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Abstract

Viewing Transformers as interacting particle systems, we describe the geometry of
learned representations when the weights are not time-dependent. We show that
particles, representing tokens, tend to cluster toward particular limiting objects
as time tends to infinity. Cluster locations are determined by the initial tokens,
confirming context-awareness of representations learned by Transformers. Using
techniques from dynamical systems and partial differential equations, we show
that the type of limiting object that emerges depends on the spectrum of the
value matrix. Additionally, in the one-dimensional case we prove that the self-
attention matrix converges to a low-rank Boolean matrix. The combination of
these results mathematically confirms the empirical observation made by Vaswani
et al. [VSP"17] that leaders appear in a sequence of tokens when processed by
Transformers.

1 Introduction

The introduction of Transformers in 2017 [VSP*17] marked a turning point in the Al revolution,
powering breakthroughs in natural language modeling and computer vision. With remarkable empiri-
cal success, Transformers enable large language models to compute very powerful representations
using the self-attention mechanism. Yet, little is known about the geometric structure of these
representations. As the size of these models grows at an astonishing rate, the need to understand their
inner workings is becoming a pressing scientific challenge. In this work, we make a first step in this
direction by describing the geometry of learned representations.

To provide a transparent presentation of our findings, we take a leaf out of the literature on continuous-
time dynamics such as neural ordinary differential equations (ODEs) [CRBD18, Weil7, HR17]. By
viewing layers as a time variable, this formalism has emerged as a flexible mathematical framework
to implement and study ResNets [HZRS16a] as particular discrete-time versions of a parametrized

dynamics of the form

z(t) = fo(z(t)), te[0,T].
Here 0 is the trained parameter of a neural network and fy is characterized by the precise architecture
of the ResNet'. In turn, an input (e.g., an image) z(0) € R? is mapped to its representation x(T').

Unlike neural ODEs and ResNets, the representation map of Transformers is not solely a function
of an individual input (0) € R? but rather of a set/sequence (x1(0),...,2,(0)) of n > 1 d-
dimensional tokens. These tokens then evolve in time by interacting with each other per the self-
attention mechanism. Namely, following [SABP22], we view tokens as particles, and the transformer
dynamics as an interacting particle system of the form

,T7(t) = i Pij(t)ij(t), te [0, -|-OO)7 (1)

Jj=1

'A classical choice is § = (W, A,b) € R¥™% x R4 x R? and fo(z) = Wo(Ax + b) where o is an
elementwise nonlinearity such as the ReLU ([HZRS16b]).
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for any i € [n], where P;;(t) are the entries of a n x n stochastic matrix P(t), given by

e{Qui (1), Kz (1)) . 2
~ 2771 Qi (1), Kze(t)) ’ (l’]) € [n] . (2)

Pi;(t)

Here the matrices @) (Query), K (Key), and V' (Value) are learned from data. Note that ), K need
not be square. The n x n matrix P(t) is called self-attention matrix. The wording attention stems
precisely from the fact that P;;(¢) captures the attention given by token i to token j relatively to all
tokens £ € [n]. The matrices () and K in (2) warp the geometry of the input tokens, so that a trained
attention matrix contains weights which indicate semantic relations between words. Such conclusions
have been drawn in the context of language processing tasks in [VSP' 17, Figures 3-5].

Our goal is to showcase the fact that self-attention, which itself is the core novelty of Transformers,
entails a clustering effect. To that end, we focus on the pure self-attention dynamics described in (1).
In particular, we do not model variations such as multiple heads, feed-forward layers, and layer
normalization that are typically adjoined to self-attention dynamics of (1). However, on this last
point, we note that our theoretical findings indicate that without any normalization, the dynamics (1)
can diverge in some (or even all) directions over time. We leave these additional questions for future
research; see Section 6.

1.1 Organization of the paper and summary of contributions

The goal of this paper is to characterize clustered represen-
tations of a trained Transformer by studying the asymptotic
behavior of a sequence of tokens (x1(t),...,z,(t)) as they
evolve through the layers of a transformer architecture using
the dynamics (1). In this setup, a Transformer is completely
described by the weight matrices (@, K, V') obtained during
training. Note that we assume that these three matrices are time-
independent. While this assumption is motivated by mathemat-
ical convenience, it is worth noting that such weight-sharing
scenarios are in fact used in practice—see, e.g., ALBERT [LCG™20]—as they drastically reduce the
number of parameters of a network.

