Alternating Minimization for Regression with Tropical Rational
Functions

Alex Dunbar* Lars Ruthotto!

Abstract

We propose an alternating minimization heuristic for regression over the space of tropical rational
functions with fixed exponents. The method alternates between fitting the numerator and denominator
terms via tropical polynomial regression, which is known to admit a closed form solution. We demonstrate
the behavior of the alternating minimization method experimentally. Experiments demonstrate that the
heuristic provides a reasonable approximation of the input data. Our work is motivated by applications
to ReLLU neural networks, a popular class of network architectures in the machine learning community
which are closely related to tropical rational functions.

1 Introduction

Tropical algebra uses a semiring structure on R U {—oo} where the tropical sum of two elements is their
maximum and tropical multiplication is standard addition. In this setting, n-variable tropical polynomials
are functions that are the pointwise maximum of finitely many affine functions with slopes in a finite set
W C Z%,. Such functions are piecewise linear and convex. Tropical rational functions are the standard
difference between two tropical polynomials and therefore continuous piecewise linear functions.

In this paper, we are interested in fitting tropical rational functions to data and developing a numerical
method for solving regression problems for this function class. Specifically, we consider the £*° regression
problem over tropical rational functions with exponents in a fixed finite set W = {W(l), w® ,W(D)} -
Z%: Given a dataset D = {(x(V),yM)), (x?,y@) . (x™) 4N} CR" x R, find

maxi<i<p (<W(i)7x(1)> +pz‘) maxi<;<p (<W(i)7x(1)> + Qi) y(l)
max; <;<p ((w¥,x?) + p;) max; <;<p ((w¥,x®) + ¢;) y?
arg min o) - o) - .) (1)
P.q : : :
maxi<;<p ((W(i)’X(N)> + pi) maxi<;<p (<W(i)aX(N)> + i) y o
where the coefficient vectors p = [pl P2 ... pD]—r and q = [ql q2 ... qD]T define the tropical

polynomials p(x) = maxi<;<p ((w(i),x> +pi) and ¢(x) = maxi<;<p ((w(i),x> +qi), respectively. Since
optimizing both vectors simultaneously is difficult, we propose a heuristic for the solution of (1) that alter-
nates between solving the tropical polynomial regression problem of finding the optimal vector p for fixed q
and the similar problem of finding the optimal q given fixed p. Alternating methods have a rich history in
optimization; see e.g., [4, Chapter 14] for an overview and [1, 39] for applications to structured problems.
Our proposed heuristic alternates between updating p and q using results from tropical polynomial
regression; see, e.g., [2, 26, 27]. In each substep, we leverage the algebraic structure of tropical polynomials
and use the fact that the closed-form solution involves only (min-plus and max-plus) matrix-vector products
and vector addition. This renders each iteration of our heuristic computationally cheap. Geometrically,
our proposed heuristic searches the nondifferentiability locus of the ¢°° loss in a way such that the loss is
nonincreasing. In our experiments, this heuristic provides a reasonable approximation of the input data.
Problem (1) fits into the framework of piecewise linear regression. More specifically, a tropical rational
function is a difference of convex functions. Difference of convex functions are known to be widely expressive

*Department of Mathematics, Emory University, Atlanta, Georgia, USA. (alex.dunbar@emory.edu)
fDepartments of Mathematics and Computer Science, Emory University, Atlanta, Georgia, USA. (1ruthotto@emory.edu)

[15]. Piecewise linear regression problems have received some attention from the optimization community
[19, 24, 36] and have recently seen great interest from the deep learning community. In this setting, piecewise
linear functions are commonly parametrized using ReL U neural networks, functions which are expressible as
the repeated compositions of affine transformations with a ReL.U activation function o(x) = max(x, 0); see,
e.g., [3, 9, 29]. Such functions have proven to be very expressive, and the optimization problem over ReLU
networks, although being plagued by non-convexity and non-smoothness, can often be solved to a reasonable
accuracy with variants of stochastic gradient descent.

Recent work [6, 25, 43] has shown that ReLU neural networks correspond to tropical algebraic objects.
Precisely, if a function can be represented by a ReLU neural network with integral weights, then it also
has a representation as a tropical rational function [43]. This connection has been leveraged to analyze the
complexity of a neural network by counting its linear regions [6, 43], minimize trained networks [33, 34],
and extract linear regions of a trained network [38]. These works use tropical methods to better understand
the theoretical properties of neural networks. By considering regression problems over the space of tropical
rational functions, we begin to apply tropical methods to understand the training problem for ReLLU networks.
However, the exact correspondence between network architecture and the function a network represents is
poorly understood, limiting a direct translation from the tropical setting.

