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Abstract

To achieve scalable and accurate inference for

latent Gaussian processes, we propose a varia-

tional approximation based on a family of Gaus-

sian distributions whose covariance matrices have

sparse inverse Cholesky (SIC) factors. We com-

bine this variational approximation of the pos-

terior with a similar and efficient SIC-restricted

Kullback-Leibler-optimal approximation of the

prior. We then focus on a particular SIC order-

ing and nearest-neighbor-based sparsity pattern

resulting in highly accurate prior and posterior

approximations. For this setting, our variational

approximation can be computed via stochastic gra-

dient descent in polylogarithmic time per iteration.

We provide numerical comparisons showing that

the proposed double-Kullback-Leibler-optimal

Gaussian-process approximation (DKLGP) can

sometimes be vastly more accurate for station-

ary kernels than alternative approaches such as

inducing-point and mean-field approximations at

similar computational complexity.

1. Introduction

Gaussian process (GP) priors are popular models for un-

known functions in a variety of settings, including geo-

statistics (e.g., Stein, 1999; Banerjee et al., 2004; Cressie

& Wikle, 2011), computer model emulation (e.g., Sacks

et al., 1989; Kennedy & O’Hagan, 2001; Gramacy, 2020),

and machine learning (e.g., Rasmussen & Williams, 2006;

Deisenroth, 2010). Latent GP (LGP) models, such as gener-

alized GPs, assume a Gaussian or non-Gaussian distribution

for the data conditional on a GP (e.g., Diggle et al., 1998;
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Chan & Dong, 2011). LGPs extend GPs to a large class of

settings, including noisy, categorical, and count data. How-

ever, LGP inference is generally analytically intractable and

hence requires approximations. In addition, direct GP in-

ference is prohibitive for large datasets due to cubic scaling

in the data size. There are two main challenges for (L)GPs

in many applications: One is to specify or learn a suitable

kernel for the GP, and the other is carrying out fast inference

for a given kernel. In this paper, we make no contributions

to the former and instead focus on the latter challenge: We

assume that a parametric kernel form is given and propose

an efficient approximation method for LGP inference via

structured variational learning.

Many approaches to scaling GPs to large datasets were

reviewed in Heaton et al. (2019) and Liu et al. (2020), in-

cluding low-rank approaches with a small number of pseudo

points that are popular in machine learning. Such low-rank

GP approximations have been combined with variational

inference for GPs (e.g., Titsias, 2009; Hensman et al., 2013)

and LGPs (e.g., Hensman et al., 2015; Leibfried et al., 2020).

A highly promising approach to achieve GP scalability is

given by nearest-neighbor Vecchia approximations from spa-

tial statistics (e.g., Vecchia, 1988; Stein et al., 2004; Datta

et al., 2016; Katzfuss & Guinness, 2021), which are optimal

with respect to forward Kullback-Leibler (KL) divergence

under the restriction of sparse inverse Cholesky (SIC) fac-

tors of the covariance matrix (SchÈafer et al., 2021a). Such

SIC approximations have several attractive properties (e.g.,

as reviewed by Katzfuss et al., 2022). They result in a valid

joint density function given by the product of univariate

conditional Gaussians, each of which can be independently

computed in cubic complexity in the number of neighbors.

This allows straightforward mini-batch subsampling with

unbiased gradient estimators (Cao et al., 2022). For the or-

dering and sparsity pattern used here, the number of neigh-

bors needs to grow only polylogarithmically with the data

size to achieve ϵ-accurate approximations for MatÂern-type

kernels up to boundary effects (SchÈafer et al., 2021a) due

to the screening effect (Stein, 2011). Many existing GP ap-

proximations, including low-rank and partially-independent

conditional approaches, can be viewed as special cases of

SIC approximations corresponding to particular orderings

and sparsity patterns (Katzfuss & Guinness, 2021). SIC
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Figure 1. Double KL minimization for approximating the posterior

distribution of a latent Gaussian field f given data y: Based on

a forward-KL-optimal SIC approximation p̂(f) of the prior, we

obtain an SIC-restricted reverse-KL-optimal variational approxi-

mation q̂(f) to the posterior.

approximation using our ordering and sparsity pattern does

not exhibit the same limitations as low-rank approximations

(Stein, 2014) and can hence be significantly more accurate

for non-latent (i.e., directly observed) GPs (Cao et al., 2022).

