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Abstract

Machine learning models can make critical er-
rors that are easily hidden within vast amounts
of data. Such errors often run counter to rules
based on human intuition. However, rules based
on human knowledge are challenging to scale or
to even formalize. We thereby seek to infer statis-
tical rules from the data and quantify the extent
to which a model has learned them. We propose
a framework SQRL that integrates logic-based
methods with statistical inference to derive these
rules from a model’s training data without super-
vision. We further show how to adapt models at
test time to reduce rule violations and produce
more coherent predictions. SQRL generates up
to 300K rules over datasets from vision, tabular,
and language settings. We uncover up to 158K
violations of those rules by state-of-the-art mod-
els for classification, object detection, and data
imputation. Test-time adaptation reduces these vi-
olations by up to 68.7% with relative performance
improvement up to 32%. SQRL is available at
https://github.com/DebugML/sqrll

1. Introduction

Machine learning models can make a variety of errors due
to factors such as noisy data, poor model generalizability,
and domain shift. Understanding a model’s performance
with respect to such errors typically involves the use of
quantitative metrics such as accuracy or F1-score.

While these metrics assess a model’s performance in an
overall sense, they lack the ability to distinguish fundamen-
tal errors from mundane ones. Indeed, a model with lower
accuracy could even make more coherent predictions than a
model with higher accuracy. Making datasets and models
even bigger to improve upon these metrics further exacer-
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Figure 1: The bounding box predicted as a car illustrates
a basic error by EfficientPS, a top performing model for
panoptic segmentation in the Cityscapes challenge.

bates this problem. The net result is that the most critical
errors are easily hidden within vast amounts of data.

As an example, consider Figure[I] where the green bound-
ing box spanning across the frame is predicted to be a car
by EfficientPS (Mohan & Valadal [2021)), a top-performing
model for panoptic segmentation on the Cityscapes dataset
(Cordts et al.,[2016). This prediction is an instance of a fun-
damental error since it obviously defies reasonable notions
of the shapes of cars. Such an error may even cause the
autonomous vehicle’s controller to halt the vehicle abruptly
with harmful consequences.

These errors often run counter to rules based on human in-
tuition (e.g., intuition about the width of a typical car with
respect to its height). We can therefore cast the problem of
estimating such errors in terms of finding rule violations.
Such rules can not only help in estimating these errors but
also in preventing them by improving the model’s predic-
tions with respect to the rules.

A central challenge concerns how to identify such rules at
scale. On one hand, the rules must be statistically valid with
a well-defined meaning to avoid reporting uninteresting or
false violations (i.e., false positives). On the other hand, the
rules must go beyond basic concepts and express complex
phenomena in the data to avoid missing interesting viola-
tions (i.e., false negatives). Even human experts may fail
to come up with or agree upon such a set of rules, includ-
ing identifying relevant statistics, their bounds, and logical
predicates over them.

Our key insight is to synthesize a set of statistical quantile


https://github.com/DebugML/sqrl

Do Machine Learning Models Learn Statistical Rules Inferred from Data?

rules by statistically deriving rules that the training data
conforms with. Our approach not only automates the ef-
fort to specify a large set of rules but also to determine
the goodness of a rule. We have also implemented a gen-
eral framework, Statistical Quantile Rule Learning (SQRL),
which integrates logic-based methods with statistical infer-
ence to synthesize such rules from a given dataset without
supervision. We also propose to adapt models at test time to
reduce violations of the synthesized rules.

We evaluate our approach by applying it to datasets and
models from five different domains: tabular classification
on a cardiovascular disease dataset (Ulianova)), image clas-
sification on ImageNet (Deng et al., 2009), object detection
on the Cityscapes (Cordts et al.}2016)) and KITTT (Geiger
et al., 2013)) datasets, time-series data imputation over the
Physionet dataset (Silva et al.,2012), and sentiment analysis
over the Financial PhraseBank dataset (Malo et al., [2014).
Our framework generates between 35 to around 300K rules
over these datasets and finds between 578 to around 158K
violations of those rules on the model predictions. To correct
those rule violations, we adapt the models at test time, which
reduces the rule violations by up to 68.7% and achieves a
relative performance improvement by up to 32%.

‘We summarize the contributions of our work:

1. We propose statistical quantile rules that estimate basic
errors for machine learning datasets and models.

2. We develop a framework SQRL to synthesize valid and
expressive rules from data without additional supervi-
sion.

3. We propose to improve the models by reducing violations
of the rules using test-time adaptation.

4. We evaluate our approach using the rules as metrics over
models trained for five different applications.

2. Our Approach

Using rules to characterize basic errors in machine learning
is a recurring strategy for improving the trustworthiness
and fidelity of models. For example, knowledge graphs and
logical constraints have been used for integrating domain
knowledge into machine learning pipelines. While these
approaches have worked in small and controlled settings,
they face several challenges in being applicable to large
data settings. Knowledge graphs require substantial human
effort to construct even for small datasets, while hard logical
constraints can be too simple for noisy datasets often filled
with exceptions.

We thereby seek an alternative way that is suited for modern
machine learning datasets. To answer this question, we first
identify the key desiderata of a representation of such rules:

1. Validity: they must be valid for most of the data, but

allow for exceptions or noise,

2. Expressivity: they must be capable of expressing or
capturing complex phenomena and relations, and

3. Scalability: they must be generatable without requiring
human supervision on individual rules.

We illustrate these criteria using the example from Figure|T]
Validity requires that akin to human intuition, any rule that
enables the detection of this particular mistake must be
true for most other images as well, so as to not raise false
alarms. In our example, it is reasonable that the shape of the
bounding box is unlikely to represent a car. Expressivity is
a competing requirement that states that the representation
must be expressive enough to avoid only the most basic or
vacuous rules that miss these errors. For example, if using
the shape of the car alone is inadequate, it should be possible
to use a combination of attributes, such as different ranges
of shapes depending on the position of the car. Finally,
scalability acknowledges that manually crafting such rules
for rich datasets is infeasible, as it involves a combinatorial
explosion of features to consider along with statistically
valid bounds on them.

2.1. Statistical Quantile Rules

We propose quantile-based statistical inference as a gen-
eral framework for representing and generating such rules.
Specifically, let X be a random variable for a data point,
and let ¢(X) be some statistic of X. Then, if

P(a < ¢(X))=1-9, (1

for some ¢ and a, we say that a < ¢(X)isal — 0 quantile
rule. In other words, this means that 1 — ¢ of all the data
has a statistic ¢(X) that falls above a.

For example, suppose X is a random variable representing
bounding boxes of cars from the Cityscapes challenge in
Figure |1} Possible statistics ¢(X) for a car are its width,
height, or aspect ratio. To obtain the quantile rule for the
aspect ratio statistic, we can calculate the aspect ratio of
every car in the training data, and find the 1 — § quantile to
get the threshold a.