Figure 1: For V = I3 tokens clus-
ter toward the vertices of a convex
polytope (Theorem 3.1).

With parameters (Q, K, V) fixed, tokens are subject to collective dynamics that we call transformer
dynamics. While these dynamics are reminiscent of existing models for opinion dynamics and
flocking, they present they own mathematical challenges requiring ad-hoc tools to study their
asymptotic behavior.

The main conclusion of our analysis is that the set of tokens {x1(t),...,x,(t)}, appropriately
rescaled, tends to a clustered configuration as t — co. Our theoretical findings justify the empirical
observation made in [VSP'17] that leaders appear in a sequence of tokens when processed by
Transformers. We now list our main contributions.

(i) As a warm-up to the geometric characterization of the limits of sequences of tokens, we show in
Section 2 that when d = 1 and V' > 0, the self-attention matrix P(t) converges to a low-rank matrix
with entries 0 and 1 as ¢ — +00 thus revealing the emergence of a small number of leaders that drive
the transformer dynamics. The restriction d = 1 follows from technical considerations, and some
pathological phenomena may occur in higher dimensions (see Remark 5). But numerical experiments
(as well as past empirical work) indicate that the result may extend to higher dimensions for almost
all initial sequences of tokens.

(ii) In Section 3 we first focus on the case V' = I; as a natural canonical choice that enables us to
establish some of the main tools of the paper. We introduce a time re-scaling reminiscent of the
layer normalization heuristics to alleviate the possible divergence of tokens. We show that along this
scale the tokens converge to the boundary of a convex polytope. For almost all initial sequences they
even converge to the vertices of the polytope, the number of which is significantly smaller than 7.
This elucidates the clustering phenomenon. (See Fig. 1.) When V' = —1;, all tokens following the
dynamics (1) collapse to 0.

(iii) We build on these results and in Section 4 consider the case wherein V' is only assumed to have
a simple and positive leading eigenvalue. This setting is much closer to reality and corresponds to



actual learned matrices V' (see Figure 10). We show that along the particular timescale, tokens cluster
toward one of at most three hyperplanes which are determined by the corresponding eigenvector.

(iv) In Section 5 we complete the results of Sections 3 and 4 by addressing the case where the leading
eigenvalue has multiplicity. This results in clustering toward the vertices of a convex polytope in
some directions, and a linear subspace in the others.

(v) We also prove the global existence and uniqueness of solutions of all dynamics considered in this
work (including the mean field limit). We refer the reader to Appendix A for more details.

We also observed numerically that our conclusions extend to more compound architectures (see
Conjecture 4.2, Section 6 and Appendix F).

Value | Key and Query | Limit geometry | Reference

V=1 QTK >0 vertices of convex polytope Theorem 3.1

A1(V) > 0, simple | {Qg1, K1) > 0 | union of 3 parallel hyperplanes | Theorem 4.1

V paranormal Q'K >0 polytope x subspaces Theorem 5.1

V=-I ‘ Q'K =1, ‘ single cluster at origin* ‘ Theorem C.5
Table 1: Summary of the clustering results of this work. * All results except for the case V = —1I,

hold for the time-scaled dynamics (4).

Remark 1 (Discrete time). While we focus on the idealized setting of self-attention dynamics in
continuous-time, this is solely done for convenience and all of our methods are straightforwardly
applicable to the discrete-time setting. (See also Remark 4.) The discrete-time analog of (1) with
time-step At > 0 (equal to 1 in practice) is simply the forward Euler iteration
n e(Qm(kAt),Kz_,»(kAt))
zi((k+1)At) = z;(kAL) + At Y <Z?_1 O RAT K (AT

Jj=1

> Va, (kAt), keN. (3)

Notation. We denote by <-,-» and | - | the Euclidean dot product and norm respectively, and we
use the shorthand [n] := {1,...,n}. For any matrix M € R%*?, we order its eigenvalues (repeated
according to multiplicity) by decreasing order of modulus: [\ (M)| = ... = | \q(M)|. We denote
by |M]||op the £2—operator norm of the matrix M, equal to the largest singular value of M. Given a
set S < RY, we define the distance of a point z € R? to S as dist(x, S) := infsg ||z — s|, and by
conv(S) the convex hull of S.

Related work

Our study and results build on several different lines of work, and we draw some parallels in what
follows.