SIC approximations of LGPs are more challenging. For

LGPs with Gaussian noise, applying SIC approximations to

the noisy responses reduces accuracy, and SIC approxima-

tions of the latent field may not be scalable (e.g., Katzfuss

& Guinness, 2021). Existing approaches addressing this

challenge (Datta et al., 2016; Katzfuss & Guinness, 2021;

SchÈafer et al., 2021a; Geoga & Stein, 2022) do not consider

estimation using stochastic gradient descent (SGD). For

non-Gaussian LGPs, Laplace SIC approximations (Zilber &

Katzfuss, 2021) are straightforward but can be inaccurate.

Liu & Liu (2019) combined an SIC-type approximation to

the prior with variational inference based on a variational

family of Gaussians with a sparse Cholesky factor of the co-

variance matrix, but we are not aware of results guaranteeing

that the covariance-Cholesky factor exhibits (approximate)

sparsity under random ordering. Wu et al. (2022) combined

SIC-type approximations of LGPs with mean-field varia-

tional inference, but the latter may be inaccurate when there

are strong correlations in the GP posterior (MacKay, 1992).

To achieve scalable and accurate inference for LGPs, we

propose a variational family of SIC Gaussian distributions

and combine it with a SIC approximation to the GP prior

(see Figure 1). Our approach is double-KL-optimal in the

sense that variational approximation is reverse-KL-optimal

for a given log normalizer (i.e., evidence) and our prior

SIC approximation, which is available in closed form, is

forward-KL-optimal for a given sparsity pattern (SchÈafer

et al., 2021a). Within our double-Kullback-Leibler-optimal

Gaussian-process framework (DKLGP), we then focus on a

particular ordering and nearest-neighbor-based sparsity pat-

tern resulting in highly accurate prior and posterior approx-

imations. We adopt a novel computational trick based on

the concept of reduced ancestor sets for achieving efficient

and scalable LGP inference. For this setting, our variational

approximation can be computed via SGD in polylogarithmic

time per iteration. While inducing-point methods assume

that unobserved points depend on data only through induc-

ing points (e.g., Frigola et al., 2014; Hensman et al., 2015),

our method allows fast and accurate KL-optimal prediction

based on the screening effect. Our numerical comparisons

show that DKLGP can be vastly more accurate than state-of-

the-art alternatives such as inducing-point and mean-field

approximations at a similar computational complexity.

2. Methodology

2.1. Model

Assume we have a vector y = (y1, . . . , yn)
⊤ of noisy

observations of a latent GP f(·) ∼ GP(µ,K) at inputs

x1, . . . ,xn ∈ R
d, such that p(y|f) =∏n

i=1 p(yi|fi), where

f = (f1, . . . , fn)
⊤ ∼ Nn(µ,K) (1)

with µi = µ(xi) and Kij = K(xi,xj). Throughout, we

view the inputs xi as fixed (i.e., non-random) and hence do

not explicitly condition on them.

Unless y|f follows a Gaussian distribution, inference (such

as computing the posterior p(f |y)) generally cannot be car-

ried out in closed form. In addition, even for Gaussian

likelihoods, direct inference scales as O(n3) and is thus

computationally infeasible for large n. To address these

challenges, we propose an approximation based on double

KL minimization.

2.2. Variational Sparse Inverse Cholesky Approximation

Consider a lower-triangular sparsity pattern Sq ⊂
{1, . . . , n}2, with {(i, i) : i = 1, . . . , n} ⊂ Sq and such

that i ≥ j for all (i, j) ∈ Sq. Our preferred choice of Sq

will be discussed in Section 2.5, but typically we will have

(i, j) ∈ Sq if xi and xj are ªclose.º Corresponding to Sq,

define the family of distributions Q = {Nn(ν, (VV⊤)−1) :
ν ∈ R

n,V ∈ R
n×n,V ∈ Sq}, where we write V ∈ Sq if

(i, j) ∈ Sq for all Vij ̸= 0. It is straightforward to show that

any q ∈ Q can be represented in ordered conditional form as

q(f) =
∏n

i=1 q(fi|fsqi ), where sqi = {j > i : (j, i) ∈ Sq}
for i = 1, . . . , n− 1 and sqn = ∅.

