adaptation, we initially train the model 

using data from one day and subsequently test it on data 

from the other two days to verify consistent performance 

over time. Similarly, in spatial domain adaptation, training 

occurs with data from a specific location, then testing on 

data from various locations with different distances and 

orientations to the receiver to rigorously evaluate the model’s 

adaptability to channel characteristic changes. We evaluated 

the performance of a standard CNN framework when fed with 

our proposed EPS representation as an input (referred to as 

EPS-CNN) and compared it with the same CNN framework 

but when fed with a typical IQ representation as an input 
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FIGURE 15. EPS-CNN’s performance: (a) Testing accuracy; (b)-(d) Confusion matrices for different 

Train-Location/Test-Location combinations. LocA, LocB, and LocC correspond to when the transmitters are 1, 2, 

and 3m away from the receiver. 

 

 

FIGURE 16. IQ-CNN’s performance: (a) Testing accuracy; (b)-(d) Confusion matrices for different 

Train-Location/Test-Location combinations. LocA, LocB, and LocC correspond to when the transmitters are 1, 2, 

and 3m away from the receiver. 

 

TABLE 1. Testing accuracy of EPS-CNNand IQ-CNN on the fixed placement scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(referred to as IQ-CNN). By using the traditional CNN as 

a benchmark, we provide a clear and direct comparison 

showing the improvement brought by the EPS representation. 

We employed the 5-fold cross-validation method, where each 

device’s data is divided into five non-overlapping, equally- 

sized partitions. In each fold of cross-validation, we used 

four partitions for training (3200 packets) and the remaining 

partition for testing (800 packets). We then averaged the 

results obtained from each fold to produce a final estimate of 

the model’s performance. For the EPS input, we represented 

each packet by a 2  4096 tensor, which encapsulates 

the EPS representation of both the I and Q components. 

In contrast, for IQ input, we represented each packet using 

a 2 8192 tensor, comprising the first 8192 samples of both 

the I and Q components as this window size provides the best 

performance for the IQ representation input. 

A. ADAPTATION TO LOCATION CHANGES: FIXED 

PLACEMENT 

First, we begin by evaluating the proposed EPS-CNN frame- 

work using the WiFi dataset captured in the three different 

locations, as described in Sec. VI-C.3, to assess its robustness 

to changes in device locations. The results are shown in 

Fig. 15 for EPS-CNN and Fig. 16 for IQ-CNN, where 

again LocA, LocB, and LocC correspond to when the 

transmitters are placed 1m, 2m and 3m away from the 

USRP receiver. The results shown in Fig. 15 demonstrate 

that our EPS-CNN framework is highly effective in device 

fingerprinting, achieving exceptional same-domain testing 

accuracies at all locations. Specifically, the average testing 

accuracies at Locations A, B, and C are 100%, 99.6%, 

and 96.7%, respectively, as shown in Fig. 15a. Even more 

impressive is the performance of our EPS-CNN framework 

in cross-domain evaluation, where the model is trained on 

one location and tested on datasets captured in different 

locations. The results show that EPS-CNN maintains high 

performances, with average testing accuracies of 91.3% and 

95.5% when trained on Loc A and tested on Loc B and Loc C, 

respectively. Similarly, EPS-CNN achieves a testing accuracy 

of 99.7% and 95.04% when trained on Loc B and tested on 

Loc A and Loc C, and an accuracy of 95.3% and 93.9% when 

trained on Loc C and tested on Loc A and Loc B. To the best 
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FIGURE 17. EPS-CNN/IQ-CNN’s performance under random deployments: (a)-(b): testing accuracy; (c)-(d): confusion 

matrices obtained under random-location setup 2; that is, when training is done under enrolment setup 2 and testing 
is done under the corresponding deployment setup. 

 

of our knowledge, this is the highest performance achieved by 

a DL-based device fingerprinting method when the learning 

models are tested and trained on different domains. The cross- 

location confusion matrices are shown in Figs. 15b, 15c, 15c, 

further highlighting the effectiveness of EPS-CNN . 

