
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

The Bedrock of Byzantine Fault Tolerance:
A Unified Platform for BFT Protocols Analysis,

Implementation, and Experimentation
Mohammad Javad Amiri, Stony Brook University; Chenyuan Wu, University of

Pennsylvania; Divyakant Agrawal and Amr El Abbadi, UC Santa Barbara;
Boon Thau Loo, University of Pennsylvania; Mohammad Sadoghi, UC Davis

https://www.usenix.org/conference/nsdi24/presentation/amiri

The Bedrock of Byzantine Fault Tolerance: A Unified Platform for BFT Protocols
Analysis, Implementation, and Experimentation

Mohammad Javad Amiri
Stony Brook University

Chenyuan Wu
University of Pennsylvania

Divyakant Agrawal
UC Santa Barbara

Amr El Abbadi
UC Santa Barbara

Boon Thau Loo
University of Pennsylvania

Mohammad Sadoghi
UC Davis

Abstract
Byzantine Fault-Tolerant (BFT) protocols cover a broad spec-
trum of design dimensions from infrastructure settings, such
as the communication topology, to more technical features,
such as commitment strategy and even fundamental social
choice properties like order-fairness. The proliferation of dif-
ferent protocols has made it difficult to navigate the BFT
landscape, let alone determine the protocol that best meets
application needs. This paper presents Bedrock, a unified
platform for BFT protocols analysis, implementation, and ex-
perimentation. Bedrock proposes a design space consisting
of a set of dimensions and explores several design choices
that capture the trade-offs between different design space di-
mensions. Within Bedrock, a wide range of BFT protocols
can be implemented and uniformly evaluated under a unified
deployment environment.

1 Introduction
Distributed systems rely on fault-tolerant protocols to pro-

vide robustness and high availability [43, 57, 63, 87, 102,
145, 197]. While cloud systems, e.g., Google’s Spanner [87],
Amazon’s Dynamo [102], and Facebook’s Tao [63], rely
on crash fault-tolerant protocols, e.g., Paxos [164], to es-
tablish consensus, a Byzantine fault-tolerant (BFT) proto-
col is a key ingredient in distributed systems with non-
trustworthy infrastructures, e.g., permissioned blockchains
[1–3,26,29,30,32,45,67,82,127–129,137,162,213,220,223],
permissionless blockchains [64, 154, 156, 183, 253], dis-
tributed file systems [14, 75, 85], locking service [86], fire-
walls [55, 122, 123, 219, 230, 251], certificate authority sys-
tems [257], SCADA systems [41, 153, 205, 256], key-value
datastores [53,106,126,140,219], and key management [187].

BFT protocols use the State Machine Replication (SMR)
technique [163,221] to ensure that non-faulty replicas execute
client requests in the same order despite the concurrent fail-
ure of at most f Byzantine replicas. BFT SMR protocols are
different along several dimensions, including the number of
replicas, processing strategy (i.e., optimistic, pessimistic, or
robust), supporting load balancing, etc. While dependencies

and trade-offs among these dimensions lead to several design
choices, there is currently no unifying tool that provides the
foundations for studying and analyzing BFT protocols’ de-
sign dimensions and their trade-offs. We envision that such
a unifying foundation will provide an in-depth understand-
ing of existing BFT protocols, highlight the trade-offs among
dimensions, and will enable protocol designers to find the
protocol that best fits their needs.

This paper presents Bedrock, a unified platform that en-
ables us to analyze, implement, and experimentally evaluate
partially asynchronous SMR BFT protocols within the design
space of possible variants. Bedrock presents a design space
to characterize BFT protocols based on different dimensions
that capture the environmental settings, protocol structure,
QoS features, and performance optimizations. Each protocol
is a plausible point in the design space. Within the design
space, Bedrock defines a set of design choices demonstrating
trade-offs between different dimensions. For example, the
communication complexity can be reduced by increasing the
number of commitment phases or the number of phases can
be reduced by adding more replicas. Each design choice ex-
presses a one-to-one function to map plausible input points
(i.e., a BFT protocol) to plausible output points (i.e., another
BFT protocol) in the design space.

The Bedrock platform has three main practical uses:
• BFT protocols analysis. Bedrock can be used to ana-

lyze and navigate the evergrowing BFT landscape to
principally compare and differentiate among BFT proto-
cols. The Bedrock design space and its design choices
organize protocols in an ordered fashion and provide new
insights into the properties of existing BFT protocols.

• BFT protocols implementation. Within Bedrock, a
wide range of BFT protocols, e.g., PBFT [73], SBFT
[131], HotStuff [252], Kauri [202], Themis [149], Ten-
dermint [66], Prime [24], PoE [135], CheapBFT [146],
Q/U [5], FaB [190], and Zyzzyva [157], are implemented.
The Bedrock implementation supports different stages
of protocols, e.g., ordering, execution, view-change, and
checkpointing. A domain-specific language (DSL) is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 371

provided to rapidly prototype BFT protocols by spec-
ifying the protocol config, including the chosen value
for each dimension in the design space, the list of roles,
phases, states, and exchange messages of the protocol.
Bedrock also includes a plugin manager to first, imple-
ment protocol-specific behaviors that can not be speci-
fied by the protocol config and second, enable users to
add their own methods, dimensions, or values to support
more protocols or to modify existing dimensions, e.g.,
add a new signature algorithm.

• BFT protocols experimentation. In addition to rapid
prototyping, the unified deployment environment of
Bedrock enables users to experimentally evaluate and
compare different BFT protocols proposed in diverse
settings and contexts under one unified platform. To our
best knowledge, our paper presents the largest (and most
varied) number of BFT protocols compared and experi-
mented with within a single unified platform.

The paper makes the following contributions.
• A design space for BFT protocols, a set of design choices

and possible design trade-offs are presented to help users
analyze BFT protocols and understand how different
protocols are related to each other.

• We present Bedrock, a platform that aims to unify BFT
protocols. Bedrock derives valid protocols by combining
different design choices in the design space.

• A wide range of BFT protocols can be implemented
in Bedrock. The DSL specifications result in orders of
magnitude reduction in code size compared to equivalent
open-source implementations, greatly improving code
readability and the ability to rapidly prototype protocols.

• The unified experimentation environment of Bedrock
provides for the first time new opportunities to evaluate
and compare different existing BFT protocols fairly and
efficiently (e.g., identical programming language, used
libraries, cryptographic tools, etc.).

2 Bedrock Overview
System model. A BFT protocol runs on a network consist-
ing of a set of nodes that may exhibit arbitrary, potentially
malicious, behavior. BFT protocols use the State Machine
Replication (SMR) algorithm [163, 221] where the system
provides a replicated service whose state is mirrored across
different deterministic replicas. At a high level, the goal of
a BFT SMR protocol is to assign each client request an or-
der in the global service history and execute it in that or-
der [226]. In a BFT SMR protocol, all non-faulty replicas
execute the same requests in the same order (safety) and all
correct requests are eventually executed (liveness). In an asyn-
chronous system, where replicas can fail, no consensus solu-
tions guarantee both safety and liveness (FLP result) [117].
As a result, asynchronous consensus protocols rely on tech-
niques such as randomization [48, 70, 121, 214], failure detec-
tors [80, 185], hybridization/wormholes [88, 204] and partial
synchrony [108, 111] to circumvent the FLP impossibility.

Figure 1: A simplified design space with two dimensions: number of
replicas and number of commitment phases. Green dots () specify
valid points (i.e., BFT protocols) while red dots () show invalid
points (i.e., impossible protocols). A design choice, i.e., phase re-
duction, is a one-to-one transformation function that maps a protocol
in its domain to another protocol in its range.

Bedrock assumes the partial synchrony model as it is used
in most practical BFT protocols [73, 131, 157, 252]. In the
partial synchrony model, there exists an unknown global stabi-
lization time (GST), after which all messages between correct
replicas are received within some known bound D. Bedrock
further inherits the standard assumptions of existing BFT pro-
tocols. First, while there is no upper bound on the number
of faulty clients, the maximum number of concurrent mali-
cious replicas is assumed to be f . Second, replicas are con-
nected via an unreliable network that might drop, corrupt,
or delay messages. Third, the network uses point-to-point
bi-directional communication channels to connect replicas.
Fourth, the failure of replicas is independent of each other,
where a single fault does not lead to the failure of multiple
replicas. This can be achieved by either diversifying replica
implementation (e.g., n-version programming) [40, 118] or
placing replicas at different geographic locations (e.g., data-
centers) [51, 112, 229, 241]. Finally, a strong adversary can
coordinate malicious replicas and delay communication. How-
ever, the adversary cannot subvert cryptographic assumptions.
Usage model. Bedrock aims to help users analyze, imple-
ment, and evaluate BFT protocols within one unified platform
and find the protocol that fits their needs. To achieve this goal,
the Bedrock platform makes available the design dimensions
of BFT protocols and different design choices, i.e., trade-offs
between dimensions, to users to tune. Figure 1 illustrates an
example highlighting the relation between design space, di-
mensions, design choices, and protocols in Bedrock. For the
sake of simplicity, we present only two dimensions of the
design space (among more than 10 dimensions, as described
in Section 3), i.e., number of replicas and number of commitment
phases. Each dimension, e.g., number of replicas, can take dif-
ferent values, e.g., 3 f +1, 5 f +1, or 7 f +1. A BFT protocol
is then a point in this design space, e.g., ("3", "3 f +1"). Note
that each dimension not presented in this figure also takes a
value, e.g., communication strategy is assumed to be pessimistic.

Moreover, only a subset of points is valid and represents
BFT protocols. In Figure 1, green dots () specify valid points
(i.e., BFT protocols) while red dots () show invalid points
(i.e., impossible protocols). For example, there is no (pes-
simistic) BFT protocol with 3 f + 1 nodes that commit re-

372 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Different stages of replicas in a BFT protocol

quests in a single commitment phase. A design choice is then
a one-to-one function that maps each BFT protocol in its
domain to another protocol in its range. For example, phase
reduction (through redundancy) maps each protocol with 3 f+1
nodes and 3 communication phases, e.g., PBFT [73], to a pro-
tocol with 5 f+1 nodes and 2 communication phases, e.g.,
FaB [190] (assuming both protocols are pessimistic with
clique topology). The domain and range of each design choice
are a subset of protocols in the design space.

BFT protocols structure. In a BFT protocol, as presented
in Figure 2, clients communicate with a set of replicas that
maintain a copy of the application state. A replica’s lifecycle
consists of ordering, execution, view-change, checkpointing,
and recovery stages. The goal of the ordering stage is to estab-
lish agreement on a unique order among requests executing
on the application state. In leader-based consensus protocols,
a designated leader node proposes the order and, to ensure
fault tolerance, needs to get agreement from a subset of the
nodes, referred to as a quorum. In the execution stage, requests
are applied to the replicated state machine. The view-change
stage replaces the current leader. Checkpointing is used to
garbage-collect data and enable trailing replicas to catch up,
and finally, the recovery stage recovers replicas from faults
by applying software rejuvenation techniques.

PBFT Protocol. To better illustrate the Bedrock design space,
we give an overview of the PBFT protocol [73, 75] as a driv-
ing example. PBFT, as shown in Figure 3, is a leader-based
protocol that operates in a succession of configurations called
views [114, 115]. Each view is coordinated by a stable leader
(primary) and the protocol pessimistically processes requests.
In PBFT, the number of replicas, n, is assumed to be 3 f +1
and the ordering stage consists of pre-prepare, prepare, and
commit phases. The pre-prepare phase assigns an order to the
request, the prepare phase guarantees the uniqueness of the
assigned order and the commit phase guarantees that the next
leader can safely assign the order.

During a normal case execution of PBFT, clients send their
signed request messages to the leader. In the pre-prepare phase,
the leader assigns a sequence number to the request to de-
termine the execution order of the request and multicasts a
pre-prepare message to all backups. Upon receiving a valid
pre-prepare message from the leader, each backup replica mul-
ticasts a prepare message to all replicas and waits for prepare
messages from 2 f different replicas (including the replica
itself) that match the pre-prepare message. The goal of the
prepare phase is to guarantee safety within the view, i.e., 2 f
replicas received matching pre-prepare messages from the

Figure 3: Different stages of PBFT protocol

leader replica and agree with the order of the request.
Each replica then multicasts a commit message to all repli-

cas. Once a replica receives 2 f + 1 valid commit messages
from different replicas, including itself, that match the pre-
prepare message, it commits the request. The goal of the com-
mit phase is to ensure safety across views, i.e., the request has
been replicated on a majority of non-faulty replicas and can be
recovered after (leader) failures. The second and third phases
of PBFT follow the clique topology, i.e., have O(n2) message
complexity. If the replica has executed all requests with lower
sequence numbers, it executes the request and sends a reply
to the client. The client waits for f+1 matching results from
different replicas.

In the view change stage, upon detecting the failure of
the leader of view v using timeouts, backups exchange view-
change messages including requests that have been received
by the replicas. After receiving 2 f +1 view-change messages,
the designated stable leader of view v+1 (the replica with ID

= v+1 mod n) proposes a new view message, including the list
of requests that should be processed in the new view.

In PBFT, replicas periodically generate checkpoint messages
and send them to all replicas. If a replica receives 2 f + 1
matching checkpoint messages, the checkpoint is stable. PBFT
includes a proactive recovery mechanism that periodically
rejuvenates replicas one by one. PBFT uses either signa-
tures [73] or MACs [75] for authentication. Using MACs,
replicas need to send view-change-ack messages to the leader
after receiving view-change messages. Since new view messages
are not signed, these view-change-ack messages enable replicas
to verify the authenticity of new view messages.

3 Design Space
In Bedrock, each BFT protocol can be analyzed along sev-

eral dimensions. These dimensions (and values associated
with each dimension) collectively help to define the overall
design space of BFT protocols supported by Bedrock. The
dimensions are categorized into four main families: proto-
col structure and environmental settings that present the core
dimensions of BFT protocols, two optional QoS features in-
cluding order-fairness and load balancing that a BFT protocol
might support, and a set of performance optimizations, such
as request pipelining, parallel execution, and trusted hardware,
for tuning BFT protocols. Due to space limitations, the perfor-
mance optimizations are discussed in Appendix A. In the rest
of this section, we describe these families of dimensions in
greater detail. As we describe each dimension, we prefix label

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 373

them with "E" for environmental settings, "P" for protocol
structure, etc. Hence, "E 1" refers to the first dimension in the
environmental settings dimensions family.

This section is not meant to provide a fully exhaustive set of
dimensions but rather to demonstrate the overall methodology
used to define dimensions usable in Bedrock.

3.1 Protocol Structure
Our first family of dimensions concerns customization of

the protocol structure by Bedrock, which will further define
the class of protocols permitted.

P 1. Commitment strategy. Bedrock supports BFT proto-
cols that process transactions in either an optimistic, pes-
simistic, or robust manner. Optimistic BFT protocols make
optimistic assumptions on failures, synchrony, or data con-
tention and might execute requests without necessarily estab-
lishing consensus. An optimistic BFT protocol might make a
subset of the following assumptions:
a1. The leader is non-faulty, assigns a correct order to re-

quests and sends it to all backups, e.g., Zyzzyva [157],
a2. The backups are non-faulty and actively and honestly

participate in the protocol, e.g., CheapBFT [146],
a3. All non-leaf replicas in a tree topology are non-faulty,

e.g., Kauri [202],
a4. The workload is conflict-free and concurrent requests

update disjoint sets of data objects, e.g., Q/U [5],
a5. The clients are honest, e.g., Quorum [37], and
a6. The network is synchronous (in a time window), and

messages are not lost or delayed, e.g., Tendermint [65].
Optimistic protocols are classified into speculative and

non-speculative protocols. In non-speculative protocols, e.g.,
SBFT [131] and CheapBFT [146], replicas execute a trans-
action only if the optimistic assumption holds. Speculative
protocols, e.g., Zyzzyva [157] and PoE [135], on the other
hand, optimistically execute transactions. If the assumption
is not fulfilled, replicas might have to rollback the executed
transactions. Optimistic BFT protocols improve performance
in fault-free situations. If the assumption does not hold, the
replicas, e.g., SBFT [131], or clients, e.g., Zyzzyva [157], de-
tect the failure and use the fallback protocol.

Pessimistic BFT protocols, on the other hand, do not make
any optimistic assumptions about failures, synchrony, or data
contention. In pessimistic BFT protocols, replicas communi-
cate to agree on the order of requests. Finally, robust protocols,
e.g., Prime [24], Aardvark [86], R-Aliph [37], Spinning [240]
and RBFT [38], go one step further and consider scenarios
where the system is under attack by a very strong adversary.