Piecewise linear regression utilizing a parametrization through max-plus algebra is studied in [19, 36],
where the optimization problem is interpreted through mixed integer programming. In these works, the
authors allow the set W to vary in R™ during the optimization. Our approach differs in that we fix W and
use the £°° norm as an objective function, allowing the heuristic to utilize the algebraic structure of tropical
polynomials.

Concurrent work by Krivulin [21, 22] views problem (1) in terms of two-sided tropical linear systems to
independently derive the alternating method. Specifically, the method is used to solve two-sided tropical
linear systems in [22] and applied to regression problems in [21]. In [21], the author notes that because
the error is nonincreasing and bounded below (compare with Proposition 3.1), the error at each iteration
converges to some optimal error. Additionally, [21] presents a sampling approach to choosing monomials in
numerical experiments for univariate regression problems. Our numerical experiments in Section 4 suggest
that the problem becomes substantially more difficult in higher dimensional settings.

The remainder of the paper is organized as follows: Section 2 reviews the relevant background from
tropical algebra and ReLLU neural networks. Section 3 presents the alternating algorithm for tropical regres-
sion. Section 4 details numerical experiments with tropical rational regression. Finally, Section 5 presents
concluding remarks and directions for future work.

2 Background

In this section, we review relevant background from tropical algebra, tropical polynomial regression, and
ReLU neural networks. We adopt the following notational conventions: Bold lowercase letters denote vectors
and bold uppercase letters denote matrices. If x is a vector, z; is the i*® component of x. The standard
inner product of vectors is denoted (-, -). Collections of vectors are indexed by superscripts in parentheses.
Sequences are denoted by superscripts without parentheses. The all ones vector is denoted 1.

2.1 Tropical Algebra

This section briefly recalls relevant ideas and notation from tropical algebra. A more thorough introduction
can be found in [5] and a standard reference is [23]. Tropical geometry has recently seen applications outside
of algebraic geometry in optimization and statistics [10, 18, 30, 35, 42]. The survey article [25] provides an
overview of applications of tropical geometry in machine learning.

The main object of study in tropical algebra is the tropical semiring T := (RU {—o0}, ®,®). Tropical
addition is a ® b = max(a,b) and tropical multiplication is « ® b = a + b. Tropical addition and tropical
multiplication are both associative and commutative. The multipicative identity is 0 and every finite element
a has a tropical multiplicative inverse —a. The additive identity is —oo and no element of T has an additive
inverse. Tropical exponentials are repeated tropical multiplication and denoted a®* := wa for w € Z.

Given a collection of n variables x1,xs,...,%,, we use multi-index notation to describe the tropical
monomial

cOXY = c+ (W,X) = c+wiT1 + waTa + ...+ wW,Ty.

Analogously to standard algebra, the tropical polynomials in n variables are defined as finite sums of tropical
monomials x®W. That is,

T[z1, T2,y ., Tp) = { @ Cw ©xOV

weWw

cew € T,W CZ%, ﬁnite} = {ma‘/)‘;(cw + (w,x))|ew € T,W C Z%, ﬁnite} .
> e >

The set of tropical polynomials is also a semiring with operations extending tropical addition and tropical
multiplication. Tropical polynomials are convex piecewise linear functions.
Finally, tropical rational functions are functions which are tropical quotients of tropical polynomials,

T(z1,22,...,2n) :={p(X) @ ¢(X) | p,q € Tx1,22,...,2,]} = {p(x) — ¢(xX) | p,q € T[x1,22,...,2,]}

Tropical rational functions are piecewise linear but not necessarily convex. However, they are the difference
of convex functions. For a fixed set W C ZZ,, we use T[x|w to denote the tropical polynomials with
exponents in W. Similarly, T(x)w denotes the tropical rational functions with exponents in W. When
W={weZ"0<w; <dfori=12,...,n}, we say that functions f € T(x)w have degree d. We adopt
the notation T[x] and T(x) to emphasize the connections with commutative algebra.

Tropical Linear Algebra Many concepts from classical linear algebra over a field generalize to T”. Given
u,v € T, define vector addition as the componentwise maximum
u®v=max(u,v) ;= [max(uy,v1) max(ug,v2) -+ max(un,vy)]

For A € T and u € T", define scalar multiplication as

A@u::)\l—i—u:[ul—l—)\ ug + A - un—l—)\]T.

