
From Clauses to Klauses*

Joseph E. Reeves , Marijn J. H. Heule , and Randal E. Bryant

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
{jereeves,mheule,randy.bryant}@cs.cmu.edu

Abstract. Satisfiability (SAT) solvers have been using the same input format for
decades: a formula in conjunctive normal form. Cardinality constraints appear
frequently in problem descriptions: over 64% of the SAT Competition formulas
contain at least one cardinality constraint, while over 17% contain many large
cardinality constraints. Allowing general cardinality constraints as input would
simplify encodings and enable the solver to handle constraints natively or to en-
code them using different (and possibly dynamically changing) clausal forms. We
modify the modern SAT solver CADICAL to handle cardinality constraints na-
tively. Unlike the stronger cardinality reasoning in pseudo-Boolean (PB) or other
systems, our incremental approach with cardinality-based propagation requires
only moderate changes to a SAT solver, preserves the ability to run important
inprocessing techniques, and is easily combined with existing proof-producing
and validation tools. Our experimental evaluation on SAT Competition formulas
shows our solver configurations with cardinality support consistently outperform
other SAT and PB solvers.

Keywords: Cardinality constraints, SAT solving, CNF Encoding

1 Introduction

Satisfiability (SAT) solvers have become remarkably effective automated reasoning en-
gines in the last 25 years, with many applications in verification including bounded
model checking [7] and automatic test generation [4]. Although many aspects of the
solvers have changed, the top-tier solvers continue using conjunctive normal form (CNF)
formulas as their input. There exist richer representations that allow for stronger reason-
ing techniques and make encoding problems much simpler. The most successful is Sat-
isfiability Modulo Theories (SMT), which enables high-level reasoning (theory propa-
gation). Higher-level reasoning is not always necessary, and for theories like strings [33]
and bit vectors [39] a so-called eager SMT approach works well. This involves trans-
forming the problem from SMT to SAT and using an off-the-shelf SAT solver.

Various groups have proposed a more modest deviation from CNF: a conjunction
of cardinality constraints [20, 34, 43]. A cardinality constraint asserts that the sum of a

*Supported by the U.S. National Science Foundation under grant CCF-2108521, and in part by
a fellowship award under contract FA9550-21-F-0003 through the National Defense Science
and Engineering Graduate (NDSEG) Fellowship Program, sponsored by the Air Force Research
Laboratory (AFRL), the Office of Naval Research (ONR) and the Army Research Office (ARO).

https://orcid.org/0000-0002-4585-0565
https://orcid.org/0000-0002-5587-8801
https://orcid.org/0000-0001-5024-6613

set of literals exceeds a given bound, e.g., `1 + `2 + · · · + `s � k. Note that cardinal-
ity constraints generalize clauses because a clause `1 _ `2 _ · · · _ `s is equivalent to
`1+`2+· · ·+`s � 1. Cardinality constraints appear frequently in problem descriptions,
whether as at-most-one (AMO) constraints that may force some k-valued variable to be
unique (e.g., the color of a vertex), or general at-least-k (ALK)/at-most-k (AMK) con-
straints that place a lower or upper bound on some resource, e.g., for optimization. In
our evaluation of 5,354 SAT Competition formulas, we found that over 64% contained
at least one cardinality constraint and over 17% contained at least 10 large cardinal-
ity constraints (see Section 7). There exist pseudo-Boolean (PB) solvers with stronger
reasoning techniques than SAT solvers, but similar to strings and bit vectors, an ea-
ger approach transforming cardinality constraints into clauses is often desirable. SAT
solvers work well across a wide range of problems and have a more developed verifi-
cation toolchain. This work attempts to bridge the gap between cardinality constraints
and clauses. We introduce an infrastructure for a cardinality-based input for SAT solv-
ing that makes encoding problems easier and significantly improves the performance on
some problems with many cardinality constraints. These changes come without throw-
ing away the well-developed verification toolchain and high-performance solving of
modern SAT solvers.

Attempts to improve solver performance on problems with cardinality constraints
have focused on either strengthening the underlying proof system, improving encod-
ings, or natively propagating on constraints. Solvers can make use of stronger proof
systems both on formulas with richer input structure and on formulas in CNF. The
solver RoundingSAT [21] exploits the strength of the cutting planes proof system [16],
allowing it to efficiently solve various problems that are hard for resolution. The solver
SAT4J [5] implements cardinality extraction [10] and generalized resolution [26] in a
preprocessing step to quickly solve formulas in CNF that contain cardinality constraints,
with additional native handling for finding hamiltonian cycles [43]. Additionally, to
make writing formulas simpler, solver engineers have provided support for cardinality-
based representations. The solver MINISAT+ [20] supports cardinality-based input
transforming the formula into clauses, and the solver package PYSAT [27] provides
API calls for converting constraints into clauses. Lastly, the solver MiniCARD [34]
substantially reduces the memory footprint and improves propagation by handling car-
dinality constraints natively. However, most of the recent work has focused on stronger
proof systems or better encodings. This is partly because implementation details for
cardinality-constraint propagation [34, 47] came before the development of modern in-
processing, did not account for proof generation, and were only evaluated on some
crafted formulas. We revisit native cardinality constraint handling in the context of
modern CDCL, showing that performance can be improved on some problems with-
out compromising the verification toolchain (assuming no cutting planes are used).

First, consider propagation, the well-known bottleneck of SAT solvers. Improving
propagation speed can boost solver performance on both satisfiable and unsatisfiable
formulas. Cardinality constraint propagation can be supported with limited overhead
by generalizing the watch-pointer data-structure [34]. Moreover, with modest-sized
changes a cardinality-based representation can work with some other reasoning tech-
niques in modern solvers, ranging from learned clause minimization to vivification.

2

These important techniques can be kept because cardinality-based propagation does
not alter the relevant properties of the implication graph during conflict analysis. These
changes do not require cutting planes or a new proof checker such as VERIPB [45], and
are compatible with standard DRAT proofs. This is in contrast to other forms of native
reasoning in CDCL solvers such as XOR parity reasoning. For example, to communi-
cate propagated units and conflicts between XOR clauses and a CNF formula, the solver
CRYPTOMINISAT makes use of BDD packages [13] to generate checkable proofs [44],
adding overhead to the solving and producing large proofs.

Second, a cardinality-based representation allows for alternative ways to encode
and reencode constraints. The choice of encoding can have a large impact on perfor-
mance [38]. Alternatively, handling cardinality constraints separately, or dynamically
encoding partial constraints [2], may also improve performance through faster prop-
agation on frequently visited constraints and the lack of propagation on unimportant
constraints. Modern CDCL solvers constantly switch between a SAT and UNSAT mode
with differing heuristics [40]. We implement a hybrid solver that maintains reencoded
clauses throughout solving but only propagates on cardinality constraints during SAT
mode. The solver has access to auxiliary variables in the reencoded clauses along with
the capability to propagate on cardinality constraints, improving performance on both
satisfiable and unsatisfiable formulas.
Contributions. We incorporated cardinality-constraint handling into the modern CDCL
SAT solver CADICAL, while still allowing several important inprocessing techniques
including clause vivification and local search. We ensure clause learning from propaga-
tion on cardinality constraints produces valid proof steps.