Quantile rules satisfy the above desiderata. First, they are
valid for 1 — § of the data, with the § fraction allowing
for exceptions. Second, a quantile rule can be computed
for any kind of statistic, which can be arbitrarily complex.
While the example demonstrates a quantile rule for basic
shape properties such as height and width, one can consider
more complex statistics such as lighting, textures, or even
predictions from other machine learning models. Most im-
portantly, a quantile rule does not need a human to check if
a given rule is good or bad. The rule is, by construction, a
valid 1 — § quantile for a statistic on the training data[] A

'One can also easily check if the quantile rule generalizes by
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“good” quantile rule provides a tight threshold a, whereas a
“bad” quantile rule results in a very conservative threshold
a. Although overly conservative thresholds may not be very
useful (and may be vacuous), all quantile rules circumvent
the need for a human to check for correctness as they are
correct by construction.

2.2. Classes of Quantile Rules

The quantile rule framework can capture a wide range of
knowledge by varying the statistic ¢. To highlight the ex-
pressivity of the framework, we discuss several general
classes of quantile rules that can be viewed as variants of
the original quantile rule from (T)) that we use in this paper.

Two-sided quantile rules. A simple generalization of the
quantile rule is to use a double-sided quantile to get both an
upper and a lower bound for a given statistic. Specifically, if

Pla<¢(X)<b)=1-9, 2

then ¢(X) € [a,b] is a 1 — § quantile rule. Typically, we
can compute a and b to be the lower and upper %‘5 quan-
tiles respectively. For example, we can compute not just a
lower bound on the aspect ratio, but a complete interval of
common aspect ratios.

Mini-batch quantile rules. A generalization of the quan-
tile rule is to consider statistics of not just one but a mini-
batch of random variables. Specifically, suppose X =
(X1,...,X) is a minibatch of size m. Then, if

Pa < ¢(X))=1-4, 3)

then a < ¢(X) is a minibatch quantile rule, where ¢ can be
any minibatch statistic such as mean or standard deviation [

Logic quantile rules. The statistic ¢ can be much more
than a mathematical formula—it can also involve discrete,
logical expressions. Specifically, let 1) be a Boolean logical
formula, and let 1(X) be a formula evaluated on every
example of a minibatch X. Then, if

Pa < ¢(v(X))) =1-4, “4)

then a < ¢(¢(X)) is a logic quantile rule. For ex-
ample, 1) could be the logical formula smoke(z) =
has_cardio_disease(z), and ¢ could be any mini-
batch summary statistic such as the F1 score of this rule.

Neural quantile rules. To highlight the expressivity of the
statistic, we can consider quantile rules that use statistics
of another model, i.e., a neural network. Specifically, let f
be a neural model that extracts some features (such as an

checking the rule on a validation set.

>The 1 — § quantile for a minibatch statistic over randomly
resampled minibatches can be interpreted as a classic 1 — ¢ confi-
dence interval.

object detector or an attribute extractor). Then, if
Pla <o(f(X)) =1-4, )

then a < ¢(f(X)) is a neural quantile rule. For example, f
could be an object detector that extracts various objects such
as cars, signs, and pedestrians, while ¢ can be any statistic
of the resulting objects such as counts or sizes.

Lastly, we can combine concepts from the above classes of
rules to produce even more expressive ones. We illustrate
different combinations in the rest of the paper.

3. The SQRL Framework

The space of statistical quantile rules possible for a dataset is
unbounded. A large dataset with rich features can induce an
enormous set of such rules even with a small bound on the
rule size. It is thus infeasible to rely on human supervision
to manually craft and check each rule one by one.

We, therefore, develop an end-to-end framework, Statistical
Quantile Rule Learning (SQRL), to generate rules at scale.
The workflow of SQRL is depicted in Figure 2| We first
describe how it generates rules from data and then present
how the generated rules can be used to evaluate and improve
a model’s violations of those rules.

3.1. Generating Statistical Quantile Rules

Our formalism of statistical quantile rules is designed to be
applicable to a rich variety of machine learning datasets and
models. As such, it is too general for any specific scenario,
and we desire a mechanism to enable a domain expert to
guide the generation of rules. For instance, the choice of
generating logic versus neural quantile rules depends on
whether to use a statistic over a logical formula or a neural
model’s output. Likewise, the choice of sample-based ver-
sus mini-batch quantile rules depends on whether a statistic
of individual samples or mini-batches is more appropriate.

The power of statistical quantile rules can be attributed to
two distinct sources of unboundedness: the structure of the
rules and the statistical bounds. Consider the following
concrete rule over a sample (x,y):

y = person = (0.35 < aspect_ratio(x) < 0.57),

where x is an image with a single bounding box derived by
a neural model, aspect_ratio is the aspect ratio of the box,
and y is the object label. This rule illustrates a conditional
extension of a two-sided neural quantile rule. We use this
form of the rule when the learned bounds apply to a subset
of samples that satisfy a condition, e.g., y = person.

This rule is one of an unbounded number of possible rules
in terms of the structure (e.g., choice of neural models,
features, and logic predicates) and the statistical bounds
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Figure 2: Workflow of our SQRL framework for generating rules and evaluating and adapting models for rule violations.

(e.g., the interval of the aspect ratio).

SQRL allows the user to succinctly specify a rule schema
S to guide rule generation. The rule schema serves as
a prior over the generated rules, analogous to meta-rules
in Inductive Logic Programming (Cropper & Muggleton,
2015)), mode declarations in Answer Set Programming (Law
et al.| 2020), and rule templates in logic program synthesis
(Raghothaman et al.,[2020). Then, the problem we wish to
solve can be stated more formally as follows:

Given a rule schema S and a dataset D, output a set of
concrete rules R that is:

1. consistent with S: no generated rule can include con-
structs not specified within .S,

2. exhaustive over S: every single rule consistent with S
must be generated, and

3. valid with respect to D: each generated rule must hold
over 1 —§ of D.

SQRL solves this problem in two phases, using a combi-
nation of logic-based methods and statistical inference. In
the first phase, it uses logic-based methods to enumerate a
set of abstract rules with respect to the user-provided rule
schema S. In the second phase, it uses statistical inference
to compute bounds for each abstract rule to yield a concrete
rule that is valid according to D.

The input rule schema S is a set of rule templates of the
form T'[©] where T specifies the structure of the rule, in-
cluding any hyperparameters (e.g., mini-batch size and the
percentile threshold), and © specifies placeholders for the
statistical bounds. Rules of different classes defined in Sec-
tion [2.2] require different forms of schemas. Our running
example uses the following schema for two-sided quantile
rules:

Y € {car, person, rider, ...}, ¢ € {aspect_ratio, ...},
y:Y:>9|b§(]5(X) §9ub, 1—520.98,

where Y is the set of object labels, ¢ is the set of statistics,
and © = [0}, O] are placeholders for the lower and upper

bounds on the statistic for a given label for the percentile
threshold specified by 1 — 4.