In summary, BFT protocols demonstrate different perfor-
mances in failure-free, low-failure, and under-attack situa-
tions. Optimistic protocols deliver superior performance in
failure-free situations. However, in the presence of failure,
their performance is significantly reduced, especially when
the system is under attack. On the other hand, pessimistic
protocols provide high performance in failure-free situations

and are able to handle low failures with acceptable overhead.
However, they show poor performance when the system is
under attack. Finally, robust protocols are designed for under-
attack situations and demonstrate moderate performance in
all three situations.

P 2. Number of commitment phases. The number of com-
mitment (ordering) phases or good-case latency [12] of a
BFT SMR protocol is the number of phases needed for all
non-faulty replicas to commit when the leader is non-faulty,
and the network is synchronous. We consider the number of
commitment phases from the first time a replica (typically the
leader) receives a request to the first time any participant (i.e.,
leader, backups, client) learns the commitment of the request,
e.g., PBFT executes in 3 phases.

P 3. View-change. BFT protocols follow either the stable
leader or the rotating leader mechanism to replace the cur-
rent leader. The stable leader mechanism [73, 131, 157, 190]
replaces the leader when the leader is suspected to be
faulty by other replicas. In the rotating leader mechanism
[20,67,76–78,86,125,139,155,162,240,241,252], the leader
is replaced periodically, e.g., after a single attempt, insufficient
performance, or an epoch (multiple requests).

Using the stable leader mechanism, the view-change stage
becomes more complex. However, the routine is only exe-
cuted when the leader is suspected to be faulty. On the other
hand, the rotating leader mechanism requires ensuring view
synchronization frequently (whenever the leader is rotated).
Rotating the leader has several benefits, such as balancing
load across replicas [46,47,240], improving resilience against
slow replicas [86], and minimizing communication delays
between clients and the leader [112, 189, 241].

P 4. Checkpointing. The checkpointing mechanism is used
to first, garbage-collect data of completed consensus instances
to save space and second, restore in-dark replicas (due to net-
work unreliability or leader maliciousness) to ensure all non-
faulty replicas are up-to-date [73, 103, 135]. Checkpointing
is typically initiated after a fixed window in a decentralized
manner without relying on a leader [73].

P 5. Recovery. When there are more than f failures, BFT pro-
tocols, apart from some exceptions [84, 178], completely fail
and do not give any guarantees on their behavior [103]. BFT
protocols perform recovery using reactive or proactive mech-
anisms (or a combination [230]). Reactive recovery mech-
anisms detect faulty replica behavior [138] and recover the
replica by applying software rejuvenation techniques [95,142]
where the replica reboots, reestablishes its connection with
other replicas and clients, and updates its state. On the other
hand, proactive recovery mechanisms recover replicas in pe-
riodic time intervals. Proactive mechanisms do not require
any fault detection techniques; however, they might unneces-
sarily recover non-faulty replicas [103]. During recovery, a
replica is unavailable. A BFT protocol can rely on 3 f +2k+1
replicas to improve resilience and availability during recovery

374 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

where k is the maximum number of servers that rejuvenate
concurrently [230]. To prevent attackers from disrupting the
recovery process, each replica requires a trusted component,
e.g., secure coprocessor [75], a synchronous wormhole [239]
or a virtualization layer [105, 216], that remains operational
even if the attacker controls the replica and a read-only mem-
ory that an attacker cannot manipulate. The memory content
remains persistent (e.g., on disk) across machine reboots and
includes all information needed for bootstrapping a correct
replica after restart [103].
P 6. Types of clients. Bedrock supports three types of clients:
requester, proposer, and repairer. Requester clients perform a
basic functionality and communicate with replicas by sending
requests and receiving replies. A requester client may need to
verify the results by waiting for a number of matching replies,
e.g., f+1 in PBFT [73], 2 f+1 in PoE [135] and PBFT (for
read-only requests) [75], or 3 f+1 is Zyzzyva [157]. Using
trusted components, e.g., Troxy [175], or threshold signatures,
e.g., SBFT [131], the client does not even need to wait for and
verify multiple results from replicas. Clients might also play
the proposer role by proposing a sequence number (acting as
the leader) for its request [5, 130, 186, 188]. Repairer clients,
on the other hand, detect the failure of replicas, e.g., Zyzzyva
[157], or even change the protocol configuration, e.g., Scrooge
[222], Abstract [37], and Q/U [5].

3.2 Environmental Settings
Environmental settings, broadly speaking, encompass the

deployment environment for a BFT protocol. These input
parameters help scope the class of BFT protocols that can be
supported to fit each deployment environment best.
E 1. Number of replicas. The first dimension concerns se-
lecting BFT protocols based on the number of replicas (i.e.,
network and quorum size) used in a deployment. In the pres-
ence of f malicious failures, BFT protocols require at least
3 f+1 replicas to guarantee safety [59, 60, 91, 111, 170]. Us-
ing trusted hardware, the malicious behavior of replicas is
restricted and safety can be guaranteed using 2 f + 1 repli-
cas [84, 90, 92, 216, 241, 241, 242]. Similarly, leveraging new
hardware capabilities or using message-and-memory mod-
els the required number of replicas can be reduced to 2 f +1
[15–17]. On the other hand, the number of communication
phases can be reduced by increasing the number of replicas
to 5 f + 1 [190] (its proven lower bound, 5 f � 1 [12, 161])
or 7 f + 1 [228]. A BFT protocol might also optimistically
assume the existence of a quorum of 2 f + 1 active non-
faulty replicas (put f replicas as passive) to establish consen-
sus [104,146]. Using both trusted hardware and active/passive
replication, the quorum size is further reduced to f +1 during
failure-free situations [104, 105, 146].
E 2. Communication topology. Bedrock allows users to an-
alyze BFT protocols based on communication topologies,
including: (1) the star topology where communication is
strictly from a designated replica, e.g., the leader, to all other

replicas and vice-versa, resulting in linear message complex-
ity [157, 252], (2) the clique topology where all (or a subset
of) replicas communicate directly with each other resulting
in quadratic message complexity [73], (3) the tree topology
where the replicas are organized in a tree with the leader
placed at the root, and at each phase, a replica communicates
with either its child replicas or its parent replica, causing log-
arithmic message complexity [154, 155, 202], or (4) the chain
topology where replicas construct a pipeline and each replica
communicates with its neighbor replicas [37].

E 3. Authentication. Participants authenticate their mes-
sages to enable other replicas to verify a message’s origin.
Bedrock support both signatures, e.g., RSA [218], and au-
thenticators [73], i.e., MACs [237]. Constant-sized threshold
signatures [70, 224] have also been used to reduce the size of
a set (quorum) of signatures. A protocol might even use dif-
ferent techniques (i.e., signatures, MACs) in different stages
to authenticate messages sent by clients, sent by replicas in
the ordering stage, and sent by replicas during view-change.

E 4. Responsiveness, synchronization, and timers. A BFT
protocol is responsive if its normal case commit latency de-
pends only on the actual network delay needed for replicas to
process and exchange messages rather than any (usually much
larger) predefined upper bound on message transmission de-
lay [36, 208, 209, 225]. Responsiveness might be sacrificed
in different ways. First, rotating the leader, the new leader
might need to wait for a predefined time before initiating
the next request to ensure that it receives the decided value
from all non-faulty but slow replicas, e.g., Tendermint [162]
and Casper [68]. Second, optimistically assuming all replicas
are non-faulty, replicas (or clients) need to wait for a prede-
fined upper bound to receive messages from all replicas, e.g.,
SBFT [131] and Zyzzyva [157].

BFT protocols need to guarantee that all non-faulty repli-
cas will eventually be synchronized to the same view with a
non-faulty leader enabling the leader to collect the decided
values in previous views and making progress in the new
view [62, 198, 199]. This is needed because a quorum of
2 f + 1 replicas might include f Byzantine replicas and the
remaining f "slow" non-faulty replicas might stay behind
(i.e., in-dark) and not even advance views at all. View syn-
chronization can be achieved by integrating the functionality
with the core consensus protocol, e.g., PBFT [73], or assign-
ing a distinct synchronizer component, e.g., Pacemaker in
HotStuff [252], and hardware clocks [6].

Depending on the environment, network characteristics,
and processing strategy, BFT protocols use different timers to
ensure responsiveness and synchronization. Protocols can be
configured with the following timers by Bedrock.
t1. Waiting for reply messages, e.g., Zyzzyva [157],
t2. Triggering (consecutive) view-change, e.g., PBFT [73],
t3. Detecting backup failures, e.g., SBFT [131],
t4. Quorum construction in an ordering phase, e.g., prevote

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 375

and precommit timeouts in Tendermint [65],
t5. View synchronization, e.g., Tendermint [65],
t6. Finishing a (preordering) round, e.g., Themis [149],
t7. Performance check (heartbeat), e.g., Aardvark [86], and
t8. Atomic recovery (watchdog timer) to periodically hand

control to a recovery monitor [74], e.g., PBFT [75].
3.3 Quality of Service

There are some optional QoS features that Bedrock can
support. We list two example dimensions.
Q 1. Order-fairness. Order-fairness deals with preventing
adversarial manipulation of request ordering [42, 71, 149, 150,
159, 160, 255]. Order-fairness is defined as: "if a large num-
ber of replicas receives a request t1 before another request
t2, then t1 should be ordered before t2" [150]. Order-fairness
has been partially addressed using different techniques: (1)
monitoring the leader to ensure it does not initiate two new
requests from the same client before initiating an old request
of another client, e.g., Aardvark [86], (2) adding a preorder-
ing phase, e.g., Prime [24], where replicas order the received
requests locally and share their orderings with each other,
(3) encrypting requests and revealing the contents only once
their ordering is fixed [35, 69, 193, 232], (4) reputation-based
systems [35, 99, 156, 173] to detect unfair censorship of spe-
cific client requests, and (5) providing opportunities for every
replica to propose and commit its requests using fair elec-
tion [9, 35, 125, 151, 173, 208, 248].
Q 2. Load balancing. The performance of fault-tolerant pro-
tocols is usually limited by the computing and bandwidth
capacity of the leader [18, 21, 56, 81, 195, 196, 202, 245]. The
leader coordinates the consensus protocol and multicasts/-
collects messages to all other replicas in different protocol
phases. Load balancing is defined as distributing the load
among the replicas of the system to balance the number of
messages any single replica has to process.

Load balancing can be partially achieved using the ro-
tating leader mechanism, multi-layer, or multi-leader proto-
cols. Using leader rotation, one replica (leader) is still highly
loaded in each consensus instance. In multi-layer protocols
[25, 137, 179, 201, 203], the load is distributed between the
leaders of different clusters. However, the system still suffers
from load imbalance between the leader and backups in each
cluster. In multi-leader protocols [22,33,39,136,233,243], all
replicas can initiate consensus to partially order requests in
parallel. However, slow replicas still affect the global ordering
of requests. To resolve the bandwidth limit of small replicas
decomposing consensus into data availability agreement and
block retrieval is proposed [250].

4 Design Choices Landscape
Given a set of specified dimension values in Section 3, each

protocol represents a point in the Bedrock design space. In
this section, using PBFT as a driving example, as illustrated in
Section 2, we demonstrate how different points in the design
space lead to different trade-offs.

4.1 Expanding the Design Choices of PBFT
Using PBFT and our design dimensions as a baseline, we

illustrate a series of design choices that expose different trade-
offs BFT protocols need to make. Each design choice acts as
a one-to-one function that maps each valid input point (i.e., a
protocol) to another valid output point in the design space.
Design Choice 1. (Linearization). This function explores a
trade-off between communication topology and communica-
tion phases. The function takes a quadratic phase, e.g., prepare
or commit in PBFT, and splits it into two linear phases: one
phase from all replicas to a collector (typically the leader) and
one phase from the collector to all replicas, e.g., SBFT [131],
HotStuff [252] and HotStuff-2 [184]. The output protocol re-
quires (threshold) signatures for authentication. The collector
collects a quorum of (typically n� f) signatures from repli-
cas and broadcasts its message including the signatures, as a
certificate of having received the required signatures. Using
threshold signatures [69, 70, 215, 224] the collector message
size becomes constant. Some BFT protocols [124, 143, 235]
use linear communication during the ordering phase but fol-
low the quadratic view-change routine of PBFT.
Design Choice 2. (Phase reduction through redundancy).

This function explores a trade-off between the number of
ordering phases and the number of replicas. The function
transforms a protocol with 3 f + 1 replicas and 3 ordering
phases (i.e., one linear, two quadratic), e.g., PBFT, to a fast
protocol with 5 f + 1 replicas and 2 ordering phases (one
linear, one quadratic), e.g., FaB [190]. In the second phase
of the protocol, matching messages from a quorum of 4 f +1
replicas are required. Recently, 5 f � 1 has been proven as
the lower bound for two-step Byzantine consensus [12, 161].
The intuition behind the 5 f � 1 lower bound is that in an
authenticated model, when replicas detect leader equivocation
and initiate view-change, they do not include view-change
messages coming from the malicious leader, reducing the
maximum number of faulty messages to f �1 [12, 161].
Design Choice 3. (Leader rotation). This function replaces
the stable leader with the rotating leader mechanism, e.g.,
HotStuff [252], where the rotation happens after each request
or epoch or due to low performance (as discussed in P 3).
This function eliminates the view-change stage and adds a
quadratic phase or two linear phases (using the linearization
function) to the ordering stage to ensure that the new leader
is aware of the correct state of the system.
Design Choice 4. (Non-responsive leader rotation). This
function replaces the stable leader mechanism with the rotat-
ing leader mechanism without adding a new ordering phase
(in contrast to design choice 3) while sacrificing responsive-
ness. The new leader assumes that the network is synchronous
(after GST) and waits for a predefined known upper bound D
(Timer t5) before initiating the next request. This is needed to
ensure that the new leader is aware of the highest assigned or-
der to the requests, e.g., Tendermint [66,162] and Casper [68].

376 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

As an optimization, if the new leader is aware of the highest
assigned order (the leader was part of the quorum), it can initi-
ate the next request right after receiving 2 f +1 votes (without
necessarily waiting for D [184]).

Design Choice 5. (Optimistic replica reduction). This func-
tion reduces the number of involved replicas in consensus
from 3 f+1 to 2 f+1 while optimistically assuming all 2 f +1
replicas are non-faulty (assumption P 1, a2). In each phase of
a BFT protocol, matching messages from a quorum of 2 f +1
replicas is needed. If a quorum of 2 f +1 non-faulty replicas
is identified, they can order (and execute) requests without
the participation of the remaining f replicas. Those f replicas
remain passive and are needed if any of the active replicas
become faulty [104, 146]. Note that n is still 3 f +1.

Design Choice 6. (Optimistic phase reduction). Given a lin-
ear BFT protocol, this function optimistically eliminates two
linear phases (i.e., the equivalence of a single quadratic prepare
pahse) assuming all replicas are non-faulty, e.g., SBFT [131].
The leader (collector) waits for signed messages from all
3 f + 1 replicas in the second phase of ordering, combines
signatures and sends a signed message to all replicas. Upon
receiving the signed message from the leader, each replica
ensures that all non-faulty replicas have received the request
and agreed with the order. As a result, the third phase of com-
munication can be omitted and replicas can directly commit
the request. If the leader has not received 3 f + 1 messages
after a predefined time (timer t3), the protocol fallbacks to its
slow path and runs the third phase of ordering.

Design Choice 7. (Speculative phase reduction). This func-
tion, similar to the previous one, optimistically eliminates two
linear phases of the ordering stage assuming that non-faulty
replicas construct the quorum of responses, e.g., PoE [135].
The main difference is that the leader waits for signed mes-
sages from only 2 f +1 replicas in the second phase of order-
ing and sends a signed message to all replicas. Upon receiving
a message signed by 2 f + 1 replicas from the leader, each
replica speculatively executes the transaction, optimistically
assuming that either (1) all 2 f +1 signatures are from non-
faulty replicas or (2) at least f +1 non-faulty replicas received
the signed message from the leader. If (1) does not hold, other
replicas receive and execute transactions during the view-
change. However, if (2) does not hold, the replica might have
to rollback the executed transaction.

Design Choice 8. (Speculative execution). This function
eliminates the prepare and commit phases while optimistically
assuming that all replicas are non-faulty (assumptions P 1, a1
and a2), e.g., Zyzzyva [157]. Replicas speculatively execute
transactions upon receiving them from the leader. If the client
does not receive 3 f + 1 matching replies after a predefined
time (timer t1) or it receives conflicting messages, the (re-
pairer) client detects failure and communicates with replicas
to receive 2 f +1 commit messages.

Design Choice 9. (Optimistic conflict-free). If requests of
different clients are conflict-free (assumption P 1, a4), there is
no need for a total order among all transactions. This function
eliminates all ordering phases while optimistically assuming
that requests are conflict-free and all replicas are non-faulty.
The client becomes the proposer and sends its request to all
(or a quorum of) replicas where replicas execute the requests
without any communication [5, 97].

