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Abstract. We present a neural network approach for approximating the value function of high-
dimensional stochastic control problems. Our training process simultaneously updates our value
function estimate and identifies the part of the state space likely to be visited by optimal trajec-
tories. Our approach leverages insights from optimal control theory and the fundamental relation
between semi-linear parabolic partial differential equations and forward-backward stochastic differ-
ential equations. To focus the sampling on relevant states during neural network training, we use
the stochastic Pontryagin maximum principle (PMP) to obtain the optimal controls for the current
value function estimate. By design, our approach coincides with the method of characteristics for
the non-viscous Hamilton-Jacobi-Bellman equation arising in deterministic control problems. Our
training loss consists of a weighted sum of the objective functional of the control problem and pen-
alty terms that enforce the HJB equations along the sampled trajectories. Importantly, training is
unsupervised in that it does not require solutions of the control problem.

Our numerical experiments highlight our scheme’s ability to identify the relevant parts of the
state space and produce meaningful value estimates. Using a two-dimensional model problem, we
demonstrate the importance of the stochastic PMP to inform the sampling and compare to a fi-
nite element approach. With a nonlinear control affine quadcopter example, we illustrate that our
approach can handle complicated dynamics. For a 100-dimensional benchmark problem, we demon-
strate that our approach improves accuracy and time-to-solution and, via a modification, we show
the wider applicability of our scheme.
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1. Introduction. We consider stochastic optimal control (SOC) problems that
require finding a policy to control randomly perturbed dynamical systems to optimize
a given objective functional. Problems of this type arise in many fields, including
finance, biology, robotics, and many other engineering applications; see, for example,
[11, 37] for references and extensive theoretical discussion on SOC problems.

Dynamic programming (DP) is a prominent framework for solving SOC problems.
At its core, DP seeks to find the value function, which assigns every state of the system
the optimal cost-to-go. For many problems, recovering the optimal control from the
value function is straightforward. One way to compute the value function is by solving
the Hamilton-Jacobi-Bellman (HJB) equation [2, 40], which is a semi-linear parabolic
Partial Differential Equation (PDE). The two main challenges in solving the HJB
equations are the forward-backward structure and the high dimensionality.

The space dimension of the HJB equation equals the state dimension of the dy-
namical system to be controlled. Hence, many numerical schemes for solving PDEs
cannot be applied to realistic problem instances due to the Curse-of-Dimensionality
(CoD); for example, the computational costs of approaches that discretize the state
space with a mesh typically grow exponentially in the dimensions of the system.
Hence, the applicability of existing approaches that employ spatial discretizations
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(for example, [4, 7, 17, 21, 35, 23, 24, 35, 38]) is limited to state dimensions d f 3.
Mesh-free methods based on radial basis function methods (for example, [39]) can be
effective for slightly larger d but ultimately also suffer from CoD for d = O(100), as
we consider here.

A first requirement for mitigating the CoD in SOC problems is to alleviate the
need for spatial discretization. This can be achieved by using a nonlinear version of
the Feynman-Kac lemma and replacing the HJB equation with a system of Forward-
Backward Stochastic Differential Equations (FBSDEs); see, for example, [6, 31, 40].
Discretizing the FBSDE system using the classical Euler Maruyama scheme [20] yields
mesh-free numerical schemes that have gained importance for SOC problems and non-
linear second-order PDEs; see, for example, [3, 9, 10, 14, 28] and references therein.

A second requirement for mitigating the CoD is to parameterize the value func-
tion effectively in high dimensions. Due to their universal approximation property
and many advances in deep learning, the use of neural networks (NNs) as function
approximators has recently gathered significant attention. The idea of combining the
BSDE approach with NNs has been pioneered by the seminal works [8, 13] that use
neural networks to solve a wider class of high-dimensional semi-linear parabolic PDEs
and include a stochastic optimal control example as a special case. Around the same
time, [36] achieves similarly promising results for neural-network-based solution of
the HJB equation. These works developed learning algorithms for approximating the
value function or its gradient using the FBSDE system. Their success has sparked sev-
eral extensions that improve the NN architectures and consider other types of PDEs;
see, for example, [16, 18, 32].

Even after combining FBSDEs and deep learning, solving the HJB equation glob-
ally remains affected by the curse of dimensionality as it would require sampling the
entire state space. Fortunately, the optimal state trajectories of many SOC problems
do not cover the entire space. This motivates us to develop semi-global approaches;
that is, we seek to reliably estimate the value function in those parts of the state space
that are likely to be visited when following an optimal policy. Clearly, these tasks
are interrelated: Finding the relevant parts of the state space depends on the value
function, and, vice versa, the value function needs to be trained using samples from
the state space.

The key idea of our approach is to use the stochastic Pontryagin maximum prin-
ciple (PMP) [34] to link the sampling and the value function approximation; more
precisely, we define the forward system in the FBSDE approach in terms of the value
function. The PMP provides a set of necessary optimality conditions, known as the
Hamiltonian system, and a closed loop feedback form that allows recovering the opti-
mal control from the value function; see, for example, [40]. Our formulation is suitable
for problems where the underlying Hamiltonian can be efficiently computed, such as
those involving affine controls and convex Lagrangians with differentiable value func-
tions. As we discuss in more detail later, the choice of the forward SDE is crucial
as it is used to sample the parts of the state space along which the value function
estimate is improved using a loss that includes the backward SDE. It is worth noting
that the FBSDE framework allows choosing the forward system almost arbitrarily.
Thus, our choice is theoretically on par with the standard Brownian motion used for
exploring the state space in [13, 36]. However, as our numerical experiments suggest,
our choice of the forward dynamics enables us to solve a wider class of SOC problems;
see section 4.

A theoretical advantage of our proposed scheme over existing approaches is its
consistency with deterministic optimal control problems. In the absence of uncertainty
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in the dynamics, our approach reduces to the method of characteristics for the HJB
equation. Hence, our approach can also be seen as an extension of the neural network
approaches for deterministic optimal control proposed, for example, in [30, 22].

The rest of the paper is organized as follows: In section 2, we introduce the parts of
SOC theory used to obtain our proposed forward SDE. In section 3, we provide the NN
approach to learn the value function using the FBSDE reformulation from section 2.
Using an intuitive 2D example, we show the importance of sampling. For this low-
dimensional problem, we use a finite element approach to compare and validate our
method. To illustrate the potential of our method, we consider the 100-dimensional
benchmark problem also used in [13, 36], and propose modifications that lead to more
challenging sampling problems. We also test our method on a 12-dimensional problem
with complex nonlinear dynamics. Finally, we conclude the paper and discuss future
directions.