As in classical linear algebra, maps T" — T™ which are compatible with the vector addition and scalar
multiplication on T™ can be represented by matrix multiplication [2]. Given an m X n matrix A and a vector
u € T, mazx-plus matriz-vector multiplication is defined as

ai,1 ai,2 e a1,n U1 maxlgjgn(am + Uj)

a2.1 az .o . a2 n (75 maxlgjgn(azj + Uj)
AfBx:=| . . : LB = :

Am1 Gm2 - Gmon Uy, maxi<;<n(@m,j + ;)

We also work with the dual min-plus matriz-vector multiplication

ay1 a2 . a1,n U1 minlgjgn(al’j + ’LL]')

az;1 azgo ... Q2gq U2 mlnlgjgn(agJ + Uj)
AFH x:= 224 =

Am,1 Gm2 - Gmn Uy, ming <j<p(@m,j + ;)

In our setting, we will frequently identify a tropical polynomial g € T[x]y with its vector of coefficients
g = (gW)WGW e TIWI

Tropical Hypersurfaces In classical algebraic geometry, the zero set of a polynomial is called a hypersur-
face. The tropical analog for a tropical polynomial p € T[xy, za,...,2,] given by p(x) = maxwew ((W,x) +
Pw) is the tropical hypersurface

V(p) = {x e R" | p(x) = (W, X) + pw = (v, X) + py for some w # v € W}
= {x € R" | p is not differentiable at x.}

(a) V(p) (b) V(q) (c) X

Figure 1: The tropical hypersurfaces V(p) and V(q) and the nondifferentiability locus X of f = p — ¢ in
Example 2.1. The tropical hypersurfaces V(p) and V(q) divide R? into polyhedral regions while X divides
R? into regions which can be described as a finite union of polyhedra.

Tropical hypersurfaces can be given the structure of a polyhedral complex and the connected components
of the set R™ \ V(p) are open polyhedra. A well-known result about tropical hypersurfaces is that they are
determined by the polyhedral geometry of their coefficients; see, e.g., [23, Proposition 3.1.6].

If f =p @ ¢qis a tropical rational function, then the nondifferentiability locus of f is contained in
V(p) UV(q) and this containment can be proper.

Example 2.1. Consider the tropical polynomials p = 0® x1 G x2 and ¢ = x1 @ x5 and the tropical rational
function f=p—q¢=0d 21 x5 — 1 ® x2. Now,

V(p) = {(z1,z2) € R2|x1 =x9>00rzy=0>a00rza=0>x1}, V(g) ={(z1,22) € R2|x1 =15},

and the nondifferentiability locus of f is

X = {(33‘1,.132) S R2|J)1 =1x9 < O} U {(33‘1,.1‘2) S R2|1‘1 = 0,1‘2 < 0} U {(1‘1,1‘2) S R2|$2 = 0,1‘1 < O}

These sets are shown in Figure 1.

2.2 Weighted Lattices and Tropical Polynomial Regression

The vector addition and scalar multiplication on T" are compatible with the partial order on T™ given by
componentwise comparison. In [27], this compatibility is studied from an optimization perspective in the
framework of weighted lattices, algebraic structures where operations are compatible with partial orders.
Similar structures are discussed in detail in [8]. In [17, 26, 27, 40, 41], this framework is leveraged to
find optimal subsolutions to tropical-linear systems of equations and in particular solve tropical polynomial
regression problems. We summarize the key points in this section, closely following the presentation in [27].

The vector addition on T™ is idempotent and gives a partial order where u < v if and only if max(u,v) =
v. Similarly, the componentwise minimum gives the dual lattice structure. If h : T — T™ and g : T — T"
are two functions, then h is a dilation if h(max(u,v)) = max(h(u),h(v)), the function g is an erosion if
g(min(u,v)) = min(g(u), g(v)), and the pair (h, g) is an adjunction if h(u) < v is equivalent to u < g(v). As
an example, for an m X n matrix A, the map T™ — T™ given by A Hu is a dilation and the map T — T"
given by (—AT) B u is an erosion.

Theorem 2.1 ([27]). Given a dilation h : T™ — T™, there is a unique erosion g : T™ — T™ given by
g(v) = max{u € T"|h(u) < v}
such that (h,g) is an adjunction.

Applying Theorem 2.1 to max-plus matrix multiplication map u +— A Hu gives that the unique erosion
to make an adjunct pair is the map v — (—AT) B’ v. This follows because maxi<;<, (u; + a;;) < v; for all
1 <4 <mif and only if u; + a;; < v; for all 4, j, which happens if and only if u; < minj<;<,(v; — a;;) for
all j. So, if ABu<v,thenu< (—AT)H v.

Theorem 2.2 ([8]). Let A € T™*™ and b € T™.

o Forany/l =1,2,3,..., the optimal solution to

argmin |[ABu-—Dbl, st. ABHu<b (2)
u
isti=(—AT)H b.

o The optimal solution to

argmin ||A Bu — b« (3)
u
is 0+ 3||AB G — b|lo, where G is defined as in the previous part.

We sketch a proof of the first part of Theorem 2.2 to demonstrate how the algebraic structure on T"
interacts with optimization. In particular, we use the algebraic structure to demonstrate why the solution
to (2) is independent of .