Design Choice 10. (Resilience). This function increases the
number of replicas by 2 f enabling the protocol to tolerate
f more failure with the same safety guarantees. In particu-
lar, optimistic BFT protocols that assume all 3 f +1 replicas
are non-faulty (quorum size is also 3 f +1) tolerate zero fail-
ures. By increasing the number of replicas to 5 f +1 replicas,
such BFT protocols can provide the same safety guarantees
with quorums of size 4 f +1 while tolerating f failures, e.g.,
Zyzzyva5 [157], Q/U [5]. Similarly, a protocol with the net-
work size of 5 f + 1 can tolerate f more faulty replicas by
increasing the network size to 7 f +1 [228].

This function can also provide high availability during
the (proactive) recovery stage by increasing the number of
replicas by 2k (the quorum size by k) where k is the maximum
number of servers that recover concurrently [230].

Design Choice 11. (Authentication). This function replaces
MACs with signatures for a given stage. Signatures are typi-
cally more costly than MACs. However, in contrast to MACs,
signatures provide non-repudiation and are not vulnerable
to MAC-based attacks from malicious clients. If a protocol
follows the star communication topology where a replica
needs to include a quorum of signatures as a proof of its mes-
sages, e.g., HotStuff [252], k signatures can be replaced with
a threshold signature. In such protocols MACs cannot be used
since MACs do not provide non-repudiation.

Design Choice 12. (Robust). This function makes a pes-
simistic protocol robust by adding a preordering stage to the
protocol, e.g., Prime [24]. In the preordering stage and, upon
receiving a request, each replica locally orders and broadcasts
the request to all other replicas. All replicas then acknowledge
the receipt of the request in an all-to-all communication phase
and add the request to their local request vector. Replicas pe-
riodically share their vectors with each other. The robust func-
tion provides (partial) fairness as well. Robustness has also
been addressed in other ways, e.g., using the leader rotation
and a blacklisting mechanism in Spinning [240] or isolating
the incoming traffic of different replicas, and checking the
performance of the leader in Aardvark [86].

Design Choice 13. (Fair). This function transforms an unfair
protocol, e.g., PBFT, into a fair protocol by adding a preorder-
ing phase to the protocol. In the preordering phase, clients
send requests to all replicas, and once a round ends (timer t6),
each replica sends a batch of requests in the received order
to the leader. The leader then initiates consensus on the re-
quests following the order of requests in the received batches.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 377

Table 1: Comparing selected BFT protocols based on different dimensions of Bedrock design space

Protocol E1.
Nodes

E2.
Topo.

E3.
Auth.

E4.
Timers

P1.
Strategy

P2.
Phases

P3.
V-change

P5.
Rec.

P6.
Client

Q1.
Fair.

Q2.
Load.

Design
Choices

PBFT [73] 3 f+1 clique MAC || Sign t1, t2, t8 pessimistic 3 stable pro. Req. ⇤ ⇤ (11)

Zyzzyva [157] 3 f+1 star MAC || Sign t1, t2 optimistic (spec): a1, a2 1 (3) stable - Rep. ⇤ ⇤ 8, (11)

Zyzzyva5 [157] 5 f+1 star MAC || Sign t1, t2 optimistic (spec): a1 1 (3) stable - Rep. ⇤ ⇤ 8, 10, (11)

PoE [135] 3 f+1 star MAC || T-Sign t1, t2 optimistic (spec): a2 3 stable - Req. ⇤ ⇤ 1, 7, 11

SBFT [131] 3 f+1 star T-Sign t1, t2, t3 optimistic: a2 3 (5) stable - Req. ⇤ ⇤ 1, 6, 11

HotStuff [252] 3 f+1 star T-Sign t1, t2 pessimistic 7 rotating - Req. ⇤ ⇤ 1, 3, 11

Tendermint [66] 3 f+1 clique Sign t1, t2, t5, t6 optimistic: a6 3 rotating - Req. ⇤ ⇤ 4, 11

Themis [149] 4 f+1 star T-Sign t1, t2, t6 pessimistic 1+7 rotating - Req. ⌅ ⇤ 1, 3, 13, 11

Kauri [202] 3 f+1 tree T-Sign t1, t2 optimistic: a3 7h stable* - Req. ⇤ ⌅ (3), 14, 11

CheapBFT [146] 2 f+1 clique MAC t1, t2 optimistic: a2 3 stable - Req. ⇤ ⇤ 5

FaB [190] 5 f+1 clique (Sign) t1, t2 pessimistic 2 stable - Req. ⇤ ⇤ 2

Prime [24] 3 f+1 clique Sign t1, t2, t6, t7 robust 6 stable - Req. ⇤ 11, 12

Q/U [5] 5 f+1 star MAC t1, t2 optimistic: a4, a5 1 (3) stable - Rep. ⇤ ⇤ 9, 10

FLB 5 f�1 clique Sign t1, t2 pessimistic 2 stable - Req. ⇤ ⇤ 1, 2, 11

FTB 5 f�1 tree T-Sign t1, t2 optimistic: a3 3h stable - Req. ⇤ ⌅ 1, 2, 14, 11

Hint: "T-Sign": threshold signatures, "Req": requester client, "Rep": repairer client, "Pro": proactive recovery. The number of phases in the slow path of
protocols is shown in parentheses. While Kauri is implemented on top of HotStuff, it does not use rotating leaders. Prime provides partial fairness.

PBFT [75]

FaB [190]Bosco [228]

Zyzzyva [157]

Quorum [37]

Tendermint [66]

CheapBFT [146]

Linear PBFT

Zyzzyva5 [157]

Q/U [5] HotStuff [252]

SBFT [131]PoE [135] Kauri [202]

Themis [149]FLB FTBPrime [24]
10

1

2

9

5

48

10

67
3

14

14

13

10

1

212

Figure 4: Derivation of protocols from PBFT using design choices

Depending on the order-fairness parameter g (0.5<g1) that
defines the fraction of replicas receiving the requests in that
specific order, at least 4 f +1 replicas (n> 4 f

2g�1) replicas are
needed to provide order-fairness [149, 150] 1.

Design Choice 14. (Tree-based LoadBalancer). This func-
tion explores a trade-off between the communication topology
and load balancing where load balancing is supported by or-
ganizing replicas in a tree topology, with the leader at the root,
e.g., Kauri [202]. This function splits a linear communication
phase into h phases where h is the tree’s height and each
replica uniformly communicates with its child/parent replicas
in the tree. The protocol optimistically assumes all non-leaf
replicas are non-faulty (assumption P 1, a3). Otherwise, the
tree is reconfigured (i.e., view change).

4.2 Deriving and Evolving Protocols
Figure 4 demonstrates the derivation of a wide spectrum

of BFT protocols from PBFT using design choices. Table 1
provides insights into how each BFT protocol maps into the
Bedrock design space. The table also presents the design

1With 3 f+1 replicas, as shown in [149], order-fairness requires a syn-
chronized clock [255] or does not provide censorship resistance [159].

Figure 5: Overview of BFT protocols

choices used by each BFT protocol. A detailed explanation
of protocols is presented in Appendix B.

Figure 5 focuses on different stages of replicas and demon-
strates the communication complexity of each stage. The
figure presents: (1) the preordering phases used in Themis
and Prime, (2) the three ordering phases, e.g., pre-prepare, pre-
pare or commit in PBFT (labeled by o1, o2, and o3), (3) the
execution stage, (4) the view-change stages consisting of view-
change and new-view phases (labeled by v1 and v2), and (5)
the checkpointing stage. As can be seen, some protocols do
not have all three ordering phases, i.e., using different de-
sign choices, the number of ordering phases is reduced. The
dashed boxes present the slow-path of protocols, e.g., the third
ordering phase of SBFT is used only in its slow-path. Finally,
the order of stages might be changed. For example, HotStuff
runs view-change (leader rotation) for every single message
and this phase takes place at the beginning of a consensus

378 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

instance to synchronize nodes within a view.
These case studies demonstrate the value of Bedrock in

providing a unified platform for analyzing a range of exist-
ing BFT protocols. Note that the Bedrock platform enables
users to implement new dimensions or design choices. For
example, recently directed acyclic graph (DAG)-based BFT
protocols [42,100,101,119,148,231,247] have emerged as an
efficient way of establishing consensus. In DAG-based proto-
cols and in each round, replicas independently send their own
block of transactions as well as references to 2 f +1 received
blocks (in the previous round) to other replicas in parallel.
The references that blocks carry then become the backbone
of a causally ordered DAG structure. DAG-based protocols
provide higher throughput by separating transaction dissemi-
nation (by all replicas) from ordering. One can evolve PBFT
to a DAG-based protocol in three steps (using three design
choices); linearization, pipelining, and parallelization, with
some minor modifications. Linearization makes PBFT linear
(design choice 1), pipelining enables a node to piggyback the
messages of a new consensus instance on the second round
messages of the previous instance (as it is used in Chained-
HotStuff [4]), and parallelization enables multiple replicas to
propose messages in parallel (as used in multi-leader proto-
cols [136, 233], discussed in Appendix A, 3).

Bedrock’s utility can go beyond an analysis platform to-
wards a discovery tool as well. Appendix C demonstrates two
BFT protocols (FLB and FTB) uncovered using Bedrock.
5 Bedrock Implementation

Bedrock enables users, e.g., application developers, to im-
plement and evaluate different BFT protocols. Bedrock is
implemented in Java. The modular design of Bedrock enables
a fair and efficient evaluation of BFT protocols using identical
libraries, cryptographic functions, etc. The Bedrock platform
consists of four main components: the core unit, the state
manager, the plugin manager, and the coordination unit.
The core unit defines entities, e.g., clients and nodes, and
maintains the application logic and application data. Client
transactions are executed using the application logic resulting
in updating the data. Entities track the execution of requests
through various state variables, e.g., view and sequence num-
ber. Within the core unit, different workloads and benchmarks
can be defined. Client requests can be initiated using a con-
stant interval or a dynamic interval updated based on a moving
average of response times. Different utility classes, such as
Timekeeper to handle timers, and BenchmarkManager to mea-
sure and report results are also defined within the core unit.
The state manager enables the core unit to track the states
and transitions of each entity according to the utilized BFT
protocol, e.g., different stages of a replica or different phases
of consensus. Bedrock defines a domain-specific language
(DSL) to rapidly prototype BFT protocols. The DSL code
written in the protocol config defines different dimensions and
the chosen value for each dimension, the list of roles, phases,
states, exchange messages, quorum conditions of the protocol,

PBFT Zyzzyva SBFT Tendermint FaB HotStuff Kauri Themis
0

10,000

20,000

30,000

16,200
14,300

29,100

23,400

14,900

4,800
6,900 6,100

158 112 198 109 135 187 207 213

Protocol

Li
ne

s
of

co
de

Original Bedrock

Figure 6: Lines of code in Bedrock and the original implementation

and also, the list of protocol-specific plugins required to run
the protocol. The EO-YAML and Apache Commons Lang libraries
are used for parsing, loading, and holding the protocol config
data. Appendix E demonstrates the PBFT code using the DSL.
The protocol config greatly reduces the effort needed to write
a BFT protocol. Figure 6 compares the lines of code in the
original open-source implementation of several known proto-
cols and their implementation in Bedrock., e.g., the original
Zyzzyva source code includes more than 14000 lines while its
config in Bedrock is only 112 lines2. Overall, using Bedrock,
the code size is reduced by orders of magnitude. Each proto-
col, in addition to the config file, uses a set of plugins defined
in Bedrock, as explained in the next part. Chained-HotStuff,
as a protocol that uses the most plugins (five), requires only
412 more lines of code to implement its five plugins, several
of them are shared with multiple protocols.
The plugin manager serves two purposes. First, it enables
the implementation of protocol-specific behaviors that cannot
be handled by the protocol config defined in the state man-
ager. For example, the speculative execution in Zyzzyva [157]
or handling view-change without using a different process
or states in Tendermint [162]. Second, it enables Bedrock
users to define their own dimensions/values to support more
protocols or to update existing dimensions without requiring
changes to the platform code or rebuilding the platform bina-
ries. For example, if a developer wants to use a new digest
or signature algorithm for an existing or a new protocol, the
algorithm can be implemented within a plugin.

Four types of plugins have been defined in the current ver-
sion of Bedrock. Role plugins that define specific behavior
for a certain role in a specific sequence number, view number,
state, etc., e.g., message dissemination by the primary node in
CheapBFT [146] where nodes are divided into active and pas-
sive nodes. Message plugins that define specific methods to
process incoming or outgoing messages, e.g., perform digest
validation. Transition plugins that specify an action to be per-
formed during or after a state transition, e.g., how to process
checkpoint messages. Pipeline plugins that enable manipu-
lating the flow of messages, e.g., Chained-HotStuff [252] (as
discussed in Appendix A, O 2).
The coordination unit manages the run-time execution of
Bedrock. The coordination unit consists of a coordinator and a
set of executors. The coordinator manages the benchmark pro-

2 We count only the lines of source code related to the core consensus
protocol and not the applications or the utilized libraries.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 379

4 16 32 64 100

50

100

150

200

250

Number of replicas

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

30

60

90

120

Number of replicas

La
te

nc
y

[m
s]

Figure 7: Performance with different number of replicas

cess and setups all entities by initializing replicas and clients,
sending config parameters to executors, enabling plugins to
run additional initialization steps, starting and stopping exe-
cution threads, and reporting results. The executors, on the
other hand, run the utilized BFT protocol.

The data (e.g., messages, requests, blocks) for the events
and messages transmitted between nodes and clients is de-
fined using the Google Protocol Buffers syntax and then
compiled using the protoc tool.
6 Experimental Evaluation

Our evaluation studies the practical impact of the design
dimensions and the exposed trade-offs presented as design
choices on the performance of BFT protocols under one uni-
fied platform. We use typical experimental scenarios used for
existing BFT protocols and permissioned blockchains, includ-
ing (1) varying the number of replicas, (2) under a backup fail-
ure, (3) multiple request batch sizes, and (4) a geo-distributed
setup (presented in Appendix D).

All protocols listed in Table 1 are implemented in Bedrock.
Note that the original implementations of such BFT protocols
utilize different (often old, inefficient) libraries, crypto algo-
rithms, etc. Hence, it was unfair to experimentally compare
such original implementations with their implementations
in bedrock. Using the platform, we also experimented with
many new protocols resulting from the combination of design
choices. Due to space limitations, we present the performance
evaluation of a subset of protocols. In particular, we evaluate
PBFT, Zyzzyva, SBFT, FaB, PoE, (Chained-) HotStuff, Kauri,
Themis, and two of the more interesting new variants (FLB
and FTB). This set of protocols enables us to see the impact of
design choices 1, 2, 3, 6, 7, 8, 10, 11, 13, and 14 (discussed in
Section 4). We also use the out-of-order processing technique
for protocols with a stable leader and the request pipelining
technique for protocols with a rotating leader. In our experi-
ments, Kauri and FTB are deployed on trees of height 2 and
the order-fairness parameter g of Themis is considered to be
1 (i.e., n = 4 f + 1). We use 4 as the base pipelining stretch
for both Kauri and FTB and change it depending on the batch
size and deployment setting (local vs. geo-distributed).

The experiments were conducted on the Amazon EC2 plat-
form. Each VM is a c4.2xlarge instance with 8 vCPUs and
15GB RAM, Intel Xeon E5-2666 v3 processor clocked at
3.50 GHz. When reporting throughput, we use an increasing
number of client requests until the end-to-end throughput is

1 5 10 20

50

100

150

200

250

f value

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

1 5 10 20
0

20

40

60

80

f value

La
te

nc
y

[m
s]

Figure 8: Performance with different f value

saturated and state the throughput and latency just below sat-
uration. The results reflect end-to-end measurements from
the clients. Clients execute in a closed loop. We use micro-
benchmarks commonly used to evaluate BFT systems, e.g.,
BFT-SMART. The results are the average of five runs.
6.1 Fault Tolerance and Scalability

In the first set of experiments, we evaluate the performance
of the protocols by increasing the number of replicas n (each
runs on a separate VM) from 4 to 100 in a failure-free situ-
ation. For some protocols, the smallest network size might
differ, e.g., FaB requires 5 f +1 = 6 replicas. We use a batch
size of 400 (we discuss this choice later) and a workload with
client request/reply payload sizes of 128/128 byte. Figure 7
reports the results.

Zyzzyva shows the highest throughput among all protocols
in small networks due to its optimistic ordering stage (design
choice 8). However, as n increases, its throughput significantly
reduces as clients need to wait for reply from all replicas.
Increasing the number of replicas also has a large impact on
PBFT and FaB (65% and 63% reduction, respectively) due to
their quadratic message complexity.