2. Stochastic Optimal Control Background. In this section, we describe
the stochastic optimal control (SOC) problems considered in this work and review
the key results from SOC theory that motivate our approach. Our discussion follows
[40] and we refer to this textbook for a more comprehensive background and for more
general results. We first introduce the SOC problem and then review its underly-
ing theory; to be specific, we review the stochastic Pontryagin Maximum Principle
(PMP), the Hamilton-Jacobi-Bellman (HJB) equation, and its reformulation into a
system of forward-backward stochastic differential equations (FBSDEs) obtained from
a nonlinear version of the Feynman-Kac formula.

2.1. Stochastic Optimal Control Problem. Let (Ω,F ,F = {Ft}tg0,P) be
a given complete probability space, W (s) be a d-dimensional Brownian motion on
(Ω,F ,F,P) where s denotes the time. For a fixed initial state x at some time 0 < t <
T < ∞, we seek to control the randomly perturbed dynamical system

(2.1)

{

dzt,x(s) = f(s, zt,x(s),ut,x(s, zt,x(s)))ds+ σ(s, zt,x(s))dW (s), s ∈ [t, T ],

zt,x(t) = x.

Here, zt,x : [t, T ] → R
d describes the state and ut,x : [t, T ] ×R

d → U describes the
control of the system, the function σ : [t, T ] × R

d → R
d×d represents the diffusion

coefficient, and f : [t, T ] × R
d × U → R

d represents the drift of the system. We
assume that the set of admissible controls U ¢ R

k is closed. We seek to minimize the
objective functional

(2.2) Jt,x(ut,x) = E

{

G
(

zt,x(T )
)

+

∫ T

t

L
(

s, zt,x(s),ut,x(s, zt,x(s))
)

ds

}

,

which is comprised of the running cost L : [t, T ] × R
d × U → R and the terminal

cost G : Rd → R. Here, the expectation is taken with respect to perturbances of the
dynamics (2.1) that is described by the probability measure P. We assume sufficient
regularity conditions on f , σ, G, and L, see [40, Chapter 2] for a list of assumptions.

The value function assigns the optimal cost-to-go to any initial state, that is,

(2.3) Φ(t,x) = inf
ut,x

Jt,x(ut,x),

and a solution u∗
t,x to (2.3) incurring this minimum value is called an optimal control.
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The generalized Hamiltonian, H : [t, T ] × R
d × R

d × R
d×d → R ∪ {∞}, is a

key ingredient for the SOC theory in the following sections and the backbone of our
numerical scheme. For the problem defined in (2.1) and (2.2) it reads

H(s, z,p,M) = sup
u∈U

H(s, z,p,M ,u),(2.4)

where p and M are called adjoint variables and

H(s, z,p,M ,u) =
1

2
tr (σ(s, z)M) + p · f(s, z,u)− L(s, z,u).

We assume that there exists a unique minimizer of the Hamiltonian (2.4).
To make it notationally convenient, in the rest of the paper, we drop the second

argument for the controls and denote controls by ut,x(s).

2.2. Stochastic Pontryagin Maximum Principle. The PMP provides first-
order necessary conditions for the SOC problem and also states that the optimal
control u∗

t,x must satisfy an (extended) Hamiltonian system along the optimal state
and adjoint trajectory. This is made precise by the following result from [40, Theo-
rem 3.2, Chapter 3].

Theorem 2.1. [40, Theorem 3.2, Chapter 3] Assume that (z∗
t,x,u

∗
t,x) is an opti-

mal pair that solves (2.1) and (2.2). Then there exist adjoint states pt,x : [t, T ] → R
d

and M t,x : [t, T ] → R
d×d satisfying the adjoint equation

(2.5)

{

dpt,x(s) = M t,x(s)dW (s)−∇zH
(

s, z∗
t,x(s),pt,x(s),M t,x(s),u

∗
t,x(s))ds

pt,x(T ) = −∇zG
(

z∗
t,x(T )

)

,

where s ∈ [t, T ] and the optimal control satisfies

u∗
t,x(s) = argmax

u∈U

H
(

s, z∗
t,x(s),pt,x(s),M t,x(s),u(s)

)

(2.6)

for almost all s ∈ [t, T ], P-almost surely.

We note that the optimal control defined in (2.6) only depends on the adjoint variable
pt,x but not on M t,x since σ(·, ·) does not depend on the control.

We further assume that there exists a unique continuous closed-form solution to
(2.6). Although not demonstrated in this work, this assumption can be weakened to
include implicitly defined functions as long as they can be obtained efficiently; this
allows, for example, modeling more general convex running costs.

We note that when the control satisfies (2.6), the dynamics in (2.1) is equal to

{

dz∗
t,x(s) = ∇pH

(

s, z∗
t,x(s),pt,x(s),M t,x(s),u

∗
t,x(s)

)

ds+ σ(s, z∗
t,x(s))dW (s),

z∗
t,x(t) = x.

(2.7)

The system of equations (2.5)–(2.7) is called the stochastic Hamiltonian system,
where the maximum condition (2.6) corresponds to the variational inequality for the
control.

Finding a tuple (z∗
t,x,u

∗
t,x,pt,x,M t,x) that satisfies the PMP can be extremely

difficult. However, when the value function Φ is differentiable, (pt,x,M t,x) satisfying
(2.5) can be obtained from Φ; this is formalized in the following theorem that, with
weaker assumptions, can be found in [40, Chapter 5].
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Theorem 2.2. [40, Chapter 5] Assume that u∗
t,x is an optimal control and Φ ∈

C1,3([t, T ]×R
d). Then

(2.8) pt,x(s) = −∇zΦ
(

s, z∗
t,x(s)

)

and M t,x(s)) = −σ(s, z∗
t,x(s))

¦∇2
zΦ

(

s, z∗
t,x(s)

)

solve (2.5).