Analysis of attention-based models. Given the widespread use of Transformers in natural language
processing, there has been a surge of interest in understanding the function and significance of atten-
tion layers within these models. In [YBR " 20], the authors show that when treated as discrete-time
systems with additional dense layers and multiple heads appended to the core attention mechanism,
Transformers exhibit the universal approximation property. In [LLH"20], the authors present, to
the best of our knowledge, the first interacting particle systems perspective on Transformers. They
then leverage the similarities between Transformers (with an additional feed-forward layer compared
to (1)) and convection-diffusion equations to slightly improve the performance of Transformers by
employing a Strang-Marchuk splitting scheme for time discretization. In [SABP22], the authors
interpret system (1) as the characteristics of a continuity equation. Drawing on the similarities
between (1) and Sinkhorn iterations, they propose a novel architecture dubbed Sinkformer, which
possesses the desirable property of being a Wasserstein gradient flow.

Quadratic complexity of Transformers. The major computational challenge of Transformers is
their high computational complexity, particularly when processing long sequences. Transformers
require quadratic time and space complexity to process sequences, because each self-attention layer
contains n? products of the form (Qz;, Kx;) (for i, j € [n]). The empirical observation that the self-
attention matrix P is close to a low rank matrix—see [LWLQ22, Section 4.4] for references—is cited



as the inspiration behind Linformers [WLK " 20] and the fine-tuning algorithm LoRA [HysW*22].
For both approaches, the low-rank structure is imposed rather than extracted from P itself. Other
methods called sparse attention and block attention have been proposed to reduce the quadratic
complexity—see [WLK™ 20, Section 2.2] for references. In the spirit of these works, a foreshadowing
of the clustering mechanism was invoked in [VKF20], where queries are clustered into groups,
again in view of reducing the quadratic complexity of self-attention. We point out that [DCL21]
previously demonstrated that without skip connections, the dynamics trivializes and all tokens quickly
lump together into a single tight cluster. Our work, in contrast, shows that in the presence of skip
connections a rich cluster structure emerges.

Compared to the usual BERT, ALBERT [LCG*20] uses parameter-sharing across layers, meaning
that the weight matrices (), K, V in (1)-(2) do not depend on time, as in the present paper. This does
not reduce the theoretical O(n?) complexity of the original Transformer, but, quoting [LCG"20], it
"significantly reduce[s] the number of parameters for BERT without seriously hurting performance,
thus improving parameter-efficiency. An ALBERT configuration similar to BERT-large has 18x
fewer parameters and can be trained about 1.7x faster. The parameter reduction techniques also act as
a form of regularization that stabilizes the training and helps with generalization".

Neural collapse. Our results and conclusions bear a resemblance to some geometric aspects of
neural collapse for classification tasks [PHD20]. A key geometric aspect of neural collapse is the
observation that, during the training of deep neural networks, the representation of different classes
in the later layers of the network tends to form a tight cluster around the vertices of a simplex. The
emergence of a simplex structure in the representation space provides insights into how the neural
network organizes and separates the different classes.

Clustering in interacting particle systems. The transformer dynamics (1) have a strong connection
to the vast literature on nonlinear systems arising in the modeling of opinion dynamics and flocking
phenomena. In addition to the classical Kuramoto model describing synchronization/clustering of
oscillators [Kur75, ABV'05], the model which is most similar to (1) is the Krause model [Kra00]

_ (i —z4)?) _
Dipe O(zi — zx]?)

Bit) = Y oyl —ml®). ay

which is non-symmetric in general (a;; # a;;), much like (1). When ¢ is compactly supported,
it has been shown in [JM14] that the particles x;(¢) assemble in several clusters as ¢ — +o0.
Other models of opinion dynamics and flocking have been proposed and studied, among which the
Vicsek model [VCBJ*95], the Hegselmann-Krause model [HK02] and the Cucker-Smale model
[CSO7]. These models may also exhibit a clustering behavior under various assumptions (see
[MT14, CHH" 16, HKPZ19] and the references therein). The transformer dynamics are also closely
related to the dynamics employed in mean-shift clustering [Che95], and this work indirectly sheds
some light on its theoretical properties.

The analysis of transformer dynamics presents unique mathematical challenges that cannot be
addressed using the tools developed for these more primitive models. In particular, our work
demonstrates how different choices for the parameters lead to remarkably diverse clustering patterns.
Much more remains to be discovered and this work is a first attempt a rigorous mathematical analysis
of these synthetic dynamics.