The above schema results in a set of several abstract rules:

y = car = O car < aspect_ratio(x) < Oup car,

¥ = person = O person < aspect_ratio(x) < byp persons
y = rider = elb,rider < aspect,ratio(x) < Qub,rider.

The algorithm for generating these abstract rules takes
O(mn’f) time, where m is the number of labels in Y, n
is the number of statistics in ¢, and & is the largest number
of statistics to be used in a single rule.

Concrete rules are then instantiated from each abstract rule
by learning the 98th percentile bounds over the given dataset.
An example of such a rule generated over the KITTI dataset
(Geiger et al., |2013)) is:

y = car = 0.07 < aspect_ratio(x) < 2.77.

The method to obtain such bounds for each abstract rule is
outlined in Algorithm |1} It calculates each abstract rule’s
statistics over multiple randomly drawn samples (or mini-
batches) from the training set, over which the statistical
bounds are obtained. Since the bounds may not hold over
unseen datasets, we only keep the rules for which the statis-
tical bounds are consistent between the training set and a
held-out validation set according to the Jaccard index, which
is formulated in Appendix [A] For each rule, consider n to be
the size of each minibatch. To derive the quantile bounds for
that minibatch, we must first sort the statistics, which takes
O(nlog(n)) time. We learn the bounds themselves using
the numpy . percentile function. While its complexity
is not stated, assuming it is O(n), deriving the bounds for
each minibatch takes O(nlog(n)) time.

3.2. Using the Statistical Quantile Rules

There are many potential applications of the rules generated
by SQRL. In this paper, we focus on two important uses:
evaluating and improving models with respect to statistical
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Algorithm 1 Computing statistics for abstract rules

Input: Training set R, validation set V, a set of abstract rules
Rabs, mini-batch size B, a quantile threshold 1 — 4, a validation
threshold e

Output: A set of candidate rules: Rcand

1: Randomly sample N; mini-batches of size B from R

2: Randomly sample N2 mini-batches of size B from V'

3: Initialize the set of output rules as empty: Reand = {}

4: for each rule r € Ry do

5:  collect statistics over each of the above N; training mini-
batches for 7;

6: compute 1 — § percentile bounds, piin, OVer those samples;

7 collect statistics over each of the above N5 validation mini-
batches for r;

8:  compute 1 — ¢ percentile bounds, ¢yaid, over those samples;

9: if |Jaccard(@uain, dvaiia)| > 1 — € then

10: add 7 to Reand
11:  endif
12: end for

quantile rule violations.

To evaluate rule violations, we establish a metric that calcu-
lates the number of violations of each rule in the model’s
predictions on a test set. A rule is violated if the value of
¢(X) lies outside the learned bounds, where X is either a
single sample or a minibatch depending on the rule.

We can also attempt to improve the number of violations of
a given model on the statistical quantile rules by incorporat-
ing an auxiliary semantic loss that captures rule violations.
However, it can be impractical to re-train or fine-tune a large
model using such a loss, since our framework typically gen-
erates a large set of rules. We therefore instead adapt the
model’s performance at test time.

Consider a statistical quantile rule r of the form 6, < ¢(X).
We define a loss depending on model parameters W for its
output X over a sample (or a mini-batch of samples) as so:

0 if X satisfies r

lw(r, X) = {min{9|b — ¢(X),1} otherwise ©

Essentially, the loss is a zero or non-zero value assigned to
those samples satisfying and violating r respectively. In-
tuitively, the non-zero loss is the distance between a and
the result ¢(X) of evaluating the rule r over the sample X.
To avoid potentially large loss values, the loss is clipped
at 1. The loss functions for other kinds of rules are similarly
defined in Appendix |B} Given a set of concrete rules R,
we average Equation (6) for all of them as the objective
function for test-time adaptation:
1
Lw(R,X) = Rl ZTGR Ly (r, X). @)

The above loss may not be differentiable for some statis-
tics ¢, such as the F1 score. In such cases, we use their

conjugates, such as the conjugate F1 score (Bénédict et al.,
2021).

Algorithm [2] sketches the overall test-time adaptation algo-
rithm for reducing rule violations. It evaluates Equation
in each iteration and performs back-propagation on all pa-
rameters from the batch-normalization layers. The process
is repeated for NN iterations in total.

Algorithm 2 Rule-based test-time adaptation algorithm

Input: Test dataset 7', a set of statistical quantile rules R, and a
pretrained model M, number of iterations N

1: Initialization collect the parameters from all the batch normal-
ization layers of M as a set W and only fine-tune W, keeping
all the other parameters in M fixed

: while number of iterations is smaller than N do

Randomly sample a mini-batch X from T’

Evaluate loss L (R, X) using Equation

if L (R, X) > 0 then

Perform back-propagation on M and update W
end if

: end while

PRIN R

4. Evaluation

We evaluate SQRL on datasets and models for five different
tasks. We present metrics and qualitative aspects of statisti-
cal quantile rules generated by the framework from various
datasets. We measure how well existing models trained on
those datasets perform with respect to the generated rules.
We also evaluate the effectiveness of adapting the models at
test time to reduce rule violations. We include some addi-
tional discussions on the uses and concerns of the generated
rules in Appendix [E]

Benchmark Tasks and Models. We consider five differ-
ent tasks: tabular classification, image classification, object
detection, time-series imputation, and finally semantic anal-
ysis. We describe the datasets below and further detail them

in Appendix

For tabular classification, we consider the data from the
Cardiovascular Disease dataset (Ulianova)) over which we
train the FT-Transformer model (Gorishniy et al., 2021).

For image classification, we use a ResNet-34 model trained
over the original ImageNet dataset (Deng et al.,[2009)) but
use ImageNet-X (Idrissi et al., |2022)) for generating the
rules and evaluating violations. The ResNet-34 model is
trained to classify between the 17 metaclasses defined by
ImageNet-X.

