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ABSTRACT Deep learning (DL)-based RF fingerprinting (RFFP) technology has emerged as a powerful
physical-layer security mechanism, enabling device identification and authentication based on unique device-
specific signatures that can be extracted from the received RF signals. However, DL-based RFFP methods face
major challenges concerning their ability to adapt to domain (e.g., day/time, location, channel, etc.) changes
and variability. This work proposes a novel IQ data representation and feature design, termed Double-Sided
Envelope Power Spectrum or EPS, that is proven to significantly overcome the domain adaptation challenges
associated with WiFi transmitter fingerprinting. By accurately capturing device hardware impairments while
suppressing irrelevant domain information, EPS offers improved feature selection for DL models in RFFP.
Our experimental evaluation demonstrates the effectiveness of the integration of EPS representation with a
Convolution Neural Network (CNN) model, termed EPS-CNN, achieving over 99% testing accuracy in same-
day/channel/location evaluations and 93% accuracy in cross-day evaluations, outperforming the traditional
IQ representation. Additionally, EPS-CNN excels in cross-location evaluations, achieving a 95% accuracy.
The proposed representation significantly enhances the robustness and generalizability of DL-based RFFP
methods, thereby presenting a transformative solution to IQ data-based device fingerprinting.

INDEX TERMS RF/device fingerprinting, domain adaptation, RF datasets, deep learning feature design,
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oscillators, RF data representation, envelope analysis, hardware impairments.

. INTRODUCTION

EEP learning (DL)-based RF fingerprinting (RFFP)
D emerges as a powerful physical-layer security mecha-
nism [1], [2], [3], [4], [5], [6], enabling device identification
and authentication through the extraction of unique device
fingerprints embedded in the devices’ transmitted RF signals.
These fingerprints arise as a result of inherent hardware man-
ufacturing imperfections of various RF circuitry components
(e.g., local oscillators, mixers, power amplifiers) yielding RF
signal distortions [2], [7] that collectively shape distinctive
device signatures that can be extracted using DL models.
Although DL has eliminated the need for data preprocessing
and domain-knowledge to extract features from raw RF data,
most of the DL-RFFP approaches rely on the assumption
that the training and testing data are drawn from the same
distribution, which falls short of the conditions of realistic
RF scenarios [8], [9]. In other words, these approaches do

not perform well in practical scenarios, in which the testing
data is collected under a domain that is different from that
used during training, where a domain here refers to a network
condition (e.g., setting, environment) under which data is
collected. This includes the collection time, the channel
condition, the receiver hardware, the device location, and the
protocol configuration, as well as other aspects. Therefore,
any considerable change in the testing versus training settings
yields a different domain, and as such, we define robustness
to domain changes as the ability of a learning model to
maintain its training domain performance when tested under
new domains. This is often referred to as domain adaptation
in the machine learning community.

Several experimental studies using LoRa and WiFi devices
(e.g., [7],[10], [11], [12]) have revealed the sensitivity of DL-
based RFFP approaches to domain changes, thereby limiting
their practical adoption to security applications. Unraveling

2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

1404

VOLUME 2, 2024


mailto:(elmaghba@oregonstate.edu
https://orcid.org/0000-0003-3704-6056
https://orcid.org/0000-0002-6085-4505

Elmaghbub and Hamdaoui: Distinguishable IQ Feature Representation

such sensitivity issues is a complex task involving two black
boxes: the deep learning model and the microelectronic
circuitry of the RF devices. However, it is widely believed
that the wireless channel, influenced by various confounding
factors, plays a significant role in the failure of these
approaches to adapt and generalize to different domains.
To address the impact of the channel and enhance domain
generalization, some studies have focused on removing
channel dynamics from the raw signal through techniques
like channel equalization [12], [13], [14], [15] or hardware
impairment compensation [6]. However, these approaches
have drawbacks. Channel equalization can inadvertently
remove crucial device-specific features, resulting in dis-
criminative information loss and poor RF fingerprinting
performance [16]. Impairment compensation techniques,
on the other hand, target specific channel impairments,
limiting their generalizability across different environments
and wireless channels.

Recent advancements in domain adaptation techniques
have sparked interest for their potential to boost the
robustness of RF fingerprinting systems by reducing domain-
related biases in feature vectors. These methods, including
adversarial learning, adversarial disentanglement learning,
and cycle-consistent generative adversarial networks, show
promise in distinguishing device-specific characteristics
from those tied to the operational domain [17]. Despite
their potential, these techniques face significant challenges
that question their practicality in real RF fingerprinting
contexts. For instance, [18] utilizes adversarial domain
adaptation paired with a k-NN classifier on a modest dataset
of 10 HackRF WiFi devices. Its two-day evaluation yields a
classification accuracy of 64%, underscoring difficulties in
reaching the accuracy needed for reliable RF fingerprinting.
Moreover, the dependence on target domain data for effective
training and fine-tuning presents an additional challenge.
This reliance is problematic because access to target data may
not always be available beforehand, and being constrained
to a single-domain adaptation can lead to biases toward
that specific target domain. Consequently, this necessitates
retraining or fine-tuning the system each time there is a
change in the target domain, such as a different day/location
in our case studies. Similarly, [19] employs a combination
of disentanglement representation and adversarial learning,
tested on 50 WiFi devices. While it shows some success in
short-term evaluations, its performance drastically declines
in longer-term assessments, with an average accuracy
plummeting to 15% over several days, which signals issues
with maintaining effectiveness over time. Furthermore, [20]
leverages a cycle-consistent generative adversarial network
to create an environment translator aimed at separating
hardware impairments from channel and environmental
influences. Although this model achieved 83% accuracy in
tests with a small dataset of 5 WiFi devices, its accuracy fell
to 34% when applied to a larger group of 20 devices. These
examples illustrate that while domain adaptation methods
hold potential, their current applications in RF fingerprinting
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still encounter substantial hurdles that must be addressed
to enhance their viability and effectiveness in real-world
scenarios.

Most DL-based RFFP approaches use the time-domain
IQ representation of the received RF signal as the input
for the learning models. This is because of the ability
of these models to extract relevant features from the raw
IQ data without needing preprocessing or prior domain
knowledge. However, recent studies [7], [21] have indicated
that DL models relying solely on IQ values fail to adapt to
domain changes, such as changes in the wireless channel
and/or receiver hardware [22]. This phenomenon may arise
because 1/Q data representations often include a substantial
amount of extraneous information that does not pertain
directly to hardware fingerprinting, such as conveyed content
and other domain-specific features. As a result, models
are prone to overfitting to specific training environments
like the communication channel, receiver hardware, and
device placement, rather than effectively learning the unique
hardware characteristics of each device [11]. Additionally,
deep learning models that utilize neural network layers
originally designed for image processing often struggle
to extract relevant information from time-domain signal
samples [23]. This mismatch in model design can lead
to poor generalization when faced with new 1/Q data that
slightly varies in signal parameters from the training set. Our
discussion does not seek to entirely dismiss the value of deep
learning models from other domains. Instead, it emphasizes
the need for a nuanced approach to adapting these models
for RF fingerprinting. This adaptation is crucial to address
the unique challenges posed by RF data, underscoring the
importance of developing novel RF data representations that
effectively capture the hardware impairments of devices
and align more closely with the operational strengths of
these models. Such tailored representations can enhance the
feature selection process, enabling the models to focus on
relevant and reliable features and reducing their reliance on
misleading data.

To fulfill this need, this paper proposes a novel RF data
representation that significantly enhances the robustness of
DL-based RFFP methods to domain changes. Our motivation
stems from the realization that raw IQ data representation
contains a significant amount of device-irrelevant informa-
tion. Consequently, extracting meaningful fingerprints from
this raw IQ data becomes akin to finding a needle in a
haystack filled with numerous deceptive needle-like objects.
We overcome this limitation by proposing a novel RF data
representation that vividly captures the device’s hardware
impairments while suppressing device-irrelevant informa-
tion [24]. Specifically, the proposed data representation
closely mirrors the impaired behavior of a key RF hardware
component, the oscillator, whose impairment substantially
contributes to the device’s unique fingerprint [25], [26], [27].
To generate this representation, we extract the outer shape or
envelope of the IQ signal, eliminate the resulting amplitude
offset, and calculate the double-sided envelope’s power
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spectrum or simply EPS, yielding a novel data representation
of the 1Q signal that serves as an effective input for machine
learning classifiers.

Through extensive evaluation on a testbed of 15 Pycom
devices, running IEEE 802.11b WiFi protocol, we demon-
strate the effectiveness of our proposed approach in real-
world scenarios. Our experimental results show that when
combined with standard CNN (Convolution Neural Net-
work) models, the proposed EPS-based device fingerprint-
ing framework achieves outstanding performance. Notably,
it achieves a testing accuracy of over 99% in same-domain
(day or location) scenarios, where training and testing are
done on the same day/location. More importantly, in cross-
location scenarios, the proposed framework maintains a
testing accuracy of over 95%, whereas the same model
trained with the conventional IQ representation achieves
only 55%. Therefore, our EPS representation offers a
transformative solution that significantly advances the RF
fingerprinting field by substantially improving the accuracy
and generalizability of DL-based RFFP approaches.