2 Asymptotic low-rankness of the self-attention matrix

As mentioned in Section 1.1, numerical experiments in [WLK " 20] show that the self-attention matrix
P, defined in (2), has an almost low-rank structure. This observation has then been leveraged to
reduce the quadratic complexity in the sequence length n which is inherent to Transformers, resulting
in a non-negligible decrease in the cost of training.

As a warm-up to deriving complete geometric representations of the dynamics, our first result shows,
in the simple 1d case that P(t) indeed converges exponentially fast toward a matrix which is typically
both Boolean and low-rank (see Fig. 3). Although there are clear obstructions to a rigorous extension
of this result to higher dimensions (Remark 5), numerical experiments appear to show that this result
holds in greater generality, for almost all initial sequences (Appendix F).



To set this up, we introduce the set & of n x n matrices having M 0 ... 0]
the form illustrated in Fig. 2, where the asterisks denote arbi-
trary non-negative real numbers which add up to 1. The row of

asterisks may actually be any row between the first and the last r o ... 0

one P, |* = ... =[P,
' 0 0 1

Theorem 2.1 (Self-attention matrix converges to a low-rank

Boolean matrix). Let d = 1. Suppose that the scalars I Do

(Q,K,V) satisfy V> 0 and QK > 0. For any initial se- 10 ... 0 1}

quence of pairwise distinct tokens (1(0),...,z,(0)) € R™,

Figure 2: Elements in %, where
P,, € R™*" are some permutation
matrices, and asterisks denote arbi-
trary non-negative reals which add

there exists some P* € P such that the self-attention matrix
P(t) defined in (2) converges to P* ast — +.

The proof may be found in Appendix B. The rate of convergence
toward P* is in fact doubly exponential in ¢ for coefficients UP tol.

outside the row of asterisks in Fig. 2. The proof the theorem also reveals that for almost all initial
sequences of pairwise distinct tokens, P* is actually of rank 1 or 2, i.e., the row of asterisks is equal
to either e; = (1,0,...,0)ore, = (0,...,0,1).

The interpretation of Theorem 2.1 is that in the 1d case, at most three tokens capture the attention of
all tokens except at most one. Typically, these leading tokens are those carrying the largest amount of
information. This is also illustrated in Fig. 4. Since the tokens x; here evolve on R, the right-most
and left-most ones (which typically tend toward +00) capture the attention of all the others.

t = 0.0, rank= 11 t = 3.0, rank= 23 t = 5.0, rank= 14 t = 10.0, rank= 2
e T 1 1 T T

Figure 3: An illustration of the asymptotics of P(¢) entailed by Theorem 2.1 for n = 40 tokens, with
@ = K =1and V = 1. (See Appendix F for details on computing.) Increasing n has no effect on
this behavior of P(t)—see Fig. 11.

] &e—0
T

Figure 4: The clouds { Kw;(t)}e[20] (green) and {Qx;(t)} je[20] (purple) for d = 2 where pairwise
points of clouds are connected by a line of width equal to P;;(¢). Here V' > 0 and @ > 0 are
random matrices and K = I,. The creation of clusters is reflected by the rank < 2 structure of
the self-attention matrix P(t). This interaction echoes findings illustrated in the original paper
[VSPT 17]—for instance, Figures 3-5 therein.

3 Clustering toward vertices of convex polytopes

In the rest of the paper, we seek to taxonomize various clustering results for the solutions to (4) when
t — 400, depending the sign and the multiplicity of the eigenvalues of V. We begin by focusing



on what may appear to be the most natural® case V' = I, as is also done in [SABP22]. In fact, we
demonstrate (theoretically and numerically) later on, clustering is a generic phenomenon which holds
under much less restrictive assumptions.

The transformer dynamics considered in (1) does not contain a layer normalization mechanism
typically encountered in practice [VSP*17]. In absence of such a device, tokens may diverge to
infinity as in Theorem 2.1. In fact, the norm of the tokens z;(¢) typically diverges exponentially
toward +oo for any d: this is expected, by analogy with the non-trivial solutions to () = y(t).