For object detection, we consider the object detector
component of the EfficientPS model (Mohan & Valada,
2021) trained over the KITTTI self-driving dataset (Geiger|
et al.| 2013 We evaluate the model over the valida-

>The pretrained model is downloaded from https://


https://github.com/DeepSceneSeg/EfficientPS
https://github.com/DeepSceneSeg/EfficientPS

Do Machine Learning Models Learn Statistical Rules Inferred from Data?

a. Rule
3 <GCS(x) <15

The value of the "Glasgow Coma Score" (GCS)
should be between 3 and 15 for any entry.

a. Rule

neutral(z) <= 0.0204 < fitness_and_health(x) < 0.0234

A 0.0387 < news_and_social_concern(z) < 0.1408
If the likelihood that the sentence is about "fitness and
health" is between 0.0204 and 0.0234, and that it is
about "news and social concern" is between 0.0387
and 0.1408, then the sentiment of this sentence is
neutral.

a. Rule
aspect_ratio(z) < 0.81 A 20.22 < width(z) < 1655.17 v
car(z) =
1.53 < aspect_ratio(z) A 3.2 < width(z) < 242.88
If an object is a car, then its aspect ratio and

width must lie in one of the bounds defined by
the rules above.

b. Original Prediction
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b. Original Prediction

Anttila's online department store - NetAnttila - has
an established position as the best-known, most
visited, and most shopped online store in Finland.

fitness_and_health: 0.0210
news_and_social_concern: 0.077
predicted label: positive (wrong)

b. Original Prediction

c. Prediction after Test Time Adaptation
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c. Prediction after Test Time Adaptation

Anttila's online department store - NetAnttila - has
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visited, and most shopped online store in Finland.
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predicted label:
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fitness_and_health:
news_and_social_concern: 0.077
neutral (correct)

0.0210

(a) Time series imputation.

(b) Sentiment analysis.

(c) Object detection.

Figure 3: Qualitative results on time series imputation, sentiment analysis, and object detection tasks (those for the tabular
and image classification tasks are in Appendix [C.2). For each task, we show (a) a rule generated by SQRL, (b) a model’s
prediction violating the rule, and (c) the model’s prediction satisfying the rule after test-time adaptation. Each of these rules
satisfies our three desiderata: they are valid since by construction they hold for 98% of the data; they are expressive enough
to find faults in models; and they are generated at scale without human supervision on individual rules.

tion splits of the KITTI, Cityscapes (Cordts et al.,[2016).

and Cityscapes,, (Tremblay et al [2020), a version of]
Cityscapes augmented with heavy rains.

For time series imputation, we trained one state-of-the-art

time series imputation model, SAITS (Du et al., [2023)) on
the Physionet Challenge 2012 dataset (Silva et al., [2012)

(Physionet for short). After using the pre-processing scripts
from (Tashiro et al.; 202T)), the resulting time series samples
contain around 80% missing entries. The goal of this task is
to impute those missing values.

For semantic analysis, we use the pretrained FinBERT
model on the Financial PhraseBank dataset
(PhraseBank for short). The goal of this
task 1s to predict the sentiment (negative, neutral, or positive)
of each statement about financial news in this dataset.

4.1. Evaluating Models using Statistical Quantile Rules

To evaluate how well machine learning models capture sta+
tistical quantile rules, we synthesize a suite of rules over
their corresponding training data and measure the total num-
ber of violations of these rules. We describe the setup for
each task below and summarize the results in Table[ll

github.com/DeepSceneSeg/EfficientPS

Tabular Classification. The type of rules considered varies
across different tasks and is specified via the rule schema.
For the tabular classification task, we consider a two-sided
form of logic quantile rules with the statistic ¢ as the F1
score of the rule over a minibatch. As discussed in Sec-
tion[2.2] these rules are expressed as boolean formulae over
the features from the respective datasets.

We use the columns in the cardiovascular dataset as the
features over which the formulae can be generated. While
columns such as ‘smoke’ are boolean-valued, others such
as ‘age’ are not. We bucket the values of such columns
into 8 buckets to produce 8 boolean-valued features for
values belonging in each bucket. This results in a total of
52 features over which the rules are generated. We generate
300K rules, of which 400 are selected (200 rules per class)
for evaluation in the manner described in Algorithm[T} We
show an example of a rule and its violating minibatch in
Figurea]in Appendix[C.2}

Image Classification. Similar to the previous task, we con-
sider two-sided logic quantile rules with the F1 score as the
summarization statistic for each minibatch. The features are
obtained from the boolean-valued annotations in ImageNet-
X, such as background or pose. This yields 16 features over
which rules are generated. We show an example of a rule
and its violation in Figure b]in Appendix [C.2}
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Tabular Image . . Time Series Sentiment
Task Classification Classiﬁcgation Object Detection Imputation Analysis
Model FT-Transformer ResNet-34 EfficientPS SAITS FinBERT
Rule Class Logic Logic Neural Neural Logic
Sample Size 4096 256 1 1 128
Dataset R Cardiovasculary,in ~ ImageNetuie-tain KITTain Physionetisin PhraseBanKain
Dataset V Cardiovasculary,ia = ImageNetrie-vaiia - Physionety,lid PhraseBankyaiiq
Dataset T Cardiovascularies ImageNetyaiia Cityscapesrainy,valid Physioneties PhraseBankes
# Total Rules 292,129 73,032 252 35 7878
# Selected Rules 400 340 252 35 158
# Total Violations 26083456 7716318 8,108 157772+18697.80 578
# Rules Violated 389.2940.83 42.62+1.76 16.21 197.46+23.40 0.59
per Sample

Table 1: Results of generating rules and evaluating models against them. Rules are generated over each training dataset using
the specified sample size. For sample sizes larger than one, we randomly sample a batch from the dataset. The validation
datasets are used to sample a subset of generated rules for evaluation. We count the number of selected rules violated by the
model on each test sample. The last two rows show the sum and average of these counts over all test samples respectively.

Since we evaluate rule violations over the ImageNet valida-
tion set, we split the training set of the ImageNet-X dataset
into a rule-training set and a rule-validation set using an
80%/20% split. For each meta-class, we also select 20 rules
(i.e., 340 rules in total out of around 73K) in accordance
with Algorithm [T}

Object Detection. Due to the nature of the predictions in
this task, instead of logic quantile rules, we consider a two-
sided form of neural quantile rules for a total of 6 statistics
related to the bounding box predictions made by the model.
These statistics include the aspect ratio, width, height, area,
the x-coordinate of the center, and the y-coordinate of the
bottom of the bounding box. Each statistic is defined with
respect to individual bounding boxes. Statistics are also
considered in pairs. For each class, we consider all pairs
of statistics (s1, s2). For each pair, we group objects of
that class by s; into four buckets. Within each bucket, we
learn the 98 percentile bounds for statistic so. This results
in generating rules as seen in Figure a), where s; is the
aspect ratio and s» is the width of each bounding box. A
violation of this rule is shown in Figure [3¢(b). We learn
252 rules using these 6 statistics for 7 classes that the object
detector is trained to predict. In all cases, the 98 percentile
bounds for the rules are learned over the KITTI training
dataset.