Proof. Note that because max-plus matrix-vector multiplication is a dilation, we have that if u,v € T" are
such that u < v then ABu < ABv. Now, if u is feasible to (2), then u < (~AT)H# b = a. This
implies that A Hu < A B a < b and therefore for each component i = 1,2,...,m, it must be the case that
(b—AHu), > (b—-AHBu),. So, for any finite £ and any feasible u, |[ABu—b|; > ||[ABG - b|,. O

Theorem 2.2 allows us to solve the tropical polynomial regression problem. Given data points (x(1), (1)),
(x@, @), (xV) y(N)) € R* x R and a finite subset W = {wM w® ... wP)} C 72, set X to be the

nx D matrix with (i, j) entry X, ; = (w),x(®). This is the tropical analog of a Vandermonde matrix. Then,

if y is the vector [y(l), y@, ... 7y(N)] T, the tropical polynomial p which minimizes maxi<;<n Ip(x() —)|
is
— . ()
P9 = max (;+ (W), (1

where the vector of coefficients is
1
p=(-X")By+|[XB(-X")By) -yl (5)

Variants of Tropical Polynomial Regression In addition to the closed form solution of the tropical
regression problem in the co-norm described above, other variants of tropical polynomial regression have
been explored recently. In [17], the authors present two algorithms to solve the 2-norm max plus regression
problem. The first involves a brute force search over sparsity patterns of solution vectors and the second
involves a variant of Newton’s method. In [24], the authors present a method for convex piecewise linear
regression with the 2-norm loss which involves iteratively partitioning the input data and fitting affine
functions to each partition. Finally, in [40, 41], the authors leverage the weighted lattice framework above
to find sparse solutions to the problem (3). Specifically, the authors present a greedy algorithm to find a
sparse solution to (2) for p < co then shift the finite entries by half of the infinity norm of the residual.

2.3 Relations to ReLU Neural Networks

This section fixes notation for and briefly overviews the relationship between neural networks and tropical
algebraic objects. We closely follow the presentation in [43]. A recent survey on tropical algebraic techniques
for machine learning is [25].

An L-layer neural network with ReL U activation functions is a function v : R™ — R that can be expressed
as a composition of functions

(L) 6 (LD 6 pL=D) 6 5(L=2) 5 ... o o1 6 H1)

v=p opt,
where 0()(x) = max(x, 0) is the ReLU activation function and p(©) (x) = A®x+b® is an affine map R~ —
R™. The sequence of dimensions (n = ng,ni,na,...,nr—1,1) is called the architecture of the network

representing v. The matrix A and the vector b(®) encode the weights and bias of layer ¢, respectively.
ReLU neural networks are continuous and piecewise linear by construction. Under assumptions on the entries
of the A they can additionally be written as tropical rational functions.

Theorem 2.3 ([43]). The following classes of functions are the same

(i) Tropical rational functions
(1) Continuous piecewise linear functions with integer coefficients

(#ii) ReLU neural networks with integer weights

The authors of [43] note that if v is a neural network with nonintegral weights, then rounding weights to
rational numbers and clearing denominators gives a network with integer weights. More precisely,

Corollary 2.3.1. If v : R® — R is a ReLU neural network, then there is a real number ¢ and a tropical
rational function f € T(x1,...,x,) such that v(X) is approzimated arbitrarily closely by f(cx) for allx € R™.

Removing the integrality condition on the weights of v gives the following result:

Theorem 2.4 ([3]). If v : R™ — R is a ReLU neural network, then v is a piecewise linear function.
Conversely, if r : R™ — R is piecewise a piecewise linear function, then r can be represented as a ReLU
neural network with at most [logs(n 4+ 1)1 4+ 1 layers.

The above results suggest that, up to the scaling of the inputs, tropical rational functions and ReLU
networks describe the same class of functions. So, tropical algebra and geometry can provide an alternative
theoretical framework for understanding neural networks.

In machine learning applications, one typically fixes an architecture and optimizes over the parameters
AW and b® using a variant of stochastic gradient descent. This approach presents challenges in the
initialization of network parameters and in the choice of network architecture for a given application.

Popular network initialization methods such as those presented in [11, 16] draw initial weights indepen-
dently from distributions that depend on network architecture. These methods help with stability while
training.