On the other hand, the throughput of Kauri and FTB is
less affected (31% and 32% reduction, respectively) by in-
creasing n because of their tree topology (design choice 14)
that reduced the bandwidth utilization of each replica. Simi-
larly, PoE, SBFT and HotStuff incur less throughput reduction
(39%, 55% and 45% respectively) compared to PBFT and
FaB due to their linear message complexity (design choice 1).
In Bedrock, Chained-HotStuff has been implemented using
the pipelining technique, resulting in lower average latency.
In comparison to HotStuff, SBFT has slightly lower through-
put in large networks (e.g., 8% lower when n = 100) because
the leader waits for messages from all replicas. SBFT, on the
other hand, shows higher throughput compared to HotStuff
in smaller networks (e.g., 12% higher when n = 4) due to
its fast ordering stage (design choice 6). PoE demonstrates
higher throughput compared to both SBFT and HotStuff, es-
pecially in larger networks (e.g., 39% higher than SBFT and
26% higher than HotStuff when n = 100). This is expected
because, in PoE, the leader does not need to wait for messages
from all replicas and optimistically combines signatures from
2 f +1 replicas (design choice 7). Compared to PBFT, while
HotStuff shows better throughput (e.g., 48% higher when
n = 64), the latency of PBFT is lower (e.g., 32% lower when

380 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 16 32 64 100
0

40

80

120

160

Number of replicas

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

30

60

90

120

Number of replicas

La
te

nc
y

[m
s]

Figure 9: Performance with faulty backups

n = 64). One reason behind the high latency of HotStuff is its
extra communication round (design choice 3).

Supporting order-fairness (design choice 13) leads to de-
ficient performance of Themis compared to HotStuff (83%
lower throughput when n=5). In Themis, replicas order trans-
actions and send batches of transactions to the leader, and
the leader needs to generate a fair order. As the number of
replicas increases, Themis incurs higher latency (the latency
increases from 9 to 137 ms as n increases to 101), mainly
due to the overhead of generating the dependency graph and
reaching a fair order by the leader. Using design choice 2 and
reducing the number of communication phases results in 41%
higher throughput and 46% lower latency of FTB compared
to Kauri in a setting with 99 replicas (100 for Kauri).

Finally, using design choices 1 and 2, FLB demonstrates
better performance for large n (2.25x throughput and 0.55x
latency compared to PBFT). This is because FLB reduces
both message complexity and communication phases, and
replicas do not need to wait for responses from all replicas.

Figure 7 depicts the results with different numbers of repli-
cas. However, with the same number of replicas, different
protocols tolerate different numbers of failures. For instance,
PBFT requires 3 f + 1 and when n = 100 tolerates 33 fail-
ures while FaB requires 5 f +1 and tolerates 19 failures with
n = 100. To compare protocols based on the maximum num-
ber of tolerated failures, we represent the results of the first
experiments in Figure 8. With f = 20, Themis incurs the high-
est latency because it requires 81 (4 f +1) replicas and deals
with the high cost of achieving order-fairness.
6.2 Performance with Faulty Backups

In this set of experiments, we force a backup replica to fail
and repeat the first set of experiments. Figure 9 reports the
results. Zyzzyva is mostly affected by failures (82% lower
throughput) as clients need to collect responses from all repli-
cas. A client waits for D = 5ms to receive reply from all repli-
cas and then the protocol switches to its normal path.

We also run this experiment on Zyzzyva5 to validate design
choice 10, i.e., tolerating f faulty replicas by increasing the
number of replicas. With a single faulty backup, Zyzzyva5
incurs only 8% lower throughput when n = 6.

Backup failure reduces the throughput of SBFT by 42%.
In the fast path of SBFT, all replicas need to participate, and
even when a single replica is faulty, the protocol falls back to
its slow path, which requires two more phases. Interestingly,

200 400 800
0

50

100

150

200

batch size

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

200 400 800
0

20

40

60

batch size

La
te

nc
y

[m
s]

Figure 10: Impact of request batching

while the throughput of PoE is reduced by 26% in a small net-
work (4 replicas), its throughput is not significantly affected
in large networks. This is because the faulty replica (which
participates in the quorum construction but does not send reply
messages to the clients) has a higher chance of becoming a
quorum member in small networks.

Faulty backups also affect the performance of HotStuff,
especially in small networks. This is expected because Hot-
Stuff uses the rotating leader mechanism. When n is small,
the faulty replica is the leader of more views during the exper-
iments, resulting in reduced performance. HotStuff demon-
strates its best performance when n = 31 (still, 36% lower
throughput and 2.7x latency compared to the failure-free sce-
nario). While Themis uses HotStuff as its ordering stage,
a single faulty backup has less impact on its performance
compared to HotStuff (25% reduction vs. 66% reduction in
throughput). This is because Themis has a larger network size
(4 f +1 vs. 3 f +1) that reduces the impact of the faulty replica.
In Kauri and FTB, we force a leaf replica to fail in order to
avoid triggering a reconfiguration. As a result, the failure of a
backup does not significantly affect their performance (e.g.,
3% lower throughput with 31 replicas in Kauri). Finally, in
small networks, FLB demonstrates the best performance as it
incurs only 8% throughput reduction.

6.3 Impact of Request Batching
In the next set of experiments, we measure the impact of

request batching. We consider three scenarios with batch sizes
of 200, 400 and 800. The network includes 16 non-faulty repli-
cas (17 replicas for Themis, 14 replicas for FLB and FTB).
Figure 10 depicts the results. Increasing the batch size from
200 to 400 requests improves the performance of all protocols.
This is because, with larger batch sizes, more transactions can
be committed while the number of communication phases and
exchanged messages is the same and the bandwidth and com-
puting resources are not fully utilized yet. Different protocols
behave differently when the batch size increases from 400 to
800. First, Kauri and FTB still process a higher number of
transactions (42% and 34% higher throughput) as both proto-
cols balance the load and utilize the bandwidth of all replicas.
Second, SBFT and FaB demonstrate similar performance as
before; a trade-off between smaller consensus quorums and
a higher cost of signature verification and bandwidth utiliza-
tion. Third, the performance of Themis decreases (24% lower

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 381

throughput and 3.16x latency) compared to a batch size of
400 due to two main reasons. First, the higher cost of signa-
ture verification and bandwidth utilization, and second, the
higher complexity of generating fair order for a block of 800
transactions (CPU utilization).

6.4 Evaluation Summary
We summarize some of the evaluation results as follows.

First, optimistic protocols that require all nodes to participate,
e.g., Zyzzyva and SBFT, do not perform well in large net-
works, especially when nodes are far apart. In small networks
also, a single faulty node significantly reduces the perfor-
mance of optimistic protocols. Second, the performance of
pessimistic protocols highly depends on the communication
topology. While the performance of protocols with quadratic
communication complexity, e.g., PBFT and FaB, is signif-
icantly reduced by increasing the network size, the perfor-
mance of protocols with linear complexity, e.g., HotStuff, and
especially logarithmic complexity, e.g., Kauri and FTB, is
less affected. Interestingly in small networks, protocols that
use the leader rotation mechanism show poor performance.
This is because the chance of the faulty node becoming the
leader is relatively high. Third, the load-balancing techniques,
e.g., tree topology, enable a protocol to process larger batches.
Finally, in a wide-area network, out-of-order processing of
transactions significantly improves performance.

7 Related Work
SMR regulates the deterministic execution of requests on

multiple replicas, such that every non-faulty replica executes
every request in the same order [163,221]. Several approaches
[164,207,221] generalize SMR to support crash failures. CFT
protocols [19, 61, 79, 81, 107, 141, 141, 144, 165, 166, 168, 169,
171, 177, 181, 200, 206, 207, 210, 238] utilize the design trade-
offs between design dimensions, e.g., Fast Paxos [166] adds
f replicas to reduce a communication phase.

Byzantine fault tolerance refers to nodes that behave arbi-
trarily after the seminal work by Lamport, et al. [170]. BFT
protocols have been analyzed in several surveys and empirical
studies [7, 8, 23, 28, 44, 50, 52, 54, 72, 93, 103, 120, 133, 134,
211, 226, 244, 254]. We discuss some of the relevant studies.

Berger and Reiser [50] present a survey on BFT proto-
cols used in blockchains where the focus is on scalability
techniques. Similarly, a survey on BFT protocols consisting
of classical protocols, e.g., PBFT, blockchain protocols, e.g.,
PoW, and hybrid protocols, e.g., OmniLedger [156], and their
applications in permissionless blockchains, is conducted by
Bano et al. [44]. Platania et al. [211] classify BFT protocols
into client-side and server-side protocols depending on the
client’s role. The paper compares these two classes of proto-
cols and analyzes their performance and correctness attacks.
Three families of leader-based, leaderless, and robust BFT
protocols with a focus on message and time complexities have
been analyzed by Zhang et al. [254]. Finally, Distler [103] ana-
lyzes BFT protocols along several main dimensions: architec-

ture, clients, agreement, execution, checkpoint, and recovery.
The paper shares several dimensions with Bedrock.

A recent line of work [10–13] also study good-case latency
of BFT protocols. Bedrock, in contrast to all these survey
and analysis papers, provides a design space, systematically
discusses design choices (trade-offs), and, more importantly,
provides a tool to analyze BFT protocols experimentally.

BFTSim [226] is a simulation environment for BFT pro-
tocols that leverages a declarative networking system and
compares a set of representative protocols using the simula-
tor. Abstract [37] develops each protocol as a sequence of
BFT instances, e.g., AZyzzyva, Aliph, and R-Aliph as three
protocols where Each protocol itself is a composition of Ab-
stract instances presented to handle different situations (e.g.,
fault-free, under attack). In contrast to such studies, Bedrock
develops a design space for BFT protocols, enabling end-users
to analyze, implement, and evaluate different protocols.

In addition to CFT and BFT protocols, consensus with
multiple failure modes has also been studied for both syn-
chronous [152, 192, 227, 236], and partial synchronous [31,
85, 131, 182, 212, 222] models. Finally, leaderless protocols
[58, 98, 109, 132, 167, 193, 234] have been proposed to avoid
the implications of relying on a leader.
8 Conclusion

Bedrock is a unified platform for BFT protocols analysis,
implementation, and experimentation. Bedrock demonstrates
how different BFT protocols relate to one another within a
design space and along different design dimensions. Using a
domain-specific language, the Bedrock facilitates rapid proto-
typing of BFT protocols. Finally, different BFT protocols pro-
posed in diverse settings and contexts can be experimentally
evaluated under one unified platform fairly and efficiently.

As future work, we plan to enable users to check the cor-
rectness of their written protocols by transforming the DSL
code written in Bedrock to the specification language used by
tools such as DistAlgo [180] or TLAPS [83,96]. Moreover, to
ensure the independent failure of replicas, we plan to diversify
replica implementation using n-version programming, where
Bedrock provides different implementations of the same pro-
tocol config. We will further design a constraint checker to
automatically find all plausible points (valid combinations
of design choices) in the design space based on user queries.
Incorporating automatic selection strategies in Bedrock based
on the deployment environment and application requirements
could be the next step. Machine learning techniques may be
useful here in aiding the user in selecting the appropriate BFT
protocol, or switch one protocol to another at runtime as sys-
tem parameters are updated. Finally, we plan to extend the
supported protocols to include synchronous and fully asyn-
chronous protocols and expand the design space accordingly.
Acknowledgements

We thank the anonymous reviewers for their insightful feed-
back and suggestions. This work is funded by NSF grants
CNS-2104882, CNS-2107147, and CNS-2245373.

382 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Chain. http://chain.com.

[2] Corda. https://github.com/corda/corda.

[3] Hyperledger iroha. https://github.com/hyperledger/iroha.

[4] libhotstuff: A general-purpose bft state machine
replication library with modularity and simplicity.
https://github.com/hot-stuff/libhotstuff, 2018.

[5] Michael Abd-El-Malek, Gregory R Ganger, Garth R
Goodson, Michael K Reiter, and Jay J Wylie. Fault-
scalable byzantine fault-tolerant services. Operating
Systems Review (OSR), 39(5):59–74, 2005.

[6] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik
Nayak, and Ling Ren. Synchronous byzantine agree-
ment with expected o(1) rounds, expected o(n2) com-
munication, and optimal resilience. In Int. Conf. on
Financial Cryptography and Data Security, pages 320–
334. Springer, 2019.

[7] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo
Alvisi, Rama Kotla, and Jean-Philippe Martin. Revis-
iting fast practical byzantine fault tolerance. arXiv
preprint arXiv:1712.01367, 2017.

[8] Ittai Abraham, Dahlia Malkhi, et al. The blockchain
consensus layer and bft. Bulletin of EATCS, 3(123),
2017.

[9] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren,
and Alexander Spiegelman. Solida: A blockchain
protocol based on reconfigurable byzantine consen-
sus. In Int. Conf. on Principles of Distributed Systems
(OPODIS). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[10] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren,
and Maofan Yin. Sync hotstuff: Simple and practical
synchronous state machine replication. In Symposium
on Security and Privacy (SP), pages 106–118. IEEE,
2020.

[11] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun
Xiang. Brief announcement: Byzantine agreement,
broadcast and state machine replication with opti-
mal good-case latency. In Int. Symposium on Dis-
tributed Computing (DISC). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

[12] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun
Xiang. Good-case latency of byzantine broadcast: a
complete categorization. In Symposium on Principles
of Distributed Computing (PODC), pages 331–341.
ACM, 2021.

[13] Ittai Abraham, Ling Ren, and Zhuolun Xiang. Good-
case and bad-case latency of unauthenticated byzantine
broadcast: A complete categorization. In Int. Conf. on
Principles of Distributed Systems (OPODIS), 2022.

[14] Atul Adya, William J Bolosky, Miguel Castro, Gerald
Cermak, Ronnie Chaiken, John R Douceur, Jon Howell,
Jacob R Lorch, Marvin Theimer, and Roger P Watten-
hofer. FARSIT E: Federated, available, and reliable
storage for an incompletely trusted environment. In
Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX Association, 2002.

[15] Marcos K Aguilera, Naama Ben-David, Irina Calciu,
Rachid Guerraoui, Erez Petrank, and Sam Toueg. Pass-
ing messages while sharing memory. In Symposium on
Principles of Distributed Computing (PODC), pages
51–60. ACM, 2018.

[16] Marcos K Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra Marathe, and Igor Zablotchi. The im-
pact of rdma on agreement. In Symposium on Prin-
ciples of Distributed Computing (PODC), pages 409–
418, 2019.

[17] Marcos K Aguilera, Naama Ben-David, Rachid Guer-
raoui, Dalia Papuc, Athanasios Xygkis, and Igor
Zablotchi. Frugal byzantine computing. In Int. Sympo-
sium on Distributed Computing, 2021.

[18] Ailidani Ailijiang, Aleksey Charapko, and Murat
Demirbas. Dissecting the performance of strongly-
consistent replication protocols. In SIGMOD Int. Conf.
on Management of Data, pages 1696–1710. ACM,
2019.

[19] Ailidani Ailijiang, Aleksey Charapko, Murat Demir-
bas, and Tevfik Kosar. Wpaxos: Wide area network
flexible consensus. IEEE Transactions on Parallel and
Distributed Systems, 31(1):211–223, 2019.

[20] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement,
Mike Dahlin, Jean-Philippe Martin, and Carl Porth. Bar
fault tolerance for cooperative services. In Symposium
on Operating systems principles (SOSP), pages 45–58.
ACM, 2005.

[21] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren,
Mayank Varia, Zhuolun Xiang, and Haibin Zhang. Bal-
anced byzantine reliable broadcast with near-optimal
communication and improved computation. In Sympo-
sium on Principles of Distributed Computing (PODC),
pages 399–417. ACM, 2022.

[22] Salem Alqahtani and Murat Demirbas. Bigbft: A
multileader byzantine fault tolerance protocol for high
throughput. In Int. Performance Computing and Com-
munications Conf. (IPCCC), pages 1–10. IEEE, 2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 383

[23] Salem Alqahtani and Murat Demirbas. Bottlenecks
in blockchain consensus protocols. In Int. Conf. on
Omni-Layer Intelligent Systems (COINS), pages 1–8.
IEEE, 2021.

[24] Yair Amir, Brian Coan, Jonathan Kirsch, and John
Lane. Prime: Byzantine replication under attack.
Transactions on Dependable and Secure Computing,
8(4):564–577, 2011.

[25] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan
Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen,
and David Zage. Steward: Scaling byzantine fault-
tolerant replication to wide area networks. IEEE Trans-
actions on Dependable and Secure Computing, 7(1):80–
93, 2008.

[26] Mohammad Javad Amiri, Divyakant Agrawal, and
Amr El Abbadi. CAPER: a cross-application permis-
sioned blockchain. Proc. of the VLDB Endowment,
12(11):1385–1398, 2019.

[27] Mohammad Javad Amiri, Divyakant Agrawal, and Amr
El Abbadi. ParBlockchain: Leveraging transaction
parallelism in permissioned blockchain systems. In
Int. Conf. on Distributed Computing Systems (ICDCS),
pages 1337–1347. IEEE, 2019.