To remedy this situation, we take inspiration from the solution y(t) = eVy(0) to y(t) = Vy(t).
Namely, for any i € [n] we consider the rescaled tokens z;(t) := e =tV x;(t), which solve
n €<Qetv zi(t),Ke'V z;(t))
- Z BYCAEOR ey V(z;(t) — 2(t)) fort € [0,+0). (4)

The initial condition remains the same: z;(0) = 2;(0) for any ¢ € [n]. More importantly, the
coefficients of the self-attention matrix for the rescaled tokens z;(t) are the same as those for the
original tokens z;(t). Whence, the conclusion of Theorem 2.1 also applies to the dynamics (4). We
see this rescaling of tokens as a mathematically justified surrogate for the layer normalization.

The appearance of the exponential factor within the self-attention kernel facilitates the analysis of
(4) compared to (1), and it is in fact instrumental in the proofs of all results that follow. Each result
on the rescaled tokens z;(¢) then gives information on the dynamics of the original tokens x;(t) by
virtue of the relation z;(t) = eV 2 (¢).

We are now able to state the main result of this section on the case V' = ;. The following theorem
shows that the tokens z; () evolving per dynamics (4) converge to the boundary of a convex polytope
as t — +00. We present here a simplified but weaker version of our result for convenience, and refer
the reader to Theorem C.1 in the appendix for a complete statement.

Theorem 3.1 (Convergence to points on the boundary of a convex polytope). Suppose V' = 1; and
QT K > 0. Then, for any initial sequence of tokens {zi(O)}iE[n] c R, there exists a convex polytope

K = R? such that for any i € [n], z;(t) converges either to 0 or to some point on 0K as t — +oo.

The convex polytope K is completely determined by the initial sequence of tokens, and QT K (refer
to Claim 1). Numerical experiments (e.g. Fig. 5) also lead us to claim that for almost all initial
sequences of tokens, one should expect convergence of z;(t) (¢ € [n]) toward some vertex of K.
(Furthermore, the number of vertices of K is often found to be significantly smaller than n.) It may
however happen that for initial sequences taken in some null set (not seen when tokens are drawn at
random) some tokens converge to other points of the boundary 0/C, namely in the interior of facets.
On the other hand, for generic choices of initial sequences, we do not see a way to predict K explicitly
besides running the full dynamics.

t=0.0 t=1.0 t=20 t=>5.0

Figure 5: A toy example illustrating Theorem 3.1 with n = 40 tokens in R3. Here Q = K = I3. The
tokens converge to one of the vertices (leaders) of the limiting convex polytope.

Recall that the points z;(t) = e'z;(t) when V = I, follow the original dynamics (1). Akin to
Theorem 2.1, this result also shows the emergence of a set of leaders (given by the vertices of K)

“Note that the case V = —I; may appear equally natural. For such a choice of V, we show in Appendix C.2
that the dynamics converge to a single cluster located at the origin. Multiplicative constants preserving the sign,
ie.,, V = *clg, c > 0 trivially yield the same conclusions.



attracting all tokens as ¢ grows. It has been experimentally observed (first in [VSP' 17]) that in
trained Transformers, tokens focus their attention on local leaders in a way that seems to reproduce
the syntactic and semantic structure of sentences.

The proof of Theorem 3.1 is postponed to Appendix C, and amounts to a couple of effects entailed by
the dynamics. First of all, the convex hull of the particles is shrinking over time (Proposition C.2).
This is due to the fact that the distance of the particle nearest to any half-space (not containing the
particles) increases with time. On the other hand, the convex hull ought not collapse since particles
which have not concentrated near the boundary of the limiting polytope will continue to increase in
magnitude until they themselves reach this boundary (Step 2 in the proof). This occurs due to the
time-rescaling.

Remark 2. Assuming Q7K > 0 does not seem to be essential for our conclusions; instead, it
guides the direction of the proof. To emphasize the broader validity of our conclusion beyond this
specific assumption, we conducted additional experiments (refer to Section F.6) which suggest that
Theorem 3.1 (as well as Theorems 4.1 and 5.1 stated below) holds in more generality.

Remark 3 (Rate of convergence). Although Theorem 3.1 (as well as Theorems 4.1 and 5.1 stated
below) does not specify a rate of convergence toward 0K, we expect (and observe through numerics)
that convergence happens very quickly—after few layers, most tokens are already clustered. What
"few layers" means here necessarily depends on the typical modulus of the initial tokens, since the
dynamics (1) is not invariant under multiplication of all initial conditions by a fixed real number.