Theorem 2.2 along with (2.6) collectively serve to express the optimal control as

u∗
t,x(s) = u∗

t,x

(

s, z∗
t,x(s),−∇zΦ

(

s, z∗
t,x(s)

))

.(2.9)

This relation along with (2.7) is one of the key ingredients of our numerical solution
approach. Equation (2.9) characterizes optimal control in a feedback or closed-loop
form, which is of utmost importance in many real-life applications. This is because
optimal control can be quickly computed at any given point in time and space when
the value function is known and its gradient is readily available. Thereby, avoiding
re-computation of optimal controls for cases when multiple evaluations are needed for
different times or states.

2.3. Hamilton-Jacobi-Bellman Equation. To help approximate the value
function Φ, we also use the fact that Φ satisfies the Hamilton-Jacobi-Bellman (HJB)
equation, which is a result of the Dynamic Programming (DP) method or Bellman’s
principle. We state the following result taken from [40] under suitable assumptions,
see also [33, Remark 3.4.4, Theorem 3.5.2].

Theorem 2.3. [40, Propositon 3.5, Chapter 4] Assume that the value function
Φ ∈ C1,2([t, T ]×R

d). Then Φ satisfies the HJB equation

−∂sΦ(s, z) +H
(

s,x,−∇zΦ(s, z),−σ(s, z)¦∇2
zΦ(s, z)

)

= 0, ∀(s, z) ∈ [t, T )×R
d,

Φ(T, z) = G(z).

(2.10)

The smoothness of Φ can be relaxed to continuity in the weaker sense of viscosity
solutions [40, Section 5, Chapter 4].

Using the definition of the Hamiltonian in (2.10) we get the HJB equation as the
following second-order parabolic PDE:



















−∂sΦ(s, z)−
1

2
tr(σ(s, z)σ(s, z)¦∇2

zΦ(s, z))−∇zΦ(s, z) · f(s, z,u∗)

− L(s, z,u∗) = 0, ∀ (s, z) ∈ [t, T )×R
d,

Φ(T, z) = G(z(T )).

(2.11)

In addition, by the envelope theorem, it follows that ∇pH = ∇pH and ∇MH =
∇MH. This simplifies the computation of optimal trajectories, which can now be
expressed via the value function as:











dz∗
t,x(s) = ∇pH

(

s, z∗
t,x(s),−∇zΦ

(

s, z∗
t,x(s)

)

,−σ(s, z∗
t,x(s))

¦∇2
zΦ

(

s, z∗
t,x(s)

))

ds

+ σ(s, z∗
t,x(s))dW (s),

z∗
t,x(t) = x.

(2.12)
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These modified dynamics do not explicitly involve the control, which reduces the
problem solely to the state variables. Note that in (2.12) the dependency of H on
the Hessian of the value function could be omitted because the volatility term does
not depend on the control. This idea was proposed for deterministic optimal control
problems in [30].

2.4. FBSDE Formulation. One way to avoid the need for a spatial discretiza-
tion of the HJB equation (2.11) is to use a non-linear version of Feynman-Kac for-
mula and obtain an equivalent system of stochastic differential equations. This idea
has been applied to a variety of nonlinear parabolic/elliptic PDEs; see, for example,
[1, 27, 6, 31, 33].

Our FBSDE system uses (2.12) as the forward system to sample trajectories.
Along those trajectories, we note that the solution to the HJB equation (2.11) must
satisfy the backward SDE following the Feynman-Kac formulae, see [40, Chapter 7]

{

dΦ(s, z(s)) = ∇zΦ(s, z(s))
¦σ(s, z(s)) dW (s)− L(s, z(s),u∗(s))ds,

Φ(T, z(T )) = G(z(T )).
(2.13)

It is important to stress that our choice of the forward system (2.12) is the key
difference from other existing works. For example, [13] and [36] use the standard
Brownian motion. While both of these choices lead to a valid FBSDE system for
(2.11), we advocate for including the control in the dynamics as motivated by sto-
chastic PMP (2.7). As our numerical experiments demonstrate, focusing the sampling
along optimal trajectories can lead to more accurate and efficient value function ap-
proximations.

3. Neural Network Approach. In this section, we present a neural network
framework for approximating the value function of the stochastic optimal control
problem defined by the objective functional (2.2) and dynamics (2.1). The theoretical
foundation of our framework is given by the PMP, FBSDE, and Dynamic Program-
ming as presented in the previous section. The key idea is to approximate the value
function Φ in (2.3) by a neural network and compute the control using the feedback
form (2.9). What distinguishes our framework from similar approaches such as [13, 36]
is the use of the feedback form to guide the sampling during training. Thereby we
seek to learn to explore the relevant part of the state space. We also derive and ex-
periment with various loss functions that are based on the control objective (2.2), the
BSDE (2.13), and the HJB (2.11).

3.1. Neural Network Approximation. The first building block of our frame-
work is to parameterize the value function using a neural network. Since finding
an effective network architecture for any learning task is both crucial and an open
research topic, we treat this as a modular component. Our framework can be used
with any scalar-valued neural network that takes inputs in R

d+1 as long as it is twice
differentiable with respect to its last d inputs; this is to allow computations of ∇Φ.

Among the networks we use in our numerical experiments is the multi-layer per-
ceptron (MLP) model used in [36]. As an alternative, which also satisfies the regularity
needed, we propose the residual network also used for deterministic control in [30].
The network is given by

(3.1) Φ(y;θ) = w¦NN (y;θNN ) +
1

2
y¦(A¦A)y + b¦y + c,
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with trainable weights θ = (w,θNN ,A, b, c). Here the inputs y = (s, z) ∈ R
d+1 cor-

respond to time-space, NN (y;θNN ) : Rd+1 → R
m is a neural network, and θ contains

the trainable weights: w ∈ R
m, θNN ∈ R

p , A ∈ R
γ×(d+1), b ∈ R

d+1, c∈R, where
rank γ=min(10, d + 1) limits the number of parameters in A¦A. Here, A, b, and c
model quadratic potentials, that is, linear dynamics; NN models nonlinear dynamics.
For certain experiments, we may choose to omit the quadratic potential terms A, b
and c for comparison or simplicity reasons.

In our experiments, for NN , we either use a MLP [12]

a0 = act(K0y + b0)

ai+1 = act(K i+1ai + bi+1), 0 f i f M− 2

NN (y;θNN ) = act(KMaM−1 + bM),

(3.2)

or a residual neural network (ResNet) [15]

a0 = act(K0y + b0)

ai+1 = ai + act(K i+1ai + bi+1), 0 f i f M− 2

NN (y;θNN ) = aM−1 + act(KMaM−1 + bM),

(3.3)

with neural network weights θNN=(K0, . . . ,KM , b0, . . . , bM ) where bi ∈ R
m ∀i,

K0 ∈ R
m×(d+1), and {K1, . . . ,KM} ∈ R

m×m with M being the depth of the net-
work. The choice of the element-wise nonlinearity act(·) is discussed in the respective
experiments.