[28] Mohammad Javad Amiri, Divyakant Agrawal, and Amr
El Abbadi. Modern large-scale data management sys-
tems after 40 years of consensus. In Int. Conf. on Data
Engineering (ICDE), pages 1794–1797. IEEE, 2020.

[29] Mohammad Javad Amiri, Divyakant Agrawal, and
Amr El Abbadi. SharPer: Sharding permissioned
blockchains over network clusters. In SIGMOD Int.
Conf. on Management of Data, pages 76–88. ACM,
2021.

[30] Mohammad Javad Amiri, Boon Thau Loo, Divyakant
Agrawal, and Amr El Abbadi. Qanaat: A scalable
multi-enterprise permissioned blockchain system with
confidentiality guarantees. Proc. of the VLDB Endow-
ment, 15(11):2839–2852, 2022.

[31] Mohammad Javad Amiri, Sujaya Maiyya, Divyakant
Agrawal, and Amr El Abbadi. SeeMoRe: A fault-
tolerant protocol for hybrid cloud environments. In Int.
Conf. on Data Engineering (ICDE), pages 1345–1356.
IEEE, 2020.

[32] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Lavent-
man, and Yacov Manevich. Hyperledger fabric:
a distributed operating system for permissioned
blockchains. In European Conf. on Computer Systems
(EuroSys), pages 30:1–30:15. ACM, 2018.

[33] Balaji Arun, Sebastiano Peluso, and Binoy Ravindran.
ezbft: Decentralizing byzantine fault-tolerant state ma-
chine replication. In Int. Conf. on Distributed Comput-
ing Systems (ICDCS), pages 565–577. IEEE, 2019.

[34] Balaji Arun and Binoy Ravindran. Scalable byzantine
fault tolerance via partial decentralization. Proc. of the
VLDB Endowment, 15(9):1739–1752, 2022.

[35] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya
Leshkowitz, Ori Rottenstreich, Ronen Tamari, and
David Yakira. A fair consensus protocol for trans-
action ordering. In Int. Conf. on Network Protocols
(ICNP), pages 55–65. IEEE, 2018.

[36] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry
Stockmeyer. Bounds on the time to reach agreement
in the presence of timing uncertainty. Journal of the
ACM (JACM), 41(1):122–152, 1994.

[37] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Kneže-
vić, Vivien Quéma, and Marko Vukolić. The next
700 bft protocols. Transactions on Computer Systems
(TOCS), 32(4):12, 2015.

[38] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien
Quéma. Rbft: Redundant byzantine fault tolerance. In
Int. Conf. on Distributed Computing Systems (ICDCS),
pages 297–306. IEEE, 2013.

[39] Zeta Avarikioti, Lioba Heimbach, Roland Schmid, Lau-
rent Vanbever, Roger Wattenhofer, and Patrick Win-
termeyer. Fnf-bft: A bft protocol with provable per-
formance under attack. In Int. Colloquium on Struc-
tural Information and Communication Complexity
(SIROCCO), pages 165–198. Springer, 2023.

[40] Algirdas Avizienis. The n-version approach to fault-
tolerant software. IEEE Transactions on Software En-
gineering, (12):1491–1501, 1985.

[41] Amy Babay, John Schultz, Thomas Tantillo, Samuel
Beckley, Eamon Jordan, Kevin Ruddell, Kevin Jordan,
and Yair Amir. Deploying intrusion-tolerant scada for
the power grid. In Int. Conf. on Dependable Systems
and Networks (DSN), pages 328–335. IEEE, 2019.

[42] Leemon Baird. The swirlds hashgraph consensus al-
gorithm: Fair, fast, byzantine fault tolerance. Swirlds
Tech Reports SWIRLDS-TR-2016-01, Tech. Rep, 2016.

[43] Jason Baker, Chris Bond, James C Corbett, JJ Furman,
Andrey Khorlin, James Larson, Jean-Michel Leon,
Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
Megastore: Providing scalable, highly available stor-
age for interactive services. In Conf. on Innovative
Data Systems Research (CIDR), 2011.

384 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam,
Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn,
and George Danezis. Sok: Consensus in the age of
blockchains. In Conf. on Advances in Financial Tech-
nologies (AFT), pages 183–198. ACM, 2019.

[45] Mathieu Baudet, Avery Ching, Andrey Chursin,
George Danezis, François Garillot, Zekun Li, Dahlia
Malkhi, Oded Naor, Dmitri Perelman, and Alberto Son-
nino. State machine replication in the libra blockchain.
The Libra Assn., Tech. Rep, 2019.

[46] Johannes Behl, Tobias Distler, and Rüdiger Kapitza.
Consensus-oriented parallelization: How to earn your
first million. In Annual Middleware Conf. (Middle-
ware), pages 173–184, 2015.

[47] Johannes Behl, Tobias Distler, and Rüdiger Kapitza.
Hybrids on steroids: Sgx-based high performance bft.
In European Conf. on Computer Systems (EuroSys),
pages 222–237, 2017.

[48] Michael Ben-Or. Another advantage of free choice:
Completely asynchronous agreement protocols (ex-
tended abstract). In Symposium on Principles of
Distributed Computing (PODC), pages 27–30. ACM,
1983.

[49] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable zero knowledge with no
trusted setup. In Annual international cryptology con-
ference, pages 701–732. Springer, 2019.

[50] Christian Berger and Hans P Reiser. Scaling byzantine
consensus: A broad analysis. In Workshop on Scalable
and Resilient Infrastructures for Distributed Ledgers,
pages 13–18, 2018.

[51] Christian Berger, Hans P Reiser, João Sousa, and
Alysson Bessani. Resilient wide-area byzantine con-
sensus using adaptive weighted replication. In Sympo-
sium on Reliable Distributed Systems (SRDS), pages
183–18309. IEEE, 2019.

[52] Christian Berger, Sadok Ben Toumia, and Hans P
Reiser. Does my bft protocol implementation scale?
In Int. Workshop on Distributed Infrastructure for the
Common Good, pages 19–24, 2022.

[53] Alysson Bessani, Miguel Correia, Bruno Quaresma,
Fernando André, and Paulo Sousa. Depsky: depend-
able and secure storage in a cloud-of-clouds. Transac-
tions on Storage (TOS), 9(4):12, 2013.

[54] Alysson Bessani, Joao Sousa, and Eduardo EP Alchieri.
State machine replication for the masses with bft-smart.
In Int. Conf. on Dependable Systems and Networks
(DSN), pages 355–362. IEEE, 2014.

[55] Alysson Neves Bessani, Paulo Sousa, Miguel Correia,
Nuno Ferreira Neves, and Paulo Verissimo. The crutial
way of critical infrastructure protection. IEEE Security
& Privacy, 6(6):44–51, 2008.

[56] Martin Biely, Zarko Milosevic, Nuno Santos, and An-
dre Schiper. S-paxos: Offloading the leader for high
throughput state machine replication. In Symposium on
Reliable Distributed Systems (SRDS), pages 111–120.
IEEE, 2012.

[57] Kenneth P Birman, Thomas A Joseph, Thomas
Raeuchle, and Amr El Abbadi. Implementing fault-
tolerant distributed objects. Trans. on Software Engi-
neering, (6):502–508, 1985.

[58] Fatemeh Borran and André Schiper. A leader-free
byzantine consensus algorithm. In Int. Conf. on Dis-
tributed Computing and Networking (ICDCN), pages
67–78. Springer, 2010.

[59] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient
consensus protocol. In Symposium on Principles
of Distributed Computing (PODC), pages 154–162.
ACM, 1984.

[60] Gabriel Bracha and Sam Toueg. Asynchronous con-
sensus and broadcast protocols. Journal of the ACM
(JACM), 32(4):824–840, 1985.

[61] F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal.
Consensus in one communication step. In Int. Conf. on
Parallel Computing Technologies (PaCT), pages 42–50.
Springer, 2001.

[62] Manuel Bravo, Gregory Chockler, and Alexey Gots-
man. Making byzantine consensus live. In Int. Sym-
posium on Distributed Computing (DISC). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[63] Nathan Bronson, Zach Amsden, George Cabrera,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, and Harry Li.
Tao: Facebook’s distributed data store for the social
graph. In Annual Technical Conf. (ATC), pages 49–60.
USENIX Association, 2013.

[64] Richard Gendal Brown, James Carlyle, Ian Grigg, and
Mike Hearn. Corda: an introduction. R3 CEV, August,
1(15):14, 2016.

[65] Ethan Buchman. Tendermint: Byzantine fault tolerance
in the age of blockchains. PhD thesis, 2016.

[66] Ethan Buchman, Jae Kwon, and Zarko Milosevic.
The latest gossip on bft consensus. arXiv preprint
arXiv:1807.04938, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 385

[67] Yehonatan Buchnik and Roy Friedman. Fireledger: a
high throughput blockchain consensus protocol. Pro-
ceedings of the VLDB Endowment, 13(9):1525–1539,
2020.

[68] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. arXiv preprint arXiv:1710.09437,
2017.

[69] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Annual Int. Cryptology Conf., pages
524–541. Springer, 2001.

[70] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography.
Journal of Cryptology, 18(3):219–246, 2005.

[71] Christian Cachin, Jovana Mićić, and Nathalie Stein-
hauer. Quick order fairness. In Int. Conf. on Financial
Cryptography and Data Security (FC), pages 1–18.
Springer, 2022.

[72] Christian Cachin and Marko Vukolić. Blockchain con-
sensus protocols in the wild. In Int. Symposium on
Distributed Computing (DISC), pages 1–16, 2017.

[73] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 173–186.
USENIX Association, 1999.

[74] Miguel Castro and Barbara Liskov. Proactive recovery
in a byzantine-fault-tolerant system. In Symposium on
Operating Systems Design and Implementation (OSDI).
USENIX Association, 2000.

[75] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. Transactions
on Computer Systems (TOCS), 20(4):398–461, 2002.

[76] Benjamin Y Chan and Elaine Shi. Streamlet: Text-
book streamlined blockchains. In Conf. on Advances
in Financial Technologies (AFT), pages 1–11. ACM,
2020.

[77] TH Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A
simple partially synchronous blockchain. Cryptology
ePrint Archive, 2018.

[78] TH Hubert Chan, Rafael Pass, and Elaine Shi. Pili: An
extremely simple synchronous blockchain. Cryptology
ePrint Archive, 2018.

[79] Tushar D Chandra, Robert Griesemer, and Joshua Red-
stone. Paxos made live: an engineering perspective.
In symposium on Principles of Distributed Computing
(PODC), pages 398–407. ACM, 2007.

[80] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems. Jour-
nal of the ACM (JACM), 43(2):225–267, 1996.

[81] Aleksey Charapko, Ailidani Ailijiang, and Murat
Demirbas. Pigpaxos: Devouring the communication
bottlenecks in distributed consensus. In SIGMOD Int.
Conf. on Management of Data, pages 235–247. ACM,
2021.

[82] JP Morgan Chase. Quorum white paper, 2016.

[83] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport,
and Stephan Merz. Verifying safety properties with
the tla+ proof system. In Int. Conf., on Automated
Reasoning (IJCAR), pages 142–148. Springer, 2010.

[84] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and
John Kubiatowicz. Attested append-only memory:
Making adversaries stick to their word. In Operating
Systems Review (OSR), volume 41-6, pages 189–204.
ACM SIGOPS, 2007.

[85] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang
Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor Riche.
Upright cluster services. In Symposium on Operat-
ing Systems Principles (SOSP), pages 277–290. ACM,
2009.

[86] Allen Clement, Edmund L Wong, Lorenzo Alvisi,
Michael Dahlin, and Mirco Marchetti. Making byzan-
tine fault tolerant systems tolerate byzantine faults. In
Symposium on Networked Systems Design and Imple-
mentation (NSDI), volume 9, pages 153–168. USENIX
Association, 2009.

[87] James C Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, Jeffrey John Fur-
man, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, and Peter Hochschild. Spanner: Google’s glob-
ally distributed database. Transactions on Computer
Systems (TOCS), 31(3):8, 2013.

[88] Miguel Correia, Nuno Ferreira Neves, Lau Cheuk
Lung, and Paulo Veríssimo. Low complexity byzantine-
resilient consensus. Distributed Computing, 17(3):237–
249, 2005.

[89] Miguel Correia, Nuno Ferreira Neves, Lau Cheuk
Lung, and Paulo Veríssimo. Worm-it–a wormhole-
based intrusion-tolerant group communication system.
Journal of Systems and Software, 80(2):178–197, 2007.

[90] Miguel Correia, Nuno Ferreira Neves, and Paulo Veris-
simo. How to tolerate half less one byzantine nodes
in practical distributed systems. In Int. Symposium on
Reliable Distributed Systems (SRDS), pages 174–183.
IEEE, 2004.

386 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[91] Miguel Correia, Nuno Ferreira Neves, and Paulo Verís-
simo. From consensus to atomic broadcast: Time-free
byzantine-resistant protocols without signatures. The
Computer Journal, 49(1):82–96, 2006.

[92] Miguel Correia, Nuno Ferreira Neves, and Paulo Veris-
simo. Bft-to: Intrusion tolerance with less replicas.
The Computer Journal, 56(6):693–715, 2013.

[93] Miguel Correia, Giuliana Santos Veronese, Nuno Fer-
reira Neves, and Paulo Verissimo. Byzantine consen-
sus in asynchronous message-passing systems: a sur-
vey. Int. Journal of Critical Computer-Based Systems,
2(2):141–161, 2011.

[94] Victor Costan, Ilia Lebedev, and Srinivas Devadas.
Sanctum: Minimal hardware extensions for strong soft-
ware isolation. In Security Symposium, pages 857–874.
USENIX Association, 2016.

[95] Domenico Cotroneo, Roberto Natella, Roberto Pietran-
tuono, and Stefano Russo. A survey of software aging
and rejuvenation studies. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 10(1):1–
34, 2014.

[96] Denis Cousineau, Damien Doligez, Leslie Lamport,
Stephan Merz, Daniel Ricketts, and Hernán Vanzetto.
Tla+ proofs. In Int. Symposium on Formal Methods
(FM), pages 147–154. Springer, 2012.

[97] James Cowling, Daniel Myers, Barbara Liskov, Ro-
drigo Rodrigues, and Liuba Shrira. Hq replication:
A hybrid quorum protocol for byzantine fault toler-
ance. In Symposium on Operating Systems Design
and Implementation (OSDI), pages 177–190. USENIX
Association, 2006.

[98] Tyler Crain, Vincent Gramoli, Mikel Larrea, and
Michel Raynal. Dbft: Efficient leaderless byzantine
consensus and its application to blockchains. In Int.
Symposium on Network Computing and Applications
(NCA), pages 1–8. IEEE, 2018.

[99] Tyler Crain, Christopher Natoli, and Vincent Gramoli.
Red belly: a secure, fair and scalable open blockchain.
In Symposium on Security and Privacy (SP). IEEE,
2021.

[100] George Danezis and David Hrycyszyn. Blockma-
nia: from block dags to consensus. arXiv preprint
arXiv:1809.01620, 2018.

[101] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk: a
dag-based mempool and efficient bft consensus. In Eu-
ropean Conf. on Computer Systems (EuroSys), pages
34–50, 2022.

[102] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly avail-
able key-value store. In Operating Systems Review
(OSR), volume 41, pages 205–220. ACM, 2007.

[103] Tobias Distler. Byzantine fault-tolerant state-machine
replication from a systems perspective. ACM Comput-
ing Surveys (CSUR), 54(1):1–38, 2021.

[104] Tobias Distler, Christian Cachin, and Rüdiger Kapitza.
Resource-efficient byzantine fault tolerance. Transac-
tions on Computers, 65(9):2807–2819, 2016.

[105] Tobias Distler, Ivan Popov, Wolfgang Schröder-
Preikschat, Hans P Reiser, and Rüdiger Kapitza. Spare:
Replicas on hold. In Network and Distributed System
Security Symposium (NDSS), 2011.

[106] Dan Dobre, Ghassan Karame, Wenting Li, Matthias
Majuntke, Neeraj Suri, and Marko Vukolić. Power-
store: Proofs of writing for efficient and robust storage.
In Conf. on Computer and communications security
(CCS), pages 285–298. ACM, 2013.

[107] Dan Dobre, Matthias Majuntke, Marco Serafini, and
Neeraj Suri. Hp: Hybrid paxos for wans. In European
Dependable Computing Conf. (EDCC), pages 117–126.
IEEE, 2010.

[108] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer.
On the minimal synchronism needed for distributed
consensus. Journal of the ACM (JACM), 34(1):77–97,
1987.

[109] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat:
Asynchronous bft made practical. In Conf. on Com-
puter and Communications Security (CCS), pages
2028–2041. ACM, 2018.

[110] Sisi Duan and Haibin Zhang. Practical state machine
replication with confidentiality. In Symposium on Re-
liable Distributed Systems (SRDS), pages 187–196.
IEEE, 2016.