Our key contributions can thus be summarized as follows:

- We propose EPS, a novel RF signal representation
input to DL-based RFFP approaches that substantially
enhances the accuracy, robustness, and generalizability
across various domains and hardware configurations.

- We demonstrate through extensive experimentation the
distinguishability and reliability of the EPS repre-
sentation across time, channel, location, and receiver
domains, justifying its applicability to RF fingerprinting
applications.

- We release massive 8TB IEEE 802.11b WiFi datasets
of 15 Pycom devices that include both raw and processed
files for more than 5000 packets for each device for
four scenarios: Wired Setup, Wireless Setup, Different
Locations Setup, and Random Deployment Setup.

- We extensively assess the performance of EPS when
used as an input to a standard CNN, EPS—-CNN, for
classifying Pycom devices and showcase an exceptional
cross-domain performance in real-world scenarios,
achieving an average testing accuracy of 93% and
95% respectively for the cross-days and cross-location
scenarios.

- We evaluate the effectiveness of integrating the EPS rep-
resentation with other models, using the ResNet-18
model as a case study. This integration demonstrated a
significant improvement, achieving a +50% increase in
accuracy compared to the traditional ResNet-18 model
which uses an IQ input.

- We demonstrate the impact of the carrier frequency
instability during device hardware warm-up and stabi-
lization on the performance of DL-based RFFP.

The rest of the paper is organized as follows. Sec. II
presents the related works. Sec. III studies the impact of
carrier frequency offset and inaccuracy on the behavior of IQ
signals. Sec. IV presents the proposed 1Q data representation
approach, EPS. Sec. V presents the proposed EPS-based
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device fingerprinting framework. Sec. VI describes the
testbed and the WiFi datasets used for the proposed frame-
work evaluation, presented in Sec. VII. After that, Sec. VIII
discusses the computational efficiency and inference latency
of the EPS representation, and Sec. IX highlights the impact
of hardware warm-up and stabilization on RF fingerprinting
accuracy. Finally, the paper is concluded in Sec. X.

Il. RELATED WORK

Prior works that aimed to address the domain generalizability
challenges of DL-based RFFP can be broadly categorized
into two approaches: data-centric and architecture-centric.
For the data-centric approaches, various data augmentation
techniques have been explored to expose the DL models to a
wider range of wireless channel instances, thereby enhancing
their robustness against channel variations. For instance,
Soltani et al. [28] and Al-Shuwaili et al. [29] integrated
data augmentation engines into the training process. These
engines incorporated WLAN TGn and ITU-R channel
models, respectively, along with an additive white noise
model. While these techniques demonstrated a marginal
improvement in testing accuracy, they do not offer a
practical and scalable solution suitable for commercial
deployment. Additionally, due to the intrinsic nature of
wireless channels, it is challenging and impractical to devise a
universal channel-augmenting model capable of significantly
improving performance across a wide range of wireless
channels. Other data-centric approaches mitigate the impact
of the channel through channel equalization [12], [13], [14]
or impairment compensation [6].

For the DL architecture-centric approaches, researchers
have formulated the RFFP generalizability challenge as a
domain adaptation problem [22], [30] and capitalized on the
advancement in transfer learning to address it. The underlying
assumption in these frameworks is that the source and target
domains exhibit slightly different distributions. One notable
domain adaptation framework, ADL-ID [19], integrates dis-
entangled representation learning with adversarial learning to
tackle the challenge of short-term temporal generalization in
RFFP. ADL-ID involves segregating the feature vector into
two distinct components: device-specific (fingerprints) and
domain-specific features. During the inference stage, only
the device-specific features, which encompass characteristics
that remain invariant across the source and target domains,
are utilized. Similarly, SignCRF [20] leverages a cycle-
consistent generative adversarial network to construct an
environment translator that effectively decouples hardware
impairments from channel and environmental conditions.
Adversarial domain adaptation techniques have also been
employed in this context. For instance, RadioNet [18§]
adopts an adversarial learning scheme, utilizing a domain
discriminator and a reversal gradient layer to minimize
the domain-related information in the feature vector. The
trained feature extractor is subsequently connected to a KNN
classifier fine-tuned using the target data. Following a similar
calibration approach, the Tweak approach, proposed by
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Gaskin et al. [22], combines metric learning with lightweight
calibration using the target data to enhance generalization
across hardware, channel, and configuration dimensions.

While these domain adaptation methods provide valu-
able insights in enhancing RFFP generalizability, they
exhibited limitations in providing satisfactory performance
for medium-scale testbeds. Furthermore, they encounter
challenges when faced with significant distribution gaps
between the enrollment and deployment datasets or when
confronted with unseen environmental conditions that differ
from the target domain employed during adaptation.

lll. UNDERSTANDING THE IMPACT OF CARRIER
FREQUENCY INACCURACY ON IQ SIGNAL BEHAVIOR
Local oscillators are the transceiver hardware components
that are responsible for producing oscillating signals needed
for signal up-conversion at the sender side and for signal
down-conversion at the receiver side. The inaccuracy and
instability of the oscillating signal’s frequency, typically
caused by external factors like temperature, vibration, and
electromagnetic interference, impact the overall system
performance behavior. As such, in an effort to improve
their robustness to these external factors, various types of
different crystal oscillators have been developed over the
years, including temperature-controlled crystal oscillators
(TCXOs), which feature temperature compensation, and
oven-controlled crystal oscillators (OCXOs), which place
the crystal in a temperature-controlled environment to keep
their temperatures at a constant level, thereby improving the
accuracy of their oscillating frequencies [31].

A. THE CARRIER FREQUENCY OFFSET (CFO)
IMPAIRMENT
This study concentrates on hardware impairments caused
by oscillator frequency inaccuracies, specifically the Carrier
Frequency Offset (CFO), which often results in signal
distortion. This focus is driven by a comprehensive review
of existing literature, which consistently identifies oscillator-
caused impairments as notably distinguishable hardware
imperfections. For instance, [25] ranks ‘‘frequency error’’
as the most effective metric for establishing radiometric
identity. Similarly, [26] emphasized the distinctiveness of
CFO imperfections, considering them the most identifiable.
Moreover, findings from [27] underscore that CFO, linked
to crystal imperfection, varies significantly across devices
while remaining consistent over time, making it an ideal
fingerprinting feature due to its immunity to software
spoofing. This is echoed in the context of WiFi fingerprinting,
where studies, including [32], [33], have identified CFO
and IQ imbalance as the most separable features for WiFi
fingerprinting. Moreover, [34], [35] further support this,
indicating that oscillator imperfections can be accurately
identified, even under challenging conditions such as low
SNRs or short observation sequences.

Building on this understanding, it becomes clear that while
CFO information is inherently present in the time-domain
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1Q representation of RF signals, the challenge arises when
DL-based RFFP frameworks attempt to generalize this data
across different domains. Recent findings, [7], [11], reveal
significant shortcomings in these frameworks’ ability to
adapt when tested under varied conditions. For example,
models trained on data from one day often exhibit a marked
decrease in testing accuracy when evaluated on data collected
from a different day [22]. These observations underscore
the necessity for developing new RF signal representations
that not only enhance feature selection processes but also
bolster the domain adaptation capabilities of DL models.
Our work responds to this need by proposing robust RF
signal representations that effectively capture and utilize
CFO impairments as distinctive features, thereby improving
the adaptability of RFFP systems to domain variations.
To effectively address this, it is crucial to thoroughly
study and comprehend how carrier frequency offset and
inaccuracies impact the behavior of received 1Q signals.

B. THE IMPACT OF CARRIER FREQUENCY INACCURACY
To acquire a good understanding of the impact of the
oscillating frequency inaccuracy on the IQ signal behavior,
we leveraged our experimental testbed of 15 Pycom/IoT
devices to observe, analyze, and compare the 1Q signals
collected from multiple different (but identical in hardware)
off-the-shelf devices. This is done by having each of
the 15 Pycom devices transmit multiple IEEE 802.11b WiFi
packets after being powered on for more than 12 minutes
to ensure hardware stabilization. We want to emphasize
here the importance of waiting until the end of the warm-
up/stabilization period of the devices’ hardware before
performing data collection to ensure robust and consistent
measurements; we provide further explanation and illustra-
tion on this in Sec. IX. The transmitted signals are then
captured and sampled at 45MSps using a USRP B210
receiver. More description and details on the testbed are
provided later in Sec. VI.