We approximate the posterior p(f |y) by the closest distribu-

tion in Q in terms of reverse KL divergence:

q̂(f) = argmin
q∈Q

KL
(

q(f)
∥

∥p(f |y)
)

.

We have KL(q(f)∥p(f |y)) = log p(y)− ELBO(q), where
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p(y) does not depend on q, and so q̂ satisfies

q̂(f) = argmax
q∈Q

ELBO(q). (2)

Proposition 2.1. The ELBO in (2) can be written up to an

additive constant of n/2 as

ELBO(q) =
n
∑

i=1

(

E
q
log p(yi|fi)− ((ν − µ)⊤L:,i)

2/2

+ log(V−1
ii Lii)− ∥V−1L:,i∥2/2

)

, (3)

where L is the inverse Cholesky factor of K such that

K−1 = LL⊤, and L:,i denotes its ith column.

All proofs can be found in Appendix C.

2.3. Approximating the Prior via a Second KL

Minimization

Even for a sparse V, computing the ELBO in (3) is pro-

hibitively expensive for large n, because computing L (or

any of its columns) from K generally requires O(n3) time.

To avoid this, we replace the prior p(f) defined in (1) by

a Gaussian distribution that minimizes a second KL diver-

gence under an SIC constraint.

Specifically, consider a second lower-triangular sparsity

pattern Sp ⊂ {1, . . . , n}2, which may be the same as

Sq. We define the corresponding set of distributions P =
{Nn(µ̃, (L̃L̃

⊤)−1) : µ̃ ∈ R
n, L̃ ∈ R

n×n, L̃ ∈ Sp}. We

approximate the prior p(f) by the closest approximation in

P in terms of forward KL divergence:

p̂(f) = argmin
p̃∈P

KL
(

p(f)
∥

∥p̃(f)
)

. (4)

By a slight extension of SchÈafer et al. (2021a, Thm. 2.1),

we can show that this optimization problem has an efficient

closed-form solution.

Proposition 2.2. The solution to (4) is p̂(f) =

Nn(f |µ, (L̂L̂⊤)−1), where the nonzero entries of the ith

column of L̂ can be computed in O(|Sp
i |3) time as

L̂Sp

i
,i = bi(bi,1)

−1/2, with bi = K−1
Sp

i
,Sp

i

e1, (5)

and Sp
i = {j : (j, i) ∈ Sp} is an ordered set with elements

in increasing order (i.e., the first element is i).

Throughout, we denote by ei a vector whose ith entry is

one and all others are zero, and we index matrices before

inverting so that K−1
Sp

i
,Sp

i

:= (KSp

i
,Sp

i
)−1.

The approximation in Proposition 2.2 is equivalent to an

ordered conditional approximation (Vecchia, 1988) of the

prior density p(f) =
∏n

i=1 p(fi|f(i+1):n) by:

p̂(f) =
∏n

i=1 p(fi|fspi ) =
∏n

i=1 N (fi|ηi, σ2
i ),

where ηi = µi − L̂⊤
sp
i
,i
(fsp

i
− µsp

i
)/L̂i,i and σ2

i = L̂−2
i,i ,

with spi = Sp
i \ {i}.

2.4. Computing the ELBO based on Ancestor Sets

Plugging p̂(f) into (2), the ELBO in (3) becomes

ELBO(q) =
n
∑

i=1

(

E
q
log p(yi|fi)− ((ν − µ)⊤L̂:,i)

2/2

+ log(V−1
ii L̂ii)− ∥V−1L̂:,i∥2/2

)

, (6)

with the ith summand depending on L̂ only via its ith
column L̂:,i, whose nonzero entries can be computed in

O(|Sp
i |3) time using (5).