We implemented a tool to extract cardinality constraints with a “guess and verify”
approach that heuristically identifies possible encoded cardinality constraints in CNF
formulas and then uses BDDs to validate and characterize them. We provide three solver
configurations: one that uses cardinality-based CDCL reasoning, one that reencodes the
cardinality constraints into CNF, and a hybrid approach that combines the two former
configurations via. mode-switching. This hybrid configuration (HYBRID) represents a
novel approach for incorporating both encoded clauses that are useful for unsatisfi-
able formulas and native cardinality constraints that are useful for satisfiable formulas.
Proofs generated from the three solving configurations are checked with DRAT-TRIM.

We evaluated the cardinality extractor and solving configurations on the SAT Com-
petition Anniversary Track formulas, finding cardinality constraints in over half the
formulas, and many large cardinality constraints in over 17% of formulas. On these for-
mulas, CDCL solvers outperformed PB solvers and the cardinality constraint handling
further improved the CDCL solver performance. Additionally, solvers were evaluated
on the Magic Squares and Max Squares problems, highlighting the importance of a
good reencoding and the power of native cardinality constraint propagation.

2 Background

We consider propositional formulas in conjunctive normal form (CNF). A CNF formula
F is a conjunction of clauses where each clause is a disjunction of literals. A literal ` is

3

either a variable x (positive literal) or a negated variable x (negative literal). The phase
of a literal indicates whether it is positive or negative.

An assignment ↵ is a mapping from variables to truth values 1 (true) and 0 (false).
Assignment ↵ satisfies a positive (negative) literal ` if ↵ maps var(`) to true (↵ maps
var(`) to false, respectively), and falsifies it if ↵ maps var(`) to false (↵ maps var(`) to
true, respectively). An assignment satisfies a clause if the clause contains a literal satis-
fied by the assignment, and satisfies a formula if every clause in the formula is satisfied
by the assignment. A formula is satisfiable if there exists a satisfying assignment, and
unsatisfiable otherwise. Two formula are logically equivalent if they share the same set
of satisfying assignments. Two formulas are satisfiability equivalent if they are either
both satisfiable or both unsatisfiable.

A unit is a clause containing a single literal. Unit propagation applies the following
operation to fix point: take all units ↵ in a formula F and removes from F clauses
containing a literal in ↵ and removes from clauses all literals negated in ↵. In cases
where unit propagation yields the empty clause (?) we say it derived a conflict.

2.1 Cardinality Constraints

A cardinality constraint on Boolean variables has the form `1 + `2 + · · ·+ `s � k and
is satisfied by a partial assignment if the sum of the assigned literals is at least k. The
size of the cardinality constraint is the number of literals (s) it contains. For this work,
we do not permit duplicate literals in cardinality constraints as it would complicate
the implementation of unit propagation seen in Section 5. Variables occurring in the
cardinality constraint are data variables, and new variables added in a clausal encoding
are auxiliary variables. The introduction of auxiliary variables is known to be beneficial
to solvers for some problems, and has been studied in the context of the preprocessing
technique bounded variable addition [35].

We refer to cardinality constraints as klauses, containing a bound k and the literals
in the constraint. All clauses can be written as klauses with k = 1, corresponding to
at-least-one (ALO) constraints. Throughout the rest of the paper, we refer to klauses
with k = 1 as clauses. When k = s � 1, the klause can be viewed as an at-most-one
(AMO) constraint by negating the literals, i.e., `1 + `2 + · · ·+ `s � s� 1 is equivalent
to AMO(`1, . . . , `s). There are multiple ways to encode an AMO constraint into CNF.

Pairwise Encoding for an AMO constraint is given by a set of binary clauses with
negative literals and no auxiliary variables. AMO(`1, . . . , `s) is encoded as the con-
junction of (`i _ `j) with 1  i < j  s, resulting in s(s� 1)/2 binary clauses.

Linear Encoding (an instance of the commander encoding [30]) for AMO(`1, . . . , `s)
uses the pairwise encoding for s  4 and splits on s > 4 using fresh auxiliary variables
(y) according to the following recursion:

Linear(`1, . . . , `s) : Pairwise(`1, `2, `3, y) ^ Linear(y, `4, . . . , `s) (1)

The encoding uses (s�3)/2 auxiliary variables and 3s�6 clauses. The cutoff of s = 4
(commonly used in practice) was selected as the “optimal” value to minimize the sum
of the number of variables and the number of clauses.

For a general klause with 1 < k < s � 1, an efficient encoding to CNF requires
⇥(s · k) auxiliary variables to keep track of the count of data variables that have been

4

assigned. When s�k+1 literals in the klause are falsified, unit propagation should lead
to a conflict. For these klauses we use the sequential counter (or Sinz) encoding [42].

A clausal encoding of a klause `1 + `2 + · · · + `s � k is consistent if assigning
any s � k + 1 literals to false will always result in a conflict by unit propagation. It
is arc-consistent [24] if it is consistent and unit propagation will assign all unassigned
literals to true if exactly s � k literals are assigned to false. There are many encodings
for cardinality constraints [3, 20, 28]. We use the Linear and Sinz encodings as a proof
of concept, but these could easily be substituted with other arc-consistent encodings.

2.2 Conflict-Driven Clause Learning and Proofs of Unsatisfiability

To evaluate the satisfiability of a formula, a CDCL solver [36] iteratively performs the
following operations: First, the solver performs unit propagation and tests for a con-
flict. Two-literal watch pointers [37] enable efficient unit propagation. If there is no
conflict and all variables are assigned, the formula is satisfiable. Otherwise, the solver
chooses an unassigned variable through a variable decision heuristic [9, 32], assigns a
truth value to it through a phase selection heuristic, and performs unit propagation. The
selected variables are decision variables, and the assignment including decision vari-
ables and propagated variables is called the trail. If, however, there is a conflict, the
solver performs conflict analysis potentially learning a short clause. In case this clause
is the empty clause, the formula is unsatisfiable. In case it is not the empty clause, the
solver revokes some of its variable assignments (“backjumping”) and then repeats the
whole procedure. Additionally, modern solvers incorporate pre- and inprocessing tech-
niques that change the formula in some way, usually reducing the number of variables
and clauses or shrinking the sizes of clauses.

CDCL solvers produce satisfying assignments for satisfiable formulas and proofs of
unsatisfiability for unsatisfiable formulas. A clause C is redundant w.r.t. a formula F

if F and F [{C} are satisfiability equivalent. The clause sequence F,C1, C2, . . . , Cm

is a clausal proof of Cn if each clause Ci (1  i  n) is redundant w.r.t. F [
{C1, C2, . . . , Ci�1}. The proof is a refutation of F if Cm is ?. Clausal proof systems
may also allow deletion.

The strength of a clausal proof systems is determined by the syntactic criterion it
enforces when checking clause redundancy. The standard SAT solving paradigm CDCL
learns clauses that are logically implied by the formula and fall under the reverse unit
propagation (RUP) proof system. A clause is RUP if unit propagation on the falsified
literals of the clause results in a conflict. The Resolution Asymmetric Tautology (RAT)
proof system generalizes RUP. We make use of RAT proof steps in our derivations (see
Section 6), but refer the reader to [29] for more details. Proofs are typically transformed
to a format with hints, e.g. LRAT, before being passed to a formally-verified checker
like CAKE-LPR [46].

3 At-Least-K Conjunctive Normal Form (KNF)

x1 + x2 + x3 + x4 � 2 k 2 x1 x2 x3 -x4 0 (2)

5

Cardinality
Extraction

Encoder CDCL

CCDCL
DRAT
Proof
Checker

Encoder CCDCL

CNF
KNF

CNF

REENCODE

CCDCL

HYBRID

CNF Verified

Derivation

Derivation

Fig. 1. Three configurations for solving a KNF formula extracted from an input CNF formula.