We show in Fig. 1 the time behavior of both the I (in-
phase) and Q (quadrature) signal components collected from
Devices A, B, and C. Two key observations we draw from
this experiment. First, observe the ‘sinusoidal’ behavior that
the envelopes' of both the I and Q signals exhibit. More
importantly, note that the number of “humps’ of the envelope
changes across the devices: 12.5 for Device A, 19.5 for
Device B, and 5 for Device C. Second, observe that the I and
Q envelopes of a given device vary in the opposite direction—
i.e., shifted by 180 degrees, though still exhibiting the same
number of ‘humps’. It is also worth mentioning that although
shown for only three devices here, these reported sinusoidal
behaviors of the 1Q signals’ envelopes are observed across all
of the 15 tested Pycom devices, with each device exhibiting
a slightly different number of humps.

IThe envelope of an oscillating signal is the smooth boundary function
that outlines the extremes of the signal (e.g., see [36], Appendix C).
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The questions that arise now are: (i) what is the cause of the
observed sinusoidal behavior of the IQ signal envelope? and
(i1) why does the number of ‘humps’ differ from one device
to another? We will show that the main cause behind such
behavior is the CFO (carrier frequency offset) between the
Pycom device’s oscillating frequency and that of the USRP
receiver that exists due to the instability and inaccuracy of the
device’s local oscillator. Specifically, we will next show that
the number of humps in the sinusoidal envelope depends on
the CFO value. This explains that the reason why different
devices exhibit different numbers of humps is because
each device presents a different CFO, which varies across
devices due to the device’s oscillator hardware imperfections
incurred during manufacturing. Later in Sec. IX, we will also
demonstrate that the CFO value (and hence the number of
humps) of a given device keeps changing over time until
the device hardware is stabilized; i.e., the CFO value keeps
varying over time until the end of the hardware warm-up
period. This is due to the instability that the carrier frequency
exhibits when the oscillator hardware of the device is still
warming up.

Device A - 12.5 humps

Device B - 19.5 humps Device C - 5 humps
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(a) The In-Phase (I) component of WiFi packets
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FIGURE 1. The time-domain IQ signal behavior across three
different Pycom devices. The number of ‘humps’ are: 12.5 for
Device A; 19.5 for Device B; and 5 for Device C.

C. THE CAUSE OF THE OBSERVED ENVELOPE
BEHAVIOR

We now demonstrate and affirm that the CFO impairment
is what is behind the sinusoidal behavior of the IQ signal’s
Envelope illustrated in Sec. I1I-B above.

1) ANALYTIC AFFIRMATION

In this subsection, we analytically examine the sinusoidal
behavior of the IQ signal’s envelope, focusing specifically on
how the CFO impairment is responsible for this phenomenon.
This analytical exploration will reveal the underlying mech-
anisms by which CFO influences the signal’s characteristics.
To illustrate, consider a baseband signal a(f) exp (j@(f))
modulated by an oscillating signal with a carrier frequency
fc and a CFO, f..f. The passband transmitted signal can be
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expressed as:

s(2) = a(?) cos2n(fe + f.)t + (b))

At the receiver side, the In-phase (I) component, r; (),
of the received signal can be recovered (demodulated) as:

ri(f) = s(f) cos(2mf 1)

Due to the CFO (i.e., the carrier frequency at the receiver
is slightly different from the carrier frequency used by the
sender), the phase of the wave shifts over time, causing the
amplitude of the received signal to vary sinusoidally over
time. This can be seen by rewriting r;(¢) as

ri(t) = ?[cos@n@fc + .0t + @)

+ cos(2mtf..ft + (¢))]

While the left term in the equation above represents the
frequency sum of the two frequencies, typically filtered out
by a bandpass filter, the right term represents the frequency
difference which is, in this case, the carrier frequency
mismatch or CFO, f..f, between the local oscillators of the
transmitter and the receiver. When CFQ. f..f _ 0, the
second term becomes 1 and the signal maintains a scaled

version of its original amplitude, ﬂzﬁ (e.g. corresponding
to Fig. 2a in the simulation case). However, a frequency
mismatch will cause the received signal to be modulated at the
frequency f..f, resulting in an amplitude of 4% cos(27f. fi 4
@(?)). This analysis clearly illustrates how the CFO, when
nonzero, modulates the amplitude of the received signal,
directly impacting its characteristics.

2) SIMULATED AFFIRMATION

To further substantiate our analysis, we now extend our
affirmation into a practical scenario by simulating the
impact of CFO within an actual WiFi system. Using
MATLAB’s WLAN toolbox, we crafted a model to simulate
IEEE 802.11b WiFi DSSS waveforms with various CFO
impairments, including 0 Hz, 50 Hz, 100 Hz, and 200 Hz.
The CFO-impaired transmitted signal is first passed through
an AWGN channel, and then down-converted and sampled
by the receiver to generate IQ data samples. For each case,
we collected 10 WiFi frames, with each frame having a size
of 1000 bits. Then, we extracted the real (I) components of the
signals and plotted them separately for CFO=0 in Fig. 2a,
CFO —=50Hz in Fig. 2b, CFO = 100Hz in Fig. 2c, and
CFO 2200Hz in Fig. 2d. The simulated results clearly show
the dependency between the CFO values and the number of
observed ‘humps’ in the I signal’s envelope, and that the CFO
is what causes the observed Envelope shape. The same trends
were observed for the Q signal components as well, but we
did not include them here to limit redundancy.

We want to mention that we also experimented with
varying other hardware impairments, including IQ imbal-
ance, Phase Noise, and DC offset, but have not noticed any
‘sinusoidal’ behavior of the envelopes. This confirms that
other transceiver hardware impairments, though do manifest
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themselves in other types of distortions, do not yield the
envelope behavior we observed with the CFO impairment.

15 1.5

1 1

0.5 0.5

() @
3 3
= 0 2 0
[=% [=%
faos £os
-1 -1
-1.5 -1.5
0 0.5 1 15 2 25 0 0.5 1 15 2 2.5
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(1) CFO = 0 (ideal scenario) (b) CFO = 50 Hz
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(c) CFO = 100 Hz () CFO = 200 Hz

FIGURE 2. The | component of WiFi packets generated using a
simulated WiFi system with CFO impairment blocks.

In conclusion, we confirm that these observed device-
dependent, sinusoidal envelope behaviors of the IQ signals
collected from the different off-the-shelf PyCom devices
are indeed attributed to the CFO impairments. These CFOs
exist because the carrier frequency generated by the local
oscillator at the USRP receiver is (slightly) different from that
generated by the local oscillator at the Pycom device. These
demonstrations also confirm that devices with (even slightly)
different oscillating frequencies yield different numbers of
‘humps’ in the received signals’ envelope. And this work
leverages such a difference in the number of humps across
different devices to propose efficient IQ representations
that are shown to significantly improve the accuracy and
robustness of DL-based RF fingerprinting to domain changes.

IV. NOVEL 1Q DATA REPRESENTATION FOR
DISTINGUISHABLE NEURAL NETWORK FEATURES

In this section, we begin by presenting a novel IQ signal rep-
resentation/feature extracted from the oscillator’s envelope
shape (observed and explained in the previous section) that
substantially improves the robustness of device fingerprinting
to domain changes and variations. We then evaluate the
effectiveness of the proposed feature design vis-a-vis of its
fingerprinting ability to (i) distinguish between devices and
(1) adapt to domain changes by maintaining high accuracy
performance under varying domains.

A. CAPTURING THE OSCILLATOR’S ENVELOPE
BEHAVIOR

In order to extract the CFO value resulting from the mismatch
between the sender’s and receiver’s oscillating frequencies,
which is embedded in the signal’s envelope shape as observed
and explained in Sec. III, we first create the analytic signal,
z(#), of the time-domain representation of the receiver packet,
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r(f). The analytic signal z(¢) is a complex-valued signal,
comprising the original signal, 7(¢), as its real part and the

ilbert transform (HT) of as its imaginary part, and can
encert)e tten ag z(t; r% +jHT (r(t)% whE T () =

7lr _°°oo r(’—f)d t. Formally, the envelope e(f) of r(¢) is the
magmtude of'its analytic signal; i.e.,

e(t) 2 |z()| = r(®)* + HT (1)) M

B. THE PROPOSED IQ DATA REPRESENTATION: THE
DOUBLE-SIDED ENVELOPE’S POWER SPECTRUM (EPS)
After extracting the envelope of the IQ signal using the
analytic signal presentation as described in Sec. IV-A,
we remove the DC offset of the envelope and compute
its normalized double-sided power spectrum, which results
in one main sideband and its harmonics on each side.
We propose this double-sided envelope’s power spectrum,
termed EPS for short, as the new IQ data representation to
use as input to the deep learning models. As we show later,
this improves the models’ accuracy significantly and makes
them highly robust to the domain adaptation challenges we
described in Sec. 1. Fig. 3 shows the three stages involved
in extracting EPS from a WiFi frame sent by one of the
Pycom devices. The figure at the top displays the time-
domain I component values of the WiFi frame, which exhibits
sinusoidal variations in amplitude due to the impairments
of the crystal oscillator. The figure in the middle depicts
the extracted envelope of the frame using the analytic signal
representation. The figure at the bottom shows the double-
sided envelope’s power spectrum, EPS.