Remark 4 (Discrete time). As alluded to in Remark 1, all our results extend to the discrete-time
Transformers (3). Indeed, just as in the continuous-time case, there is a natural rescaled dynamics,
which is the discrete analogue of (4): if we set R = 15 + V At, and assume that R is invertible

(which is the case for sufficiently small At), then z;(kAt) = R™%x;(kAt) := zi[k] satisfies

n (QR"zM KR*:IF)
[f+1] ( ¢ ) RV (zj[-k] - z}’“]) , keN.

z; — ¥ + At Z

i

n Rk [k] KRk [k]
o1 \ Dy @R AT KR

The proofs of Theorems 2.1, C.5, 3.1, 4.1, and 5.1 carry through with straightforward modifications.

Let us provide some comments on the proof of Theorem 3.1 in the discrete-time setting, for the sake
of completeness. First of all, Proposition C.2 holds intuitively because for all integers i € [n] and

E>1,
n
k1] _ 1 [k] 3 [k] k] [k]
Zi = m (Zz + AtJ:IP” Zj ) € conv ({Zj }Je[ﬂ]) .

We then define the candidate set of limit points as in (37), and Claim 1 holds without any change in
the statement or in the proof. Then, just as in Steps 2 and 3 in the proof of C.1, we can first show

that if zl[k] is not already near some point in the candidate limit set, it will keep moving toward the
boundary of the convex polytope. Finally, we can prove that tokens cannot circulate indefinitely
between different points on the boundary. The combination of these arguments would establish the
convergence of each token toward some point in the set given by (37).

4 Clustering toward hyperplanes

While being a natural example to consider, value matrices found empirically are much more general
than V' = I, which we considered in the previous section. We now turn our attention to a significantly
more general setting of value matrices, which we formalize as follows.

Definition 1. We call (Q, K, V') a good triple if the two following conditions are satisfied:
* the eigenvalue of V with largest modulus is real, positive, and simple; namely,
MV) > [Da(V)] = ... = [Aa(V)].
s {Qp1, Kp1) > 0 for any @1 € R? lying on the line ker(V — Xy (V) I,).

The second condition simply states that the quadratic form {Q-, K-) is positive definite along the
eigenspace associated to the leading eigenvalue of V. Note also that if all entries of V' are positive,



the first condition is automatically satisfied by virtue of the Perron-Frobenius theorem. In fact,
this assumption is generic. On the one hand, it is satisfied by some pre-trained value matrices for
ALBERT (Figure 10). On the other hand, numerical experiments indicate that a constant fraction
(about 14%) of matrices from the real Ginibre ensemble in dimension d = 128—this proportion is
known to vanish as d — oo, albeit very slowly [RS14].

Our clustering result in the setting of good triples can be summarized as follows: the coordinate
(zi(t), H%V of any token z;(t) along the eigenspace spanned by 7 converges, as t — +00, toward
one among possibly 3 real scalars. Consequently, all the tokens z;(t) converge toward one among at
most three parallel hyperplanes; see Fig. 6 for an illustration.

Theorem 4.1 (Convergence toward < 3 hyperplanes). Assume that (Q, K, V) is a good triple in the
sense of Definition 1. Then, for any initial sequence of tokens {2;(0)};e[n] < R?, there exist at most

three parallel hyperplanes in R? such that for any i € [n), the distance of the solution z;(t) to (4) to
one of these hyperplanes converges to 0 as t — +oo0.

t=20.0 t=1.0
101 101 101
o o
.‘ ? %
] 4 4
0] 20808 0 0
° 0 ‘...
~10{ ~10{ ~10{
0 10 0 10 0 10 0 10

Figure 6: Illustrating Theorem 4.1 with n = 40 tokens in R%. Here Q = K = I, V is a random
symmetric matrix with eigenvalues {1.35, —0.07}, and ; = (0.76,0.65). The components of the
tokens in the direction of ¢; (orange arrow) cluster over time. (See Figures 13—14 for examples in
R3.) We also observe that tokens typically cluster toward only two hyperplanes—a third one (passing
through the origin) may appear for non-generic initial sequences. The hyperplanes are perpendicular
to 1 since V is diagonalizable.

The proof may be found in Appendix D. The important role played by A; (V') in the dynamics may
be seen in (4): the component of z;(¢) along ¢, determines the size of eV z;(¢) in the exponent
appearing in (4). The tokens z;(t) attracting other tokens z;(t) are those for which this component
along 1 is largest in modulus. This attraction process forms the clusters. These leaders, as in all our
results, have been empirically observed to be the ones carrying the largest amount of information in
the sentence (see Supplementary material in [VSP™17]).