We need to compute V−1L̂:,i and V−1ei, the latter of which

appears in Eq log p(yi|fi) (see Section 2.6). The nonzero

entry of ei (i.e., {i}) is a subset of the nonzero entries of L̂:,i

(i.e., Sp
i ), and hence we focus our discussion on computing

V−1L̂:,i. Solving this sparse triangular system in principle

requires O(|Sq|) time.

However, it is possible to speed up computation by omit-

ting rows and columns of V that do not correspond to

the ancestor set Ai of Sp
i with respect to Sq, which is

defined as Ai =
{

j ≥ i : there exists a path L =
{(j, l1), (l1, l2), . . . , (la−1, la), (la, l)} ⊂ Sq for some l ∈
Sp
i

}

. Ancestor sets are properties of the directed acyclic

graphs that can be used to represent our triangular sparsity

structures, as illustrated in Appendix B.

Proposition 2.3. (V−1L̂:,i)j = 0 for all j /∈ Ai.

Thus, we have

∥V−1L̂:,i∥ = ∥V−1
Ai,Ai

L̂Ai,i∥, (7)

where V−1
Ai,Ai

L̂Ai,i can be computed in O(|Ai||Sq
i |) time.

2.5. Maximin Ordering and Nearest-neighbor Sparsity

SchÈafer et al. (2021a) proposed a sparsity pattern S based

on reverse-maximum-minimum-distance (r-maximin) or-

dering (see Figure 2 for an illustration). R-maximin or-

dering picks the last index in arbitrarily (often in the cen-

ter of the input domain), and then the previous indices

are sequentially selected for k = n − 1, n − 2, . . . , 1 as

ik = argmaxi /∈Ik
minj ∈Ik

dist(xi,xj), where Ik =
{ik+1, . . . , in}. Throughout, we assume that our indexing

follows r-maximin ordering (e.g., fk = fik ). We can then

define the sparsity pattern by Si = {j ≥ i : dist(xi,xj) ≤
ρℓi}, for some fixed ρ ≥ 1, where ℓi = minj>i dist(xi,xj).
We can compute dist(xi,xj) as Euclidean distance between

the inputs, potentially in a transformed input space (see Sec-

tion 2.6 for more details). The conditioning sets are all of

approximately size |Si| = O(ρd) ≈ m = |S|/n under mild

assumptions on the regularity of the inputs. SchÈafer et al.

(2021a) proved that an ϵ-accurate approximation of the prior

can be obtained using Sp = S with ρ = O(log(n/ϵ)) for
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li

(a) i = n− 12 (b) i = n− 100 (c) i = n− 289

Figure 2. Reverse maximin ordering on a grid (small gray dots) of size n = 60× 60 = 3,600 on a square. For three different indices i,

we show the ith ordered input (▲), the subsequently ordered n− i inputs (�), the distance ℓi to the nearest neighbor (−), the neighboring

subsequent inputs Si (■) within a (yellow) circle of radius ρℓi (here, ρ = 2), the reduced ancestors Ãi (+), and the ancestors Ai (×).

kernels K that are Green’s functions of elliptic boundary-

value problems (similar to MatÂern kernels up to bound-

ary effects) and demonstrated high numerical accuracy of

the posterior using Sq = S for Gaussian likelihoods. For

non-Gaussian likelihoods, this implies highly accurate ap-

proximations to the posterior when a second-order Taylor

expansion can adequately approximate the posterior.

While this means that our DKLGP can achieve high accu-

racy by choosing Sp = Sq = S, the resulting ancestor

sets can grow roughly linearly with n (e.g., see Figure 3a).

Hence, even evaluating the ELBO based on the ancestor sets

would often be prohibitively expensive for large n. How-

ever, it is possible to ignore most ancestors in (7) and only

incur a small approximation error. Specifically, consider

reduced ancestor sets Ãi = {j ≥ i : dist(xi,xj) ≤ ρℓj},

where the last subscript is now a j, not an i. As illustrated in

Figure 2, we have Si ⊂ Ãi (because ℓj ≥ ℓi for j ≥ i) and

approximately Ãi ⊂ Ai. The reduced ancestor sets are of

size |Ãi| = O(ρd log n) = O(m log n) and can all be com-

puted together in O(nm log2 n) time (SchÈafer et al., 2021b).