We propose enriching the input of SAT solvers and proof checkers to accept a conjunc-
tion of klauses (KNF). As an initial step, we provide backwards compatibility with CNF
formulas, so KNF solvers can be used on existing benchmarks. Consistent AMO car-
dinality constraints can be extracted from the input CNF formula (see Section 4), then
converted to klauses in the KNF format. In Equation (2) if the cardinality constraint on
the left appears as clauses in a CNF formula, those clauses can be replaced by a single
klause, shown on the right, in the corresponding KNF formula. Klauses with k > 1 are
written with a ‘k’ followed by the bound and then the literals. All other clauses in the
CNF formula can be placed directly in the KNF formula.

In Figure 1 we present three independent configurations for solving a KNF ex-
tracted from a CNF formula: REENCODE, CCDCL, and HYBRID. Each configuration
produces a DRAT proof (or satisfying assignment) for the input CNF formula.

REENCODE, the encoder reencodes the klauses into clauses, and the resulting CNF
formula is solved by a CDCL solver. Since the CDCL solver is using reencoded clauses
that do not appear in the original CNF formula, a DRAT derivation for the clausal
reencoding must be prepended to the solver’s DRAT proof. This derivation explains
how the reencoded clauses can be added to the original CNF formula.

CCDCL, cardinality-CDCL (CCDCL) seen in Section 5 is used to solve the formula
in KNF directly by natively propagating on klauses. The DRAT proof generated by the
CCDCL solver can be verified against the input CNF formula if the extracted constraints
were arc-consistent (otherwise a derivation is added).

HYBRID, a CCDCL solver takes in both the formula in KNF along with a clausal
reencoding of klauses as input. The reencoded clauses are kept throughout solving as ir-
redundant formula clauses (never deleted by the solver). The klauses are only watched

6

Guesser VerifierCNF

Delete Clauses

Continue

Data Vars
Aux. Vars
Clauses

Verified

Not Verified

Constraint
DB

Fig. 2. Guess and verify framework for extracting cardinality constraints from an input CNF
formula. The guesser selects a set of data variables, auxiliary variables, and clauses representing
a candidate cardinality constraint. If the verifier verifies the constraint, it is added to the constraint
database and the constraint’s clauses are removed from subsequent guesses.

and propagated on during SAT mode. So, while the solver is in UNSAT mode when
propagating on cardinality constraints it exclusively makes use of the reencoded clauses.
This gives the solver access to auxiliary variables within the encoding and these vari-
ables can be extremely important for finding short proofs of unsatisfiable formulas.
While the solver is in SAT mode it can propagate natively on klauses, allowing faster
propagation that bypasses the auxiliary variables. This can be important for quickly
solving satisfiable formulas. In general the solver moves back and forth between SAT
and UNSAT modes with increasing limits, and will roughly spend half of its time in
either mode. Clauses learned in either mode can be kept during the mode switch, but
certain heuristics are modified for each mode. The proof requires a derivation as in
REENCODE. Further details on verification are found in Section 6.

The three different solving configurations highlight the flexibility provided by the
KNF format. In some cases, a smaller representation and fast propagation on klauses is
beneficial. In other cases, reencoding klauses introducing auxiliary variables can lead
to a much shorter proof. And a combination of the two approaches may work best
for unknown problems. These configurations can be implemented with straightforward
changes to a CCDCL solver, and the proof checker DRAT-TRIM is used as is.

4 Cardinality Constraint Extraction and Analysis

4.1 Extraction

Several researchers have devised techniques for automatically extracting cardinality
constraints from CNF representations either as part of a preprocessing step [10] or dy-
namically within a pseudo-Boolean constraint solver [22]. We implemented our own
preprocessor that detects cardinality constraints within a CNF file, converts these into
klauses, and emits both these and the remaining clauses as a KNF file.

AMO constraints with pairwise constraints can be detected by finding cliques in the
graph having a node for each literal and an edge between two literals if they occur in the

7

same binary clause [10]. Although finding maximal cliques is NP-hard, simple greedy
approaches work well for this task.

We use a “guess-and-verify” approach for detecting non-pairwise constraints, shown
in Figure 2. Our method of guessing looks for patterns of clauses in the CNF represen-
tation that could be cardinality constraints, including classifying the variables in these
clauses as either data or auxiliary variables. To do this it examines the binary clauses in
the formula and classifies each variable as being either unate—always having the same
phase, or binate—occurring with both phases. Data variables are assumed to be unate,
while auxiliary variables must be binate. Starting with a binate variable, the extractor
forms the transitive closure of all binate variables that occur in clauses with other vari-
ables in the set. It then selects as data variables all unate variables that occur in these
clauses.

We have found this approach to guessing effective at detecting standard encodings
of AMO constraints, including all of those handled by previous extractors [10]. It can
fail when a data variable is used with one phase for some constraint and with some other
phase for another. It will also find patterns that meet the phase requirements but do not
encode cardinality constraints. Fortunately, these will be rejected in the “verify” stage.
Although our verifier could determine whether a set of clauses encodes a non-AMO
cardinality constraint, we have been unable to devise a reliable strategy for distinguish-
ing these clauses from the other clauses in a file. We plan to extend the extraction to
general cardinality constraints in the future.

4.2 Analysis with BDDs

We use a BDD-based analysis to verify that our guessed cardinality constraints are in
fact cardinality constraints. Given a set of clauses and a classification of the variables
into a set of data variables X and a set of auxiliary variables Y , we construct the rep-
resentation of the associated Boolean function f(X) as an Ordered Binary Decision
Diagram (BDD) [12]. We generate the BDD for f(X) using bucket elimination, a sys-
tematic way to perform conjunctions and quantifications [17, 41]. That is, we create a
total ordering of the data and auxiliarly variables, described below, and use this ordering
for the BDDs and as the bucket ordering. For each y 2 Y , we associate a set By , which
we refer to as the “bucket” for variable y. We also have a set Bd, which we refer to as
the “data bucket”. At each point in the processing, we maintain a set of terms, where
each term T is a BDD depending on a set of variables D(T) ✓ X[Y . Term T is placed
in bucket By when y = min(D(T) \ Y) and in the data bucket when D(T) \ Y = ;.
The initial set of terms consists of the BDD representations of the clauses.

Bucket elimination processes the terms via conjunction and quantification opera-
tions until the only nonempty bucket is Bd. That is, let y be the maximum variable for
which By is nonempty. While this bucket contains more than one element, we remove
two, compute their conjunction, and place the result in the proper bucket. This must be
in some bucket By0 such that y0  y or in the data bucket Bd. When bucket By con-
tains a single term, we form its existential quantification with respect to y and place the
result in the proper bucket. This will either be in some bucket By0 for which y

0
< y or

in the data bucket. Eventually, the only terms will be in the data bucket. We form their
conjunction to get the BDD representation of f(X).