An additional challenge in understanding ReLU neural networks lies in the nonuniqueness of the archi-
tecture used to represent the function v. The proof of [43, Theorem 5.4] describes one method to write
a tropical rational function f(x) = p(x) — ¢(x) as a ReLU neural network. If g and h are two tropical
polynomials represented by neural networks v and u, respectively, then

v(x) - p(x)
(98 h)(x) = o((v — W)(x)) + o(u(x)) —o(—p(x) = [1 1 —1]o u(>(<)) . ©
v

In particular, the expression (6) can be applied to the case in which g(x) = w "X+ g is a tropical monomial.
This allows us to take the maximum of two networks by adding a layer and appropriately concatenating
weight matrices in the hidden layers. In the resulting architecture, each hidden layer decreases in width. For
example, a univariate degree 15 tropical rational function f can be represented via repeated applications of
(6) as a neural network where the compositions are

R' -5 R*¥® 5 R 5 R2Z 5 RS 5 R

Here, the input space is R! because f is univariate. More generally, in a representation of an m-variate
tropical rational function, the first term in the composition is R™. While this approach gives one network
architecture representing the function v, it is not unique. In [12, 13, 14, 28, 32|, the authors investigate the
relationship between network architectures and the polyhedral geometry of the function represented by a
network v.

In section 4.5, we present a preliminary investigation into these challenges from the tropical perspective
by applying tropical rational regression as a heuristic for neural network initialization.

Algorithm 1: Alternating fit for tropical rational functions
Input: Dataset D = (x(V) y()N CR" x R,
Set of permissible exponents W = {w") w® . . w(P)} C Z%,,
Maximum number of iterations kmax
Output: Vectors p and q of coefficients of tropical polynomials p, ¢ € T[x]w such that
p(x) — g(xV) ~ 4@
Set X € RV*P to be the matrix with entries X; ; = (w@), x();
p’,q’ + —00,qq + —mean(y);
for k < k00 do
p" ¢+ argming, [XBp - XBg" "~y
q" argming [X B p* — X Bq —yl|x;
end
p % pkrﬂﬂ,x; q % qkmax

k—1

b B =R BTN VI

3 Alternating Method For Tropical Rational Regression

We adapt the polynomial regression method described in Section 2.2 to fit tropical rational functions to a
dataset. Recall that a tropical rational function is a function of the form f(x) := p(x) — ¢(x), where p and
q are tropical polynomials. So, for some finite subset W = {w) w® . . w()} C 7%,

) =p(x) —a(x) = _max (W, x)+p;) = max ((wV),x) +q).

Given a set of points x(), x(® .. xV) e R™ set X to be the matrix whose rows are indexed by
i € {1,...,N} and columns are indexed by w € W with X; ;) = (w9, x(?). Evaluation of the tropical
rational function f at the points x(*) is then given by
[FeD) fx@) e)
where p and q are the vectors of coefficients of p and ¢. Using the representation (7), it follows that we can
rewrite the problem (1) as

=XHp-XHq, (7)

arg min [[f(V) fx®@) o fx)] T —y|| —agmin|XBp-XBa-yl.. ()
fET(x)w) P.a
For fixed q, the problem argming |[XBp — (X Hq+y)|w is a tropical polynomial regression problem.
By Theorem 2.2, this problem has the analytical solution

p.(a) = (-X)® (XBa+y)+ 5 |XB (-X)& (XBa+y) - (XBa+y)]

oo "

Similarly, for fixed p, the problem arg ming |X B q — (X B p — y)| |« has the analytical solution

a.(p) = (-XT) & (XBp—y) + 3 |[X&E (X)& (XBp) - (XEp-y)||...

Moreover, these analytical solutions can be found quickly, as they rely only on max-plus and min-plus
matrix-vector products and do not need to solve a linear system. We exploit this to search over the space
of tropical rational functions by alternating between fitting the numerator polynomial and the denominator
polynomial. This method is summarized below as Algorithm 1.

While Algorithm 1 is defined for general choices of W C ZZ, our implementation takes W to be of
the form W = {(w1,ws,...,w,) € Z%, | w; < d;} for some d = (dy,da,...,d,)" € Z%,. In this case,
|W| becomes very large if d has large entries or if n is large. In [27], the authors discuss choosing W
by clustering approximated gradients from the data to reduce the number of parameters used in fitting
tropical polynomials. The choice of initialization is such that f is initialized to the constant function

f(z1,...,2,) = mean(y).

As a step towards understanding convergence properties of Algorithm 1, we show that the error at each
iteration is nonincreasing.

Proposition 3.1. The error ef = | X Bp* — X B q* — y||« is nonincreasing.
Proof. We show that ef+1 < e* for any k. By construction, p**! satisfies
IXBp* —XBq" —yllo < [XBp" —XBqg" —yllo ="
Similarly,
ek+1 — ||X =a] pk+1 _XH qk+1 _ y‘loo < ||X =3 pk-‘rl _XH qk _ ynoo
It then follows that ef+1 < eF. O

The decrease in error between iterations is bounded by a constant multiple of the norm of the update
step.