3.2. Training Problem. Ideally, we would choose θ such that Φ(s, z;θ) is equal
to the value function of the control problem globally, that is, for all (s, z) ∈ [t, T ]×R

d.
Since this is known to be cursed by the dimensionality for reasonable problem sizes, we
resort to a semi-global approach, which enforces this property at randomly sampled
points in the space-time domain.

To generate samples, we first obtain initial states x ∼ ρ from some (possibly
Dirac) distribution ρ and then use an Euler Maruyama scheme with N+1 equidistant
time points s0, . . . , sN and step size ds = (T − t)/N . This yields a state trajectory
starting at z0 = x via

(3.4) zi+1 = zi + f(si, zi,ui)ds+ σ(si, zi)dW i, i = 0, . . . , N − 1

where dW i ∼ N (0, ds ·Id), and ui = u∗
t,x(si, zi) is the optimal control obtained from

the feedback, that is, form (2.6)

u∗
i ∈ argmax

u∈U

H
(

si, zi,−∇Φ(si, zi;θ),−σ(si, zi)
¦∇2Φ(si, zi;θ),u

)

.

A few comments are in place. First, it is important to note that due to the feed-
back form, the sampled trajectories depend on the parameters of the value function.
Second, the addition of this drift term, motivated by control theory, is the key dif-
ference to neural network solvers for the more general class of semi-linear elliptic
PDEs [13, 36]. Third, the drift term can also be motivated by the fact that for σ → 0,
the trajectories above approximate the characteristic curves of the non-viscous HJB
equation; thereby our SOC approach coincides with that for deterministic OC in [30].

To further simplify the notations, we omit the subscript z in ∇zΦ and ∇2
zΦ for

the rest of the paper. Furthermore, we collect the states, control, and noise along the
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discrete trajectories in (3.4) column-wise in the matrices

Z ∈ R
d×N , U ∈ R

k×N , dW ∈ R
d×N .

To learn the parameters of the neural networks in an unsupervised way (that is,
assuming neither analytic values of Φ nor optimal control trajectories), we approxi-
mately solve the minimization problem

min
θ

Ex∼ρ

{

EZ,U ,dW|x {β1P
p
BSDE(Z,U ,dW) + β2P

p
HJB(Z) + β3J(Z,U)

+β4|G(zN )− Φ(sN , zN ;θ)|p + β5|∇G(zN )−∇Φ(sN , zN ;θ)|p}} ,
(3.5)

where the terms in the objective function consist of penalty functions for violations
of the BSDE system and the HJB PDE, the control objective, and penalty terms for
the terminal condition, respectively, and are defined below. The exponent p ∈ {1, 2}
allows one to choose between different norms for the loss function. In our numerical
examples, we use p = 1 as it gives much faster convergence. The relative influence of
each term is controlled by the components of β ∈ R

5
+. Different choices of β allow

us to experiment with different learning approaches; for example, setting β1 = β4 =
β5 = 1 and β2 = β3 = 0 provides the same loss function as in [36] while β1 = 0 and
βi > 0, i ∈ {2, 3, 4, 5} gives the loss function used for deterministic OC problems
in [30].

We penalize the violation of the BSDE (2.13) via
(3.6)

PBSDE(Z,U ,dW) =

N−1
∑

i=0

|Φi+1(θ)−Φi(θ) +L(si, zi,ui)ds−∇Φi(θ)
¦σ(si, zi)dW i|

where we use the abbreviations Φi(θ) := Φ(si, zi;θ) and ∇Φi(θ) := ∇Φ(si, zi;θ).
Similarly, the HJB penalty term reads

(3.7) PHJB(Z) = ds

N
∑

i=1

|H(si, zi,−∇Φi(θ),−σ(si, zi)
¦∇2Φi(θ))− ∂sΦi(θ)|,

where ∇2Φi(θ) := ∇2Φ(si, zi; θ), ∂sΦi(θ) := ∂sΦ(si, zi; θ). Finally, we approximate
the objective functional via

J(Z,U) = G(zN ) + ds

N
∑

i=1

L(si, zi,ui).

In principle, any stochastic approximation approach can be used to approximately
solve the above optimization problem. Here, we use Adam [19] and sample a minibatch
of trajectories originating in i.i.d. samples from ρ.

3.3. Implementation. We implement and test our proposed approach in two
software environments.

To obtain a direct comparison with [36] we modify the FBSNN code accompanying
the paper. To this end, we created a publicly available fork at https://github.com/
EmoryMLIP/FBSNNs. Our two main modifications are adding the proposed drift to
the forward dynamics and adding the control objective in the training loss. Other
parameters, including the choice of neural network model, are kept unchanged.
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In order to further simplify the experimentation, we also implement our own
PyTorch code available at https://github.com/EmoryMLIP/NeuralSOC. Our imple-
mentation contains all loss terms in (3.5). We implement both sampling techniques:
pure random walk and the proposed one informed by PMP. This facilitates compar-
isons of our approach with other available methods and simplifies developing new
examples.

We tested most of our examples using either Intel Xeon E5-4627 CPU or Nvidia
P100 GPU.

4. Numerical Experiments. We test the efficacy of our proposed algorithm
on several different SOC problems. In subsection 4.1, we introduce a two-dimensional
trajectory planning problem to visualize the difference between purely random explo-
ration and our proposed sampling scheme. To illustrate the accuracy of the learned
value function, we compare it with the value function obtained by solving the corre-
sponding HJB PDE using a finite element method (FEM). The goal of this experiment
is to compare the accuracy of the neural network and FEM approximation. In sub-
section 4.2, we compare our approach to those in [8, 13] using a 100-dimensional
benchmark problem. For the original version of this problem, our method shows
faster initial convergence and time-to-solution with comparable accuracy. We modify
the terminal cost of this problem to further highlight the importance of the feedback
form in the sampling (see subsection 4.2.3). Lastly in subsection 4.3 we also test
our method on a 12-dimensional problem with nonlinear dynamics, showing that our
method generates relatively accurate solutions under complex dynamics.