8

Building BDDs and performing bucket elimination requires defining a total ordering
of all of the variables in X [Y . Our approach targets the layered structure that arises
in many encodings of cardinality constraints. We start with the auxiliary variables in Y

by building an undirected graph with a node for each variable y and an edge (y, y0) of
length 1.0 when some clause contains a literal of y and a literal of y0. In addition, we
add an edge (y, y0) with length 0.75 when there is some data variable x such that there
is some clause containing literals of x and y and another clause containing literals of x
and y

0.
We identify a “source” node s and a “sink” node t and (conceptually) view the edges

as elastic, enabling us to stretch the graph between these two endpoints into a single line
and order the nodes according to where they lie on this line. The two edge types will
tend to group the auxiliary variables first by their occurrence in clauses with matching
data variables and second by their occurence with each other. Our implementation of
this idea starts by looking for endpoints s and t for which the shortest path between the
two nodes is maximal. Starting with some random node, we jump to the most distant
node (in terms of shortest path), and from there to the most distant node, iterating as
long as the distance increases. We perform these iterations from multiple starting points
and take the most distant pair as the graph endpoints. Then, we order the variables first
in terms of their proximity to s and secondarily in terms of their distance from t. Finally,
each data variable x 2 X is inserted into the ordering to be near the first variable y for
which some clause contains a literal of x and a literal of y. For a layered graph, this
approach will tend to find opposite corners as endpoints s and t and generate a layered
ordering of the variables. For a graph having a tree structure, it will produce an ordering
that approximates what would be obtained via an inorder traversal of the tree. Both of
these make good BDD orderings.

Once the BDD for the function f(X) has been constructed, detecting whether it
encodes a cardinality constraint and the parameters of that constraint can readily be in-
ferred from the structure of the BDD. Let us number the data variables as x1, x2, . . . , xN .
For a set of literals {`1, `2, . . . , `N}, where each `i 2 {xi, xi}, function f can encode
both a lower bound L and an upper bound H , giving a two-sided constraint:

L  `1 + `2 + · · ·+ `N  H (3)

Lower bound L can degenerate to L = 0, while upper bound H can degenerate to
H = N . As examples, an at-most-one constraint has L = 0 and H = 1, while a clause
has L = 1 and H = N .

Our task is to determine the two bounds and the phase of each literal, or to reject
f as not encoding a cardinality constraint. The BDD encoding of the constraint (3) has
a simple, layered structure [1, 13]. In detail, let us say that the pair of integers (i, j) is
feasible if there is some satisfying assignment for the constraint where the first i � 1
variables have j literals assigned to true. More precisely, the following conditions must
be satisfied for (i, j) to be feasible:

– i satisfies 1  i  N + 1
– j satisfies 0  j  i� 1
– There must be some value k such that 0  k  N � i+ 1 and L  j + k  H .

9

Table 1. Detecting size 10 AMO constraints on the 9 PySAT exactly-one clausal encodings:
pairwise, sequential counter, cardinality network, sorting network, totalizer, k-totalizer, mod k-
totalizer, bitwise, and ladder. The table shows the number of data variables/auxiliary variables in
the largest AMO constraint detected by the extraction tool on a given encoding. A 10/0 represents
the full constraint on all of the data variables. No approach detected an AMO constraint in the
bitwise encoding.

Tool Pair SCnt CNet SNet Tot kTot mkTot Bit Lad

Guess-and-Verify 10/0 10/0 10/0 10/0 10/0 10/0 10/0 – 9/0
LINGELING (Syntactic) 10/0 1/2 2/1 2/1 2/1 2/1 2/1 – 1/2

RISS (Semantic) 10/0 3/2 4/2 4/1 3/2 3/2 3/2 – 3/2

The BDD will have a node ui,j for each feasible pair (i, j). This node can either be L1,
the leaf node representing Boolean constant 1, or it can be a nonterminal node labeled
by variable xi. When ui,j is nonterminal and `i = xi, then its positive (respectively,
negative) child will be node ui+1,j+1 (resp., ui+1,j) if pair (i+1, j+1) (resp., (i+1, j))
is feasible and leaf node L0 (representing Boolean constant 0) otherwise. If `i = xi,
then the two children will be reversed. Starting with the root node, the literal assign-
ments and values of L and H can be determined by examining the BDD level-by-level,
while also determining whether or not the structure matches that of an cardinality BDD.

4.3 PySAT Encodings Experimental Evaluation

In this section we compare our Guess-and-Verify G&V tool against the two extrac-
tion techniques presented in [10]. LINGELING implements the static detection of pair-
wise constraints and RISS implements the static pairwise and two product encoding
detection along with the merging operation and semantic detection. The merging oper-
ation involves taking two AMO constraints of the form �x + `1 + `2 + · · · + `s � s

and x + j1 + j2 + · · · + jn � n and resolving on the opposing literal x to produce
`1+ `2+ · · ·+ `s+ j1+ j2+ · · ·+ jn � n+s�1 (where duplicate literals are removed
and the bound is updated appropriately). The semantic detection involves using unit
propagation to detect AMK cardinality constraints with an arc-consistent encoding. In
short, starting from a clause, unit propagation is used to determine if literals can ex-
tend the candidate cardinality constraint. This approach may be disrupted by auxiliary
variables within the encoding such that the unit propagation produces only truncated
versions of the cardinality constraints.

For this evaluation, we modified LINGELING and RISS to run cardinality detection,
print the detected constraints, then exit. Neither solver provides command line options
for this operation, or the ability to produce a formula in any format similar to KNF
with clauses and auxiliary variables from the extracted cardinality constraints removed.
PySAT [27] is a Python API for encoding cardinality constraints into clausal form. It
supports 9 different encodings, and these contain the most common AMO encodings.
We performed unit propagation and pure literal elimination on the generated PySAT
encodings, and added an ALO constraint on the data variables, making the constraint
exactly-one. We add this clause because data variables will appear in both polarities

10

in a typical formula (otherwise they would be propagated by pure literal elimination
and removed from the AMO constraint). Table 1 shows a comparison between G&V,
LINGELING, and RISS [10] on the PySAT encodings for AMO constraints of size 10.
Our G&V tool found the the original AMO constraints for 7 of the PySAT encodings,
and found the core of the original AMO constraint for the Ladder encoding (missing
a single data variable). The other tools found small nested AMO constraints of sizes
3-6, but they could not find the core of the AMO constraint for any encoding other than
pairwise. Findiig many small AMO constraints is less useful, since the propagation
power is weaker and a reencoding would only consider the sub constraints individually;
whereas finding a larger AMO constraint that combines several sub constraints is far
more effective for applying native cardinality constraint handling or reencoding.

The semantic detection from RISS detects some AMO2 constraints among the en-
codings, but they do cover a majority of the original problem variables. The merge
operation from RISS can generate constraints of size 4-6, but this operation is less help-
ful in our setting since it does not allow the deletion of the smaller constraints used in
the merge. We plan to explore additional heuristics to encapsulate all commonly used
encodings in subsequent iterations of the extraction tool.

In future work we plan to extend the G&V framework to general cardinality con-
straint extraction. The general case is much more difficult than the AMO case, and is
relatively unexplored in the literature. Our tool would require more sophisticated heuris-
tics for guessing since general cardinality constraint encodings may contain auxiliary
variables in varying polarities as well as varying clause structures. The verifier would
also require modifications. It is well-known that BDDs have size limitations, and this
could be a factor for large general cardinality constraints. In addition, it would be im-
portant to have a verifier that could dynamically adapt the constraint it is characterizing
so that the guessing algorithm could provide an under approximation of a given con-
straint (e.g., providing a set of clauses to the verifier that contains all of the clauses used
in a cardinality constraint as well as other clauses not used in the cardinality constraint).

5 Cardinality Conflict-Driven Clause Learning

In this section we describe cardinality-CDCL (CCDCL), an extension of CDCL with
propagation on klauses. For problems with many large klauses, handling them natively
will significantly reduce the size of the formula and increase the speed at which cardi-
nality constraints propagate.