Hence, reduced ancestor sets can be orders of magnitude

smaller than full ancestor sets (see Figures 3a and 6).

Claim 2.4. For MatÂern-type LGPs with exponential-family

likelihoods, (V−1L̂:,i)j ≈ 0 for all j /∈ Ãi, where V mini-

mizes the ELBO in (6), under mild conditions.

We provide a non-rigorous justification for this claim in

Appendix C. Together, Proposition 2.3 and Claim 2.4 imply

that ∥V−1L̂:,i∥ ≈ ∥V−1

Ãi,Ãi

L̂Ãi,i
∥ (as illustrated in Fig-

ure 3b), and so replacing the former by the latter in the

ELBO causes negligible error (Figure 3c). Similar numer-

ical results were obtained for two other popular kernels in

Figures 7 and 8 in Appendix A, suggesting that our approach

is applicable to beyond the MatÂern family.

2.6. Optimization of the ELBO

The class of distributions Q = {Nn(ν, (VV⊤)−1) : ν ∈
R

n,V ∈ R
n×n,V ∈ Sq} has n parameters in ν and |S|

parameters in V. We propose to find the optimal q̂ ∈ Q by

minimizing our approximation of −ELBO(q) with respect

to these O(nm) unknown parameters via minibatch stochas-

tic gradient descent. For each minibatch B, this requires

computing the gradient of

∑

i∈B

(

E
q
log p(yi|fi)− ((ν − µ)⊤L̂:,i)

2/2

+ log(V−1
ii L̂ii)− ∥V−1

Ãi,Ãi

L̂Ãi,i
∥2/2

)

(8)

using automatic differentiation.

For Gaussian observations with yi|fi ∼ N (fi, τ
2
i ), we

have −2Eq log p(yi|fi) =
(

(yi − νi)
2 + ∥V−1ei∥2

)

/τ2i +
log τ2i + log 2π. For more general distributions p(yi|fi),
we can use the Monte Carlo gradient estimator (Kingma

& Welling, 2014) and approximate Eq log p(yi|fi) ≈
(1/L)

∑L
l=1 p(yi|f

(l)
i ), where f

(l)
i = νi + (V−1ei)

⊤z(l),

z(l)
iid∼ Nn(0, In), and In is the n× n identity matrix.

Evaluating each summand in (8) requires O(|Si|3) =

O(m3) time for obtaining L̂:,i and O(m2 log n) time

for solving V−1

Ãi,Ãi

L̂Ãi,i
, because |Ãi| = O(m log n).

The O(m3) cost dominates, as we typically need m =
O(logd n) for accurate approximations (SchÈafer et al.,

2021a); for example, in Figure 3a, |Ãi||Si| is smaller than

|Si|3. Also, L̂ does not need to be pre-computed and stored,

as each column L̂:,i can be computed ªon-the-flyº; this is

especially useful for hyperparameter estimation, for which

p(f) and hence L̂ changes with the hyperparameters at each

gradient-descent iteration.
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Proposition 2.5. For given ν, V, and S∗, q̂(f̃) =
Nn∗+n(f̃ |ν̃, (ṼṼ⊤)−1), where ν̃ = (ν̂∗⊤,ν⊤)⊤, Ṽ =

(V̂∗, (0,V⊤)⊤), V̂∗ = (V̂∗∗⊤, V̂o∗⊤)⊤,

V̂∗
S∗

i
,i = ci(ci,1)

−1/2, with ci = K(S∗
i ,S∗

i )
−1e1,

ν̂∗ = µ∗ − (V̂∗∗)−⊤V̂o∗⊤(ν − µ),

and µ∗ = (µ(x∗
1), . . . , µ(x

∗
n∗))⊤.

The posterior distribution of a desired summary, say a⊤f̃

can then be computed as q(a⊤f̃) = N (a⊤ν̃, ∥Ṽ−1a∥2).
In particular, the marginal posterior of f∗

i can be obtained

using a = ei as q(e⊤i f̃) = N (ν∗
i , ∥Ṽ−1ei∥2).