Time Series Imputation. The imputation model outputs
estimates of the missing entries. Therefore, for this task, we
consider the set of statistics to be the features in the dataset.
For each feature, we consider a two-sided form of neural
quantile rules over the imputed values. As mentioned in
Appendix [D] there are 35 features in the Physionet dataset
resulting in 35 generated logic rules. For each rule, the
98 percentile bounds of the statistics are learned over the
non-missing values of the training split of the Physionet

dataset. Figure[3a[a) presents an example of a generated rule.
This rule shows the bounds learned for the “Glasgow Coma
Score” feature, which also matches the universally accepted
range of this feature in the medical domain (Teasdale &
Jennett, [1974). We show an example of an imputed value
violating this rule in Figure[3alb) where it exceeds the upper
bound.

Semantic Analysis. Similar to the previous two tasks, two-
sided neural quantile rules are considered over each sen-
tence in the PhraseBank dataset. For each sentence, we
use pretrained models to extract features that make up the
statistics for rules to be generated. We use the pretrained
DistilRoBERTa model (Hartmann, [2022) to calculate the
likelihood of each of the 7 basic emotions, and the Roberta
model pretrained on 11,267 tweets (Antypas et al., [2022])
to calculate the likelihood of each of the 19 Twitter topics
for each sentence. This results in 26 features generated for
each sentence. Similar to the object detection task, for each
class we generate rules over each feature, as well as over
each pair of features, producing 7.8K rules in all. We then
select 158 rules in accordance with Algorithm [I] Figures
[3b[a) and 3bfb) show an example of a rule and its violation
respectively.

Results. Table[1|shows the total and per sample number of
rule violations. For the time series imputation task, the num-
ber of rule violations is large (up to around 158K) despite
the smaller number of rules (35). This indicates that the
state-of-the-art time series imputation models are far from
perfect. Apart from this, the image and tabular classifica-
tion tasks also violate a larger number of rules per sample.
Note that the rules for the tabular and image classification
tasks are primarily a measure of the consistency of a batch
of predictions with respect to the training data. Since we
have 200 rules per class for tabular classification to measure
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Task Tabular Image Object Time series Sentiment
as Classification Classification Detection Imputation Analysis

Dataset Cardiovascular ImageNet-X Cityscapes-rainy Physionet PhraseBank
Metric AUC % Reduced Accuracy % Reduced mAP % Reduced (><NII(§E3) % Reduced Accuracy % Reduced

No adapt  80.10 - 80.47 - 25.49 - 7.7 - 84.02 -
BN 80.10 0.0% 80.47 29+34% 2549 -0.0+0.0% 7.7 0.0+0.0% 84.02 0.0+0.0%
Tent 80.10 -0.1£0.0% 80.51 0.7£53% 2552 -1.4+0.8% 8.0 -0.2£0.9% 86.08 14.7£0.0%
RPL 80.09 -0.1£0.0% 8048  -0.8£6.5% 25.70  0.2+0.3% 7.4 18.7£16.2%  84.85 7.3+0.2%
CPL 80.10 -0.140.0% 80.44  -0.1£6.0% 2495 -0.1+0.1% 5.6 12.7£6.5% 85.77 15.7£0.1%
MEMO  80.10 1.84+0.0% 8047  11.6£4.1% - - - - 86.08 15.0+£0.2%
Ours 80.12 38.1+£0.0% 80.51 22.2+4.5% 27.01 31.4+0.2% 5.2 68.7+8.1%  86.08 15.7£0.1%

Table 2: Results of reducing rule violations using different test-time adaptation methods for our three tasks.

this consistency as opposed to 20 for image classification,
misclassifications can contribute to a larger number of rule
violations in the former task.

On the other hand, there are fewer violations per sample in
the object detection and sentiment analysis tasks. Only a
minority of the generated rules are violated by the predic-
tions of the object detector. We show the violation results
on the Cityscapes-rainy dataset in Table[T] and results on
KITTI and Cityscapes in Appendix[C.2]

4.2. Adapting Models using Statistical Quantile Rules

We next consider reducing the number of test-time violations
of the rules shown in Table[I] We do so by using the rule-
driven test-time adaptation technique presented in Section 3]
We compare SQRL with state-of-the-art test-time adaptation
techniques as baselines.

Baselines. Most test-time adaptation methods, surveyed in
Section[3] are orthogonal to our work. We therefore only
compare against the following most relevant baselines:

¢ Batch normalization: Batch normalization (BN)
(Ioffe & Szegedy, [2015) computes statistics of the
batch normalization layers during test time rather than
reusing the learned statistics during the training phase.

¢ Entropy minimization-based methods: Tent (Wang
et al.,[2020) minimizes the entropy of the model pre-
dictions, but only focuses on the classification problem.
We, therefore, follow the analysis from (Goyal et al.)
to minimize the negative L2 norm of the model output
for the regression problem in the object detection task.

* Pseudo-label-based methods: Robust Pseudo-Label
(RPL) (Rusak et al.| 2021) and Conjugate PL. (CPL)
(Goyal et al.) generate pseudo labels as supervisions
for test-time adaptations.

* Data augmentation-based methods: MEMO (Zhang

et al., 2021) generates multiple augmented versions
of a single test sample and minimizes the entropy of
the model output across these samples. Since it pri-
marily deals with classification models, generalizing
it to object detection models and time series imputa-
tion models requires non-trivial efforts. We, therefore,
ignore the comparison between MEMO and SQRL in
the object detection and time series imputation tasks.

For the baseline methods, we follow the default setups that
perform test-time adaptation for a few epochs since overfit-
ting can occur with more epochs. We use up to 60 epochs for
SQRL. We follow the default setups of test-time adaptation
by only fine-tuning the statistics of the batch normaliza-
tion layers rather than the entire model. We also perform
an ablation study in Appendix [C.I|to analyze the effect of
fine-tuning the entire model with SQRL.

Results. The evaluation results are shown in Table 2l We
report two metrics for all methods: the model performance
and the percentage of rule violations reduced (“% Reduced”)
with respect to the total violations reported in Table [T] after
adaptation. For the model performance metrics, we report
the AUC score for tabular classification (since it is a binary
classification task), the prediction accuracy for image clas-
sification, the Mean Average Precision (mAP) for object
detection, the Mean Square Error (MSE) for time series
imputation and the accuracy for sentiment analysis. SQRL
is able to significantly reduce the number of rule violations
at test-time (by up to 68.7% in the Physionet dataset), which
can also lead to up to 32% relative performance improve-
ment in the model in the Physionet dataset (reducing the
MSE from 7.7x1073 to 5.2x10~3) and a slight perfor-
mance improvement in other datasets. We show examples
of time series imputation, sentiment analysis, and object
detection in Figure 3] wherein each subfigure, the incorrect
predictions violating the rule shown in (a) are depicted in
(b) which are corrected in (c) after test-time adaptation. We
include more examples from the tabular and image classifi-
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cation tasks in Figured]in Appendix [C.2] For example, as
Figure [3a|c) shows, SQRL could pull the imputed values at
the 14, hour (the black dot) closer to the ground truth (the
blue dot) after test-time adaptation. In contrast, the base-
lines negligibly affect the violations and produce models
which perform slightly worse than SQRL.