K1 : x1 + x2 + x3 + x4 + x5 � 3 C1 : x1 + x2 + x3 + x4 + x5 � 1

Example 1. The partial assignment x1 x2 forces the extension x3 x4 x5 for K1 to be sat-
isfied. The partial assignment x1 x2 x3 x4 forces the extension x5 for C1 to be satisfied.
K1 can propagate at most 3 literals, whereas C1 can propagate at most 1 literal.

Example 1 shows the added propagation power of klauses over clauses, not to men-
tion the many auxiliary variables that must be propagated in a clausal encoding. Klauses

11

K : `1 · · · `k+1 `k+2 · · · `s C : `1 `2 `3 · · · `s

w1 · · · wk+1 w1 w2

Fig. 3. Klause (left) of the form `1+ · · ·+`s � k and clause (right) of the form `1+ · · ·+`s � 1,
with watch pointers for the first k + 1 literals in the clause.

can be handled natively with minimal changes to a CDCL solver, and no changes to the
proof logging.

CCDCL incurs a few tradeoffs. Some inprocessing techniques need to be restricted
or disabled, and the propagation/analysis algorithms become more complicated. More
importantly, the auxiliary variables in clausal encodings may be important for learning
useful clauses. These limitations are further discussed in the experimental evaluation.

5.1 Implementation Details

A klause requires more watch pointers (k + 1) than a clause (Figure 3), since s � k

literals must be falsified in order to propagate the klause [34]. The invariant on a non-
conflicting klause is that at least k watched literals are either unassigned or satisfied. If
this is not the case, then at least s� (k+1) literals are falsified and therefore the klause
is falsified.

Propagation on clauses is unchanged. For a klause, assuming the watch pointer in
question is wi for assigned literal `i, the first unassigned or satisfied literal starting from
`k+2 is swapped with `i, then wi is released and a new watch is created for the swapped
literal. If no such literal exists, then the watched literals `1, . . . , `k+1 (not including
`i) are assigned to true, and their reason is all of the literals `i, `k+2, . . . , `s that are
falsified. If any of the would-be propagated literals is already falsified, then there is a
conflict and the propagation algorithm breaks. The conflict clause contains the reason
literals, `i, and first falsified watched literal other than `i.

Conflict analysis works the same as in CDCL, where the implication graph is tra-
versed backwards from the conflict clause to the first unique implication point in order
to produce a learned clause. An implication graph is a data structure capturing the or-
dering and dependencies of decided or propagated literals, where each node is a literal
assigned to true and incoming edges to a node are the reason literals for why the node
was propagated. Intuitively, the clauses learned by CDCL are RUP because they repre-
sent a cut in the implication graph, from which unit propagation will derive a conflict.
It is similar for CCDCL. Consider a literal propagated by a klause. In the implication
graph, the reason for the literal is exactly the literals that propagated the klause. Since
important properties of the implication graph are unchanged, clause minimization can
be applied to learned clauses. We have not considered the affect of klauses on chrono-
logical backtracking, and therefore only allow backjumping.

12

5.2 Inprocessing Techniques

In order to support a selection of the most important inprocessing techniques, we split
the klause database into clauses (k = 1) and klauses (k > 1). When one clause is a
subset of another clause it can subsume (or replace) the other clause. This operation can
be performed on all clauses, without considering klauses. We allow bounded variable
elimination (BVE) [18] on all variables not occurring in klauses. variables in klauses are
frozen [19] so they are not selected as candidates for BVE. Variable elimination relies
on resolving the clauses containing a variable with themselves. This would not work
with klauses since we provide no corresponding inference rule for klausal resolution.
We allow vivification [31] on all clauses. During the vivification procedure, the literals
in a clause are falsified and propagated. If a conflict is derived, conflict analysis is used
to strengthen the clause. We enable propagation on klauses during vivification.

We support Stochastic Local Search (SLS) for phase saving [8]. The SLS algorithm
within CADICAL is simple and only relies on break values, i.e., the number of clauses
falsified after flipping a literal. In our implementation, a falsified cardinality constraint
adds additional weight to the break value of a literal depending on how many falsified
literals are contained within the cardinality constraint.

There are additional inprocessing techniques that we plan to include in future work,
but are less important than the implemented techniques. These include failed literal
probing [23] and Equivalent Literal Substitution (ELS). While we do not allow dupli-
cate literals in a klause, ELS could be performed by adding clauses for literal equiva-
lence, then substituting literals in all clauses but not in klauses.

6 Proof Checking

A formula is transformed from CNF to KNF by iteratively detecting cardinality con-
straints and replacing the clauses encoding the constraint with a corresponding klause,
leaving the remaining clauses unchanged. We only detect consistent clausal encodings
to ensure correct proof generation. We did not encounter any non-consistent AMO con-
straints during extraction; however, if this were the case or if it occurred for general
cardinality constraints, we could use a BDD to generate a derivation of a consistent
constraint from the extracted constraint [14]. There are two possible results produced
by the solver: a satisfying assignment or a clausal proof of unsatisfiability. And for
each there are three cases to consider, propagating natively on the KNF, reencoding the
klauses into clauses, or a hybrid approach.

6.1 Satisfying Assignments

It is possible that some variables from the original formula are removed when gener-
ating the KNF formula since certain extracted constraints use auxiliary variables that
will not appear in the corresponding klause. This will not affect proof generation for
unsatisfiable problems but will affect satisfying assignments. If a solver produces a
satisfying assignment for the KNF formula, the auxiliary variables from the original
CNF formula will be unassigned. Every partial assignment that satisfies a cardinality

13

constraint must be extendable to an assignment that satisfies the clausal encoding of
the constraint. So, calling a secondary SAT solver on the original CNF formula under
the partial assignment given by the solver will produce a satisfying assignment that in-
cludes the auxiliary variables. For configurations where klauses are reencoded, the new
clauses may contain auxiliary variables not appearing the original CNF formula. These
can simply be removed from the satisfying assignment produced by the solver, then the
same procedure for calling a secondary SAT solver is followed.

6.2 Clausal Proofs

For configurations that make use of reencoded constraints, we must generate a deriva-
tion of these constraints proving they are redundant and can be added to the original
CNF formula. To derive the pairwise encoding, we add the clauses from the encoding
to the formula. Each binary clause is RUP since assigning two literals in the constraint
to true must propagate a conflict. The derivation of the linear encoding is similar to its
clausal encoding, with an additional clause for each auxiliary variable:

Deriv(`1, . . . , `s) = Pairwise(`1, `2, `3, y), (`1_ `2_ `3_y),Deriv(y, `4, . . . , `s) (4)

The Linear derivation makes use of so-called RAT proof steps since new auxiliary vari-
ables are being added to the formula. Then, the proof produced by the solver with
reencoded clauses is appended to the derivation, and this serves as a complete proof for
the original CNF formula.

For configurations that propagate natively on cardinality constraints, the clauses
learned by the solvers are RUP with respect to an arc-consistent clausal encoding of the
cardinality constraints. To see this, consider when a propagation on an AMO cardinality
constraint occurs – exactly when one literal is set to true – and this will propagate the
remaining literals to false for both the native propagation and an arc-consistent clausal
encoding. So, for formulas with arc-consistent encodings (the vast majority), the proof
produced by our natively propagating configurations can be checked against the original
CNF formula as is. In the special case where the clausal encoding is consistent but not
arc-consistent, a derivation is prepended to the proof.