We again consider an r-maximin ordering and nearest-

neighbor sparsity pattern similar to above, but now con-

ditioned on the prediction points being ordered first, and

the training points ordered after (in the same ordering as

before). Once the prediction points are in this conditional

r-maximin ordering, we can define

ℓ∗i = min
i<j≤n∗

dist(x∗
i ,x

∗
j ) ∧ min

1≤j≤n
dist(x∗

i ,xj)

and

S∗
i = {j ≥ i : dist(x∗

i ,x
∗
j ) ≤ ρℓ∗i }

∪ {j + n∗ : dist(x∗
i ,xj) ≤ ρℓ∗i }.

This ordering and sparsity pattern can be computed rapidly

and was shown to lead to highly accurate approximations;

more details can be found in SchÈafer et al. (2021a, Section

4.2.1). Note that while computing the prediction variances

can be expensive, we can again approximate ∥Ṽ−1ei∥ ≈
∥Ṽ−1

Ã∗

i
,Ã∗

i

ei;Ã∗

i
∥ using a reduced ancestor set

Ã∗
i = {j ≥ i : dist(x∗

i ,x
∗
j ) ≤ ρℓ∗j}

∪ {j + n∗ : dist(x∗
i ,xj) ≤ ρℓ∗j},

where the last subscript is a j, not an i.

3. Numerical Comparisons

3.1. Experimental Setup

We compared the following approaches:

DKLGP: Our method with r-maximin ordering and

nearest-neighbor sparsity pattern

DKL-G: Same as DKLGP but with global sparsity pattern

Sp
i = Sq

i = {1, . . . ,m}
DKL-D: Same as DKLGP but with diagonal sparsity pat-

tern Sq
i = {i}

SVIGP: Stochastic variational GP proposed by Hensman

et al. (2013)

VNNGP: Variational nearest neighbor GP proposed by Wu

et al. (2022)

In figures and tables, we use abbreviated acronyms DKL,

SVI, and VNN to save space. SVIGP and VNNGP are

two state-of-the-art variational GP methods, while DKL-

G and DKL-D are variants of our DKLGP that resemble

SVIGP and VNNGP, respectively. SVIGP assumes inde-

pendence in f conditional on m global inducing variables.

VNNGP scales up the inducing points to be equal to the

observed input locations, ensuring computational feasibility

by assuming that each conditions only on m others a priori,

combined with a mean-field approximation to the posterior.

We used the GPyTorch (Gardner et al., 2018) implementa-

tions of SVIGP and VNNGP. For DKL-G and DKL-D, one

can easily see that Ai = Sp
i , and so reduced ancestor sets

are not necessary. For all methods, computing a term in the

ELBO requires O(m3) time per sample. (Reusing Cholesky

factors for all samples in a minibatch is straightforward for

SVIGP; similar savings may also be possible for the other

methods based on the supernode ideas suggested by SchÈafer

et al., 2021a.) Hence, m can be viewed as a comparable

complexity parameter that trades off computational speed

(for small m) against accuracy (large m). Thus, for our

numerical comparison, we aligned the m for all methods

with the average size of Si for a given ρ.

Throughout, we assumed f(·) ∼ GP(0,K), where K is a

MatÂern1.5 ARD kernel whose variance (set to one for simu-

lations) and range (i.e., length-scale) parameters λ were es-

timated. We considered three different likelihoods p(yi|fi):

Gaussian: yi|fi ∼ N (fi, σ
2
ϵ )

Student-t: yi|fi ∼ T2(fi, σ2
ϵ ) with 2 degrees of freedom

Bernoulli-logit: yi|fi ∼ B((1 + e−fi)−1)

The noise variance σ2
ϵ was estimated from the data; for

simulations, we used σ2
ϵ = 0.12 except where specified

otherwise.