In contrast, the conventional IQ-CNN framework, which 

uses raw IQ representation instead of the EPS representation 

and whose results are shown in Fig. 16, struggles to main- 

tain its performance in cross-domain evaluation. Although 

IQ-CNN performs well in the same-domain evaluation, 

it performs poorly when tested on a dataset captured in a 

different location. Specifically, the average testing accuracy 

when IQ-CNN is trained on location A and tested on 

locations B and C is 57.01% and 24.96%. This significant 

drop in performance is also seen in the other locations, 

as the testing accuracy on locations A and C when the 

model is trained on location B is 59% and 24.7%, whereas 

the average testing accuracy when the model is trained on 

location C and tested on locations A and B is 45.9% and 

61.4%, respectively. Note the significant accuracy difference 

between that achieved by the proposed EPS-CNN and that 

achieved by the conventional IQ-CNN (i.e., a drop from 

90 % to as low as 25%). The confusion matrices in 

Figs. 16b, 16c, 16d show the struggle of the trained model 

to correctly classify the devices when the corresponding 

packets are captured in a different location. The results 

clearly demonstrate the superiority of the EPS-based deep 

learning framework in device fingerprinting, particularly in 

cross-domain evaluations. Table. 1 summarizes the testing 

accuracies of all setups of the fixed placement scenario. 

 
B. ADAPTATION TO LOCATION CHANGES: RANDOM 

PLACEMENT 

We also considered evaluating the effectiveness of the 

proposed EPS-CNN framework under two random-location 

setups, as described in Sec. VI-C.4. For each setup, during 

training (referred to as enrolment), all devices transmit from a 

fixed location, 1m away from the receiver; and during testing 

(referred to as deployment), the devices transmit from random 

locations all within 3m from the receiver; refer to Fig. 14 

TABLE 2. Testing accuracy of EPS-CNN and IQ-CNN on the 

random placement scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for visualization of this random deployment scenario. The 

EPS-CNN framework exhibits strong performance in both 

same-domain and cross-domain evaluations under random- 

location setups. Fig. 17a shows that EPS-CNN achieves 

high average same-domain testing accuracies of 96.7% and 

98.3% respectively under random-location setups 1 and 

2. Furthermore, the figure demonstrates the robustness of 

the framework in cross-domain with testing accuracies of 

93.1% and 98.1% under random-location setups 1 and 2, 

respectively. Notably, Fig. 17c, showing the confusion matrix 

under random-location setup 2, showcases the framework’s 

exceptional accuracy for most devices. In contrast, IQ- 

CNN experiences significant performance degradation on 

both random-location setups, with cross-domain testing 

accuracies of only 40.2% and 58.2% on setups 1 and 2, 

respectively. Through the confusion matrix, Fig. 17d provides 

a clear depiction of the IQ-CNN framework’s struggle in 

recognizing devices when randomly deployed around the 

receiver. Table. 2 summarizes the testing accuracies of all 

setups of the random placement scenario. 

 
C. ADAPTATION TO TIME CHANGES: DIFFERENT DAYS 

The effectiveness of the proposed EPS-CNN framework 

was also evaluated on a cross-days scenario using the 

indoor wireless WiFi dataset as described in Sec. VI-C.2. 

Fig. 18a presents the average testing accuracy of the 

proposed EPS-CNN framework when trained on one day 

and tested on one of the other three days. The same-domain 

testing accuracies (both training data and testing data are 

collected the same day) were found to be 100%, 100%, 

and 96.5% for day 1, day 2, and day 3, respectively. These 

research findings demonstrate the distinguishability of the 

EPS feature representation, as the learning model was able 
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FIGURE 18. EPS-CNN’s performance across three different days: (a) Testing accuracy; (b)-(d) confusion matrices for 

different Train-day/Test-day combinations. 

 
 
 
 
 
 
 
 
 
 

 

FIGURE 19. IQ-CNN’s performance across three different days: (a) Testing accuracy; (b)-(d) confusion matrices for 

different Train-day/Test-day combinations. 

 

TABLE 3. Testing accuracy of EPS-CNNand IQ-CNN on the cross-day scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to extract unique features from each device, achieving high 

performance on the same-domain performance metric. 