[111] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Jour-
nal of the ACM (JACM), 35(2):288–323, 1988.

[112] Michael Eischer and Tobias Distler. Latency-aware
leader selection for geo-replicated byzantine fault-
tolerant systems. In Int. Conf. on Dependable Systems
and Networks Workshops (DSN-W), pages 140–145.
IEEE, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 387

[113] Michael Eischer and Tobias Distler. Scalable byzan-
tine fault-tolerant state-machine replication on hetero-
geneous servers. Computing, 101(2):97–118, 2019.

[114] Amr El Abbadi, Dale Skeen, and Flaviu Cristian. An
efficient, fault-tolerant protocol for replicated data man-
agement. In SIGACT-SIGMOD symposium on Princi-
ples of database systems, pages 215–229. ACM, 1985.

[115] Amr El Abbadi and Sam Toueg. Availability in par-
titioned replicated databases. In SIGACT-SIGMOD
symposium on Principles of database systems, pages
240–251. ACM, 1986.

[116] Ian Aragon Escobar, Eduardo Alchieri, Fernando Luís
Dotti, and Fernando Pedone. Boosting concurrency in
parallel state machine replication. In Int. Middleware
Conf., pages 228–240, 2019.

[117] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[118] Stephanie Forrest, Anil Somayaji, and David H Ackley.
Building diverse computer systems. In Workshop on
Hot Topics in Operating Systems, pages 67–72. IEEE,
1997.

[119] Adam Gągol, Damian Leśniak, Damian Straszak, and
Michał Świętek. Aleph: Efficient atomic broadcast
in asynchronous networks with byzantine nodes. In
Conf. on Advances in Financial Technologies, pages
214–228. ACM, 2019.

[120] Fangyu Gai, Ali Farahbakhsh, Jianyu Niu, Chen Feng,
Ivan Beschastnikh, and Hao Duan. Dissecting the per-
formance of chained-bft. In Int. Conf. on Distributed
Computing Systems (ICDCS), pages 595–606. IEEE,
2021.

[121] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing
Xu, and Zhenfeng Zhang. Efficient asynchronous
byzantine agreement without private setups. In Int.
Conf. on Distributed Computing Systems (ICDCS),
pages 246–257. IEEE, 2022.

[122] Miguel Garcia, Nuno Neves, and Alysson Bessani. An
intrusion-tolerant firewall design for protecting siem
systems. In Conf. on Dependable Systems and Net-
works Workshop (DSN-W), pages 1–7. IEEE, 2013.

[123] Miguel Garcia, Nuno Neves, and Alysson Bessani.
Sieveq: A layered bft protection system for critical
services. IEEE Transactions on Dependable and Se-
cure Computing, 15(3):511–525, 2016.

[124] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Son-
nino, Alexander Spiegelman, and Zhuolun Xiang.

Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback. In Int. Conf. on Finan-
cial Cryptography and Data Security, pages 296–315.
Springer, 2022.

[125] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Sympo-
sium on Operating Systems Principles (SOSP), pages
51–68. ACM, 2017.

[126] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and
Michael K Reiter. Efficient byzantine-tolerant erasure-
coded storage. In Int. Conf. on Dependable Systems
and Networks (DSN), pages 135–144. IEEE, 2004.

[127] Christian Gorenflo, Lukasz Golab, and Srinivasan Ke-
shav. Xox fabric: A hybrid approach to transaction
execution. In Int. Conf. on Blockchain and Cryptocur-
rency (ICBC), pages 1–9. IEEE, 2020.

[128] Christian Gorenflo, Stephen Lee, Lukasz Golab, and
Srinivasan Keshav. Fastfabric: Scaling hyperledger
fabric to 20,000 transactions per second. In Int. Conf.
on Blockchain and Cryptocurrency (ICBC), pages 455–
463. IEEE, 2019.

[129] Gideon Greenspan. Multichain private blockchain-
white paper. URl: http://www. multichain.
com/download/MultiChain-White-Paper. pdf, 2015.

[130] Rachid Guerraoui, Nikola Knežević, Vivien Quéma,
and Marko Vukolić. The next 700 bft protocols. In
European conf. on Computer systems (EuroSys), pages
363–376. ACM, 2010.

[131] Guy Golan Gueta, Ittai Abraham, Shelly Gross-
man, Dahlia Malkhi, Benny Pinkas, Michael K Re-
iter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin
Tomescu. Sbft: a scalable decentralized trust infras-
tructure for blockchains. In Int. Conf. on Dependable
Systems and Networks (DSN), pages 568–580. IEEE/I-
FIP, 2019.

[132] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In Conf. on Computer and Communications
Security (CCS), pages 803–818. ACM, 2020.

[133] Divya Gupta, Lucas Perronne, and Sara Bouchenak.
Bft-bench: Towards a practical evaluation of robustness
and effectiveness of bft protocols. In Int. Conf. on
Distributed Applications and Interoperable Systems,
pages 115–128. Springer, 2016.

[134] Suyash Gupta, Mohammad Javad Amiri, and Moham-
mad Sadoghi. Chemistry behind agreement. In Conf.
on Innovative Data Systems Research (CIDR), 2023.

388 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[135] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mo-
hammad Sadoghi. Proof-of-execution: Reaching con-
sensus through fault-tolerant speculation. In Int. Conf.
on Extending Database Technology (EDBT), pages
301–312, 2021.

[136] Suyash Gupta, Jelle Hellings, and Mohammad
Sadoghi. Rcc: Resilient concurrent consensus for
high-throughput secure transaction processing. In Int.
Conf. on Data Engineering (ICDE), pages 1392–1403.
IEEE, 2021.

[137] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and
Mohammad Sadoghi. Resilientdb: Global scale re-
silient blockchain fabric. Proceedings of the VLDB
Endowment, 13(6):868–883, 2020.

[138] Andreas Haeberlen, Petr Kouznetsov, and Peter Dr-
uschel. The case for byzantine fault detection. In
HotDep, 2006.

[139] Timo Hanke, Mahnush Movahedi, and Dominic
Williams. Dfinity technology overview series, consen-
sus system. arXiv preprint arXiv:1805.04548, 2018.

[140] James Hendricks, Gregory R Ganger, and Michael K
Reiter. Low-overhead byzantine fault-tolerant storage.
ACM SIGOPS Operating Systems Review, 41(6):73–86,
2007.

[141] Heidi Howard, Dahlia Malkhi, and Alexander Spiegel-
man. Flexible paxos: Quorum intersection revisited.
In Int. Conf. on Principles of Distributed Systems
(OPODIS), 2017.

[142] Yennun Huang, Chandra Kintala, Nick Kolettis, and
N Dudley Fulton. Software rejuvenation: Analysis,
module and applications. In Int. symposium on fault-
tolerant computing. Digest of papers, pages 381–390.
IEEE, 1995.

[143] Mohammad M Jalalzai, Jianyu Niu, Chen Feng, and
Fangyu Gai. Fast-hotstuff: A fast and resilient hotstuff
protocol. arXiv preprint arXiv:2010.11454, 2020.

[144] Flavio P Junqueira, Benjamin C Reed, and Marco Ser-
afini. Zab: High-performance broadcast for primary-
backup systems. In Int. Conf. on Dependable Systems
and Networks (DSN), pages 245–256. IEEE, 2011.

[145] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alexander Rasin, Stanley Zdonik,
Evan PC Jones, Samuel Madden, Michael Stonebraker,
and Yang Zhang. H-store: a high-performance, dis-
tributed main memory transaction processing system.
Proc. of the VLDB Endowment, 1(2):1496–1499, 2008.

[146] Rüdiger Kapitza, Johannes Behl, Christian Cachin,
Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-
madi, Wolfgang Schröder-Preikschat, and Klaus Sten-
gel. Cheapbft: resource-efficient byzantine fault toler-
ance. In European Conf. on Computer Systems (Eu-
roSys), pages 295–308. ACM, 2012.

[147] Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, Mike Dahlin, et al. All
about eve: Execute-verify replication for multi-core
servers. In Symposium on Operating Systems Design
and Implementation (OSDI), volume 12, pages 237–
250. USENIX Association, 2012.

[148] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor,
and Alexander Spiegelman. All you need is dag. In
Symposium on Principles of Distributed Computing
(PODC), pages 165–175. ACM, 2021.

[149] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels,
and Sreeram Kannan. Themis: Fast, strong order-
fairness in byzantine consensus. The Science of
Blockchain Conf. (SBC), 2022.

[150] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and
Ari Juels. Order-fairness for byzantine consensus. In
Annual Int. Cryptology Conf., pages 451–480. Springer,
2020.

[151] Aggelos Kiayias, Alexander Russell, Bernardo David,
and Roman Oliynykov. Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In Annual Int.
Cryptology Conf., pages 357–388. Springer, 2017.

[152] Roger M. Kieckhafer and Mohammad H. Azadmanesh.
Reaching approximate agreement with mixed-mode
faults. Transactions on Parallel and Distributed Sys-
tems, 5(1):53–63, 1994.

[153] Jonathan Kirsch, Stuart Goose, Yair Amir, Dong Wei,
and Paul Skare. Survivable scada via intrusion-tolerant
replication. IEEE Transactions on Smart Grid, 5(1):60–
70, 2013.

[154] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nico-
las Gailly, Ismail Khoffi, Linus Gasser, and Bryan
Ford. Enhancing bitcoin security and performance
with strong consistency via collective signing. In Secu-
rity Symposium, pages 279–296. USENIX Association,
2016.

[155] Eleftherios Kokoris-Kogias. Robust and scalable con-
sensus for sharded distributed ledgers.

[156] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niledger: A secure, scale-out, decentralized ledger via
sharding. In Symposium on Security and Privacy (SP),
pages 583–598. IEEE, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 389

[157] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin,
Allen Clement, and Edmund Wong. Zyzzyva: spec-
ulative byzantine fault tolerance. Operating Systems
Review (OSR), 41(6):45–58, 2007.

[158] Ramakrishna Kotla and Michael Dahlin. High through-
put byzantine fault tolerance. In Int. Conf. on Depend-
able Systems and Networks (DSN), pages 575–584.
IEEE, 2004.

[159] Klaus Kursawe. Wendy, the good little fairness widget:
Achieving order fairness for blockchains. In Conf. on
Advances in Financial Technologies (AFT), pages 25–
36. ACM, 2020.

[160] Klaus Kursawe. Wendy grows up: More order fairness.
In Int. Conf. on Financial Cryptography and Data
Security (FC), pages 191–196. Springer, 2021.

[161] Petr Kuznetsov, Andrei Tonkikh, and Yan X Zhang. Re-
visiting optimal resilience of fast byzantine consensus.
In Symposium on Principles of Distributed Computing
(PODC), pages 343–353. ACM, 2021.

[162] Jae Kwon. Tendermint: Consensus without mining.
2014.

[163] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications of the
ACM, 21(7):558–565, 1978.

[164] Leslie Lamport. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[165] Leslie Lamport. Generalized consensus and paxos.
2005.

[166] Leslie Lamport. Fast paxos. Distributed Computing,
19(2):79–103, 2006.

[167] Leslie Lamport. Brief announcement: Leaderless
byzantine paxos. In Int. Symposium on Distributed
Computing (DISC), pages 141–142, 2011.

[168] Leslie Lamport. The part-time parliament. In Concur-
rency: the Works of Leslie Lamport, pages 277–317.
2019.

[169] Leslie Lamport and Mike Massa. Cheap paxos. In Int.
Conf. on Dependable Systems and Networks (DSN),
pages 307–314. IEEE, 2004.

[170] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. Transactions on
Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[171] Butler Lampson. The abcd’s of paxos. In Sympo-
sium on Principles of Distributed Computing (PODC),
volume 1, page 13, 2001.

[172] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments.
In European Conf. on Computer Systems (EuroSys),
pages 1–16, 2020.

[173] Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and
Dahlia Malkhi. Fairledger: A fair blockchain protocol
for financial institutions. In Int. Conf. on Principles
of Distributed Systems (OPODIS). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

[174] Dave Levin, John R Douceur, Jacob R Lorch, and
Thomas Moscibroda. Trinc: Small trusted hardware for
large distributed systems. In Symposium on Networked
Systems Design and Implementation (NSDI), volume 9,
pages 1–14. USENIX Association, 2009.

[175] Bijun Li, Nico Weichbrodt, Johannes Behl, Pierre-
Louis Aublin, Tobias Distler, and Rüdiger Kapitza.
Troxy: Transparent access to byzantine fault-tolerant
systems. In Int. Conf. on Dependable Systems and
Networks (DSN), pages 59–70. IEEE, 2018.

[176] Bijun Li, Wenbo Xu, Muhammad Zeeshan Abid, To-
bias Distler, and Rüdiger Kapitza. Sarek: Optimistic
parallel ordering in byzantine fault tolerance. In Eu-
ropean Dependable Computing Conf. (EDCC), pages
77–88. IEEE, 2016.

[177] Harry C Li, Allen Clement, Amitanand S Aiyer, and
Lorenzo Alvisi. The paxos register. In IEEE Int. Sym-
posium on Reliable Distributed Systems (SRDS), pages
114–126. IEEE, 2007.

[178] Jinyuan Li and David Maziéres. Beyond one-third
faulty replicas in byzantine fault tolerant systems. In
Symposium on Networked Systems Design and Imple-
mentation (NSDI). USENIX Association, 2007.

[179] Wenyu Li, Chenglin Feng, Lei Zhang, Hao Xu, Bin
Cao, and Muhammad Ali Imran. A scalable multi-
layer pbft consensus for blockchain. Transactions on
Parallel and Distributed Systems, 32(5):1146–1160,
2020.

[180] Bo Lin and Yanhong A Liu. Distalgo: A language for
distributed algorithms, 2017.

[181] Barbara Liskov and James Cowling. Viewstamped
replication revisited. 2012.

[182] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien
Quéma, and Marko Vukolic. Xft: Practical fault tol-
erance beyond crashes. In Symposium on Operating
Systems Design and Implementation (OSDI), pages
485–500. USENIX Association, 2016.

390 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[183] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Ku-
nal Baweja, Seth Gilbert, and Prateek Saxena. A
secure sharding protocol for open blockchains. In
SIGSAC Conf. on Computer and Communications Se-
curity (CCS), pages 17–30. ACM, 2016.

[184] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal
two-phase responsive bft. Cryptology ePrint Archive,
2023.

[185] Dahlia Malkhi and Michael Reiter. Unreliable intru-
sion detection in distributed computations. In Com-
puter Security Foundations Workshop, pages 116–124.
IEEE, 1997.

[186] Dahlia Malkhi and Michael Reiter. Byzantine quorum
systems. Distributed computing, 11(4):203–213, 1998.

[187] Dahlia Malkhi and Michael K Reiter. Secure and scal-
able replication in phalanx. In Symposium on Reliable
Distributed Systems (SRDS), pages 51–58. IEEE, 1998.

[188] Dahlia Malkhi and Michael K Reiter. Survivable con-
sensus objects. In IEEE Symposium on Reliable Dis-
tributed Systems (SRDS), pages 271–279. IEEE, 1998.

[189] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo.
Towards low latency state machine replication for un-
civil wide-area networks. In Workshop on Hot Topics
in System Dependability. Citeseer, 2009.

[190] J-P Martin and Lorenzo Alvisi. Fast byzantine consen-
sus. Transactions on Dependable and Secure Comput-
ing, 3(3):202–215, 2006.

[191] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R Savagaonkar. Innovative instructions and
software model for isolated execution. Hasp@ isca,
10(1), 2013.

[192] Fred J. Meyer and Dhiraj K. Pradhan. Consensus
with dual failure modes. Transactions on Parallel and
Distributed Systems, (2):214–222, 1991.

[193] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi,
and Dawn Song. The honey badger of bft protocols.
In Conf. on Computer and Communications Security
(CCS), pages 31–42. ACM, 2016.

[194] Zarko Milosevic, Martin Biely, and André Schiper.
Bounded delay in byzantine-tolerant state machine
replication. In Int. Symposium on Reliable Distributed
Systems (SRDS), pages 61–70. IEEE, 2013.

[195] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. Egalitarian paxos. In Symposium on Operating
Systems Principles (SOSP). ACM, 2012.

[196] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parlia-
ments. In Symposium on Operating Systems Principles
(SOSP), pages 358–372. ACM, 2013.

[197] Louise E Moser, Peter M Melliar-Smith, Priya
Narasimhan, Lauren A Tewksbury, and Vana Kaloger-
aki. The eternal system: An architecture for enter-
prise applications. In Int. Enterprise Distributed Ob-
ject Computing Conf. (EDOC), pages 214–222. IEEE,
1999.

[198] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and
Alexander Spiegelman. Cogsworth: Byzantine view
synchronization. arXiv preprint arXiv:1909.05204,
2019.