Furthermore, Theorem 4.1 can also be interpreted in more classical machine learning terms. On the
one hand, it can be seen as an instance of K-flats clustering [BMOO0, Vidl1]—points in the input
sequence are clustered, based on their intrinsic similarity, to at most 3 "flats" of dimension d — 1.
On the other hand, it ensures that for a good triple (Q, K, V'), (4) generates a linearly separable
representation of tokens.

Beyond a single direction?

Numerical experiments (e.g., Fig. 7) indicate that a similar phenomenon emerges for more complex
V. We formulate following conjecture which is a natural generalization of Theorem 4.1.

Conjecture 4.2 (Codimension conjecture). Let k = 1 be the number of eigenvalues of V' with positive
real part. Then there exist at most three parallel Euclidean subspaces of R¢ of codimension k such
that for any i € [n], the distance of z;(t) to one of these subspaces converges to 0 as t — +0.

5 A mix of hyperplanes and polytopes

We now turn our attention to an even more general version of Theorem 4.1, which does not require
the leading eigenvalue of V' to be simple. The resulting theorem can be viewed as a combination of
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(a) Conjecture 4.2: low-dimensional case. (b) Conjecture 4.2: high-dimensional case.

Figure 7: (a) n = 40, d = 3 and Q = K = I3 with V a random matrix with eigenvalues
{1.96,—0.22,0.25}. The k = 2 positive eigenvalues of V generate attraction between the tokens
and even convergence in the corresponding eigenspaces—this explains the codimension & statement.
The negative eigenvalue generates a repulsive effect between the tokens, and we see a divergence
along two lines (note the different scales between the four figures). (b) n = 256, d = 128, with
(Q, K, V) fixed random matrices and V' symmetric. For each coordinate j corresponding to a positive
eigenvalue, the variance of the set {7} (2;(t)): @ € [n]} (shaded area) tends to 0 with ¢, while the
mean (solid lines) converges to one among two real scalars: one positive (top figure), one negative
(bottom) figure. Coordinates corresponding to negative eigenvalues diverge (Fig. 15).

Theorem 4.1 and Theorem 3.1. Specifically, we assume that V' behaves as the identity when acting on
the eigenspace of the leading eigenvalue. This property is automatically satisfied if V' is normal—so
that its eigenvectors form an orthonormal basis—so we call such a V' paranormal.

Definition 2. We call (Q, K, V') a good triple with multiplicity if the following conditions hold:
(i) QT K is positive definite: QT K > 0;

(ii) V is paranormal: there exist two linear subspaces F, € < R which are invariant under V,
and such that F ® 6 = R%, Vig: = AId for A > 0, and p(V|g) < A, where p(-) denotes the

spectral radius (the maximal modulus of eigenvalues).

An example of such a V' is used for Fig. 8. We may now state our main result in the setting of good
triples with multiplicity. The proof may be found in Appendix E.

Theorem 5.1 (Clustering for A; with multiplicity). Suppose that (Q, K, V) is a good triple with
multiplicity in the sense of Definition 2. Then, for any initial sequence {zi(O)}ie[n] c RY, there exists
a bounded convex polytope K < F such that setting % := (0K U {0}) x €, for any i € [n], we have
dist(z;(t), #) — O ast — +c0.

6 Outlook

Several important directions regarding the mathematical theory of Transformers remain unex-
plored. An important extension of our work would amount to studying multi-headed Transformers—
borrowing the notation from Remark 4, they amount to:

H n (Qunat™ Kyl
h=1j=1 Z;L:I 6<thi Knze(k))




t=0.0 t=5.0 t=10.0

t=15.0

Figure 8: Illustrating Theorem 5.1 with n = 40 tokens in R3. As before, Q = K = I, and we take
V = diag(1, 1, —%) A convex polytope K emerges before time 5, toward which two coordinates of
the tokens cluster, and persists throughout the evolution, while the tokens diverge along the coordinate
corresponding to the eigenvalue —% (note the different scales between the four figures).

For each h € [H] (corresponding to a different head), the weight matrices Qp,, Ky, V}, are constant.
Proofs regarding clustering or convergence of the self-attention matrix for such dynamics is an open
problem. Preliminary numerical investigations seem to indicate that interesting clustering phenomena
also occur in this context. A characterization or properties of optimal weights by invoking the optimal
control correspondence in the spirit of [Weil7] is also an interesting avenue for future research.
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