More interestingly, for the cross-day evaluation, Fig. 18a 

shows that the proposed EPS-CNN framework maintains 

remarkable performance accuracy when tested on a different 

day. Specifically, when the learning model is trained on day 

1 data, the average cross-domain testing accuracy is 93.2% 

when the model is tested on day 2 data and 91.5% when tested 

on day 3 data. This achievable performance is consistent 

across other days, with an accuracy of 93.2% or 89.7% when 

training on day 2 data but testing on day 1 or day 3 data, 

respectively. Similarly, when the model is trained on day 

3 and tested on day 1 data or day 2 data, the testing accuracies 

are 91.8% or 98.4%, respectively. The aggregate confusion 

matrices of the cross-day testing over the three days, shown 

in Figs. 18b, 18c, 18d, further indicate that most of the devices 

achieved perfect classification accuracies across the three 

tested days, with only one or two devices causing a small drop 

in performance. 
In comparison, the performance of the IQ-CNN framework 

in cross-domain testing, shown in Fig. 19, is inferior to 

that of the proposed EPS-CNN framework. Our results 

from Fig. 19 indicate that when the deep learning model 

is trained on day 1 data, the average cross-domain testing 

accuracy is 87.5% when tested on day 2 data and 89.2% 

when tested on day 3 data. When the model is trained on 

day 2 data, this average cross-domain testing accuracy is 

89.8% when tested on day 1 data or 87.9% when tested 

on day 3 data. The testing accuracy when the model is 

tested on day 1 or day 2 data but trained on day 3 data 

is 87.5% or 89.2%, respectively. The aggregate confusion 

matrices of the cross-domain testing over the three tested 

days are also shown in Figs. 19c, 19d, 19e. Although 

both EPS-CNN and IQ-CNN frameworks achieved close-to- 

perfect performance in the same-domain testing accuracies, 

the proposed EPS-CNN outperforms the conventional IQ- 

CNN framework in the cross-domain performance metric 

on the three tested days. Our results show that the deep 

learning models when fed with our proposed EPS features 

are highly effective in addressing and mitigating the cross- 

day sensitivity of deep learning-based RF fingerprinting. 

The relatively good performance of conventional IQ- 

CNN fingerprinting in the cross-day metric suggests that 

the indoor wireless channel in this scenario did not change 
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significantly over the three tested days of the experiment. 

This leads us to postulate that time itself is not a factor 

or domain that significantly affects the learning model’s 

performance. Instead, time is simply a space in which various 

events can occur, leading to changes in the environment 

that can affect performance. Hence, we hypothesize that 

in a stable environment, cross-time evaluations may not 

be sufficient, and further tests are necessary to assess 

the model’s performance under varying channel conditions, 

due to changing locations and distances. Our proposed 

EPS-CNN framework indeed maintains high performances 

even under varying locations as shown in our results 

presented earlier in Sec. VII-A and Sec. VII-B. Table. 3 sum- 

marizes the testing accuracies of all setups of the cross-day 

scenario. 

 
D. ADAPTATION TO MODEL CHANGES: ResNet MODEL 

Our previous evaluations focused on the performance of 

EPS-CNN, which combines the EPS representation with 

a CNN model, across various domain changes. To further 

assess the benefits of our EPS representation, we explored 

its integration with ResNet, specifically a tailored variant 

of ResNet-18 [42]. This adapted architecture, named EPS- 

ResNet, leverages the EPS representation and is bench- 

marked against the traditional IQ representation, known 

as IQ-ResNet. This comparison aims to highlight EPS- 

ResNet’s enhanced adaptability and superior performance in 

RF fingerprinting tasks, particularly across different location 

scenarios. 

 
1) ResNet ARCHITECTURE 

In our implementation, this architecture begins with an initial 

convolutional layer that uses 64 filters with a kernel size 

of 64 and a stride of 2, followed by batch normalization 

and a ReLU activation function. This layer is followed by 

a max pooling operation with a pool size of (1, 2) and a 

stride of 2. The core of the ResNet architecture consists 

of four stages, each comprising a series of convolutional 

blocks. First Stage: Two ResNet blocks with 64 filters each, 

where the first block adjusts for the initial feature map 

size. Second Stage: Two ResNet blocks with 128 filters, 

with the first block applying a stride of 2 to reduce the 

dimensionality. Third Stage: Similarly, this stage has two 

blocks with 256 filters, again with the first block applying a 

stride of 2. Fourth Stage: The final stage includes two blocks 

with 512 filters, with the first block reducing dimensions with 

a stride of 2. Each ResNet block in these stages consists of 

two convolutional layers with batch normalization. A shortcut 

connection links the input to the output of these layers, 

which helps in mitigating the vanishing gradient problem by 

allowing gradients to flow through the network. The network 

concludes with a global average pooling layer that helps to 

reduce the dimensions and is connected to a dense layer with 

softmax activation tailored to the number of devices in the 

dataset. 