For estimation of hyperparameters, the initial values for λ,

σ2
ϵ , and the variance in K were all 0.25. DKLGP and its

variants ran the Adam optimizer for 35 epochs. SVIGP and

VNNGP used natural gradient descent and Adam, respec-

tively, as their optimizer for 500 epochs as suggested in

Wu et al. (2022). The minibatch size was 128 and a multi-

step scheduler with a scaling factor of 0.1 was used for all

methods.

3.2. Visual Comparison in One Dimension

Figure 4 provides a visual comparison of SVIGP, VNNGP,

and DKLGP predictions for a toy example in one dimension.

We also included predictions from the exact GP (DenseGP)

which cannot be obtained for large n. DKLGP approxi-

mated the DenseGP most closely, especially in terms of
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Table 1. RMSE and NLL at held-out test points averaged over five splits for several UCI datasets, ordered from low to high dimension d.

The Student-t and Bernoulli-logit likelihoods were used for PRECIP and COVTYPE, respectively; a Gaussian likelihood was used for the

other datasets. The average sparsity-set size for DKL is denoted by m. SVI used m inducing points, while SVI32 and SVI512 used 32 and

512 points, respectively. While SVI32 and SVI512 are included for reference, they exhibit substantially higher computational complexity

and training time than the other approaches and are hence colored in grey.

3DROAD PRECIP KIN40K PROTEIN BIKE ELEVATORS KEGG KEGGU COVTYPE

n, d 65K, 3 85K, 3 40K, 8 44K, 9 17K, 17 17K, 18 16K, 20 18K, 26 100K, 53
m 2 5 7 8 12 22 19 21 3

SVI .80 .28 .91 .43 .61 .01 .81 0.29 .09 -1.85 .39 -.43 .08 -2.05 .06 -2.30 .50 NA
SVI32 .59 -.02 .83 .34 .37 -.47 .75 0.22 .06 -2.21 .39 -.45 .07 -2.16 .06 -2.29 .50 NA
SVI512 .38 -.44 .64 .11 .17 -1.2 .67 0.10 .03 -2.69 .37 -.49 .07 -2.22 .06 -2.28 .50 NA
VNN .28 2.16 .49 4.35 .56 24.19 .69 5.59 .49 7.60 .65 1.26 .13 1.22 .14 3.85 NA NA
DKL .27 -.83 .41 -.38 .37 -.55 .56 -.19 .11 -1.63 .43 -.37 .09 -1.97 .11 -2.08 .28 NA

Table 2. Comparison of wall-clock time (in seconds) for the datasets and methods in Table 1. S&A refers to computing the r-maximin

ordering, sparsity pattern and ancestor sets.

3DROAD PRECIP KIN40K PROTEIN BIKE ELEVATORS KEGG KEGGU COVTYPE

SVI 3,283 3,965 3,305 3,589 1,487 1,386 1,329 1,594 5,945
SVI32 8,879 9,207 5,460 5,941 3,082 2,952 3,159 3,387 7,722
SVI512 25,409 26,223 21,710 22,179 12,232 9,518 9,988 10,642 44,839
VNN 2,788 3,332 1,696 2,081 568 454 487 595 NA
DKL 1,591 3,948 1,859 2,736 3,129 807 1,285 1,536 4,932
S&A 90 268 2,866 440 170 577 171 207 1,277

prediction for LGPs. While the time complexity is cubic in

the number of neighbors, quadratic complexity for the prior

approximation can be achieved by grouping observations

and re-using Cholesky factors (SchÈafer et al., 2021a); we

will investigate an extension of this idea to computing the

ELBO in our variational setting. Although we here assume

that the input domain is Euclidean, our method can be ap-

plied more generally; using a correlation-based distance

instead of Euclidean distance (Kang & Katzfuss, 2023), one

can use our method to perform LGP inference for large

data on complex domains (cf. Tibo & Nielsen, 2022). We

will also explore extensions to deep GPs (cf. Sauer et al.,

2022). An implementation of our method, along with code

to reproduce all results, is publicly available at https:

//github.com/katzfuss-group/DKL-GP.

Our approach is applicable to irregularly spaced observa-

tions and in principle to any desired covariance structure.