Time-Domain 1Q Representation (In-Phase)

Amplitude
o

0 5000 10000 15000 20000 25000

1 f'm'.‘.' \wr\["'ﬂ\ ‘f(\.“

! ‘\I ‘||f \”‘ ‘||‘| |‘f‘ \I \| U I U | ‘IJI I\II‘I \HI U I‘J H U

Envelape Representation

Amplitude

Double-Sided Envelope's Power Spectrum Representation
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=

L

0.3 0.2 01 0.0 071 [F]
Normalized Frequency n A radiansisamples)

FIGURE 3. Extracting the EpPsS feature from a WiFi frame.

C. EPS DISTINGUISHABILITY ACROSS DIFFERENT
DEVICES

In the context of RF fingerprinting, a signal representation
that exhibits distinctive device-specific characteristics is
critical. The proposed EPS feature possesses this property,
as it captures the local oscillator’s behavior, which is affected
by the oscillator’s unique hardware impairments. To validate
this hypothesis, we conducted an experimental evaluation
using our testbed consisting again of 15 Pycom devices,
running the IEEE802.11b protocol and a USRP B210 receiver
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(more testbed details are provided later in Sec. VI). Our
results depicted in Fig. 4 reveal that the EPS representation is
indeed unique for each device, as evidenced by the discernible
differences, across the 10 studied devices, in the shape and
location of the main sideband and its harmonics. Moreover,
this representation or feature contains thousands of samples,
making it a high-dimensional data type that can benefit
from non-linear dimensionality reduction techniques such
as t-distributed stochastic neighbor embedding (t-SNE) [37].
By visualizing the representation of 3000 packets from each
device using t-SNE, as shown in Fig. 5, we demonstrate
that the EPS representation extracted from more than
40, 000 packets is well-separated and suitable as an effective
input for device classification. This will be further validated
through experimental results that are presented later in
Sec. VIIL.

D. EPS ROBUSTNESS TO DOMAIN CHANGES

Exhibiting unique device-specific features is necessary but
insufficient for a representation to serve as a good fingerprint
for device classification. If a representation of a device
varies randomly each time the signal is captured, it cannot
offer a reliable fingerprint and therefore cannot be utilized
as an input for the device classification system. Hence,
after we showcased the distinguishability property of the
EPS representation using our testbed, we now test its domain-
adaptation ability by examining its robustness to maintaining
device separability when there is a change across domains.
And we do so by considering three domains: time, channel,
and location.
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1) TIME-AGNOSTIC FINGERPRINTING

The establishment of stability over time in any proposed
representation is of paramount importance for the practical
implementation of RF fingerprinting systems, particularly in
dynamic real-world environments where temporal changes
are expected. Factors such as the movement of people, and
varying usage of surrounding WiFi access points, contribute
to a variable RF landscape over time. Such environmental
changes, compounded by shifts in office occupancy and
ambient temperature throughout the day, underscore the
importance of assessing the robustness of RF fingerprinting
systems across temporal variations. Additionally, it’s note-
worthy that the power cycling of radios - turning devices
off and then on - has been identified as a factor affecting
RF fingerprints [38]. These conditions demonstrate that even
within the same physical setting, time itself is a dimension
where different variables can impact system performance,
highlighting the need for time-agnostic properties in RF
fingerprinting technologies. To ascertain the robustness and
temporal reliability of our proposed Double-Sided Envelope
Power Spectrum (EPS) representation, a comprehensive set
of experiments was performed on our testbed, comprising
15 devices transmitting 802.11b packets. To capture the
stability of the devices over time, we employed a wired
connection as described in Sec. VI-C.1 and initiated the
data-capturing process 20 minutes after the devices were
activated, so as to ensure hardware settling and stabilization.
Precisely, packet captures were obtained at specific intervals,
namely 1 minute, 3 minutes, 8 minutes, 1 hour, 2 hours,
1 day, and 2 days, spanning three consecutive days. For each
individual device, the EPS representation was extracted from
the recorded packets at the aforementioned time points over
the three-day period. Fig. 6 depicts the plotted results for
four representative devices, clearly showcasing that for each
device, all the EPS representations extracted at the different
time intervals overlap. This demonstrates that the proposed
EPS representation is time agnostic and remains unchanged
over time. This uniformity in the EPS representation
was consistently observed across all 15 devices (though
shown only for 4 devices in the paper), thus providing
compelling evidence of the stability and reliability of our
proposed EPS representation over time. Furthermore, these
findings underscore the efficacy of EPS in mitigating the
sensitivity to temporal variations encountered in DL-based
RF fingerprinting techniques.

2) CHANNEL-AGNOSTIC FINGERPRINTING

To investigate the impact of the wireless channel on the
stability and consistency of EPS, we conducted the following
experiment in an indoor environment. The devices were
positioned at a fixed distance of 1 meter from the receiver,
and packet captures were performed over a duration of
three consecutive days, as detailed later in Sec. VI-C.2. The
objective of this investigation was to compare the EPS rep-
resentations of packets corresponding to each individual
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FIGURE 7. Channel-domain scenario showing the EPS representations of 4 different devices extracted under both wired and

wireless setups, each over three days.

device across both the wired and wireless channels over
time, thereby discerning the influence of channel variations
over time. Fig. 7 presents the graphical representations of
the EPS features obtained from four distinct devices under
both wired and wireless channel conditions. Notably, the
figures effectively demonstrate that the EPS representation
of each device remains unaltered regardless of the underly-
ing channel characteristics. This observation unequivocally
establishes the inherent stability and reliability of our
proposed EPS representation, even in the presence of wireless
channel effects, over the course of three consecutive days.
Importantly, this behavior was consistently observed across
all 15 devices, thereby fortifying the empirical evidence
supporting the robustness and efficacy of our proposed EPS.
Consequently, these findings firmly substantiate the ability
of the EPS representation to effectively mitigate the potential
sensitivity to channel variations encountered in DL-based RF
fingerprinting methods.

3) LOCATION-AGNOSTIC FINGERPRINTING
Changing the distance between the transmitting devices
and the receiver after training can also lead to a drastic
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drop in performance. To evaluate the robustness of the
EPS representation to such distance changes, we captured
data at three different locations with the devices being placed
Im-away (Location A), 2m-away (Location B), and 3m-
away (Location C) from the USRP receiver; this setup is
shown in Fig. 13 and discussed in more detail in Sec. VI-C.3.
Fig. 8 shows the EPS representation of WiFi packets from
four devices over the three different locations. To extend the
reliability test with regard to location and distance, we also
considered another realistic scenario in which the devices
were randomly deployed within a radius of 3m from the
receiver as shown in Fig. 14 (refer to Sec. VI-C.4 for more
details). The corresponding EPS representations are depicted
as Location D (random) in Fig. 8. The plots in Fig. 8 manifest
the stability of the EPS feature representation over the
four studied location scenarios as the signal representations
of the four locations completely overlap. To evaluate the
EPS representation’s consistency across locations under
different environmental conditions, we conducted outdoor
tests near the Kelley Engineering building on the Oregon
State University campus. These experiments were carried out
at distances of one, two, and three meters from the receiver
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and close to a main pedestrian path—on a busy day to simulate
a dynamic environment. The resulting consistency of the
EPS representations of four different devices, depicted in
Fig. 9, confirms the robustness of our representation even
in varied outdoor environments. Our findings confirm the
stability of the EPS representation in indoor and outdoor
scenarios in which the location, distance, and time of the
training and testing sets are different, again making the
proposed EPS a more reliable and robust input for DL-based
RF fingerprinting methods.

4) RECEIVER-AGNOSTIC FINGERPRINTING

To investigate the robustness of the EPS representation
against variations in receiver hardware, we designed and
executed a controlled experiment using two USRP B210
receivers, each known for its reliable RF performance
and flexibility in various signal processing tasks. The test
involved data collection from four FiPy devices, randomly
selected from our testbed. Data acquisition was carried
out sequentially—first with one receiver and subsequently
with the other—under indoor conditions. All transmitters
were connected through a wired setup and powered via
a USB hub, ensuring consistency in the power supply.
Each receiver operated independently on its own internal
clock, thus varying the only variable, the receiver unit. The
EPS representations of all captured packets were generated
and subsequently analyzed to determine the consistency of
the EPS representation across the two different receivers.
The analysis, visually summarized in Fig. 10, illustrates
a remarkable stability of the EPS representation for the
four tested devices across both receivers, as shown by
the perfectly overlapping EPS plots. This visual evidence
underscores the EPS representation’s robustness to changes
in receiver hardware within the confines of our experimental
setup. Although the results are promising, they should be
considered preliminary in establishing the EPS’s universal
receiver-agnostic properties. Further comprehensive testing
with receivers from different manufacturers is essential to
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fully validate and confirm the receiver variability robustness
of the EPS representation.