6.3 Starting with KNF Input

Finally, we consider if the the original formula is in KNF. A satisfying assignment
can be verified by checking if each klause in the KNF is satisfied. If the formula is
unsatisfiable, we can use any of the three solver configurations above to produce a
DRAT proof. We then transform the KNF formula to a CNF formula using an arc-
consistent encoding. The proof can be checked against this CNF formula. To increase
trust, one can use a formally verified KNF to CNF encoder [15]. Alternatively, one
could verify the transformation from KNF to CNF with a PB checker [25]. As a long-
term solution, existing DRAT proof checkers can be modified to accept KNF formulas
as input, with moderate changes to parsing and unit propagation. This approach would
avoid the overhead required to check a KNF to CNF translation since propagation on
klauses would be handled natively by the checker.

14

7 Experimental Evaluation

All experiments were performed in the Pittsburgh Supercomputing Center on nodes
with 128 cores and 256 GB RAM [11]. We ran 64 experiments in parallel per node with
5,000 second timeouts. Therefore, each process held approximately 4GB of memory.
This was not a limiting factor except for the only Java based solver SAT4J which failed
from memory outs more than timeouts. We report the PAR-2 score for each solver. PAR-
2 is the sum of completed runtimes added to the number of timeouts and memory outs
multiplied by two times the timeout (10,000), averaged over the number of formulas
solved by some configuration.

We implemented the CCDCL algorithm on top of the award winning CDCL solver
CADICAL [6]. The base CADICAL is run with all default inprocessing enabled, in
contrast with the CCDCL-based approaches that disable some reasoning techniques.
Converting the KNF formulas to the pseudo-Boolean input format OPB format is purely
syntactical. As such, we are able to run both ROUNDINGSAT [21] and SAT4J [5] (with
cutting planes enabled) after extracting cardinality constraints. These two solvers pro-
vide a baseline for comparing stronger reasoning techniques against our resolution-
based CDCL solvers. We use the following configurations, given an input CNF formula,
an extracted KNF formula, and an OPB formula from the KNF formula:

– CADICAL : run CADICAL on the input CNF formula.
– REENCODE : run CADICAL on reencoded formula (Linear encoding for AMOs).
– CCDCL : run CCDCL on the extracted KNF formula.
– HYBRID : run CCDCL on the extracted KNF formula plus linearly encoded AMO

constraints. Klauses are present during SAT mode.
– ROUNDINGSAT : run ROUNDINGSAT on the extracted KNF formula (converted

to OPB).
– SAT4J : run SAT4J with combined cutting planes and resolution on the extracted

KNF formula (converted to OPB).

The runtimes presented in the experimental evaluation include only each solver’s
runtime when given the proper input formula. We do not include the extraction time
or translation time because we intend to compare solvers as if a user had generated the
input formula in different formats. From our experience, when a user has a CNF formula
generator, it is simple to modify the generator to output both KNF or OPB formulas.
The repository containing our solver, experiment configurations, and experiment data
can be found at temp_url.

7.1 SAT Competition Benchmarks

We evaluated solvers and the cardinality extraction tool on the SAT Competition An-
niversary Track formulas. First we performed unit propagation, removing one from the
set that was solved immediately, leaving 5,354 formulas. We applied cardinality extrac-
tion on each formula with a timeout of 1,000 seconds per AMO constraint type (pair-
wise or non-pairwise), producing a corresponding KNF formula. For the PB solvers, we
translated the KNF formula into an OPB formula (a line-by-line syntactic translation).

15

temp_url

Table 2. Statistics running the cardinality extractor with a 1,000 second timeout for pairwise and
then non-pairwise constraints on the 5,354 competition formulas. Found is the number of formu-
las containing extracted cardinality constraints, Pairwise is the count with exclusively pairwise
encodings, Non-Pairwise is the count with exclusively non-pairwise encodings, and Both is the
count with a mixture of encodings. geq5 is the percent of formulas with at least one constraint of
at least size 5, and � 10 ⇥ 10 is at least 10 constraints of at least size 10. We show the average
runtime and the percentage of these formulas that took  15 seconds.

Found Pairwise Non-Pairwise Both � 5 � 10⇥ 10 Average. (s)  15 s

3,415 3,090 55 270 36% 17% 69.0 78.0 %

Table 2 shows that of the 3,415 formulas with cardinality constraints the vast ma-
jority contained pairwise encoded constraints and we extracted non-pairwise encoded
constraints from only a few hundred formulas. While an expert may know that for many
problems the pairwise encoding can be improved for unsatisfiable problems with more
compact encodings, these results show that many formulas still implement the pairwise
encoding. Furthermore, we log the sizes of constraints extracted, and found that 1,946
formulas contained a cardinality constraint of at least size 5, and 933 formulas con-
tained at least 10 cardinality constraints of size 10 or more. A large fraction of formulas
appearing in the SAT Competitions contained many large cardinality constraints, indi-
cating our approach could impact many potential users. By breaking down the formula
set in this way, we are able to gauge the performance of the various solving config-
urations on general formulas versus formulas with many large cardinality constraints.
Cardinality constraint extraction was fast (less than 15 seconds) for the majority of
formulas, but again, we expect it would be easy for benchmark authors to rewrite the
problems in KNF.

Table 3 shows the performance of solvers on two increasingly more restrictive for-
mula sets. It is expected that a reencoding approach or native cardinality propagation
would work better on problems with many large cardinality constraints, where the dif-
ference between encodings or propagation is more pronounced. This motivated the cu-
ration of the formula sets.

At a high-level, the table shows the separation of our three cardinality-based con-
figurations from the default CDCL and PB solvers. For each of the PAR-2 scores, a
cardinality-based configuration has the best result. While there are some crafted in-
stances in the formula set that SAT4J and ROUNDINGSAT can solve instantly, neither
solver performs well over all formulas. As expected, for a general set of formulas with
only AMO constraints extracted the CDCL solvers perform better. The PB solvers are
more suited for special cases where formulas contain many general cardinality con-
straints.

REENCODE performs best for unsatisfiable formulas but does not perform as well
as CADICAL on satisfiable formulas. Since many of the formulas originally use the
pairwise encoding, this result suggests that for some satisfiable formulas the pairwise
encoding outperforms the more compact Linear encoding. CCDCL and HYBRID solve
the most satisfiable formulas. The cardinality-based propagation is more effective when
the formula contains larger cardinality constraints, seen in the larger difference in PAR-

16

Table 3. From top to bottom, the first set of results are for the 1,946 (847 SAT, 716 UNSAT)
formulas with at least one cardinality constraint of at least size 5. The second set of results are for
the 933 (405 SAT, 345 UNSAT) formulas with at least 10 cardinality constraints of at least size
10. PAR-2 score is the sum of all completed solving times plus twice the timeout for each un-
solved benchmark that was solved by another configuration, averaged over the number of solved
formulas. Combined is both SAT and UNSAT formulas. Solving times do not include constraint
extraction.

Configuration SAT / UNSAT SAT PAR-2 UNSAT PAR-2 Comb. PAR-2

At least one size 5

CADICAL 790 / 619 931.68 1850.31 1352.5
CCDCL 789 / 593 953.19 2292.22 1566.59
HYBRID 795 / 585 897.54 2427.31 1598.31
REENCODE 787 / 636 965.55 1560.70 1238.18
ROUNDINGSAT 647 / 475 2592.14 3823.39 3156.17
SAT4J 373 / 240 5676.72 6720.69 6154.95

At least 10 size 10

CADICAL 373 / 269 1062.52 2824.08 1872.84
CCDCL 380 / 254 928.64 3315.55 2026.62
HYBRID 377 / 262 1017.63 3104.27 1977.49
REENCODE 372 / 282 1108.04 2297.03 1654.98
ROUNDINGSAT 294 / 185 2975.97 4924.31 3872.21
SAT4J 166 / 103 5953.62 7065.07 6464.89

2 score between CADICAL and CCDCL on the bottom set of the table. HYBRID solves
many more unsatisfiable formulas than CCDCL on the second formula set, showing the
possible benefit of a configuration that targets both satisfiable and unsatisfiable formulas
with many cardinality constraints.