 

 
 

FIGURE 20. Testing accuracy of IQ-ResNet Vs. EPS-ResNet in 

Cross-Location scenario. 

 

 

2) ResNet’S PERFORMANCE EVALUATION 

Fig. 20 illustrates the testing accuracies for both same-domain 

and cross-domain scenarios of EPS-ResNet compared to 

IQ-ResNet. The data reveals that while IQ-ResNet achieves 

nearly perfect same-domain accuracies across three locations, 

its performance significantly drops in cross-domain tests; 

specifically, accuracies drop to 24% and 73% when trained 

on location A and tested on locations B and C respectively, 

as shown in Fig. 20a. Conversely, EPS-ResNet demonstrates 

a substantial improvement in bridging the gap between 

same-domain and cross-domain performances, achieving an 

average accuracy improvement of 50% across all tested 

locations. For instance, it maintains high testing accuracies 

of 89% and 91% when trained on location A and tested 

on locations B and C respectively. This pattern holds true 

across all tested locations, achieving an average cross- 

domain accuracy of 91%, as shown in Fig. 20b. These 

findings underscore the efficacy of the EPS representation 

in enhancing the adaptability of ResNet to different domains 

and its superior performance over the conventional IQ 

representation. Table. 4 provides a comparative analysis 

of IQ-ResNet, EPS-ResNet, and EPS-CNN under cross- 

location testing, highlighting that despite EPS-ResNet’s 

strong performance, the EPS-CNN framework still excels in 

domain adaptation. 

 
VIII. COMPUTATIONAL EFFICIENCY AND INFERENCE 

LATENCY OF EPS REPRESENTATION EXTRACTION 

In this section, we address the computational efficiency and 

inference latency associated with our EPS representation 

extraction process, as these factors are crucial in RF finger- 

printing systems, particularly in comparison to cryptographic 

authentication methods. 

 
A. COMPUTATIONAL EFFICIENCY AND POWER 

CONSUMPTION 

The EPS extraction is engineered for computational effi- 

ciency, requiring approximately 2,518,678 arithmetic oper- 

ations. This count, while significant, contributes minimally 

to the overall computational load due to the reduction in data 
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TABLE 4. Comparison of testing accuracy of IQ-ResNet, EPS-ResNet, and EPS-CNNon the cross-location scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

size by a factor of two. This reduction not only streamlines 

processing but also decreases the computational demands 

on the neural network. Specifically, the EPS-CNN model 

requires only 3,155,189,619 Floating Point Operations 

(FLOPs), compared to 6,313,136,499 FLOPs needed by the 

IQ-CNN model. Given that the extraction is performed on 

the receiver side, where power constraints are generally less 

severe than on IoT transmitters, this setup is well-suited to 

environments with ample computational resources. 
 

B. INFERENCE LATENCY 

Despite the EPS extraction introducing an initial delay, 

the reduction in input size significantly counteracts this 

increase in latency. In a theoretical scenario where computing 

capabilities reach 1 Tera Operations Per Second (TOPS), 

the EPS extraction adds a mere 2.52 microseconds of 

delay. This minimal increase is balanced by the quicker 

processing enabled by smaller input sizes, resulting in 

inference latencies of approximately 3.16 milliseconds for 

EPS-CNN and 6.31 milliseconds for IQ-CNN. 

These findings underscore that the EPS extraction method, 

by reducing data complexity and optimizing the use of 

available computational resources, aligns with the critical 

requirements of power efficiency and minimal latency in 

effective RF fingerprinting systems. This approach ensures 

that our method remains competitive, even against traditional 

models, offering a balanced solution to the evolving chal- 

lenges in RF authentication. 