[199] Oded Naor and Idit Keidar. Expected linear round
synchronization: The missing link for linear byzantine
smr. In Int. Symposium on Distributed Computing
(DISC). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2020.

[200] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi.
Dpaxos: Managing data closer to users for low-latency
and mobile applications. In SIGMOD Int. Conf. on
Management of Data, pages 1221–1236. ACM, 2018.

[201] Faisal Nawab and Mohammad Sadoghi. Blockplane:
A global-scale byzantizing middleware. In Int. Conf.
on Data Engineering (ICDE), pages 124–135. IEEE,
2019.

[202] Ray Neiheiser, Miguel Matos, and Luís Rodrigues.
Kauri: Scalable bft consensus with pipelined tree-based
dissemination and aggregation. In Symposium on Oper-
ating Systems Principles (SOSP), pages 35–48. ACM,
2021.

[203] Ray Neiheiser, Daniel Presser, Luciana Rech, Manuel
Bravo, Luís Rodrigues, and Miguel Correia. Fireplug:
Flexible and robust n-version geo-replication of graph
databases. In Int. Conf. on Information Networking
(ICOIN), pages 110–115. IEEE, 2018.

[204] Nuno Ferreira Neves, Miguel Correia, and Paulo Veris-
simo. Solving vector consensus with a wormhole.
IEEE Transactions on Parallel and Distributed Sys-
tems, 16(12):1120–1131, 2005.

[205] André Nogueira, Miguel Garcia, Alysson Bessani, and
Nuno Neves. On the challenges of building a bft scada.
In Int. Conf. on Dependable Systems and Networks
(DSN), pages 163–170. IEEE, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 391

[206] Brian M Oki and Barbara H Liskov. Viewstamped
replication: A new primary copy method to support
highly-available distributed systems. In Symposium on
Principles of Distributed Computing (PODC), pages
8–17. ACM, 1988.

[207] Diego Ongaro and John K Ousterhout. In search of an
understandable consensus algorithm. In Annual Techni-
cal Conf. (ATC), pages 305–319. USENIX Association,
2014.

[208] Rafael Pass and Elaine Shi. Hybrid consensus: Ef-
ficient consensus in the permissionless model. In
Int.Symposium on Distributed Computing (DISC),
page 6, 2017.

[209] Rafael Pass and Elaine Shi. Thunderella: Blockchains
with optimistic instant confirmation. In Annual Int.
Conf. on the Theory and Applications of Cryptographic
Techniques, pages 3–33. Springer, 2018.

[210] Fernando Pedone. Boosting system performance with
optimistic distributed protocols. Computer, 34(12):80–
86, 2001.

[211] Marco Platania, Daniel Obenshain, Thomas Tantillo,
Yair Amir, and Neeraj Suri. On choosing server-or
client-side solutions for bft. ACM Computing Surveys
(CSUR), 48(4):1–30, 2016.

[212] Daniel Porto, João Leitão, Cheng Li, Allen Clement,
Aniket Kate, Flavio Junqueira, and Rodrigo Rodrigues.
Visigoth fault tolerance. In European Conf. on Com-
puter Systems (EuroSys), page 8. ACM, 2015.

[213] Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang,
Tianxiang Shen, Shixiong Zhao, Sen Wang, Gong
Zhang, Li Chen, Man Ho Au, et al. Bidl: A
high-throughput, low-latency permissioned blockchain
framework for datacenter networks. In Symposium on
Operating Systems Principles (SOSP), pages 18–34.
ACM, 2021.

[214] Michael O Rabin. Randomized byzantine generals.
In Symposium on Foundations of Computer Science
(SFCS), pages 403–409. IEEE, 1983.

[215] HariGovind V Ramasamy and Christian Cachin. Parsi-
monious asynchronous byzantine-fault-tolerant atomic
broadcast. In Int. Conf. On Principles Of Distributed
Systems (OPODIS), pages 88–102. Springer, 2005.

[216] Hans P Reiser and Rudiger Kapitza. Hypervisor-based
efficient proactive recovery. In Int. Symposium on Reli-
able Distributed Systems (SRDS), pages 83–92. IEEE,
2007.

[217] Robbert van Renesse, Chi Ho, and Nicolas Schiper.
Byzantine chain replication. In Int. Conf. On Princi-
ples Of Distributed Systems (OPODIS), pages 345–359.
Springer, 2012.

[218] Ronald L Rivest, Adi Shamir, and Leonard M Adleman.
A method for obtaining digital signatures and public
key cryptosystems. Routledge, 2019.

[219] Tom Roeder and Fred B Schneider. Proactive obfusca-
tion. ACM Transactions on Computer Systems (TOCS),
28(2):1–54, 2010.

[220] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta,
Meihui Zhang, Gang Chen, and Beng Chin Ooi. A
transactional perspective on execute-order-validate
blockchains. In SIGMOD Int. Conf. on Management
of Data, pages 543–557. ACM, 2020.

[221] Fred B Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. Comput-
ing Surveys (CSUR), 22(4):299–319, 1990.

[222] Marco Serafini, Péter Bokor, Dan Dobre, Matthias Ma-
juntke, and Neeraj Suri. Scrooge: Reducing the costs
of fast byzantine replication in presence of unrespon-
sive replicas. In Int. Conf. on Dependable Systems and
Networks (DSN), pages 353–362. IEEE, 2010.

[223] Ankur Sharma, Felix Martin Schuhknecht, Divya
Agrawal, and Jens Dittrich. Blurring the lines between
blockchains and database systems: the case of hyper-
ledger fabric. In SIGMOD Int. Conf. on Management
of Data, pages 105–122. ACM, 2019.

[224] Victor Shoup. Practical threshold signatures. In Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, pages 207–220. Springer,
2000.

[225] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik
Nayak. On the optimality of optimistic responsiveness.
In Conf. on Computer and Communications Security
(CCS), pages 839–857. ACM, 2020.

[226] Atul Singh, Tathagata Das, Petros Maniatis, Peter Dr-
uschel, and Timothy Roscoe. Bft protocols under
fire. In Symposium on Networked Systems Design
and Implementation (NSDI), volume 8, pages 189–204.
USENIX Association, 2008.

[227] Hin-Sing Siu, Yeh-Hao Chin, and Wei-Pang Yang. A
note on consensus on dual failure modes. Transac-
tions on Parallel and Distributed Systems, 7(3):225–
230, 1996.

[228] Yee Jiun Song and Robbert van Renesse. Bosco: One-
step byzantine asynchronous consensus. In Int. Sym-
posium on Distributed Computing (DISC), pages 438–
450. Springer, 2008.

392 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[229] João Sousa and Alysson Bessani. Separating the wheat
from the chaff: An empirical design for geo-replicated
state machines. In Symposium on Reliable Distributed
Systems (SRDS), pages 146–155. IEEE, 2015.

[230] Paulo Sousa, Alysson Neves Bessani, Miguel Correia,
Nuno Ferreira Neves, and Paulo Verissimo. Highly
available intrusion-tolerant services with proactive-
reactive recovery. IEEE Transactions on Parallel and
Distributed Systems, 21(4):452–465, 2009.

[231] Alexander Spiegelman, Neil Giridharan, Alberto Son-
nino, and Lefteris Kokoris-Kogias. Bullshark: Dag bft
protocols made practical. In ACM SIGSAC Conf. on
Computer and Communications Security (CCS), pages
2705–2718, 2022.

[232] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Bran-
denburger, and Marko Vukolić. Adding fairness to
order: Preventing front-running attacks in bft proto-
cols using tees. In Int. Symp on Reliable Distributed
Systems (SRDS), pages 34–45. IEEE, 2021.

[233] Chrysoula Stathakopoulou, David Tudor, Matej
Pavlovic, and Marko Vukolić. [solution] mir-bft:
Scalable and robust bft for decentralized networks.
Journal of Systems Research, 2(1), 2022.

[234] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yun-
hao Zhang, Lorenzo Alvisi, and Natacha Crooks. Basil:
Breaking up bft with acid (transactions). In ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP), pages 1–17. ACM, 2021.

[235] Diem Team. Diembft v4: State machine replication in
the diem blockchain. Technical report, Technical Re-
port. Diem. https://developers. diem. com/papers/diem-
consensus . . . , 2021.

[236] Philip Thambidurai, You-Keun Park, et al. Interactive
consistency with multiple failure modes. In Symposium
on Reliable Distributed Systems (SRDS), pages 93–100.
IEEE, 1988.

[237] Gene Tsudik. Message authentication with one-way
hash functions. ACM SIGCOMM Computer Communi-
cation Review, 22(5):29–38, 1992.

[238] Robbert Van Renesse, Nicolas Schiper, and Fred B
Schneider. Vive la différence: Paxos vs. viewstamped
replication vs. zab. IEEE Transactions on Dependable
and Secure Computing, 12(4):472–484, 2014.

[239] Paulo E Veríssimo. Travelling through wormholes: a
new look at distributed systems models. ACM SIGACT
News, 37(1):66–81, 2006.

[240] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
Spin one’s wheels? byzantine fault tolerance with
a spinning primary. In Int. Symposium on Reliable
Distributed Systems (SRDS), pages 135–144. IEEE,
2009.

[241] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
Ebawa: Efficient byzantine agreement for wide-area
networks. In Int. Symposium on High Assurance
Systems Engineering (HASE), pages 10–19. IEEE,
2010.

[242] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, Lau Cheuk Lung, and
Paulo Verissimo. Efficient byzantine fault-tolerance.
Transactions on Computers, 62(1):16–30, 2013.

[243] Gauthier Voron and Vincent Gramoli. Dispel: Byzan-
tine smr with distributed pipelining. arXiv preprint
arXiv:1912.10367, 2019.

[244] Xin Wang, Sisi Duan, James Clavin, and Haibin Zhang.
Bft in blockchains: From protocols to use cases. ACM
Computing Surveys (CSUR), 54(10s):1–37, 2022.

[245] Michael Whittaker, Ailidani Ailijiang, Aleksey Chara-
pko, Murat Demirbas, Neil Giridharan, Joseph M
Hellerstein, Heidi Howard, Ion Stoica, and Adriana
Szekeres. Scaling replicated state machines with com-
partmentalization. Proceedings of the VLDB Endow-
ment, 14(11):2203–2215, 2021.

[246] Timothy Wood, Rahul Singh, Arun Venkataramani,
Prashant Shenoy, and Emmanuel Cecchet. Zz and the
art of practical bft execution. In European Conf. on
Computer Systems (EuroSys), pages 123–138. ACM,
2011.

[247] Jiang Xiao, Shijie Zhang, Zhiwei Zhang, Bo Li, Xiao-
hai Dai, and Hai Jin. Nezha: Exploiting concurrency
for transaction processing in dag-based blockchains. In
Int.Conf. on Distributed Computing Systems (ICDCS),
pages 269–279. IEEE, 2022.

[248] David Yakira, Avi Asayag, Gad Cohen, Ido Grayevsky,
Maya Leshkowitz, Ori Rottenstreich, and Ronen
Tamari. Helix: A fair blockchain consensus protocol re-
sistant to ordering manipulation. IEEE Transactions on
Network and Service Management, 18(2):1584–1597,
2021.

[249] Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and
Michael K Reiter. Communication-efficient bft us-
ing small trusted hardware to tolerate minority corrup-
tion. In Int. Conf. on Principles of Distributed Systems
(OPODIS), 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 393

[250] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram
Kannan, and David Tse. DispersedLedger:high-
throughput byzantine consensus on variable bandwidth
networks. In Symposium on Networked Systems Design
and Implementation (NSDI), pages 493–512. USENIX
Association, 2022.

[251] Jian Yin, Jean-Philippe Martin, Arun Venkataramani,
Lorenzo Alvisi, and Mike Dahlin. Separating agree-
ment from execution for byzantine fault tolerant ser-
vices. Operating Systems Review (OSR), 37(5):253–
267, 2003.

[252] Maofan Yin, Dahlia Malkhi, Michael K Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Sympo-
sium on Principles of Distributed Computing (PODC),
pages 347–356. ACM, 2019.

[253] Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. Rapidchain: Scaling blockchain via full
sharding. In SIGSAC Conf. on Computer and Commu-
nications Security, pages 931–948. ACM, 2018.

[254] Gengrui Zhang, Fei Pan, Michael Dang’ana, Yunhao
Mao, Shashank Motepalli, Shiquan Zhang, and Hans-
Arno Jacobsen. Reaching consensus in the byzantine
empire: A comprehensive review of bft consensus al-
gorithms. arXiv preprint arXiv:2204.03181, 2022.

[255] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou,
and Lorenzo Alvisi. Byzantine ordered consensus with-
out byzantine oligarchy. In Symposium on Operating
Systems Design and Implementation (OSDI), pages
633–649. USENIX Association, 2020.

[256] Lidong Zhou, Fred Schneider, Robbert VanRenesse,
and Zygmunt Haas. Secure distributed on-line certi-
fication authority, August 22 2002. US Patent App.
10/001,588.

[257] Lidong Zhou, Fred B Schneider, and Robbert Van Re-
nesse. Coca: A secure distributed online certification
authority. ACM Transactions on Computer Systems
(TOCS), 20(4):329–368, 2002.

394 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Performance Optimization Dimensions
We present a set of optimization dimensions that target the

performance of a BFT protocol.
O 1. Out-of-order processing. The out-of-order processing
mechanism enables the leader to continuously propose new
requests even when previous requests are still being processed
by the backups [135]. Out-of-order processing of requests is
possible if the leader does not need to include any certificate
or hash of the previous request (block) in its next request.
O 2. Request pipelining. Using request pipelining, the mes-
sages of a new consensus instance are piggybacked on the
second round messages of the previous instance [202, 252].
This technique is especially efficient when a protocol rotates
the leader after every consensus instance.
O 3. Parallel ordering. Client requests can be ordered in
parallel by relying on a set of independent ordering groups [46,
47, 176] where each group orders a subset of client requests
and then all results are deterministically merged into the final
order. Similarly, in multi-leader protocols [22, 33, 34, 39, 113,
136, 176, 194, 233, 243], different replicas are designated as
the leader for different consensus instances in parallel and
then a global order is determined.
O 4. Parallel execution. Transactions can be executed in
parallel to improve the system’s overall performance. One
approach is to detect non-conflicting transactions and exe-
cute them in parallel [27, 116, 158]. This approach requires
a priori knowledge of a transaction’s read-set and write-set.
Switching the order of agreement and execution stages and
optimistically executing transactions in parallel is another ap-
proach [32,147]. If the execution results are inconsistent (due
to faulty replicas, conflicting transactions, or nondeterministic
execution), replicas need to rollback their states and sequen-
tially and deterministically re-execute the requests. switching
the order of agreement and execution stages also enables
replicas to detect any nondeterministic execution [32, 147].
O 5. Read-only requests processing. In pessimistic proto-
cols, replicas can directly execute read-only requests without
establishing consensus. However, since replicas may execute
the read requests on different states, even non-faulty repli-
cas might not return identical results. To resolve this, the
number of required matching replies for both normal and
read-only requests needs to be increased from f +1 to 2 f +1
in order to ensure consistency (i.e., quorum intersection re-
quirement) [75]. This, however, results in a liveness challenge
because f non-faulty replicas might be slow (or in-dark) and
not receive the request. As a result, the client might not be
able to collect 2 f +1 matching responses (since Byzantine
replicas may not send a correct reply to the client).
O 6. Separating ordering and execution. The ordering
and execution stages can be separated and implemented in
different processes. This separation leads to several advan-
tages [103] such as preventing malicious execution repli-

cas from leaking confidential application state to clients
[110, 251], enabling large requests to bypass the ordering
stage [85], moving application logic to execution virtual ma-
chine [105, 216, 246] or simplifying the parallel ordering of
requests [46, 49]. Moreover, while 3 f+1 replicas are needed
for ordering, 2 f +1 replicas are sufficient to execute transac-
tions [251].

O 7. Trusted hardware. Using trusted execution environ-
ments (TEEs) that prevent equivocation, e.g., Intel’s SGX
[191], Sanctum [94], and Keystone [172], the number of re-
quired replicas can be lowered to 2 f +1 because the trusted
component prevents a faulty replica from sending conflict-
ing messages to different replicas without being detected.
A trusted component may include an entire virtualization
layer [105,216,241], a multicast ordering service executed on
a hardened Linux kernel [89, 90], a centralized configuration
service [217], a trusted log [84], an append-only log [249],
a trusted platform module, e.g., counter [241, 242], a smart
card TrInc [174], or an FPGA [104, 146]. The current version
of Bedrock does not support trusted hardware.

O 8. Request/reply dissemination. A client can either mul-
ticast its request to all replicas [54,97,240] where each replica
relays the request to the leader or optimistically send its re-
quest to a contact replica, typically the leader. The contact
replica is known to the client through a reply to an earlier re-
quest [73, 157]. If the client timer for the request (t1) expires,
the client multicasts its request to all replicas. This optimistic
mechanism requires fewer messages to be sent from clients
to the replicas. However, this comes at the cost of increased
network traffic between replicas, because the leader needs to
disseminate the full request to other replicas to enable them
to eventually execute it.