Figure 4 presents the tradeoff between cardinality-based propagation and encod-
ings. HYBRID implements mode-switching that trades approximately half the time be-
tween the cardinality-based propagation, leading to a slow down on average for solving
unsatisfiable formulas. This is made clear by the 2⇥’s line in the scatter plot contain-
ing many of the unsatisifable formulas. On the other hand, HYBRID is able to solve the
satisfiable instances with many cardinality constraints much faster due to the native car-
dinality propagation. Our heuristic-based extraction only works for AMO constraints,
so many general cardinality constraints may have been missed. If the problems were
first encoded in KNF containing general cardinality constraints, we expect the results
to improve significantly. We explore this possibility in the following section with two
problems encoded directly in KNF.

7.2 Magic Squares and Max Squares

In this section we explore the Magic Squares and Max Squares problems. These prob-
lems demonstrate the effectiveness of cardinality-based propagation on satisfiable for-
mulas with general cardinality constraints, as well as the importance of good encodings

17

10�1 100 101 102 103
10�1

100

101

102

103

10⇥ 100⇥

2⇥

10⇥

100⇥

ReEncode

H
y
b
r
id

SAT
UNSAT

Fig. 4. Comparison between solver configurations on the 933 formulas with at leas 10 extracted
constraints of size 10 or more. The size of a mark is proportional to the number of extracted
constraints size 10 or more, i.e., formulas with many large AMO constraints have large marks.

for unsatisfiable formulas. Both problems were generated in KNF, so no cardinality
extraction is necessary.

The Magic Squares problem asks whether the integers from 1 to n
2 can be placed

on an n⇥n grid such that the sum of integers in each row, column, and diagonal all have
the same value (a.k.a. the magic number M) see Figure 5. Problem variables denote the
integer value of a cell. We add a unary encoding of values such that the pop count of
these encoded values in a row, column, or diagonal is the corresponding sum. We use the
following constraints: (a) ALO constraints stating each cell is assigned to a value, (b)
AMO constraints stating no two nodes can have the same value, (c) klausal constraints
stating the sum of each row, column, and diagonal is at least M , (d) klausal constraints
stating the difference between the total n ⇥ n and the sum of each row, column, and
diagonal is at least the total n⇥ n�M .

18

1 9 12 20 23

17 25 3 6 14

8 11 19 22 5

24 2 10 13 16

15 18 21 4 7
65

65

65

65

65

65 65 65 65 65 6565

Fig. 5. Left a magic square (n = 5) and right an optimal solution of a max square (n = 10,
m = 61).

Table 4. Solving times for Magic Squares (top) and Max Squares (bottom), timeout of 5,000 s.

Magic Squares

Configuration n
5 6 7 8 9 10 11 12

CCDCL 0.18 1.42 6.56 12.01 46.37 460.82 164.61 766.07
HYBRID 2.54 37.04 1070.97 887.71 – – – –
REENCODE 58.75 246.55 1099.65 4487.79 – – – –
ROUNDINGSAT 3.88 8.24 4.41 264.83 631.46 4212.7 1150.16 –
SAT4J 0.78 8.3 5.31 23.45 17.99 958.56 247.94 3177.64

Max Squares

SAT (n,m) UNSAT (n,m)
(7,32) (8,41) (9,51) (10,61) (7,33) (8,42) (9,52) (10,62)

CCDCL 0.12 15.01 539.88 660.25 217.62 – – –
HYBRID 0.02 0.92 17.0 101.42 1.07 1.27 58.53 –
REENCODE 0.01 0.62 57.83 24.33 0.18 0.72 22.82 –
ROUNDINGSAT 0.06 1582.62 – – 2.31 1046.83 – –
SAT4J 5.75 – – – 26.24 – – –

When encoding the problem with the correct magic number, it is satisfiable for
any n ⇥ n grid. Table 4 shows the solving times on the Magic Squares formulas of
increasing size. CCDCL configuration significantly outperforms the solvers, finding
satisfying assignments for large values of n. Only the PB solvers SAT4J and ROUND-
INGSAT get close to the performance of CCDCL. This shows that for some crafted
instances with many cardinality constraints, improved propagation alone can perform
better than a stronger reasoning system like cutting planes. Still, the addition of encoded
constraints in REENCODE and HYBRID can significantly worsen the performance. The
mode-switching of HYBRID gives it a slight edge over REENCODE.

The Max Squares problem [48] asks whether you can set m cells to true in an n⇥n

grid such that no set of four true cells form the corners of a square. There exists an

19

optimal value opt for each grid such that the Max Squares problem on opt is satisfiable
and on opt+1 is unsatisfiable. Problem variables denote whether a cell is in the solution.
We use the following constraints: (a) clauses with 4 literals blocking the 4 corners of
each possible square in the grid, (b) a klausal constraint stating at least m cells are set
to true.

The results in Figure 4 show the solving times on several configurations with satisfi-
able formulas (m = opt) and unsatisfiable formulas (m = opt+1). For these formulas,
both cardinality-based propagation and PB reasoning are ineffective. The two config-
urations with encoded constraints, REENCODE and HYBRID are able to solve much
larger unsatisfiable formulas. This problem is unique in that it contains one large car-
dinality constraint unlike Magic Squares with many cardinality constraints. This may
explain the worse performance of CCDCL on even the satisfiable formulas.

The problems above highlight the main difficulty with handling klauses and reen-
codings: sometimes encoded constraints make the problem much easier, yet some-
times keeping the cardinality constraints abstract make the problems easier. We at-
tempt to address this dilemma with the combined configuration HYBRID that has access
to auxiliary variables throughout solving, and klauses during SAT modes. For Magic
Squares, HYBRID outperforms REENCODE, and for Max Squares HYBRID outper-
forms CCDCL. For future work, we plan to improve the combined approach HYBRID
by modifying solver heuristics. For example, variable scores can be modified to prefer
deciding on auxiliary variables at different stages of the search. With these and other
changes, we believe HYBRID can get closer to the performance of a virtual portfolio of
REENCODE and CCDCL.

8 Conclusion and Future Work

We argue the input format for SAT solvers and proof checkers should be enriched
with klauses. In this work, we present several solver configurations that take as input
KNF formulas extracted from CNF formulas. In an experimental evaluation we show
that with modifications to the state-of-the-art solver CADICAL, our three cardinality-
based configurations outperform default CDCL and PB solvers on SAT Competition
and Magic/Max Squares formulas. The CCDCL configuration performs well on satis-
fiable formulas, the REENCODE configuration on unsatisfiable formulas, and HYBRID
on a mixture of both. We plan to extend this further by incorporating partial encodings
dynamically during runtime. By partially encoding the cardinality constraints as the
solver runs, we can guide the solver to focus on cardinality constraints that appear more
important, and provide auxiliary variables for those cardinality constraints in case the
problem appears to be unsatisfiable.

This initial step opens many avenues for future work. We plan to incorporate more
complex propagation-based cardinality constraint detection in the extractor in order
to go beyond AMO constraints. We plan to modify a DRAT proof-checker to take
KNF formulas as input and propagate on klauses, comparing the verification tool chain
against corresponding pseudo-Boolean toolchains. And finally, we plan to explore the
possibility of using KNF to enhance other paradigms including local search and parallel
solving.