4.1. 2D Trajectory Planning Problem. To visualize the behavior of our
PMP-based sampling approach, we consider a two-dimensional test problem.

The problem consists of planning an optimal trajectory from the initial state
x ∼ ρ = N ((−1.5,−1.5)¦, 0.4 · I2) to the target xtarget = (1.5, 1.5)¦. To make the
problem interesting, a hill is placed at the origin, denoted by Q(z), which adds height-
dependent cost for traveling around that region. In our experiments, Q(z) is defined
by a two-dimensional Gaussian density with mean zero and covariance of 0.4·I2 scaled
by a factor of 50.

The dynamics for the problem read

(4.1) f(s, z,u) = u and σ =

[

0.2 −0.4
−0.4 0.2

]

.

The choice of non-scalar σ adds to the complexity of the problem by changing the
behavior of the standard Brownian motion, see Figure 1.

The running cost and terminal cost of the problem are given, respectively, by

(4.2) L(s, z,u) =
1

2
∥u∥2 +Q(z) and G(z) = 50 · ∥z − xtarget∥2.

The corresponding HJB equation is

(4.3a) ∂sΦ(s, z) +
1

2
tr(σσ¦∇2Φ(s, z))− 1

2
∥∇Φ(s, z)∥2 +Q(z) = 0.

with terminal condition

(4.3b) Φ(T, z) = G(z).



10 X. LI, D. VERMA AND L. RUTHOTTO

Fig. 1: Action of σ in (4.1) on standard Gaussian distribution (Left) warps it diago-
nally (Right). This would affect the solution of the problem.

4.1.1. Finite Element Method. Since it is not obvious how to solve the HJB
equation (4.3) analytically, we approximately solve it using a finite element method
(FEM) to obtain a baseline for this problem.

We approximate the value function by solving the HJB PDE (4.3) on the domain
Ω = [−3, 3]× [−3, 3] with homogeneous Neumann boundary conditions,

∂Φ

∂n̂
(s, z) = 0, on ∂Ω, ∀s < T,

where n̂ denotes the unit normal vector. Since the diffusion coefficient σ is inde-
pendent of time and space, tr(σσ¦∇2Φ(s, z)) = div(σσ¦∇Φ(s, z)), which we use to
derive a weak form of the PDE. Using the implicit Euler discretization in time on a
partition of [0, T ] into N sub-intervals with uniform step size, ds, yields

Φn+1 − Φn

ds
+

1

2
div(σσ¦∇Φn)−

1

2
∥∇Φn∥2 +Q = 0, n = N,N − 1, . . . , 0,

where Φn denotes the approximated solution Φ(tn, ·), at tn = n ·ds and ΦN+1 = G(·).
Then, using Green’s formula, the weak problem at the n-th time step consists of
finding Φn ∈ H1(Ω) such that

∫

Ω

(Φn+1 − Φn)vdz − ds
1

2

∫

Ω

σσ¦∇Φn · ∇vdz + ds

∫

Ω

(

Q− 1

2
∥∇Φn)∥2

)

vdz = 0,

for all test functions v ∈ H1(Ω). Here, H1(Ω) denotes the Hilbert Sobolev space
defined by H1(Ω) = {v ∈ L2(Ω)|∇v ∈ L2(Ω)}.

To solve the weak problem we use FEniCS [25], we create a triangular mesh for
Ω and use P1 Lagrange finite elements to discretize Φ in space. We discretize Ω
using 150 mesh points in each dimension, summing up to a total of 22,500 degrees
of freedom, and use the step-size of ds = 0.001 in time. At each time step, we use
Newton’s method to solve for Φn, with relative error and absolute error tolerance for
the solver set to 10−6 and 10−10, respectively. We denote the FEM solution by ΦFEM.

In Figure 2 we plot the solution ΦFEM as well as the optimal control policy
at initial time s = 0 obtained via the feedback form. We also present trajectories
originating from some randomly chosen initial states following the optimal policy. As
expected, the trajectories travel from the initial points to the target while avoiding
the obstacle in the center of the domain.
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Fig. 2: Results of the two-dimensional test problem. Left: Value function approxima-
tion ΦFEM(0, ·). Middle: Quiver plot of optimal controls at s = 0. Right: Trajectories
generated from randomly chosen initial states.

In Table 2, we evaluate the control objective, J , for some fixed initial state. We
notice that the estimated value matches with ΦFEM(0), suggesting that the FEM
solution is an accurate approximation of the true Φ. It is also worth pointing out that
FEM is sufficient for the 2D parabolic equation we have here since a variational form
is explicitly available. However for problems without a easily accessible variational
form, one may want to resort to methods in [5, 23] for true solutions.

4.1.2. Neural Network Approach. For the problem defined in (4.1) and (4.2),
the forward SDE (3.4) simplifies to

(4.4) zi+1 = zi −∇Φ(si, zi)ds+ σdW i.

Following our proposed method in (3.1), we approximate the value function using
a three-layer residual neural network with 32 neurons per layer. We do not include
the quadratic terms in the network for this experiment since the simpler structure
was already sufficient for solving this problem. Overall, the model consists of 1,217
trainable parameters. We choose tanh as the activation function for all but the final
layer of the network, the final layer does not have an activation function. We use
the penalty parameters β = (1.0.1.0, 1.0, 1.0, 0.0), that is, we enable both the penalty
terms, PBSDE and PHJB in (3.5). To approximately solve (3.5) we use a total of 6,000
steps of the Adam optimizer with a batch size of 64. We start with a learning rate of
0.01 and divide it by 10 every 1800 iterations. The average cost per iteration is about
0.22s using an NVIDIA P100 GPU. Note that for the chosen σ in (4.1) full Hessian
information of the value function, ∇2Φ, is required to calculate PHJB. To this end, we
use the efficient implementation in the package hessQuik [29]. We refer to the neural
network approximated solution as ΦNN in the following sections. We also notice that
sampling the initial states from a slightly larger area during training often helps the
robustness of the learned model. Given the stochastic nature of the problem and the
random initialization of neural network weights, each training sequence can produce
a slightly different model. To account for this, we repeat the training ten times and

obtain neural network approximations of the value functions Φ
(j)
NN, where 1 f j f 10.

We compare the resulting models to the FEM solution in the next section.
To gain more insight into the sampling, we store all states visited during training

and plot them as two-dimensional histograms for different time points (left to right)
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(a) Training samples with pure random walk as FSDE as also used in [13] and [36].