On the other hand, all replicas can send the results to clients
in their reply messages. This, however, leads to significant net-
work overhead for large results. A protocol can optimistically
rely on a designated responder replica (chosen by the client or
servers) to send the full results. Other replicas then either send
the hash of the results to the client or send a signed message
to the responder enabling the responder to generate a proof
for the results, e.g., SBFT [131]. While this technique reduces
network overhead, the client might not receive the results if
the responder replica is faulty, the network is unreliable, or
the responder replica was in-dark and skipped the execution
and applied a checkpoint to catch up [103].

B Case Studies on Protocol Evolution
In this section, we provide insights into how each BFT

protocol, mentioned in Figure 4 and Figure 5, maps into the
Bedrock design space and relates to one another through using
design choices. For illustrative purposes, we describe each
protocol relative to PBFT, along with one or more design
choices.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 395

Figure 11: Zyzzyva Figure 12: Zyzzyva (slow) Figure 13: Zyzzyva5 Figure 14: Zyzzyva5 (slow)

Figure 15: HotStuff Figure 16: Kauri

Zyzzyva [157]. Zyzzyva3 (Figure 11) can be derived from
PBFT using the speculative execution function (design choice
8) of Bedrock where assuming the leader and all backups
are non-faulty, replicas speculatively execute requests with-
out running any agreement and send reply messages to the
client. The client waits for 3 f +1 matching replies to accept
the results. If the timer t1 is expired and the client received
matching replies from between 2 f + 1 and 3 f replicas, as
presented in Figure 12, two more linear rounds of communi-
cation are needed to ensure that at least 2 f +1 replicas have
committed the request. Finally, Zyzzyva5 is derived from
Zyzzyva by using the resilience function (design choice 10)
where the number of replicas is increased to 5 f +1 and the
protocol is able to tolerate f and 2 f failures during its fast
and slow path respectively (presented in (Figures 13 and 14)
AZyzzyva [37, 130] also uses the fast path of Zyzzyva (called
ZLight) in its fault-free situations.
PoE [135]. PoE Figure 17 uses the linearization and specula-
tive phase reduction functions (design choices 1 and 7). PoE
does not assume that all replicas are non-faulty and constructs
a quorum of 2 f + 1 replicas possibly including Byzantine
replicas. However, since a client waits for 2 f +1 matching
reply messages, all 2 f +1 replicas constructing the quorum
need to be well-behaving to guarantee client liveness in the
fast path.
SBFT [131]. Bedrock derives SBFT4 from PBFT using the

3The view-change stage of the Zyzzyva protocol has a safety violation as
described in [7]

4SBFT tolerates both crash and Byzantine failure (n = 3 f +2c+1 where
c is the number of crashed replicas). Since the focus of this paper is on
linearization and optimistic phase reduction functions (de-

sign choices 1 and 6). SBFT presents an optimistic fast path
(Figure 18), assuming all replicas are non-faulty. If the leader
does not receive messages from all backups (in the prepare
phase) and its timer is expired (i.e., non-responsiveness timer
t3), SBFT switches to its slow path (Figure 19) and requires
two more linear rounds of communication (commit phase).
The Twin-path nature of SBFT requires replicas to sign each
message with two schemes (i.e., 2 f +1 and 3 f +1). To send
replies to the client, a single (collector) replica receives replies
from all replicas and sends a single (threshold) signed reply
message.
HotStuff [252]. HotStuff (Figure 15) can be derived from
PBFT using the linearization and leader rotation functions
(design choices 1 and 3) of Bedrock. Chained-HotStuff (per-
formance optimization 2) benefits from pipelining to reduce
the latency of request processing.
Tendermint [65, 66, 162]. Tendermint5 leverages the non-
responsive leader rotation function (design choice 4) to ro-
tate leaders without adding any new phases. The new leader,
however, needs to wait for a predefined time (timer t4), i.e.,
the worst-case time it takes to propagate messages over a
wide-area peer-to-peer gossip network, before proposing a
new block. Tendermint also uses timers in all phases where
a replica discards the request if it does not receive 2 f + 1
messages before the timeout (timer t6). Note that the origi-
nal Tendermint uses a gossip all-to-all mechanism and has
O(n logn) message complexity.

Byzantine failures, we consider a variation of SBFT where c = 0.
5Tendermint uses a Proof-of-Stake variation of PBFT where each replica

has a voting power equal to its stake (i.e., locked coins).

396 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 17: PoE Figure 18: SBFT Figure 19: SBFT slow path (Linear PBFT)

Figure 20: CheapBFT Figure 21: FaB Figure 22: Q/U Figure 23: Q/U slow path

Themis [149]. Themis is derived from HotStuff using the
fair function (design choice 13). Themis add a new all-to-all
preordering phase where replicas send a batch of requests in
the order they received to the leader replica and the leader
proposes requests in the order received (depending on the
order-fairness parameter g) [150]. Themis requires at least
4 f +1 replicas (if g = 1) to provide order fairness.
Kauri [202]. Kauri (Figure 16) can be derived from HotStuff
using the loadbalancer function (design choice 14) that maps
the star topology to the tree topology. The height of the tree
is h = logd n where d is the fanout of each replica.
CheapBFT [146]. CheapBFT (Figure 20) and its revised
version, REBFT [104] is derived from PBFT using the op-
timistic replica reduction function (design choice 5). Using
trusted hardware (performance optimization O7), a variation
of REBFT, called RWMINBFT, processes requests with f +1
active and f passive replicas in its normal case (optimistic)
execution.
FaB [190]. FaB6 (Figure 21) uses the phase reduction func-
tion (design choice 2) to reduce one phase of communication
while requiring 5 f +1 replicas. Fab does not use authentica-
tion in its ordering stage, however, requires signatures for the
view-change stage (design choice 11). Note that using authen-
tication, 5 f �1 replicas is sufficient to reduce one phase of
communication [12, 161].
Prime [24]. Prime is derived from PBFT using the robust
functions (design choice 12). In prime, a preordering stage is
added where replicas exchange the requests they receive from
clients and periodically share a vector of all received requests,

6FaB, similar to the family of Paxos-like protocols, separates proposers
from acceptors. In our implementation of FaB, however, replicas act as both
proposers and acceptors.

which they expect the leader to order requests following those
vectors. In this way, replicas can also monitor the leader to
order requests in a fair manner.
Q/U [5]. Q/U (Figure 22) utilizes optimistic conflict-free and
resilience functions (design choices 9 and 10). Clients play
the proposer role and replicas immediately execute an update
request if the object has not been modified since the client’s
last query. Since Q/U is able to tolerate f faulty replicas, a
client can optionally communicate with a subset (4 f +1) of
replicas (preferred quorum). The client communicates with
additional replicas only if it does not receive reply from all
replicas of the preferred quorum (Figure 23). Both signatures
(for large n) and MACs (for small n) can be used for authen-
tication in Q/U. Quorum [37] uses a similar technique with
3 f + 1 replicas, i.e., only the conflict-free function (design
choices 9) has been used.

C Discovering New Protocol Using Bedrock
Bedrock provides a systematic way to explore new valid

points in the design space and help BFT researchers uncover
novel BFT protocols. We uncover several such new protocols,
although not all are necessarily practical or interesting. For
example, simply making a protocol fair by adding the pre-
ordering phase of fairness results in a new protocol. While this
is an interesting insight, the resulting protocol may have lim-
ited practical impact. We select as highlights two new BFT
protocols (FLB and FTB) that are new and have practical
value that we have uncovered using Bedrock.
Fast Linear BFT (FLB). FLB (Figure 24) is a fast linear
BFT protocol that commits transactions in two phases of
communication with linear message complexity. To achieve
this, FLB uses the linearization and phase reduction through
redundancy functions (design choices 1 and 2). FLB requires

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 397

Figure 24: FLB Figure 25: FTB

4 16 32 64 100

30

60

90

120

Number of replicas

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

1

2

3

Number of replicas

La
te

nc
y

[s
]

Figure 26: Performance with a geo-distributed setup

5 f � 1 replicas (following the lower bound results on fast
Byzantine agreement [12, 161]). The ordering stage of FLB
is similar to the fast path of SBFT in terms of the linearity
of communication and the number of phases. However, FLB
expands the network size to tolerate f failures (in contrast
to SBFT, which optimistically assumes all replicas are non-
faulty).
Fast Tree-based balanced BFT (FTB). A performance bot-
tleneck of consensus protocols is the computing and band-
width capacity of the leader. While Kauri [202] leverages a
tree communication topology (design choice 14) to distribute
the load among all replicas, Kauri requires 7h phases of com-
munication to commit each request, where h is the height of
the communication tree.

FTB (Figure 25) reduces the latency of Kauri based on
two observations. First, we noticed that while Kauri is imple-
mented on top of HotStuff, it does not use the leader rotation
mechanism. As a result, it does not need the two linear phases
of HotStuff (2h phases in Kauri) that are added for the purpose
of leader rotation (design choice 3). Second, similar to FLB,
we can use the phase reduction through redundancy function
(design choice 2) to further reduce 2h more phases of com-
munication. FTB establishes agreement with 5 f �1 replicas
in 3h phases. FTB also uses the pipelining stretch mechanism
of Kauri, where the leader continuously initiates consensus
instances before receiving a response from its child nodes for
the first instance (similar to the out-of-order processing used
by many BFT protocols).

D Impact of a Geo-distributed Setup
In this part, we measure the performance of protocols in

a wide-area network. Replicas are deployed in 4 different
AWS regions, i.e., Tokyo (TY), Seoul (SU), Virginia (VA),

and California (CA) with an average Round-Trip Time (RTT)
of TY ⌦ SU: 33 ms, TY ⌦ VA: 148 ms, TY ⌦ CA: 107
ms, SU ⌦ VA: 175 ms, SU ⌦ CA: 135 ms, and VA ⌦ CA:
62 ms. The clients are also placed in Oregon (OR) with an
average RTT of 97, 126, 68 and 22 ms from TY, SU, VA and
CA respectively. We use a batch size of 400 and perform
experiments in a failure-free situation. In this experiment,
the pipelining stretch of Kauri and FTB is increased to 6.
Figure 26 depicts the results.

Zyzzyva demonstrates the best performance when n is
small. However, when n increases, its performance is signifi-
cantly reduced (87% throughput reduction and 115x latency
when n increases from 4 to 100). This is because, in Zyzzyva,
clients need to receive reply messages from all replicas. Simi-
larly, SBFT incurs a significant reduction in its performance
due to its optimistic assumption that all replicas participate in
a timely manner. In both protocols, replicas (client or leader)
wait for D = 500 ms to receive responses from all replicas be-
fore switching to the normal path. This reduction can be seen
in PBFT as well (84% throughput reduction when n increases
to 100) due to its quadratic communication complexity. PoE
incurs a smaller throughput reduction (51%) in comparison
to Zyzzyva, SBFT, and PBFT because it does not need to wait
for all replicas and it has a linear communication complex-
ity. Increasing the number of replicas does not significantly
affect the throughput of FTB compared to other protocols
(36% throughput reduction when n increases to 99) due to its
logarithmic message complexity and pipelining.

Interestingly, HotStuff shows very low throughput. In Hot-
Stuff, the leader of the following view must wait for the pre-
vious view’s decision before initiating its value. Even though
Chained-HotStuff is implemented in Bedrock, the leader still
needs to wait for one communication round (an RTT). As a
result, in contrast to the single datacenter setting where each
round takes ⇠1 ms, request batches are proposed on average
every ⇠190 ms. Similarly, in Themis and FLB, the leader
must wait for certificates from n� f replicas before initiating
consensus on the next request batch. In Themis, network la-
tency also affects achieving order-fairness as replicas might
propose different orders for client requests. This result demon-
strates the significant impact of the out-of-order processing
of requests on the performance of the protocol, especially in
a wide area network.

398 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

E PBFT DSL Specification in Bedrock
1 plugins:

2 role: primary

3 message:

4 - digest

5 - mac

6 - checkpoint

7 transition:

8 - checkpoint

9 pipeline: direct

10
11 protocol:

12 general:

13 leader: stable

14 requestTarget: primary

15
16 roles:

17 - primary

18 - nodes

19 - client

20
21 phases:

22 - name: normal

23 states:

24 - idle

25 - wait_prepare

26 - wait_commit

27 - executed

28 messages:

29 - name: request

30 requestBlock: true

31 - name: reply

32 requestBlock: true

33 - name: preprepare

34 requestBlock: true

35 - prepare

36 - commit

37 - name: view_change

38 states:

39 - wait_view_change

40 - wait_new_view

41 messages:

42 - view_change

43 - new_view

44 - name: checkpoint

45 messages:

46 - checkpoint

47
48 transitions:

49 from:

50 - role: client

51 state: idle

52 to:

53 - state: executed

54 update: sequence

55 condition:

56 type: msg

57 message: reply

58 quorum: 2f + 1

59
60 - role: primary

61 state: idle

62 to:

63 - state: wait_prepare

64 condition:

65 type: msg

66 message: request

67 quorum: 1

68 response:

69 - target: nodes

70 message: preprepare

71 extra_tally:

72 - role: primary

73 message: prepare

74
75 - role: nodes

76 state: idle

77 to:

78 - state: wait_prepare

79 condition:

80 type: msg

81 message: preprepare

82 quorum: 1

83 response:

84 - target: nodes

85 message: prepare

86 extraTally:

87 - role: primary

88 message: prepare

89
90 - role: nodes

91 state: wait_prepare

92 to:

93 - state: wait_commit

94 condition:

95 type: msg

96 message: prepare

97 quorum: 2f + 1

98 response:

99 - target: nodes

100 message: commit

101 - state: wait_view_change

102 update: view

103 condition:

104 type: timeout

105 mode: sequence

106 response:

107 - target: nodes

108 message: view_change

109
110 - role: nodes

111 state: wait_commit

112 to:

113 - state: executed

114 update: sequence

115 condition:

116 type: msg

117 message: commit

118 quorum: 2f + 1

119 response:

120 - target: client

121 message: reply

122
123 // view -change

124 - role: nodes

125 state: wait_view_change

126 to:

127 - state: wait_new_view

128 condition:

129 type: msg

130 message: view_change

131 quorum: 2f + 1

132 - role: primary

133 state: wait_new_view

134 to:

135 - state: executed

136 update: sequence

137 response:

138 - target: nodes

139 message: new_view

140 - target: client

141 message: reply

142 - role: nodes

143 state: wait_new_view

144 to:

145 - state: executed

146 update: sequence

147 condition:

148 type: msg

149 message: new_view

150 quorum: 1

151 response:

152 - target: client

153 message: reply

154 - state: wait_new_view

155 update: view

156 condition:

157 type: timeout

158 mode: stat

Listing 1: The DSL specification of PBFT Protcol

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 399

This section shows the implementation of PBFT using the
DSL defined by Bedrock. Listing 1 demonstrates the code.
The specification has two main parts: the protocol and the
plugins used by the protocol. The plugins, as discussed earlier,
are categorized into four groups: role, message, transition, and
pipeline. For each category, several plugins have been imple-
mented in Bedrock that can be used by different protocols.

Users can also define their plugins or update existing ones.
For example, the pipeline of messages could be direct, as it
is used in most protocols including PBFT, or chained as it is
used in Chained-HotStuff [4] or Kauri [202] where messages
of consecutive requests are pipelined. The implementation of
Digests, MACs, and checkpointing is presented as plugins to
enable developers to update them quickly and reuse them in

multiple protocols.
The protocol code defines roles, phases, transitions, and

the view-change routine. Each phase itself consists of
different states, e.g., idle, wait-prepare, wait-commit,
and executed, and messages, e.g., request, reply,
preprepare, prepare, and commit. The transitions between
different states and the condition for each transition are
specified in transitions. For example, node goes from idle

state to wait-prepare by receiving a single preprepare

message and in response to this event, node sends a prepare
message to all other nodes (as shown in listing 1, lines
75-85). The state manager enables the core unit to track the
states and possible transitions of each entity according to the
protocol.

400 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Bedrock Overview
	Design Space
	Protocol Structure
	Environmental Settings
	Quality of Service

	Design Choices Landscape
	Expanding the Design Choices of PBFT
	Deriving and Evolving Protocols

	Bedrock Implementation
	Experimental Evaluation
	Fault Tolerance and Scalability
	Performance with Faulty Backups
	Impact of Request Batching
	Evaluation Summary

	Related Work
	Conclusion
	Performance Optimization Dimensions
	Case Studies on Protocol Evolution
	Discovering New Protocol Using Bedrock
	Impact of a Geo-distributed Setup
	PBFT DSL Specification in Bedrock