Proposition 3.2. Let n* = H [ph*! qk“]T — [p* qk]TH . Then, the change in error between iterations

o0
ek — ekt is bounded:

b — ekl < ok,
Proof. First, note that for each j =1,2,..., D,

ph—nf <pM < pbagf and ¢b —nf <@t < gb ot

Because for fixed ¢ € {1,2,...,N},

k () @y _ ok _ k_ ok () ()
j:{g‘c}ﬁD(pJHW ,x)) =1 j:g};}f’D(p n" 4w x\)),

this in turn implies that

K @) %Yy _ pk k1 () 5@ ke () 5 K
j:{r}g}ﬂ(pjﬂw X)) =1 szgga}fﬂ(p] W x)) < max(pf 4 (wx)) 4t (9)

The analogous statement holds with q* replacing p*.
Let £ € {1,2,..., N} be such that e* = [p¥(x()) — ¢*(x() — y*|. Now,

eh ==) - ¢ () =y = max M () = g) g
< pF(x) = ¢"(x9) — y O] = pFT (xO) — gF T (x 1) — O
< [p"(x1) = ¢F (x9) — P (x) + g1 (x1)]

< p"(x“) = p T (x)] + |¢" (x1) — ¢F T (xD))

O

We observe in our experiments that n* is nonincreasing, motivating its use as a stopping criterion for
Algorithm 1.

3.1 Nondifferentiability of the Loss Function

In this section, we investigate the geometry of the problem (1) by viewing the loss function as a tropical
rational function. In particular, we show that (1) always has a minimizer for which the loss function is
nondifferentiable. Moreover, the iterates produced by Algorithm 1 are always elements of the nondifferen-
tiability locus of the loss function. Finally, we discuss preliminary consequences of nondifferentiability at a
minimizer and present open problems involving the geometry of the loss function.

Proposition 3.3. The loss function
L(p,q)=|XBp-XHq-yl,
is a tropical rational function of the coefficients pj,q;, 7 =1,2,...,D.

Proof. Note that

L(p,q)=|XBp-XBa-yl
= _max | [max(px®) = g(x?) = 5@,y + ¢(x?) —plxD))]
Now, for each i = 1,2,..., N, the evaluation map on T[x]y which sends g — g(x(i)) is tropically linear in

the coefficients g;. In particular, for each i = 1,2, ..., N, both p(x(?) —g(x®) —y® and y® +¢(x(?) —p(x?)
are tropical rational functions of the parameters p;, g;. Because the set of tropical rational functions is closed
under tropical addition, this implies that £(p,q) is a tropical rational function. O

Proposition 3.3 allows us to use the polyhedral geometry of tropical hypersurfaces to study the geometry
of the optimization problem (1).

Proposition 3.4. There is an optimal solution to (1). Moreover, there is an optimal solution (p*,q*) such
that VL(p*,q*) does not exist.

Proof. By Proposition 3.3, there are tropical polynomials g, h in 2D indeterminates such that

L(p,q) = g(p,q) — h(p, q).

Note that the tropical polynomials g and h each depend on the coefficients of both p and q and are, therefore,
polynomials in 2D indeterminates. The nondifferentiability locus of £ is a subset of X = V(g) UV(h) C R?P.
There are finitely many connected components of R?? \ 3, each of which are open polyhedra. Label these
polyhedra A;, Ao, ..., As.

For the first claim, note that £ is linear on cl(A;) for each i = 1,2,...,s. Because L(p,q) > 0 for all
(p,q) € R2WI the restriction of £ to cl(A;) achieves a minimum value z; on cl(4;). Then £ achieves the
minimum value z = min;— 2 .

For the second claim, note that the restriction of £ to cl(A;) achieves its minimum on the boundary dA4;
for each i = 1,2...,s. So, there must be an optimal solution in ¥ = U$_,;0A;. Let (p,q) be an optimal
solution in 3 such that VL(p, q) exists. By the hypothesis that (p,q) is an optimal solution, it is necessary
that VL(p,q) = 0. Relabeling the A; if necessary, let Ay, ..., A; be such that (p,q) € N¥_;cl(A;). Because
L is linear on each A;, it must be the case that VL|4, = 0 for each ¢. This implies that every point in
A = UF_cl(4;) is a minimizer of £. Set B to be the smallest connected subset containing A on which £
is minimized. Note that B = U’_,cl(A;) where r > k. If B # R?P then there is a point (p*,q*) on the
boundary of B where VL does not exist. Otherwise, B = R?? and therefore £ is constant. However, £
cannot be constant because for fixed w/) € W, fixed q, and fixed p, for r # j,

_ @) x4 p, — @) xD) 1) — y@| = p; —
Llp @)= max Hw,x)+p;— max (W, x)+q;) -y =p; —C

for some constant C' for sufficiently large values of p;. O

There are problems for which every optimal solution is in the nondifferentiability locus of L.