V. THE EPS-BASED FINGERPRINTING FRAMEWORK
FOR DOMAIN-AGNOSTIC DEVICE CLASSIFICATION
Maintaining good performances of RF fingerprinting when
faced with domain shifts due to changes in channel
conditions and/or device location/distance has proven to
be very challenging, hindering the widespread adoption
of RF fingerprinting technology in real-world applications.
Our proposed fingerprinting framework, based on the pro-
posed EPS feature representation, has demonstrated stable
behavior across various settings and increased resiliency to
domain changes, thereby overcoming the aforementioned
challenges.

In this section, we evaluate the effectiveness of the
proposed EPS feature representation vis-a-vis of its ability to
adapt to domain (channel, time, and location) changes when
the EPS data is used as an input to a typical Convolutional
Neural Network (CNN) device classifier [2], [14], [39], [40].

A. AN OVERVIEW OF THE PROPOSED EPS-CNN
FRAMEWORK

At its high level, the proposed EPS-CNN framework, shown
in Fig. 11, consists of an EPS generator, which takes the
complex-valued IQ representation of a received frame, 7(?),
as an input and then processes the I (In-phase) and Q
(Quadrature) components separately. For each frame, the
EPS generator first extracts the envelope of the signal,
e(t), and then generates the EPS representation of the two
components: EPS(I) and EPS(Q). Refer to Sec. V-B for
details about the EPS representation generation. The two
EPS representations are then concatenated into a tensor (e.g.,
of size 2 X4096) and passed to the CNN network that
extracts the suitable features using the six convolution blocks
followed by three fully connected layers and a Softmax layer.
The CNN is also responsible for learning a classifier from
the extracted features to accurately predict the corresponding
device of the incoming frame (Device 1).
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B. EXTRACTION OF EPS REPRESENTATION

The implementation we used to extract the signal’s envelope,
e(?), from the received signal, r(f), is shown in Fig. 11;
refer back to Sec. IV-A for the derived e(f) expression.
We construct the analytic signal by first passing the 1Q values
of the received frame through an FIR Hilbert transform filter
based on the Parks-McClellan algorithm [41] implemented in
MATLAB Signal Proc\:?iing Toolbox. The output of the filter

is then multiplied by = —1 (the imaginary unit) and added to

VOLUME 2, 2024

the time-delayed original signal. It is important to introduce
a delay in the input signal because the FIR filter implemen-
tation of the Hilbert transform introduces a delay equivalent
to half the length of the filter. The signal’s envelope, e(?),
is calculated by taking the absolute value of the analytic
signal, which is characterized by a lower frequency compared
to the original signal. Consequently, we first downsample the
signal’s envelope by a factor of 15, an empirically determined
rate that optimally balances data rate reduction with the
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preservation of essential fingerprint features. Following this,
the downsampled signal is passed through a lowpass filter
to effectively eliminate ringing and smooth the envelope.
Once the envelope is extracted, we center the envelope’s
amplitude around zero before generating the corresponding
normalized double-sided envelope’s power spectrum, i.e.,
EPS, representation using the power spectrum estimator. The
decision to utilize a double-sided representation over a single-
sided one allows for capturing the full spectral information
inherent in these signals. This comprehensive approach
enhances the discriminative capability of our classifier and
consistently improves classification accuracy by 2-3% across
all testing scenarios, demonstrating the value of including
a more extensive feature set derived from the complete
spectrum of complex-valued signals.

C. CNN ARCHITECTURE

We train our CNN, using the PyTorch library, on an NVIDIA
Cuda-enabled NVIDIA GeForce RTX 2080 Ti GPU system
for 30 epochs. The input to the model is the EPS rep-
resentation with a dimension of 2 x 4096, representing
the EPS representation of the In-phase and quadrature
components. The first layer applies a 2D convolution with
a filter size of 1 x 65, followed by batch normalization,
and LeakyReLU activation. The kernel size was empirically
determined to optimize performance, ensuring symmetric
padding and preserving the spatial dimensions of the input
volume post-convolution. We systematically tested a range
of kernel sizes spanning [2, 5, 7, 9, 17, 33, 65, 129,
257, 513, 1025] samples, and found that a kernel size of
1 x 65 consistently yielded the best performance. Then,
a max-pooling layer with kernel size I 2 and stride 1x 2 is
applied to reduce the dimensions of the feature maps. The
same pattern is repeated five more times, with increasing
numbers of output channels (32, 48, 64, 76, 96, and 110) and
decreasing feature map sizes, until a final feature map size
of 2 %64 is obtained. Then, two fully connected layers with
output sizes equal to 100 and 64 are applied, each followed by
a dropout layer and LeakyReLU activation. Finally, the output
of the second fully-connected layer is passed to another fully-
connected layer that maps it to the 15 output classes, which
is passed to a softmax layer to produce the predicted label.
We experimentally chose a learning rate of 3e-4 which decays
by decaying factor after every 3000 steps. Finally, we use
the stochastic gradient descent optimizer with momentum
and a weight decay parameter that adds an L2 regularization
on the weights to avoid overfitting. The code used in this
paper is publicly available for researchers to use and can be
downloaded at https://github.com/NetSTAR-Lab.

VI. TESTBED, DATASETS AND EXPERIMENTAL
SCENARIOS

In this section, we describe the testbed setup, the exper-
imental scenarios, and the collected WiFi datasets used
for evaluating the effectiveness and robustness of the
proposed techniques. The WiFi datasets, their description and
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(a) 15 Pycom transmitting devices.  (b) Wired-Wili vs. wireless-Wiki.

FIGURE 12. loT Testbed consisting of 15 Pycom transmitting
devices and a USRP B210 receiving device.

their download information can be found at http://research.
engr.oregonstate.edu/hamdaoui/datasets.
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A. TESTBED SETUP

The testbed used for our evaluation, depicted in Fig. 12,
consists of 15 Pycom devices, including 10 FiPy boards
and 5 LoPy boards. Both the FiPy and LoPy boards are
equipped with the ESP32 chip, which supports WiFi and
Bluetooth. Additionally, both boards feature the Semtech
SX1276 chip, enabling LoRa and Sigfox communications.
The FiPy boards also include a Sequans Monarch LTE
module for cellular connectivity, further enhancing their
capability to support a wide range of network protocols
including LTE. The data acquisition was performed using
an Ettus USRP B210 receiver, which was synchronized
with an external OCXO for improved sampling accuracy
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and stability. All devices were powered via USB from an
HP laptop and configured to transmit IEEE802.11b WiFi
packets using the high-rate direct-sequence spread-spectrum
(HR/DSSS) physical layer in the 2GHz spectrum. The
transmitting devices transmitted at a rate of 1Mbps with a
carrier frequency of 2.412GHz and a bandwidth of 20MHz,
while connected to the same 1/2 Wave Whip antenna.

B. DATASET COLLECTION

We initiated the data-capturing process 12 minutes after
devices were activated, so as to ensure hardware stabilization;
see Sec. IX for further details on the impact of device
stabilization and warm-up time. Each device was configured
to operate over WiFi Channel 1 with a center frequency of
2412MHz and a bandwidth of 20MHz. The transmitters were
programmed to transmit identical IEEE 802.11b frames with
a duration of 559us back to back, separated by a small gap.
We captured the first two minutes of transmissions using
the USRP B210 at a sample rate of 45MSps, generating
more than 5000 identical packets from each device at each
capturing event. The captured signals were then digitally
down-converted to the baseband and stored as IQ samples on
our computer. To avoid any data dependency on the identity
of the WiFi transmitter, all transmitters were configured to
broadcast the same packets, which include the same spoofed
MAC address and a payload of zero bytes. Finally, WiFi
packets were extracted from the raw 1Q samples and stored in
HDFS5 formats to maintain the integrity and accuracy of the
captured signals.

C. EXPERIMENTAL SCENARIOS

Our WiFi dataset contains more than 8TB of WiFi
transmissions from 15 Pycom devices captured in four
different setups/scenarios: Wired Setup, Wireless Setup,
Different-Locations Wireless, and Random-Location Wire-
less. Notably, all data collection scenarios were conducted
in an open/shared lab environment, simulating typical office
conditions where environmental factors are uncontrolled.
This approach ensures that our findings are applicable to
real-world situations, reflecting the complexities of everyday
wireless communication environments.

1) WIRED SETUP

To rule out the impact of the wireless channel, we connected
our transmitters directly to the USRP receiver via SMA
cabling, and collected data over three days, generating more
than 5000 WiFi frames per device every day.

2) INDOOR WIRELESS SETUP

Instead of wiring the transmitters to the USRP receiver
as done in the Wired Setup, we placed them at a fixed
location, 1m away from the USRP receiver which uses a
VERT900 antenna to capture the signal. We repeated this
experiment over three days to assess the generalizability of
the proposed technique over time. This setup generated more
than 5000 WiFi frames per device every day.
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3) DIFFERENT-LOCATIONS WIRELESS SETUP

The location from where the transmitter sends its data impacts
the characteristics of the received signal, as signals trans-
mitted from different distances/locations usually experience
different channel conditions, which is considered in this work
as another varying domain. For each transmitter, we then
collected data at three different locations, A, B, and C,
which are 1m, 2m, and 3m away from the USRP receiver,
respectively, as shown in Fig. 13. This was carried out in one
day and generated more than 5000 WiFi frames per device at
each location.