 
IX. ON THE IMPACT OF TRANSCEIVER HARDWARE 

WARM-UP AND STABILIZATION PERIOD 

In alignment with best practices for data collection in RF 

fingerprinting, we have ensured that both the training and 

testing datasets were gathered during the stable phase of 

the transmitters, specifically after the warm-up period had 

concluded. Our next step is to explore how the hardware 

stabilization during the warm-up duration impacts the 

performance of device fingerprinting. Specifically, we aim to 

assess how DL-based RF fingerprinting (RFFP) frameworks, 

which have been trained on data collected during the stable 

phase, perform when encountering inference data transmitted 

from devices still within their warm-up period. Despite the 

rich amount of literature available on this RF fingerprinting 

topic, the impact of hardware stabilization and warm-up time 

has not been carefully considered [43]. And for completeness, 

it is our goal here to shed some light on what could go wrong 

had such stabilization aspects not been carefully accounted 

 

 

 

 

 

FIGURE 21. Representations of the RF signal captured from 

Device A and observed at different times during the warm-up 

period of the device. 

 
 

 

for. More specifically, our objective in this section is to 

investigate and study the impact of the transceiver hardware 

warm-up on (i) the observed Envelope behavior of the time- 

domain IQ signals, (ii) the EPS features, and (iii) the overall 

EPS-based device fingerprinting performance. 

 
A. BEHAVIOR OF RECEIVED RF SIGNALS DURING THE 

WARM-UP AND STABILIZATION PERIOD OF THE 

TRANSMITTING DEVICE 

We begin by studying the behavior of the I, Q and 

EPS representations during the hardware warm-up time. 

For this, we closely monitored the IQ signal behavior of 

two off-the-shelf (FiPy) devices from our testbed during 

the initial 20 minutes following device activation. This 

involved capturing 802.11b WiFi packets transmitted by 

the devices using the USRP B210 at a sampling rate 

of 45MSps. The USRP receiver was clocked using an 

external 10 MHz OCXO (oven-controlled, high-performing 

crystal oscillator) reference signal to ensure measurement 

accuracy and stability. 
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FIGURE 22. Representations of the RF signal captured from 

Device B and observed at different times during the warm-up 

period of the device. 

 
 
 

 

We show in Fig. 21 the I, Q and EPS representations 

of the WiFi signal captured on Device A at different times 

during the device warm-up period; i.e., the figure on the 

far-left corresponds to the signal captured one minute from 

when the device was powered on, the figure on the far- 

right corresponds to the signal captured 20 minutes from 

when the device was powered on, and so on. Four important 

observations can be drawn from this figure. First, the 

results confirm the presence of a CFO impairment, which is 

manifested in the observed sinusoidal shape of IQ signal’s 

Envelope, as was illustrated and explained in Section III. 

Second, observe that the I shape (Fig. 21a), Q shape (Fig. 21b) 

and the EPS shape (Fig. 21c) all change over time as the 

device hardware warms up, with the frequency of humps in 

the Envelopes of the I and Q signals increasing over time 

until hardware stabilization. This increase indicates a varying 

CFO value during hardware warm-up time that is resulting 

from the instability of the local crystal oscillators; this finding 

is well aligned with the Envelope behavior observed and 

reported in Sec. III-B and explained in Sec. III-C. Third, the 

I, Q and EPS shapes all seem to converge and stabilize after 

some time (i.e., around 12 minutes in the figure). Note that 

these shapes observed at minutes 12, 15 and 20 resemble 

one another, meaning that the shapes converge at around 

12 minutes from device activation, which indicate that the 

local oscillator has reached a stable operating point by minute 

12. Fourth, observe that the I and Q components vary on the 

opposite direction; i.e., shifted by 180 degrees, at any stage 

during the warm-up period; this also is well aligned with what 

was observed and reported in Sec. III. 

To assess the consistency of these trends across different 

devices, we also monitored these IQ data representations 

based on signals captured from several other devices also 

at different times during the device warm-up period. Our 

experimental results using other devices (we only show one 

more device, Device B, here in Fig. 22) confirm that the 

reported trends are also observed across all other devices, 

although each device exhibits slightly different initial and 

stable shapes. 

 

 

FIGURE 23. Classification accuracy when training data is 

collected at minute 12 (after device stabilization) but testing 

data is collected at 1, 4, 8 and 12 minutes from device activation 

on the same day. 