Example 3.1. Consider the problem with D = {(0,0)}, W = {0} C Z. A tropical rational function with
W as its support is
f(@) = po — qo-

The minimum of £ is 0, achieved on the line span{(1,1)}. However, along this line, the loss is

L(po, q0) = ||po — qollsc = [P0 — qol
so that VL(pg, go) does not exist when py = qq.

Algorithm 1 produces iterates in the nondifferentiablity locus of L.

Theorem 3.5. The gradient VL(p*, q") does not exist, where p* and q* are defined as in Algorithm 1 and
k>1.

Proof. For fixed k > 1, the functions £(p,q*~!) and L£(p*,q) are the infinity norm of the residual of a
tropical polynomial regression problem. Because the updates p* and q* are minimizers of the infinity norm
of such residuals, it suffices to show that in the setup of Theorem 2.2,

u" =argmin ||[ABu— b«

is a nondifferentiable point of the function R(u) = |[A B u — b||.
Suppose for the sake of a contradiction that VR (u*) exists. Because u* minimizes R by hypothesis, it
follows that VR (u*) = 0. Fix indices ¢ and j such that

R(u*) = |m?x(aiyg +uy) — b =lai; + u; — byl.

Set J = {k | air + v} = maxy(a;¢ + u})} and ey to be the vector with 1 in component k if k € J and 0
otherwise. Note that the fixed index j € J. Then, if € > 0 is small enough that a; . +u; —€ > a;¢ + uj
when k € J and £ ¢ J, then there exists ¢ € {—1, 1} such that
R(u* +ceey) > |ai; +uj +ce — bi| = |a;; +uj — bi| + e
But then, the difference quotient
R(u* + ceey) — R(u*)

€

> 1

is bounded away from 0 for € > 0 sufficiently small, a contradiction with the hypothesis that VR (u*) = 0.
O

Proposition 3.4 and Example 3.1 demonstrate the importance of understanding the nondifferentiability
locus of £. The two sources of nondifferentiability in £ are the nondifferentiability of |ju—v||» as a function
of u and the nondifferentiability of the tropical rational functions f(x®) = p(x") — q(x(¥) as a function of
the coefficients p; and g;. This connects the geometry of the dataset to that of a tropical rational function
produced as an iterate of Algorithm 1 by providing a certificate that (p, q) is in the nondifferentiability locus
of £ in terms of the input data.

Proposition 3.6. There exists a minimizer (p*,q*) of L such that at least one of the following holds:
1. There is an i such that x¥) € V(p*) U V(¢*)
2. The infinity norm in L£(p*,q*) is achieved by at least two data points (x,y®), (x(9),),

Proof. We show the contrapositive. Let (p*,q*) be a minimizer of £ such that VL(p*,q*) does not exist
and suppose that neither condition holds. Let 1 <47 < N be such that

10

* q*) = * (@) x@yy — * (1) x@yy _ o, @
£ = | 05+ 0 x0) = (g (wDxO) <y

>

* () @)y _ * () @V _ .0
j:{gémD(p]HW ,x)) jzglza}f’D(q]HW X)) —y

for all £ # i. Then there is an open neighborhood U C R?? of (p*,q*) such that

_ () @V _ . G) @Y _ ()
j:$§§,D(PJ+<W ,x)) j:{ga}fp(qgﬂw X)) —y

L(p,q) =

for all (p,q) € U. Because £(p*,q*) > 0, it suffices to show that if x(& V(p*) U V(¢*) then the evaluation
map (p,q) — p(x®) —q(x?) is differentiable at (p*, q*). By the hypothesis that x*) & V(p*)UV(¢*), there
are wi) w(k) such that p; + (W) xO) > pr (W xD) for all £ # j and g + (W), xD) > ¢ +(wld), x(D)
for all £ # k. Restricting U to a smaller open neighborhood of (p*, q*) if necessary then gives that

L(p,q) = |p} + <W(j)7x(i)> . — <W(k),x(i)> —y@

near (p*,q*). This is an affine function of (p,q) on U because £(p,q) > 0 and therefore VL(p*, q*) exists.
L]

The above discussion highlights the importance of understanding the nondifferentiability locus of tropical
rational functions for developing convergence results for Algorithm 1. Such objects are studied in [37], but
have not received much attention in the literature.

Based on the experimental results in Section 4, provable convergence of the iterates (p*,q") to some
(neighborhood of a) stationary point (p*,q*) appears likely. In light of the piecewise linear geometry of the
loss function £, the natural notion of a neighborhood of a stationary point is a polyhedron in R?P on which
L is constant. So, it is desirable to relate the iterates produced by Algorithm 1 to the geometry of £. We
present two open geometric questions that could be useful in the development of a convergence proof.