20

References

1. Abı́o, I., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: A new look at BDDs for
pseudo-Boolean constraints. Journal of Artificial Intelligence Research 45, 443–480 (2012)

2. Abı́o, I., Stuckey, P.J.: Conflict directed lazy decomposition. In: International Conference on
Principles and Practice of Constraint Programming (2012)

3. Bailleux, O., Boufkhad, Y.: Efficient cnf encoding of boolean cardinality constraints. In:
Principles and Practice of Constraint Programming (CP). pp. 108–122. Springer (2003)

4. Becker, B., Drechsler, R., Eggersglüß, S., Sauer, M.: Recent advances in sat-based atpg:
Non-standard fault models, multi constraints and optimization. In: Design and Technology
of Integrated Systems in Nanoscale Era (DTIS). pp. 1–10 (2014)

5. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. Journal on Satisfiability, Boolean
Modeling and Computation 7, 59–6 (2010)

6. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, and YalSAT entering the SAT com-
petition 2017 (2017), unpublished

7. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without bdds. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS) (1999)

8. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT competition 2020 (2020), unpublished

9. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Theory and Appli-
cations of Satisfiability Testing (SAT). LNCS, vol. 9340, pp. 405–422 (2015)

10. Biere, A., Le Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints in CNF.
In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 8561, pp. 285–301.
Springer (2014)

11. Brown, S.T., Buitrago, P., Hanna, E., Sanielevici, S., Scibek, R., Nystrom, N.A.: Bridges-
2: A Platform for Rapidly-Evolving and Data Intensive Research, pp. 1–4. Association for
Computing Machinery, New York, NY, USA (2021)

12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-
puters 35(8), 677–691 (1986)

13. Bryant, R.E., Biere, A., Heule, M.J.H.: Clausal proofs for pseudo-Boolean reasoning. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol.
12651, pp. 76–93 (2022)

14. Bryant, R.E., Biere, A., Heule, M.J.H.: Clausal proofs for pseudo-boolean reasoning. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). p. 443–461.
Springer (2022)

15. Codel, C.: Verifying SAT Encodings in Lean. Master’s thesis, Carnegie Mellon University
Pittsburgh, PA (2022)

16. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs. Discrete
Applied Mathematics 18(1), 25–38 (1987)

17. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence
113(1–2), 41–85 (1999)

18. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 3569, pp. 61–75.
Springer (2005)

19. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron. Notes
Theor. Comput. Sci. 89(4), 543–560 (2003)

20. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation, 2(1-4), 1–26 (2006)

21. Elffers, J., Nordström, J.: Divide and conquer: Towards faster pseudo-Boolean solving. In:
Lang, J. (ed.) International Joint Conference on Artificial Intelligence (IJCAI). pp. 1291–
1299. ijcai.org (2018)

21

22. Elffers, J., Nordström, J.: A cardinal improvement to pseudo-Boolean solving. In: Confer-
ence on Artificial Intelligence (AAAI). pp. 1495–1503. AAAI Press (2020)

23. Freeman, J.W.: Improvements to Propositional Satisfiability Search Algorithms. Ph.D. thesis,
University of Pennsylvania, USA (1995)

24. Gent, I.P.: Arc consistency in sat. In: European Conference on Artificial Intelligence (2002)
25. Gocht, S., Martins, R., Nordström, J., Oertel, A.: Certified CNF translations for pseudo-

Boolean solving. In: Meel, K.S., Strichman, O. (eds.) Theory and Applications of Satisfia-
bility Testing (SAT). LIPIcs, vol. 236, pp. 16:1–16:25. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2022)

26. Hooker, J.: Generalized resolution and cutting planes. Annals of Operations Research 12,
217–239 (1988)

27. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for prototyping with
SAT oracles. In: SAT. pp. 428–437 (2018)

28. Jabbour, S., Sais, L., Salhi, Y.: A pigeon-hole based encoding of cardinality constraints.
Theory and Practice of Logic Programming 13 (2013)

29. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: International Joint Conference
on Automated Reasoning (IJCAR). LNCS, vol. 7364, pp. 355–370. Springer (2012)

30. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from n objects. In: Constraints
in Formal Verification (CFV). p. 39 (2007)

31. Li, C.M., Xiao, F., Luo, M., Manyà, F., Lü, Z., Li, Y.: Clause vivification by unit propagation
in CDCL SAT solvers. Artificial Intelligence 279(C) (feb 2020)

32. Liang, J., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for
SAT solvers. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 9710,
pp. 123–140 (2016)

33. Lotz, K., Goel, A., Dutertre, B., Kiesl-Reiter, B., Kong, S., Majumdar, R., Nowotka, D.:
Solving string constraints using sat. In: Enea, C., Lal, A. (eds.) Computer Aided Verification
(CAV). pp. 187–208. Springer, Cham (2023)

34. Maglalang, J.C.: Native cardinality constraints: More expressive, more efficient constraints
(2019)

35. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas. In: Haifa
Verification Conference (HVC). LNCS, vol. 7857, pp. 102–117 (2013)

36. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

37. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference. p.
530–535. ACM (2001)

38. Nguyen, V.H., Nguyen, V.Q., Kim, K., Barahona, P.: Empirical study on sat-encodings of
the at-most-one constraint. In: The 9th International Conference on Smart Media and Ap-
plications. p. 470–475. Smart Media and Applications (SMA), ACM, New York, NY, USA
(2021)

39. Niemetz, A., Preiner, M.: Bitwuzla. In: Computer Aided Verification (CAV). p. 3–17.
Springer (2023)

40. Oh, C.: Between sat and unsat: The fundamental difference in cdcl sat. In: Theory and Ap-
plications of Satisfiability Testing (SAT). pp. 307–323. Springer International Publishing
(2015)

41. Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving. In: Theory and
Applications of Satisfiability Testing (SAT). LNCS, vol. 3542, pp. 235–250 (2005)

42. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: Principles
and Practice of Constraint Programming (CP). LNCS, vol. 3709, pp. 827–831 (2005)

22

43. Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N.: Incremental sat-based method
with native boolean cardinality handling for the hamiltonian cycle problem. In: European
Conference on Logics in Artificial Intelligence. vol. 8761, p. 684–693. Springer (2014).
https://doi.org/10.1007/978-3-319-11558-0_52

44. Soos, M., Bryant, R.E.: Combining CDCL, Gauss-Jordan elimination, and proof generation.
In: Pragmatics of SAT (2022)

45. Stephan Gocht, Ciaran McCreesh, J.N.: Veripb: The easy way to make your combinatorial
search algorithm trustworthy. In: From Constraint Programming to Trustworthy AI (2020)

46. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake lpr: Verified propagation redundancy check-
ing in CakeML. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Part II. LNCS, vol. 12652, pp. 223–241 (2021)

47. Whittemore, J., Kim, J., Sakallah, K.: Satire: A new incremental satisfiability engine. In:
Design Automation Conference (DAC). p. 542–545. DAC ’01, ACM, New York, NY, USA
(2001)

48. Wynn, E.: A comparison of encodings for cardinality constraints in a SAT solver. ArXiv
abs/1810.12975 (2018)

23

https://doi.org/10.1007/978-3-319-11558-0_52
https://doi.org/10.1007/978-3-319-11558-0_52

	From Clauses to Klauses