4) RANDOM-LOCATION WIRELESS SETUP

From a practical viewpoint, when the fingerprinting frame-
work is used for device authentication, the messages that are
sent by the devices and are to be used for authentication are
likely to come from different random locations, and these
random locations are also likely to be different from the
locations used in the enrollment (training) stage. Therefore,
we considered collecting datasets for two random-location
scenarios on two different days, each consisting of an
enrolment phase (data used for training) and a deployment
phase (data used for testing). In both enrolment phases,
all the transmitters transmitted from the same location, 1m
away from the receiver, and in both deployment phases, the
transmitters were located randomly within a radius of 3m
away from the receiver as shown in the floor plan in Fig. 14.
The enrollment datasets were collected in the morning while
the random deployment datasets were collected on the night
of that same day, generating more than 5000 WiFi frames per
device for each dataset.

VIl. DEVICE IDENTIFICATION RESULTS

To assess the effectiveness of our proposed EPS feature rep-
resentation in improving the performance of DL-Based RFFP
methods across domains, we considered two performance
metrics: same-domain accuracy and cross-domain accuracy.
Same-domain accuracy measures the ability of the DL models
to identify devices accurately when the testing data/packets
(unseen in the training phase) are drawn from the same
training domain. On the other hand, cross-domain accuracy
evaluates the models’ ability to generalize across different
domains, such as different locations, channels or days. For
temporal domain adaptation, we initially train the model
using data from one day and subsequently test it on data
from the other two days to verify consistent performance
over time. Similarly, in spatial domain adaptation, training
occurs with data from a specific location, then testing on
data from various locations with different distances and
orientations to the receiver to rigorously evaluate the model’s
adaptability to channel characteristic changes. We evaluated
the performance of a standard CNN framework when fed with
our proposed EPS representation as an input (referred to as
EPS-CNN) and compared it with the same CNN framework
but when fed with a typical IQ representation as an input
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TABLE 1. Testing accuracy of EPS-CNNand IQ-CNN on the fixed placement scenario.

Model Train on LocA Train on LocB Train on LocC
Test on LocA | Test on LocB | Test on LocC | Test on LocA | Test on LocB | Test on LoeC | Test on LocA | Test on LocB | Test on LocC
EPS-CNN 100% 01.3% 05.5% 00.7% 99.6% 05.04% 05.3% 03.0% 96.7%
IQ-CNN 00.53% 57.01% 24.90% 59% 00.57% 24.7% 45.9% 01.4% 00.40%

(referred to as IQ-CNN). By using the traditional CNN as
a benchmark, we provide a clear and direct comparison
showing the improvement brought by the EPS representation.
We employed the 5-fold cross-validation method, where each
device’s data is divided into five non-overlapping, equally-
sized partitions. In each fold of cross-validation, we used
four partitions for training (3200 packets) and the remaining
partition for testing (800 packets). We then averaged the
results obtained from each fold to produce a final estimate of
the model’s performance. For the EPS input, we represented
each packet by a 2 x 4096 tensor, which encapsulates
the EPS representation of both the I and Q components.
In contrast, for 1Q input, we represented each packet using
a 2 x8192 tensor, comprising the first 8192 samples of both
the I and Q components as this window size provides the best
performance for the 1Q representation input.

A. ADAPTATION TO LOCATION CHANGES: FIXED
PLACEMENT

First, we begin by evaluating the proposed EPS-CNN frame-
work using the WiFi dataset captured in the three different
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locations, as described in Sec. VI-C.3, to assess its robustness
to changes in device locations. The results are shown in
Fig. 15 for EPS-CNN and Fig. 16 for IQ-CNN, where
again LocA, LocB, and LocC correspond to when the
transmitters are placed 1m, 2m and 3m away from the
USRP receiver. The results shown in Fig. 15 demonstrate
that our EPS-CNN framework is highly effective in device
fingerprinting, achieving exceptional same-domain testing
accuracies at all locations. Specifically, the average testing
accuracies at Locations A, B, and C are 100%, 99.6%,
and 96.7%, respectively, as shown in Fig. 15a. Even more
impressive is the performance of our EPS-CNN framework
in cross-domain evaluation, where the model is trained on
one location and tested on datasets captured in different
locations. The results show that EPS-CNN maintains high
performances, with average testing accuracies of 91.3% and
95.5% when trained on Loc A and tested on Loc B and Loc C,
respectively. Similarly, EPS-CNN achieves a testing accuracy
0f 99.7% and 95.04% when trained on Loc B and tested on
Loc A and Loc C, and an accuracy 0f 95.3% and 93.9% when
trained on Loc C and tested on Loc A and Loc B. To the best
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of our knowledge, this is the highest performance achieved by
a DL-based device fingerprinting method when the learning
models are tested and trained on different domains. The cross-
location confusion matrices are shown in Figs. 15b, 15c, 15c,
further highlighting the effectiveness of EPS—-CNN .

In contrast, the conventional IQ-CNN framework, which
uses raw IQ representation instead of the EPS representation
and whose results are shown in Fig. 16, struggles to main-
tain its performance in cross-domain evaluation. Although
IQ-CNN performs well in the same-domain evaluation,
it performs poorly when tested on a dataset captured in a
different location. Specifically, the average testing accuracy
when IQ-CNN is trained on location A and tested on
locations B and C is 57.01% and 24.96%. This significant
drop in performance is also seen in the other locations,
as the testing accuracy on locations A and C when the
model is trained on location B is 59% and 24.7%, whereas
the average testing accuracy when the model is trained on
location C and tested on locations A and B is 45.9% and
61.4%, respectively. Note the significant accuracy difference
between that achieved by the proposed EPS—-CNN and that
achieved by the conventional IQ-CNN (i.e., a drop from
904+% to as low as 25%). The confusion matrices in
Figs. 16b, 16¢, 16d show the struggle of the trained model
to correctly classify the devices when the corresponding
packets are captured in a different location. The results
clearly demonstrate the superiority of the EPS-based deep
learning framework in device fingerprinting, particularly in
cross-domain evaluations. Table. 1 summarizes the testing
accuracies of all setups of the fixed placement scenario.

B. ADAPTATION TO LOCATION CHANGES: RANDOM
PLACEMENT

We also considered evaluating the effectiveness of the
proposed EPS-CNN framework under two random-location
setups, as described in Sec. VI-C.4. For each setup, during
training (referred to as enrolment), all devices transmit from a
fixed location, 1m away from the receiver; and during testing
(referred to as deployment), the devices transmit from random
locations all within 3m from the receiver; refer to Fig. 14
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TABLE 2. Testing accuracy of EPS-CNN and IQ-CNN on the
random placement scenario.

Train on Enrall Train on Enrol2
Model
Test on Enroll | Test on Deployl | Test on Enrol2 | Test on Deploy2
EPS-CNN OAT5% 93.1% OR8.3% OR. 1%
ine 1Q-CNN U9.53% 40.2% 99.514 58.24

for visualization of this random deployment scenario. The
EPS-CNN framework exhibits strong performance in both
same-domain and cross-domain evaluations under random-
location setups. Fig. 17a shows that EPS-CNN achieves
high average same-domain testing accuracies of 96.7% and
98.3% respectively under random-location setups 1 and
2. Furthermore, the figure demonstrates the robustness of
the framework in cross-domain with testing accuracies of
93.1% and 98.1% under random-location setups 1 and 2,
respectively. Notably, Fig. 17¢, showing the confusion matrix
under random-location setup 2, showcases the framework’s
exceptional accuracy for most devices. In contrast, 1Q-
CNN experiences significant performance degradation on
both random-location setups, with cross-domain testing
accuracies of only 40.2% and 58.2% on setups 1 and 2,
respectively. Through the confusion matrix, Fig. 17d provides
a clear depiction of the IQ-CNN framework’s struggle in
recognizing devices when randomly deployed around the
receiver. Table. 2 summarizes the testing accuracies of all
setups of the random placement scenario.

C. ADAPTATION TO TIME CHANGES: DIFFERENT DAYS

The effectiveness of the proposed EPS-CNN framework
was also evaluated on a cross-days scenario using the
indoor wireless WiFi dataset as described in Sec. VI-C.2.
Fig. 18a presents the average testing accuracy of the
proposed EPS-CNN framework when trained on one day
and tested on one of the other three days. The same-domain
testing accuracies (both training data and testing data are
collected the same day) were found to be 100%, 100%,
and 96.5% for day 1, day 2, and day 3, respectively. These
research findings demonstrate the distinguishability of the
EPS feature representation, as the learning model was able
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FIGURE 18. EPS-CNN’s performance across three different days: (a) Testing accuracy; (b)-(d) confusion matrices for
different Train-day/Test-day combinations.