5. Related Work

Test-time adaptation. Test-time adaptation aims to adapt
models to new data distributions in the presence of distribu-
tion shift, which typically assumes no access to the source
data or the ground-truth labels of data on the target distri-
bution. These approaches involve minimizing the entropy
of the model output (Wang et al., |2020; |Goyal et al.), pro-
ducing pseudo-labels to perform supervised training (Goyal
et al.; [Rusak et al., 2021), or self-supervision (Zhang et al.;
Chen et al., 2022) at test-time; enforcing model output to be
consistent across different augmentations of one test sample
(Zhang et al., |2021); constructing generative models for
producing labeled test samples (Li et al.l 2020); etc. To
our knowledge, none of the existing test-time adaptation
methods take into account enforcing the model output to
align with statistical quantile rules. In addition, most of
these techniques leverage strategies orthogonal to ours, such
as meta-learning (Xiao et al., |2021)) or generative models
(L1 et al., 2020). Furthermore, most of them are limited to
classification tasks while our method is applicable to generic
tasks, including both classification and regression tasks.

Injecting rules into ML models. There have been many
efforts to effectively inject rules or domain knowledge into
neural nets. One widely adopted strategy is to add a term
encoding violations of logic rules to regularize the objective
function. For instance, (Hu et al., 2016) designed a teacher-
student framework for jointly learning from labeled samples
and logic rules, (Seo et al) [2021) jointly learns embed-
dings of logic rules and training data, and (Ganchev et al.|
2010) regularizes the model posteriors with constraints on
data. Some other solutions in this area include penaliz-
ing bias rules through adversarial learning (Zhang et al.,
2018)) and solving a constrained optimization problem dur-
ing training by regarding logic rules as constraints (Fioretto
et al.,|2021; Narasimhanl 2018). However, all of these ap-
proaches demand manually specified rules as input, whereas
our methods can automatically learn symbolic rules and
their statistical bounds. Moreover, the state-of-the-art solu-
tions to integrate rules into ML models primarily focus on
enhancing supervised learning whereas our method is able
to deal with a more challenging setting, i.e., test-time adap-
tation. As mentioned above, there is no supervision from
data during test-time adaptation and thus it is impossible to
regularize model training with rules.

Rule learning. The problem of synthesizing first-order logic

rules from data has been extensively studied in the literature
on inductive logic programming (ILP). Techniques such
as ILASP (Law et al.| [2020)) and Prosynth (Raghothaman
et al.l 2020) leverage pure symbolic reasoning to search
logic rules that can produce expected answers in a given
database. Works such as NeuralLP (Yang et al.,[2017/) and
NLIL (Yang & Song, |2019) attempt to leverage neural net-
works to guide the search for feasible logic rules. NLIL
can also learn one simple statistic, the confidence score, for
each synthesized rule. However, it is less expressive than the
arbitrary statistics captured by our framework. Besides, con-
fidence scores are calculated over the entire dataset rather
than over mini-batches of data. We therefore cannot check
their consistency between different portions of the data.

Weakly supervised learning with logic rules. Similar
to test-time adaptation, weakly supervised learning is also
applicable when no ground-truth labels exist. One weak
supervision strategy is to employ logic rules to annotate
unlabeled samples, which is then followed by regular super-
vised learning (Ratner et al.,|2016; 2017). However, to our
knowledge, state-of-the-art rule-based weakly supervised
learning approaches can only handle classification tasks. In
contrast, our solutions are applicable in very general ma-
chine learning settings, including both classification and
regression tasks. In addition, although some works such as
(Varma & Ré| |2018) can automatically derive logic rules
as weak supervision signals, they are limited to reasoning
about symbolic rules. Hence, they are not applicable to our
setting where statistics are necessary.

6. Conclusion and Future Work

We formalized statistical quantile rules as a means of char-
acterizing basic errors inconsistent with training data and
defined the problem of extracting such rules at scale. We
proposed SQRL, a general framework to generate a large
number of such rules for a given dataset and evaluate vio-
lations of these rules by a model. Through our extensive
empirical studies, we found that machine learning models
do not always learn statistical rules inferred from data but
can be adapted to correct these rule violations by leveraging
rule-based test-time adaptation. In the future, we intend
to evaluate statistical quantile rules more widely over mod-
ern models. We also intend to explore more uses of these
rules, like more effective ways to train models to reduce
rule violations and using them for unsupervised learning.
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A. Additional Details of Jaccard Index

As introduced in Section [3.1] the Jaccard index is used for selecting consistent statistical rules between the training and
validation sets. To illustrate how to compute the Jaccard index, we revisit the running example in Section [3.1] which defines
the following schema:

Y € {car, person, rider, ...},
¢ € {aspect_ratio, ...}, v =0.98,
Yy = Y = olb < ¢(X) < euba

which can be evaluated on both the training set and validation set, leading to the following instantiations of the two-sided
quantile rules on the training set and validation set respectively:

Y =Y = O train < Gtrain(X) < Oub train. fOr training set,
Y =Y = Opalid < Pvaiia(X) < Oup vaiid, for validation set.

The Jacaard index between the above two rules is thus formulated as follows:

[O1b, train, Qub,train] [ [Oibvalids Oub.valid]
(01, train s Oub, train] U [Oib,valids Oub valid)
_ min{Oup train, Oub,valid } — Max{Oip train, Oib,valid }

max{fup train, Oub,valid } — MIN{Oip train, Oibvalid }

Jaccard(dyain, Galia) =

For one-sided quantile rules, i.e., either 6, = —oo or ,, = oo, then we take the lower bound or upper bound of the statistics
¢(x), which is calculated from the entire dataset to replace 6y, or .

B. Test-time Adaptation Loss Functions

Recall the intuition behind the loss function mentioned in Equation @ The loss Iy (r, X) for rule r of a model with
parameters W and its output X is zero if X satisfies r, and non-zero if it doesn’t. The non-zero value assigned depends
on the class of the quantile rule. Equation [6]shows the loss for the basic form of quantile rules. We now define the loss
functions used for test-time adaptation for some extensions of quantile rules used in this paper.