(b) Training samples with PMP-based drift term.

Fig. 3: We visualize training samples of a pure random walk sampler (top row) and
our proposed PMP-based sampler (bottom row) for the two-dimensional test problem.
At six time points (left to right), we visualize the sampled states as two-dimensional
histograms. As expected, the pure random walk explores the area around the initial
state in all (even suboptimal) directions, while the proposed approach learns to sample
around approximately optimal trajectories.

in Figure 3. We compare the proposed PMP-based sampling (Figure 3b) to the purely
noisy dynamics (Figure 3a), that is, without drift, as used in [13, 36]. As expected,
the use of purely noisy dynamics leads to the sampling of points only around the
initial states in all (even sub-optimal) directions with almost no samples close to the
target. On the other hand, with the use of drift term, the sampled states visit the
paths between the initial and target states.

Another way to interpret the histogram plots in Figure 3 is by observing the
semi-global nature of our neural network approach for SOC problems. Since the loss
function in (3.5) penalizes the HJB and BSDE losses in a neighborhood of points
sampled using the forward SDE, one would expect the trained model to be more
reliable in regions that are frequently visited.

4.1.3. Comparison. In this subsection, we compare the neural network models

Φ
(1)
NN, . . . ,Φ

(10)
NN and ΦFEM along the approximately optimal trajectories. Specifically,

we randomly sample initial states from ρ and simulate the trajectories using the
trained models. We believe that this approach enables a meaningful comparison since
the training procedure focuses on those parts of the state space visited by the trajec-
tories and hence the neural networks approximate the value function semi-globally.

For each trained model, we record all the sampled states visited at times s ∈
{0, 0.5, 0.9} while following the corresponding learned policy. We then compare the
learned value functions Φj

NN with the reference solution ΦFEM at all these points. In
Figure 4, we plot the comparison for times s ∈ {0, 0.5, 0.9} along the rows. The first,

second, and fourth columns represent Φ
(1)
NN, Φ

(2
NN), and ΦFEM at the sampled points,

respectively. We observe that value function estimates look similar. The third column
shows the average of the ten learned value functions obtained from the ten training
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Φ
1

NN

s
=
0

s
=
0
.5

s
=
0
.9

Φ
2

NN
ΦNN mean ΦFEM errors mean

Fig. 4: Comparison between learned value function (First 3 columns, including both
individual model and model average) and the FEM solution (fourth column) at differ-
ent time shots s = 0, 0.5 and 0.9. From the errors (fifth column), the neural network
solution matches the FEM solution closely over the sampled region.

sequences. Lastly, the last column displays the average absolute mean errors between
the learned value functions and ΦFEM.

In Table 1, we compare mean of the absolute and relative errors between ΦFEM

and Φ
(j)
NN, 1 f j f 10, across the sampled points shown in Figure 4 for all ten trained

models, computed via

(4.5) AE(s) =
1

nsamples × nmodels

nsamples
∑

i=1

nmodels
∑

j=1

∣

∣

∣
Φ

(j)
NN(s, zi)− ΦFEM(s, zi)

∣

∣

∣

and

(4.6) RE(s) =
1

nsamples × nmodels

nsamples
∑

i=1

nmodels
∑

j=1

∣

∣

∣
Φ

(j)
NN(s, zi)− ΦFEM(s, zi)

∣

∣

∣

|ΦFEM(s, zi)|
.

Our observations indicate that the relative error is smallest at the initial time and
increases over time, while the average absolute error remains fairly constant across
all states and time intervals. One possible explanation is that we include the con-
trol objective, J , in the training loss function. Furthermore, the errors across all
the trained models display a relatively low standard deviation, indicating that our
proposed training scheme is robust to random initialization.

In Table 2, we compare the value function approximation for one of the trained

models, Φ
(1)
NN, to the value of the control objective, J(−∇ΦNN), at the initial state

x = (−1.5,−1.5)¦ and time t = 0. Since the system dynamics are stochastic, we
generate 12, 000 trajectories starting from x using the learned feedback control to
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Time snapshot s = 0 s = 0.5 s = 0.9

AE (mean ± std) 0.31± 0.17 0.47± 0.44 0.17± 0.18

RE (mean ± std) 0.02± 0.01 0.06± 0.06 0.15± 0.17

Table 1: Average absolute and relative error between Φ
(1)
NN, . . . ,Φ

(10)
NN and ΦFEM across

all sampled points at different time steps.

Initial state ΦFEM(0) ΦNN(0) JFEM JNN

xinit = (−1.5,−1.5)¦ 14.67 14.48 14.68 15.33

Table 2: Discrepancy between the value function Φ and the control objective J at
some initial state.

calculate the control objective J for each trajectory. We then use the sample average
as a proxy for the expected value. We use a finer step size of ds = 0.005 than
the one used in training to get an accurate approximation. We observe that the
discrepancy between the value estimate and the actual cost is almost negligible for
the FEM solution. For the neural network approximation, the value estimate is about
4% smaller than the actual control objective, which indicates that the value estimates
can be overly optimistic.

On the hardware used for our experiments, both approaches showed comparable
time-to-solution. The neural network training took approximately 20 minutes using
the GPU, while the FEM solution was obtained in roughly one hour using the CPU.
However, the FEM approach requires a computational mesh, making it infeasible for
d > 4, which is the primary use case for our proposed method.

4.2. 100-dimensional example. We consider the 100-dimensional benchmark
SOC problem also used in [8, 13] with initial state x = (0, 0, . . . , 0)¦ ∈ R

100 corre-
sponding to time t = 0. The drift and diffusion of the system are given by

f(s, z,u) = 2u and σ =
√
2,

respectively. The terminal and Lagrangian cost are

G(z) = ln

(

1 + ∥z∥2
2

)

, and L(s, z,u) = ∥u∥2,(4.7)

respectively. We compute the Hamiltonian (2.4) as

H(s, z,p,M) = sup
u∈U

{σ

2
tr (M) + p · f(s, z,u)− L(s, z,u)

}

= sup
u∈U

{

1√
2
tr (M) + p · 2u− ∥u∥2

}

Using the first-order necessary condition we get

0 = 2u− 2p =⇒ u = p,
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and using this closed form for u, the Hamiltonian is given by

H(s, z,p,M) =
1√
2
tr (M) + ∥p∥2.