 

 

B. SENSITIVITY OF RF DATA-DRIVEN DEVICE 

FINGERPRINTING TO TRANSCEIVER HARDWARE 

WARM-UP AND STABILIZATION 

We now show the effect of hardware warm-up that is 

manifested in the observed IQ signal Envelope behavior 

on the device fingerprinting accuracy. For this, we run 

experiments whereby the proposed EPS-CNN framework 

is trained with data collected after stabilization (i.e., after 

12 minutes from device activation) and tested with same-day 

data but collected at various different times during warm-up 

period (i.e., during the initial 12 minutes from the activation 

of devices). To mask the impact of the wireless channel, 

we considered in this experiment the wired setting described 

in Sec. VI-C.1. 

Fig. 23 shows the testing accuracy of EPS-CNN when 

testing data is collected before the device hardware is 

stabilized; that is, at 1, 4, and 8 minutes from when the 

devices are powered on. For ease of comparison, the figure 

also includes the case when the test data is collected after 

device stabilization; i.e., using data collected at minute 12. 

The figure clearly shows the dependency of the achieved 

accuracy on the time at which testing data is collected during 
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warm-up period. Note that the closer to the stabilization time 

the testing data collection takes place, the higher the testing 

accuracy. The figure also confirms that this observed trend is 

consistent across different days. 

 

 

FIGURE 24. Classification accuracy when training data is 

collected at minute 1 and testing data is collected also at 

minute 1 from device activation but on a different day. 

 

One key observation that is worthy of note is that when 

both training and testing are done on data collected at 

about the same time from device activation even during 

warm-up time, the testing accuracy that the learning models 

achieve is not as low as what they achieved when testing 

and training data were done at different times during 

stabilization. For instance, we show in Fig. 24 the accuracy 

when the model is trained on data captured within the 

first minute after activation of one day and tested on data 

collected in the same time (i.e., within the first minute 

from activation) but of another day. The figure demonstrates 

that when the model is trained on minute 1 captures of 

day 1, an average testing accuracy of 70% (resp. 62%) is 

achieved when the model is tested on minute 1 captures of 

day 2 (resp. day 3), which is considerably higher than the 

testing accuracy when the model is tested on stabilized data 

(after 12 minutes) of the same day. These research findings 

indicate a systematic drift in the characteristics of the received 

IQ signals during the stabilization and warm-up period, 

with consistent behavior observed across different days, and 

highlight the challenges faced by the deep learning models 

in recognizing devices during the hardware warm-up period. 

These results thus underscore the importance of considering 

the stabilization aspects of the oscillator hardware (as 

well as the other transceiver hardware components) when 

developing hardware-impairment-driven RF fingerprinting 

techniques for robust device identification and classification. 

It is worth noting that although the performance of DL- 

based RF fingerprinting frameworks like the EPS-CNN is 

impacted by data collected during the warm-up period, these 

frameworks can be effectively integrated with mechanisms 

designed to address these initial fluctuations. This integration 

is vital since the warm-up period often represents a minor 

fraction of a device’s operational lifespan, during which EPS- 

based frameworks otherwise perform exceptionally well. 

This approach ensures that the fingerprinting system remains 

effective and reliable throughout the majority of the device’s 

usage. 

 
X. CONCLUSION 

In conclusion, this paper addresses the limitations of 

conventional RF signal representations in deep learning- 

based RF fingerprinting methods. We propose the Double- 

Sided Envelope Power Spectrum (EPS) as a novel RF 

signal representation that effectively captures device hard- 

ware impairments while eliminating irrelevant information. 

Experimental results demonstrate the superior performance 

of the EPS representation in terms of accuracy, robustness, 

and generalizability across various domains. By leveraging 

EPS, DL-based RFFP methods can achieve unprecedented 

testing accuracy in same-domain evaluations and maintain 

high performance in cross-domain scenarios. The proposed 

representation offers a transformative solution for enhancing 

the security and privacy of wireless networks by advancing 

the accuracy and reliability of device identification through 

RF fingerprinting. Finally, we release large WiFi 802.11b 

datasets containing captures for different scenarios to allow 

others to further investigate these fingerprinting issues. 
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