Our method provides state-of-the-art performance when

fine-scale structure in the function of interest can be dis-

cerned from the data; in contrast, if the data are highly

noisy or sparse or the covariance model is severely misspec-

ified, inducing-point methods such as SVIGP that produce

smooth predictions and wide uncertainty intervals may be

competitive with our approach.
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By the triangle inequality, we have dist (xj ,xk) + dist (xk,xi) ≥ dist (xj ,xi). Since the right hand is −∞ unless j > i
and thus ℓj ≥ ℓi, we have thus

log
(∣

∣

∣
(AB)ji

∣

∣

∣

)

= log

(∣

∣

∣

∣

∣

∑

k

AjkBki

∣

∣

∣

∣

∣

)

⪅ log(n)− dist (xj ,xi) /ℓj ,

proving the the result.

For a general exponential family likelihood, the matrix V does not necessarily satisfy (10). Instead, according to Nickisch &

Rasmussen (2008), a quadratic approximation to the log-likelihood under mild conditions implies that

VV⊤ = L̂L̂⊤ +W−1,

where W is the covariance of the effective likelihood obtained by dividing the approximate posterior by the prior. Assuming

that W−1 corresponds to a zero-order term in the context of a PDE, one can also obtain the result from the justification for

the Gaussian likelihood case above.

Proof of Proposition 2.5. Note that p(f∗|f) = p(f̃)/p(f) = Nn∗

(

µ∗ +K∗oK−1(f − µ),K∗|o

)

, where K∗|o =

K∗∗ − K∗oK−1Ko∗, and q(f∗|f) = q(f̃)/q(f) = Nn∗

(

ν∗ − (V∗∗)−⊤Vo∗⊤(f − ν), (V∗∗V∗∗⊤)−1
)

. Then, since

KL
(

p(f∗|f)
∥

∥q(f∗|f)
)

is a KL divergence between two Gaussian distributions, we have

2KL
(

p(f∗|f)
∥

∥q(f∗|f)
)

= (Gf + h)⊤(V∗∗V∗∗⊤)(Gf + h) + 2KL
(

Nn∗

(

0,K∗|o

)
∥

∥Nn∗

(

0, (V∗∗V∗∗⊤)−1
) )

where G = −(V∗∗)−⊤Vo∗⊤ −K∗oK−1 and h = ν∗ + (V∗∗)−⊤Vo∗⊤ν −µ∗ +K∗oK−1µ. Using the fact that the first

term is quadratic in form, one can show that

E
p

[

(Gf + h)⊤(V∗∗V∗∗⊤)(Gf + h)
]

= (Gµ+ h)⊤(V∗∗V∗∗⊤)(Gµ+ h) + tr
(

(V∗∗V∗∗⊤)(GKG⊤)
)

.

Then, we can see that KL
(

p(f∗|f)
∥

∥q(f∗|f)
)

is minimized with respect to ν∗ by Gµ + h = 0. This implies that

ν̂∗ = µ∗ − (V∗∗)−⊤Vo∗⊤(ν − µ). Plugging this in, we have

argmin
V∗∈S∗

E
p

[

KL
(

p(f∗|f)
∥

∥q(f∗|f)
)

]

= argmin
V∗∈S∗

[

tr
(

V∗⊤K̃V∗
)

− log det(V∗∗V∗∗⊤)
]

= argmin
V∗∈S∗

n∗

∑

i=1

(

V∗
S∗

i
,i
⊤K̃S∗

i
,S∗

i
V∗

S∗

i
,i − 2 logV∗

i,i

)

Taking the first derivative of the summation with respect to the column vector V∗
S∗

i
,i and setting it to zero, one can show

that V̂∗
S∗

i
,i = K̃−1

S∗

i
,S∗

i
e1/V

∗
i,i. Since V∗

i,i is the first entry of V̂∗
S∗

i
,i, we can have V̂∗

S∗

i
,i = ci/

√
ci,1 where ci = K̃−1

S∗

i
,S∗

i
e1.

From the definition of S∗
i , it can be easily shown that K̃−1

S∗

i
,S∗

i
= K(S∗

i ,S∗
i )

−1.
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