1. Two-sided Quantile Rules. We extend the definition from (6) for two-sided quantile rules. Assume a two-sided
quantile rule r := 6, < ¢(X) < 0. We define the loss for such a rule as so:

0 Xsatisfies r
Ur; X) = {min{(9|b — ¢(X))(Ouwp — ¢(X)),1}  otherwise ®

Note that the non-zero loss is a quadratic function of ¢(X) with the upper and lower bounds being the roots, but with
the output of ¢(X) clipped at 1. This ensures a positive non-zero loss for a rule violation when the value of ¢(X) is
either less than ), or more than 6.

2. Logic Quantile Rules. Assume a two-sided logic quantile rule 7 := 6, < ¢(10(X)) < Oup, where X is the output of a
model with parameters W over a minibatch of samples. The loss for such a rule is dependent on the statistic ¢ since it
is a statistic that aggregates the result of 1»(X). For our experiments, we use the F1 score as this statistic. However, as
discussed in Section the F1 score is non-differentiable, so we instead use a surrogate F1 loss defined in (Bénédict
et al.,[2021)). Let this loss function be termed Lg;. We then define the loss for logic quantile rules as so:

0 Xsatisfies r
= {min{wlb — Lea (VX)) (0us — L (¥(X))), 1} otherwise v

12
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object detection
(Cityscapes-rainy)
AUC score | % Reduced | Accuracy | % Reduced | mAP | % Reduced
Our method (fine-tuning whole model) 71.17 30.614+3.5% 80.40 23.284+1.40 | 26.87 | 31.3£0.5%
Our method 80.12 38.1+0.0% 80.51 22.17£4.5% | 27.01 | 31.44+0.2%

Tabular classification Image classification

Table 3: Results for fine-tuning the whole models VS fine-tuning batch normalization layers

Task Object Detection
Model EfficientPS EfficientPS
Rule Class Neural Neural
Sample Size 1 1
Dataset R KITTTain KITTTain
Dataset V - -
Dataset T KITTLaia  Cityscapesvaiia
# Total Rules 252 252
# Selected Rules 252 252
# Total Violations 1,561 7,673
# Rules Violated 730 1534
per Sample

Table 4: Results of generating rules and evaluating models against them on KITTI and Cityscapes dataset respectively.

C. Supplementary Experiments
C.1. Ablation study

Note that in the experiments, during the rule-based test time adaptation phase, we only fine-tune the batch normalization
layers of the models. The comparison between fine-tuning the whole model and fine-tuning batch-normalization layers has
been studied for many state-of-the-art test time adaptation methods, such as (Wang et al., 2020). We therefore also conduct
this experiment as our ablation study for the Tabular classification task, Image classification task, and object detection task
on the Cityscapes-rainy dataset.

The results are presented in Table 3] This table clearly shows that it is not ideal for fine-tuning the whole model during the
rule-based test time adaptation phase since it can significantly drop the model performance by up to 9%. Therefore, same as
prior test time adaptation methods, it is reasonable to fine-tune batch normalization layers rather than the entire model for
rule-based test time adaptation.

C.2. Additional quantitative results

In Table ] we present the results of generating and evaluating rules on the KITTI and Cityscapes datasets respectively. By
comparing the results of the Cityscapes-rainy dataset against the above results, we can observe that the violations increase
over datasets of a different distribution like Cityscapes. This thus implies that the consistency of the model’s predictions to
the training data worsens over datasets that may be out of distribution. In Table[5} we show the results after performing
test-time adaptations over the KITTI and Cityscapes datasets, which still suggests that our methods can reduce more rule
violations than other methods without hurting the model performance.

C.3. Additional qualitative results

In Figure[d we show the qualitative results for Tabular Classification and Image Classification tasks.

D. Benchmark Tasks and Models

We consider three different tasks: tabular classification, image classification, and object detection.
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Task Object Detection

Dataset KITTI Cityscapes
Metric mAP % Reduced mAP % Reduced

No adapt  44.23 - 56.15 -
BN 4423 0.0£0.0%  56.15 0.0£0.0%
Tent 4484 024+02% 56.24 0.0£0.0%
RPL 4426 04£0.1%  56.67 -0.7+0.2%
CPL 44.62 -3.7£0.0% 57.13 0.24+0.1%

MEMO - - - -
Ours 4427 0.1£02% 5691 6.1£1.2%

Table 5: Results of reducing rule violations using different test-time adaptation methods for our three tasks.

a. Rule a. Rule
R := neg(z) = height(z) > 152, glucose(z) = 1. R := covering(z) = !darker(z), larger(z), partial_view(z)
0.68 < f1(R) < 0.70 f1(R) =0.0
In a batch of patients, those with height more than In a batch of images, those in a partial view that are
152 cm and a normal glucose level (level 1) must be neither darker nor larger must be of class covering
negative with an F1 score between 0.68 and 0.70. with an F1 score of 0.0.
b. Original Prediction b. Original Prediction
Patient ID Height Glucose ... Prediction n @ g
38240 180 1 ne
35261 180 1 neg Darker 0 0 0 0
64996 170 1 9 Larger 0 0 0 0
7 neg Partial 0 0 0 1
10564 166 1 neg
Prediction other equipment device covering
Minibatch F1: 0.76 Minibatch F1: 0.4
c. Prediction after Test-Time Adaptation c. Prediction after Test-Time Adaptation
Patient ID Height Glucose ... Prediction - } o ’g g
38240 180 1 ne -
35261 180 1 neg Darker 0 0 0
64996 170 1 . Larger 0 0 0
7 pos Patial 0 0 1
10564 166 1 neg
Prediction other equipment device device
Minibatch F1: 0.69 Minibatch F1: 0.0
(a) Tabular Classification task. (b) Image Classification task.

Figure 4: Additional qualitative results on Tabular Classification and Image Classification task. For each of the three tasks,
we show (a) a rule generated by SQRL, (b) a model’s prediction that violates the rule, and (c) the model’s prediction
satisfying the rule on the sample after test-time adaptation. Each of these rules satisfies our three desiderata: they are valid
since by construction they hold for 98% of the data; they are expressive enough to find faults in models; and they are
generated at scale without human supervision on individual rules.

Tabular Classification. This task concerns classification over tabular data from the Cardiovascular Disease dataset. The
dataset has information about 70k patients in the form of 11 attributes (6 numeric attributes and 5 discrete attributes)
collected at medical examinations and one binary label to indicate whether the patient has cardiovascular disease. We split
the dataset by 65%/15%/20% for training, validation, and testing. We train FT-Transformer (Gorishniy et al., [2021)), a
state-of-the-art tabular classification model, on the training set. This model is then adapted to the test dataset during the
test-time adaptation phase. For learning and evaluating the rules, we use 67 training, 22 validation, and 6 testing samples,
each of size 4096.