Hence, the HJB equation satisfied by the value function, Φ(·, ·), reads

(4.8)
∂

∂s
Φ(s, z) + ∆Φ(s, z)− ∥∇Φ(s, z)∥2 = 0, Φ(T, z) = G(z).

and its solution is given by

(4.9) Φ(s, z) = − ln
(

E

(

exp
(

−G
(

z +
√
2 dW (T − s)

))))

,

which we use to test the performance of our method.
Finally, we note that the forward SDE (3.4) we propose to use for sampling the

state space simplifies to

(4.10) zi+1 = zi − 2∇zΦ(si, zi)ds+
√
2dW i.

4.2.1. The importance of sampling. To demonstrate the impact of using the
feedback form to sample the state space, we use the same neural network model as
in [36], which is given by a five-layer feed-forward neural network with 256 neurons
per hidden layer to approximate the solution Φ(s, z). We partition the time interval
[0, 1] using 50 uniformly spaced points. We use the same penalty parameters as in the
original code, that is, β = (1, 0, 20, 1, 1). We use the Adam optimizer [19] to update
the parameters of the network with a batch size of 64 using 50,000 iterations. The
average cost per 100 iterations was 27s using the CPU. For the following experiments,
we use (3.5) excluding PHJB penalty and compare our method with FBSNNs in [36].

Method
20k iterations
RE RE0

50k iterations
RE RE0

FBSNN 0.54% 0.12% 0.39% 0.045%

Ours 0.48% 0.0083% 0.39% 0.012%

Table 3: Relative errors for (4.8) obtained using our method and method in [36]

In Figure 5 we plot the exact solution (black-dashed line) (4.9), the learned so-
lution using our approach (blue-solid line) and the solution learned using FBSNNs
(red-solid line) along five random trajectories. In the top row, we present the results
obtained after training the networks for 20,000 iterations with a learning rate of 10−3

and the bottom row presents the results after training the networks for 20K and 30K
iterations with learning rates 10−3 and 10−4, respectively. These results suggest that
our approach approximates the value function better, especially in early iterations, as
compared to the FBSNNs.

In Table 3, we also compare the learned solutions to the exact solution Φ in (4.9)
by computing the average relative errors,

RE =
∥Φ(·, ·;θ)− Φ(·, ·)∥2

∥Φ∥2
, RE0 =

|Φ(0, z(0);θ)− Φ(0, z(0))|
|Φ(0, z(0))| ,

for ten random trajectories. Our method attains lower errors, especially for the initial
values and at the earlier iterations.
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Fig. 5: Solution to (4.8) obtained using our method (left column) and the method in
[36] (right column)

4.2.2. Initial states from a distribution. We demonstrate the versatility of
our method beyond fixed initial states, especially in addressing input states following
a given distribution. Specifically, we sample x from a distribution ρ = N (0, 0.5 ·
I100). We repeat the training process with 20k iterations, maintaining the same
hyperparameters, but increasing the batch size to 512 from 64 and choosing β3 = 50.
In Figure 6, we present the mean and variance of the relative errors of the errors
relative to (4.9) in the learned value function for ten random trajectories. As expected
to the higher complexity of the problem, the maximum relative error over the time
interval increased to 1.5%, which is slightly larger than in the original problem.

4.2.3. Shifted target. In the example above, the minimizer of the terminal
function coincides with the initial state x = (0, 0, . . . , 0)¦. Therefore, even a random
walk without drift (as used in [36, 13]) will sample around the optimal terminal state,
which is critical to accurately approximate the value function. This also means that
after training using our approach, the drift term in the sampler is relatively small and
that the above experiment does not fully show the advantages of our method.
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Fig. 6: Mean and variance of the errors relative to (4.9) in the learned value function
for ten random trajectories obtained by sampling initial states from a distribution
using our method after 20k iteration.

To shed more light on the importance of sampling, we modify the terminal cost
to

G(z) = 1000 ln

(

1 + ∥z − ztarget∥2
2

)

,

with ztarget = (3, 3, . . . , 3)T , so that the target for the state variable z at final time T
no longer coincides with the initial state. Similar to the two-dimensional test problem
in subsection 4.1, solving the modified problem now requires sampling around the
target and we expect to benefit from the added drift term.

We compare our method to FBSNNs on the modified problem keeping the same

network structure and hyper-parameters. We use a smaller σ = 2
√
2

5 to improve
training speed. We evaluate the performance of the methods using the objective
functional J defined in (2.2) at the control obtained from the feedback form via the
respective value function approximations. For this experiment, we use a GPU to train
and the results of this comparison are shown in Figure 7.

To reduce the effect of the Brownian motion, we run the experiments for each
method on the same problem five times and plot the average values corresponding to
training iterations. Furthermore, since the primary goal for this example is to explore
the difference between sampling strategies, we select much higher weights for the
control objective such that we have faster initial convergence for the control variable.

As can be seen in Figure 7 (left), our method not only yields faster initial con-
vergence but also achieves a considerably lower control objective. This indicates that
the controls obtained from our approach are more effective, that is, they are closer
to optimal. It is also worth pointing out that due to the high terminal cost we as-
signed when designing the problem, it takes very few iterations to locate the correct
state-time region that the optimal solution resides in. Since FBSNNs use a Brownian
motion with no drift, the sampling is unlikely to discover the target. Consequently,
the generated trajectories in Figure 7 (right) from our method approximately reach
the target, while the trajectories obtained from the FBSNN method stay closer to the
initial state. Do note additional hyperparameter tuning and training will be needed
if one aims to solve the underlying HJB equation accurately as well.
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Fig. 7: Computational results for the modified 100-dimensional benchmark problem
in subsection 4.2.3. Left: Control objective for both methods given the same ini-
tial state, the blue line represents results using FBSNNs in [36], and the orange line
denotes our method. Right: Trajectory examples generated using learned value func-
tions on two randomly selected dimensions. The orange line represents our method
and blue line FBSNNs.