Testing Accuracy
I
5

20

T 1 1 4+ IR T 1 3 % 7130915 T 7 1 ¢ ¢ T2 151 15

T § 7 8 7010 T § 7 3 7010 T 7 b 91010
Pregicted Leoels Predicted Leoels Predicted Labels

O rained on Dayl Trained on Day2 _Trained on Day3

(a) Testing accuracy (b) Train-day1 / Test-day3 (e} Train-day2 / Test-day 1 (d) Train-day3 / Test-day 1

FIGURE 19. IQ-CNN’s performance across three different days: (a) Testing accuracy; (b)-(d) confusion matrices for
different Train-day/Test-day combinations.

TABLE 3. Testing accuracy of EPS-CNNand IQ-CNN on the cross-day scenario.

Model Train on Day] Train on Day2 Train on Day3
Test on Dayl Test on Day2 | Test on Day3 | Test vn Dayl Test on Day2 | Test on Day3 | Test on Dayl Test on Day2 | Test on Day3
EPS-CNN 100% 093.2% O1.5% 03.2% 100% 89.7% 01.8% 08.4% 90.5 %
IQ-CNN 98.5% 87.5% 80.2% 89.8% 00.83% 87.9% 87.5% 80.2% 00.82%

to extract unique features from each device, achieving high
performance on the same-domain performance metric.

More interestingly, for the cross-day evaluation, Fig. 18a
shows that the proposed EPS-CNN framework maintains
remarkable performance accuracy when tested on a different
day. Specifically, when the learning model is trained on day
1 data, the average cross-domain testing accuracy is 93.2%
when the model is tested on day 2 data and 91.5% when tested
on day 3 data. This achievable performance is consistent
across other days, with an accuracy of 93.2% or 89.7% when
training on day 2 data but testing on day 1 or day 3 data,
respectively. Similarly, when the model is trained on day
3 and tested on day 1 data or day 2 data, the testing accuracies
are 91.8% or 98.4%, respectively. The aggregate confusion
matrices of the cross-day testing over the three days, shown
in Figs. 18b, 18c¢, 18d, further indicate that most of the devices
achieved perfect classification accuracies across the three
tested days, with only one or two devices causing a small drop
in performance.

In comparison, the performance of the IQ-CNN framework
in cross-domain testing, shown in Fig. 19, is inferior to
that of the proposed EPS-CNN framework. Our results
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from Fig. 19 indicate that when the deep learning model
is trained on day 1 data, the average cross-domain testing
accuracy is 87.5% when tested on day 2 data and 89.2%
when tested on day 3 data. When the model is trained on
day 2 data, this average cross-domain testing accuracy is
89.8% when tested on day 1 data or 87.9% when tested
on day 3 data. The testing accuracy when the model is
tested on day 1 or day 2 data but trained on day 3 data
is 87.5% or 89.2%, respectively. The aggregate confusion
matrices of the cross-domain testing over the three tested
days are also shown in Figs. 19¢, 19d, 19e. Although
both EPS-CNN and IQ-CNN frameworks achieved close-to-
perfect performance in the same-domain testing accuracies,
the proposed EPS-CNN outperforms the conventional 1Q-
CNN framework in the cross-domain performance metric
on the three tested days. Our results show that the deep
learning models when fed with our proposed EPS features
are highly effective in addressing and mitigating the cross-
day sensitivity of deep learning-based RF fingerprinting.
The relatively good performance of conventional 1Q-
CNN fingerprinting in the cross-day metric suggests that
the indoor wireless channel in this scenario did not change
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significantly over the three tested days of the experiment.
This leads us to postulate that time itself is not a factor
or domain that significantly affects the learning model’s
performance. Instead, time is simply a space in which various
events can occur, leading to changes in the environment
that can affect performance. Hence, we hypothesize that
in a stable environment, cross-time evaluations may not
be sufficient, and further tests are necessary to assess
the model’s performance under varying channel conditions,
due to changing locations and distances. Our proposed
EPS-CNN framework indeed maintains high performances
even under varying locations as shown in our results
presented earlier in Sec. VII-A and Sec. VII-B. Table. 3 sum-
marizes the testing accuracies of all setups of the cross-day
scenario.

D. ADAPTATION TO MODEL CHANGES: ResNet MODEL
Our previous evaluations focused on the performance of
EPS-CNN, which combines the EPS representation with
a CNN model, across various domain changes. To further
assess the benefits of our EPS representation, we explored
its integration with ResNet, specifically a tailored variant
of ResNet-18 [42]. This adapted architecture, named EPS-
ResNet, leverages the EPS representation and is bench-
marked against the traditional IQ representation, known
as IQ-ResNet. This comparison aims to highlight EPS-
ResNet’s enhanced adaptability and superior performance in
RF fingerprinting tasks, particularly across different location
scenarios.

1) ResNet ARCHITECTURE

In our implementation, this architecture begins with an initial
convolutional layer that uses 64 filters with a kernel size
of 64 and a stride of 2, followed by batch normalization
and a ReLU activation function. This layer is followed by
a max pooling operation with a pool size of (1, 2) and a
stride of 2. The core of the ResNet architecture consists
of four stages, each comprising a series of convolutional
blocks. First Stage: Two ResNet blocks with 64 filters each,
where the first block adjusts for the initial feature map
size. Second Stage: Two ResNet blocks with 128 filters,
with the first block applying a stride of 2 to reduce the
dimensionality. Third Stage: Similarly, this stage has two
blocks with 256 filters, again with the first block applying a
stride of 2. Fourth Stage: The final stage includes two blocks
with 512 filters, with the first block reducing dimensions with
a stride of 2. Each ResNet block in these stages consists of
two convolutional layers with batch normalization. A shortcut
connection links the input to the output of these layers,
which helps in mitigating the vanishing gradient problem by
allowing gradients to flow through the network. The network
concludes with a global average pooling layer that helps to
reduce the dimensions and is connected to a dense layer with
softmax activation tailored to the number of devices in the
dataset.
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FIGURE 20. Testing accuracy of IQ-ResNet Vs. EPS-ResNet in
Cross-Location scenario.

2) ResNet'S PERFORMANCE EVALUATION

Fig. 20 illustrates the testing accuracies for both same-domain
and cross-domain scenarios of EPS-ResNet compared to
IQ-ResNet. The data reveals that while IQ-ResNet achieves
nearly perfect same-domain accuracies across three locations,
its performance significantly drops in cross-domain tests;
specifically, accuracies drop to 24% and 73% when trained
on location A and tested on locations B and C respectively,
as shown in Fig. 20a. Conversely, EPS-ResNet demonstrates
a substantial improvement in bridging the gap between
same-domain and cross-domain performances, achieving an
average accuracy improvement of 50% across all tested
locations. For instance, it maintains high testing accuracies
of 89% and 91% when trained on location A and tested
on locations B and C respectively. This pattern holds true
across all tested locations, achieving an average cross-
domain accuracy of 91%, as shown in Fig. 20b. These
findings underscore the efficacy of the EPS representation
in enhancing the adaptability of ResNet to different domains
and its superior performance over the conventional IQ
representation. Table. 4 provides a comparative analysis
of 1Q-ResNet, EPS-ResNet, and EPS-CNN under cross-
location testing, highlighting that despite EPS-ResNet’s
strong performance, the EPS-CNN framework still excels in
domain adaptation.

VIIl. COMPUTATIONAL EFFICIENCY AND INFERENCE
LATENCY OF EPS REPRESENTATION EXTRACTION

In this section, we address the computational efficiency and
inference latency associated with our EPS representation
extraction process, as these factors are crucial in RF finger-
printing systems, particularly in comparison to cryptographic
authentication methods.

A. COMPUTATIONAL EFFICIENCY AND POWER
CONSUMPTION

The EPS extraction is engineered for computational effi-
ciency, requiring approximately 2,518,678 arithmetic oper-
ations. This count, while significant, contributes minimally
to the overall computational load due to the reduction in data
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TABLE 4. Comparison of testing accuracy of IQ-ResNet, EPS-ResNet, and EPS-CNNon the cross-location scenario.

Model Train on LocA Train un LocB Train on LoeC
Test on LocA | Test on LocB | Test on LocC | Test on LocA | Test on LoeB | Test on LoeC | Test on LocA | Test on LocB Test on LocC
1Q-ResNet 100% 23.87% 73.30% 24.09% 99,87¢% 10.82% 44.12% 37.601% 99,74 %
EPS-ResNet 100% 89.13% 90.74¢% 95.51% 97.76% 87.27% 88.98% 93.89% 99.74%
EPS-CNN 100% 91.3% 95.5% 99.7% 99.6% 95.04% 05.3% 03.9% 96.7%

size by a factor of two. This reduction not only streamlines
processing but also decreases the computational demands
on the neural network. Specifically, the EPS-CNN model
requires only 3,155,189,619 Floating Point Operations
(FLOPs), compared to 6,313,136,499 FLOPs needed by the
IQ-CNN model. Given that the extraction is performed on
the receiver side, where power constraints are generally less
severe than on IoT transmitters, this setup is well-suited to
environments with ample computational resources.