Image Classification. We define this task using ImageNet-X (Idrissi et al.,[2022)), a variant of the ImageNet dataset (Deng
et al.| [2009). It consists of a subset of 12k training samples and all the validation samples from the ImageNet dataset. Each
image in the ImageNet-X dataset is also associated with 16 binary human annotations to indicate the characteristics of the
object in the image, such as the pose of the object or the lighting of the entire image, over which we can define logic rules.
We use a ResNet-34 model (He et al.l 2016) trained on the training data from the original ImageNet dataset to predict the 17
metaclasses defined by (Idrissi et al.,[2022)). We perform test-time adaptation over the validation samples of this dataset. For
learning and evaluating the rules, we use 181 training, 79 validation, and 9 testing samples, each of size 256.
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Object Detection. This task concerns object detection in self-driving applications over the Cityscapes (Cordsts et al., [2016]))
and KITTI datasets (Geiger et al.|[2013)). We first consider different scenarios. First, we adapt the EfficientPS model (Mohan
& Valada, |2021)) pre-trained on training data from the KITTI dataset (Geiger et al., 2013ﬂ to the validation samples of
that dataset. Additionally, we evaluate our method in distribution shift settings in which the pre-trained EfficientPS model
is adapted to two versions of Cityscapes datasets (Cordts et al., 2016)), one including the normal scenes and the other
augmented with heavy rains (Tremblay et al.,|2020). Note that EfficientPS is a panoptic segmentation model which handles
multiple tasks such as object detection and semantic segmentation. We only evaluate the object detection component of this
model. We use individual samples for training and testing. To learn the rules, we use 855 training samples. We use 200 test
samples for testing on the KITTI benchmark, and 500 each for testing on Cityscapes and Cityscapesainy-

Time series Imputation. By reusing the pre-process scripts from (Tashiro et al.l 2021), we obtain 4000 time-series
samples, each of which contains 35 hourly-collected features during a 48-hour stay of one patient at an ICU. We randomly
partition those time-series samples into training, validation, and test set with 70-10-20 splits. To evaluate the imputation
performance, we input 40% of the non-missing observations in the test split to the imputation model, which then outputs the
imputation values for the remaining 60% of non-missing observations. We thus compare the imputed values against the 60%
ground-truth non-missing observations to evaluate the model performance.

Sentiment Analysis. The goal of this task is to predict the sentiment of each sentence in the PhraseBank dataset (Malo
et al.,[2014), which is composed of 3487 sentences in the training set, 387 sentences in the validation set, and 969 sentences
in the test set. Note that different from the object detection task where the statistics are collected from the object detection
model itself, the statistics used for the sentiment analysis task are obtained by using other pretrained models. We therefore
consider neural quantile rules of the following form to guarantee a differentiable loss:

Y € {Positive, Negative, Neutral}, ¢1, ¢ € {fitness_and_health, news_and_social_concern, ...},
Ob < $1(x) <Op=y=Y,1—-35=0.98, OR
Ob1 < P1(x) < Oup1,0b2 < P2(x) <Opo=y=Y,1—-3§=0.98,

in which, fitness_and_health, news_and_social_concern are features extracted from pretrained models.

E. Discussions
E.1. Capturing statistical correlations.

By constructing the statistical quantile rules, while generating them in a scalable manner, some of the generated rules may
capture spurious correlations. However, since these rules are valid over 98% of the data, only those spurious correlations
that are also valid in 98% of the data will be captured. Many spurious correlations in practice do not persist in such a large
fraction of the data (e.g., dogs can be correlated with being outdoors but fewer than 98% of dogs are photographed outdoors),
so these correlations will not be picked up by our approach.

E.2. Redundancy of generated rules.

Depending on the schema, SQRL may generate redundant rules. However, this is only the case for logic quantile rules
and does not occur in schemas where logic rules are not used, like in object detection, semantic analysis, and imputation
tasks. The validated rules from the tabular classification and image classification tasks have up to 2% of the generated rules
as redundant. Furthermore, redundant rules don’t negatively affect the test time adaptation and only slightly increase the
computational costs.

E.3. Other uses of statistical quantile rules.

Providing contexts for mispredictions. Since statistical quantile rules can be used to evaluate models, they can also be
used to identify model mispredictions at test time where the ground truth labels are not available. We train a linear classifier
using violations of rules as features for a particular sample, and whether or not that sample was mispredicted by a model as
the label. A direct interpretation of the weights of the linear classifier indicates the rules that are most correlated with model

“The pre-trained model is downloaded from https://github.com/DeepSceneSeg/EfficientPS
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Figure 5: One example of model mispredictions violating the rule in Equation

(a) Predicted bounding box (b) Ground truth bounding box

Figure 6: One example of the predicted bounding box (see Figure (6a)) is regarded as a correct one according to the IToU
score. But this predicted bounding box is still very visually different from the ground truth bounding box (see Figure (6b))
and violates the rule in Equation (TT))

errors. For instance, in the object-detection task, 92% of the predictions violating the following rule are errors:
person(x) =(size(x) < 4172 A 302.6 < pos, (x) < 514.1)V
(4172 < size(x) < 13680.5 A 348.76 < pos,(x) < 513.24)V
(13680.5 < size(x) < 47795.75 A 393.44 < pos, (x) < 541.90)V
(size(x) > 47795.75 A 407.45 < pos, (x) < 764.09).

(10)

One example of violating the above rule is shown in Figure[5] In this figure, the bounding box predicted to be a person
violates the above rule since for the position of the bounding box, the size is too large. This thus explains the reason for this
prediction being wrong.

Rules also provide contexts for mispredictions beyond what traditional metrics provide. They can indicate the severity of
errors, the frequency of certain kinds of errors over others, and similar rule violations can indicate similar kinds of errors.

Detecting errors that traditional metrics cannot identify. Even for predictions that traditional metrics deem correct, it
is possible that the metric is too coarse to sufficiently evaluate that prediction. For example, the mAP metric checks the
overlap (IoU score) between a predicted bounding box and a ground truth box. If it finds a ground truth box that has an
overlap of more than a threshold (typically 0.5), then it checks the label of the predicted box and says the prediction is
correct if the labels match. We show such an example here, where the predicted bounding box is shown in Figure [6a] while
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the ground truth is shown in Figure [6b] Intuitively speaking, the predicted bounding box is incorrect since it covers almost
two persons in the figure as opposed to the ground truth. According to the metrics used for the self-driving model, this is a
correct prediction, though it violates the following quantile rule about pedestrians since nearly all pedestrians are narrower
than the bounding box would imply:
person(x) = (y(x) <= 433 A 0.70 < aspect_ratio(x) < 4.4)

V (433 < y(x) <= 468 A 0.85 < aspect_ratio(x) < 4.81)

V (468 < y(x) <= 513 A 1.07 < aspect_ratio(x) < 5.0)

V (y(x) > 513 A 1.20 < aspect._ratio(x) < 5.61).

(In
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