4.3. Quadcopter Problem with Nonlinear Dynamics. We test our pro-
posed method’s ability to deal with nonlinear dynamics using the stochastic version
of the quadcopter trajectory planning problem also considered in [26, 30]. We sample
initial states from a Gaussian distribution centered at x = [−1.5,−1.5,−1.5, 0, . . . , 0]¦

and set xtarget = [2, 2, 2, 0, . . . , 0]¦. Here d = 12, given the state variable z =
[z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12]

¦ the dynamics read

f(s, z,u) =






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


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





z7

z8

z9

z10

z11

z12
u1

m
f7(z4, z5, z6) =

u1

m
(sin(z4) sin(z6) + cos(z4) sin(z5) cos(z6))

u1

m
f8(z4, z5, z6) =

u1

m
(− cos(z4) sin(z6) + sin(z4) sin(z5) cos(z6))

u1

m
f9(z5, z6)− g =

u1

m
(cos(z5) cos(z6))− g

u2

u3

u4

The controls for the problem are u = [u1, u2, u3, u4]
¦ ∈ R

4. We assume that both
the mass m and gravity g are given. The control objective encompasses L(u(s, z)) =
2 + ∥u(s, z)∥2, and G(z(T )) = 2500 · ∥z(T ) − xtarget∥2. The feedback form with
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Fig. 8: Flight path examples using the learned controller. The target is depicted by
a red cross.

J at x evaluated at σ = 0.2 evaluated at σ = 0
Deterministic Model 9.33× 103 2.18× 103

Our Model 3.34× 103 -
Accurate J (deterministic) - 2.18× 103

Table 4: Approximated control objective J for initial state x =
[−1.5,−1.5,−1.5, 0, . . . , 0]¦. Note the deterministic solution is trained with
σ = 0 while ours with σ = 0.2. Value for the accurate solution comes from [30].

respect to Φ for this problem takes the form:

u1 =
−1

2m

(

f7
∂Φ

∂z7
+ f8

∂Φ

∂z8
+ f9

∂Φ

∂z9

)

,

u2 = −1

2

∂Φ

∂z10
, u3 = −1

2

∂Φ

∂z11
, u4 = −1

2

∂Φ

∂z12
.

The HJB equation and BSDE can be derived using the feedback form accordingly
under section 2. We choose σ = 0.2 for the problem.

We use the network in (3.1) featuring two layers and 128 neurons per layer for
the ResNet. The penalty term is β = (0.1, 0.1, 1.0, 0.1, 0.1). We train the network
using 6000 iterations of Adam with a batch size of 128. The learning rate initiates at
0.01 and is halved every 1600 iterations. Since the dynamics in this example is more
complex, we discretize the SDE with 100 equidistant steps between t = 0 and T = 1
to enhance accuracy. On average, every training iteration took around 2 seconds on
the GPU.

The visualization of the trained policy in Figure 8 shows that the flight trajectories
reach the given target from various starting points. While we are not aware of an
analytical solution to the problem, we compare the performance of our policy to the
pre-trained policy from [30], which is trained for the deterministic problem instance.
For each policy, we compute the average value of the control objective over 15,000
randomly chosen trajectories, each using 200 time steps and report the results in
Table 4. As to be expected, while the deterministic solution works well for σ = 0,
its performance drops notably when the objective is evaluated with σ = 0.2. Since
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the stochasticity of the dynamics is taken into account during training, our model
performs better in this case.

5. Discussion. We propose a neural network approach for approximately solving
Hamilton-Jacobi-Bellman PDEs arising in high-dimensional stochastic optimal con-
trol. Similar to existing approaches [36, 13], we parameterize the value function with
a neural network and experiment with different losses to train the network weights.
What sets our work apart from these works is the use of feedback form given by the
stochastic Pontryagin maximum principle to design the forward SDE used to explore
the state space during training.

Using an intuitive two-dimensional test problem, we visualize that the improved
sampling strategy allows us to effectively learn the value function and determine
the relevant regions of the state space; see subsection 4.1. Based on this insight,
we modify the 100-dimensional test problem also used in [36, 13] by shifting the
minimizer of the terminal costs; see subsection 4.2.3. Thereby, we demonstrate that
our proposed method dramatically improves the quality of the obtained control. Using
a 12-dimensional quadcopter example whose dynamic is nonlinear in the states, we
also demonstrate that our model can handle complicated dynamics; see subsection 4.3.

Hyperparameter tuning is crucial in training any neural network model. In our
case, choosing different weights for different penalties in the loss function can result in
varying outcomes. In our experiments, we found that including the control objective,
J , in the training loss is crucial to obtaining accurate results. Without this term,
we encountered examples where the optimal paths can not be recovered correctly
despite having a lower PHJB loss. One possible cause is that the sampling trajectories,
which are also used to compute PHJB, do not effectively identify the relevant regions
of the state space. One heuristic we found effective was to use a relatively large
weight for the control objective J , especially at the beginning of the training. Once
the control objective is sufficiently small, we suggest experimenting with the weights
corresponding to PBSDE and PHJB.

Our numerical experiments also show that the modified forward SDE and the
control objective can lead to faster initial convergence compared to the approaches
in [36, 13] (see subsection 4.2).

We refer to our method as a semi-global method for solving the HJB equation
since we do not aim at estimating the value function accurately globally. Instead, we
seek to approximate the value function well for states likely to be visited by optimal
trajectories of the SOC problem. In theory, any point in the state space has a positive
probability of being visited due to the stochasticity in the dynamics. However, the
histogram plots in Figure 3 suggest that the density of the optimal trajectory is
concentrated in a small subset of the state space. Therefore, focusing the exploration
on these subsets may have practical advantages over FSDEs that are pure random
walks.

Another benefit of our proposed forward SDE compared to purely random ex-
ploration is that it coincides with the characteristic curves of the HJB equation as
the stochasticity of the system is reduced. Therefore, our work can be seen as an
extension of the neural network approaches for deterministic control problems in [30].

Compared to neural network approaches for semi-linear elliptic/parabolic PDEs
such as [36, 13] it is important to highlight that our approach is limited to HJB
equations arising in stochastic optimal control. Since our forward SDE is derived
from optimality principles, extending it to other high-dimensional PDEs (for example,
Black Scholes and Allen Cahan equations) is not obvious and may be impossible.
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In future work, we will apply our approach to problems with non-constant and
non-scalar diffusion coefficients. Although the theoretical framework supports this,
we are not aware of any practical algorithms for this case. Since some SOC problems
lead to non-smooth value functions and may include noise terms that depend on the
control, testing our scheme on these problems is also a possible extension of our work.
To overcome the challenge of efficiently computing Hessians of the value function
needed for more general HJB penalties, one can use the hessQuik package [29].
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