B. INFERENCE LATENCY

Despite the EPS extraction introducing an initial delay,
the reduction in input size significantly counteracts this
increase in latency. In a theoretical scenario where computing
capabilities reach 1 Tera Operations Per Second (TOPS),
the EPS extraction adds a mere 2.52 microseconds of
delay. This minimal increase is balanced by the quicker
processing enabled by smaller input sizes, resulting in
inference latencies of approximately 3.16 milliseconds for
EPS-CNN and 6.31 milliseconds for [Q-CNN.

These findings underscore that the EPS extraction method,
by reducing data complexity and optimizing the use of
available computational resources, aligns with the critical
requirements of power efficiency and minimal latency in
effective RF fingerprinting systems. This approach ensures
that our method remains competitive, even against traditional
models, offering a balanced solution to the evolving chal-
lenges in RF authentication.

IX. ON THE IMPACT OF TRANSCEIVER HARDWARE
WARM-UP AND STABILIZATION PERIOD

In alignment with best practices for data collection in RF
fingerprinting, we have ensured that both the training and
testing datasets were gathered during the stable phase of
the transmitters, specifically after the warm-up period had
concluded. Our next step is to explore how the hardware
stabilization during the warm-up duration impacts the
performance of device fingerprinting. Specifically, we aim to
assess how DL-based RF fingerprinting (RFFP) frameworks,
which have been trained on data collected during the stable
phase, perform when encountering inference data transmitted
from devices still within their warm-up period. Despite the
rich amount of literature available on this RF fingerprinting
topic, the impact of hardware stabilization and warm-up time
has not been carefully considered [43]. And for completeness,
it is our goal here to shed some light on what could go wrong
had such stabilization aspects not been carefully accounted
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FIGURE 21. Representations of the RF signal captured from
Device A and observed at different times during the warm-up
period of the device.

for. More specifically, our objective in this section is to
investigate and study the impact of the transceiver hardware
warm-up on (i) the observed Envelope behavior of the time-
domain IQ signals, (ii) the EPS features, and (iii) the overall
EPS-based device fingerprinting performance.

A. BEHAVIOR OF RECEIVED RF SIGNALS DURING THE
WARM-UP AND STABILIZATION PERIOD OF THE
TRANSMITTING DEVICE

We begin by studying the behavior of the I, Q and
EPS representations during the hardware warm-up time.
For this, we closely monitored the 1Q signal behavior of
two off-the-shelf (FiPy) devices from our testbed during
the initial 20 minutes following device activation. This
involved capturing 802.11b WiFi packets transmitted by
the devices using the USRP B210 at a sampling rate
of 45MSps. The USRP receiver was clocked using an
external 10 MHz OCXO (oven-controlled, high-performing
crystal oscillator) reference signal to ensure measurement
accuracy and stability.
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FIGURE 22. Representations of the RF signal captured from
Device B and observed at different times during the warm-up
period of the device.

We show in Fig. 21 the I, Q and EPS representations
of the WiFi signal captured on Device A at different times
during the device warm-up period; i.e., the figure on the
far-left corresponds to the signal captured one minute from
when the device was powered on, the figure on the far-
right corresponds to the signal captured 20 minutes from
when the device was powered on, and so on. Four important
observations can be drawn from this figure. First, the
results confirm the presence of a CFO impairment, which is
manifested in the observed sinusoidal shape of 1Q signal’s
Envelope, as was illustrated and explained in Section III.
Second, observe that the I shape (Fig. 21a), Q shape (Fig. 21b)
and the EPS shape (Fig. 21c) all change over time as the
device hardware warms up, with the frequency of humps in
the Envelopes of the I and Q signals increasing over time
until hardware stabilization. This increase indicates a varying
CFO value during hardware warm-up time that is resulting
from the instability of the local crystal oscillators; this finding
is well aligned with the Envelope behavior observed and
reported in Sec. I1I-B and explained in Sec. I1I-C. Third, the
I, Q and EPS shapes all seem to converge and stabilize after
some time (i.e., around 12 minutes in the figure). Note that
these shapes observed at minutes 12, 15 and 20 resemble
one another, meaning that the shapes converge at around
12 minutes from device activation, which indicate that the
local oscillator has reached a stable operating point by minute
12. Fourth, observe that the I and Q components vary on the
opposite direction; i.e., shifted by 180 degrees, at any stage
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during the warm-up period; this also is well aligned with what
was observed and reported in Sec. III.

To assess the consistency of these trends across different
devices, we also monitored these 1Q data representations
based on signals captured from several other devices also
at different times during the device warm-up period. Our
experimental results using other devices (we only show one
more device, Device B, here in Fig. 22) confirm that the
reported trends are also observed across all other devices,
although each device exhibits slightly different initial and
stable shapes.

Tested on Tested an Tested on Tested on
minl2 ming miné minl

100

80

o
=]

Testing Accuracy
B

20

Trained on minl2 Trained on minl2 Trained on minl2
Dayl Day2 Ly 2

FIGURE 23. Classification accuracy when training data is
collected at minute 12 (after device stabilization) but testing
data is collected at 1, 4, 8 and 12 minutes from device activation
on the same day.

B. SENSITIVITY OF RF DATA-DRIVEN DEVICE
FINGERPRINTING TO TRANSCEIVER HARDWARE
WARM-UP AND STABILIZATION

We now show the effect of hardware warm-up that is
manifested in the observed 1Q signal Envelope behavior
on the device fingerprinting accuracy. For this, we run
experiments whereby the proposed EPS-CNN framework
is trained with data collected after stabilization (i.c., after
12 minutes from device activation) and tested with same-day
data but collected at various different times during warm-up
period (i.e., during the initial 12 minutes from the activation
of devices). To mask the impact of the wireless channel,
we considered in this experiment the wired setting described
in Sec. VI-C.1.

Fig. 23 shows the testing accuracy of EPS-CNN when
testing data is collected before the device hardware is
stabilized; that is, at 1, 4, and 8 minutes from when the
devices are powered on. For ease of comparison, the figure
also includes the case when the test data is collected after
device stabilization; i.e., using data collected at minute 12.
The figure clearly shows the dependency of the achieved
accuracy on the time at which testing data is collected during
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warm-up period. Note that the closer to the stabilization time
the testing data collection takes place, the higher the testing
accuracy. The figure also confirms that this observed trend is
consistent across different days.
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FIGURE 24. Classification accuracy when training data is
collected at minute 1 and testing data is collected also at
minute 1 from device activation but on a different day.

One key observation that is worthy of note is that when
both training and testing are done on data collected at
about the same time from device activation even during
warm-up time, the testing accuracy that the learning models
achieve is not as low as what they achieved when testing
and training data were done at different times during
stabilization. For instance, we show in Fig. 24 the accuracy
when the model is trained on data captured within the
first minute after activation of one day and tested on data
collected in the same time (i.e., within the first minute
from activation) but of another day. The figure demonstrates
that when the model is trained on minute 1 captures of
day 1, an average testing accuracy of 70% (resp. 62%) is
achieved when the model is tested on minute 1 captures of
day 2 (resp. day 3), which is considerably higher than the
testing accuracy when the model is tested on stabilized data
(after 12 minutes) of the same day. These research findings
indicate a systematic drift in the characteristics of the received
IQ signals during the stabilization and warm-up period,
with consistent behavior observed across different days, and
highlight the challenges faced by the deep learning models
in recognizing devices during the hardware warm-up period.
These results thus underscore the importance of considering
the stabilization aspects of the oscillator hardware (as
well as the other transceiver hardware components) when
developing hardware-impairment-driven RF fingerprinting
techniques for robust device identification and classification.
It is worth noting that although the performance of DL-
based RF fingerprinting frameworks like the EPS-CNN is
impacted by data collected during the warm-up period, these
frameworks can be effectively integrated with mechanisms
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designed to address these initial fluctuations. This integration
is vital since the warm-up period often represents a minor
fraction of a device’s operational lifespan, during which EPS-
based frameworks otherwise perform exceptionally well.
This approach ensures that the fingerprinting system remains
effective and reliable throughout the majority of the device’s
usage.

X. CONCLUSION

In conclusion, this paper addresses the limitations of
conventional RF signal representations in deep learning-
based RF fingerprinting methods. We propose the Double-
Sided Envelope Power Spectrum (EPS) as a novel RF
signal representation that effectively captures device hard-
ware impairments while eliminating irrelevant information.
Experimental results demonstrate the superior performance
of the EPS representation in terms of accuracy, robustness,
and generalizability across various domains. By leveraging
EPS, DL-based RFFP methods can achieve unprecedented
testing accuracy in same-domain evaluations and maintain
high performance in cross-domain scenarios. The proposed
representation offers a transformative solution for enhancing
the security and privacy of wireless networks by advancing
the accuracy and reliability of device identification through
RF fingerprinting. Finally, we release large WiFi 802.11b
datasets containing captures for different scenarios to allow
others to further investigate these fingerprinting issues.
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