First, how do the iterates produced by Algorithm 1 traverse the nondifferentiability locus of L7 Specifi-
cally, if (pk, q”*) and (pk+1, qk“) are consecutive iterates of Algorithm 1, is there a polyhedron P on which
L is linear and such that (p*,q*), (p¥*!,q**!) € P? Second, if (p*,q*) is a minimizer of £, then because
L is piecewise linear, it must be convex on a neighborhood of (p*,q*). How do the iterates produced by
Algorithm 1 compare to those produced by a subgradient method? Understanding these geometric problems
would allow one to apply the extensive existing theory of linear programming and subgradient methods,
respectively, to develop optimality conditions for the Problem 1.

3.2 Polynomial Evaluation

In order to effectively use Algorithm 1, we need to be able to efficiently perform the matrix-vector multipli-
cations involved in solving the minimization problem. This amounts to evaluating a tropical polynomial and
performing a min-plus matrix-vector product using the negative transpose of a “Vandermonde” type matrix.
This structure can be leveraged to perform computations without storage of the matrix X.

Univariate Polynomial Evaluation Letn = 1 and consider the case of evaluating the degree d univariate
tropical polynomial p(t) = maxo<;<a(jt+p;) at the points 2™, 2 ... 2(N) € R. In this case the matrix X
is given by X = [0 X - dx]7 where x is the vector of the 2(*). Then, v = X Hp a vector of evaluations
of p at the (9. This computation does not require the explicit formation of the highly structured matrix
X. The solution v can be computed by setting v® = pg1 and computing

vk = max(vk_l,kx—i—pkl), 1<k <d,

so that v¢ = v. This approach avoids the storage of the N x (d + 1) matrix X and instead only uses the
length N vector x.

11

Similarly, an explicit storage of the matrix X can be avoided when computing p = (=X ") B y. This
follows because p; = miny<;<n(y; — jz;), so that there is no need to store the matrix X (compare with [26,
Equation 17]).

Finally, to compute v = X H ((fX)T B’ y), we set v = min;<;<n(y;)1 and compute

vP = max (vkl, kx+ min (y; — kx1)1> , 1<k<d

1<i<N

Then, v¥ =v =X H ((fX)T B’ y). In this way, we are able to evaluate the product X H ((fX)T B’ y) ,

which gives the evaluation of the polynomial subfit problem as the coefficients of the polynomial are found.

In particular, we can find the coefficients and evaluate the polynomial with a total cost of O(dN) operations.
The methods in the univariate case form the basis for effective computations with multivariate tropical

polynomials as the number of columns in the matrix X grows as d".

Multivariate Polynomial Evaluation We extend the univariate polynomial evaluation method to the
multivariate case by considering a polynomial p € T[z,...,xz,] as a polynomial in the variable z, with
coefficients in T[z1,...,z,—1] and evaluating the coefficients.

For example, in the bivariate case, the polynomial

e a y y P
planaz) = max _ (iz1 +joz +pij)
is to be evaluated at a given set of evaluation points (x(ll), x(Ql)) , (x(lz), x(QQ)) e (x(lN), xéN)) € R?. Rewrite

the polynomial p, collecting all terms of the same degree in z5. Using tropical notation, this gives

do dy
play,) = P a5’ © (@ o @pm‘) =, Mmax, (j$2 + max, (i1 +pi,j)> :
j:0 i=0 =Y., a2 =Y.l
Now, the term max;—o . 4, (iz1 + pi,j) is a univariate tropical polynomial for each j and can therefore

be evaluated without the storage of the matrix X. Once these terms are each evaluated, p is a univariate
polynomial in z5. Ultimately, this avoids the storage of the large N x (dy 4+ 1)(dz + 1) matrix X and instead

only uses the N pairs (xgi), xg)) and the degree bounds d1, ds.

We also compute the solution to the polynomial subfit problem without explicitly storing the matrix X.
Similarly to the univariate case, each entry in the output of p = (—X) B’ y has the form

n
Pw = min | y; — g wja:(-l)
1<i<N — J

J:

So, it is not necessary to store more than the evaluation points (x(li), xél))

Finally, to evaluate the product v = X 8 ((—X)" #y), we initialize v!

enumeration W\ {0} = {w®, w® . w)} set

= miny<;<n(y;)1. For an

T
ut = [2?21 w® g S w(.k)xgz) e ST 1 w(.k):c(N)} , k=223,....,D

J i Jj=1"7 J i
and update

vk = max <vk1,uk + 121%11\[(% — uf)l) , k=23,...,D.

Then vP = v = X8 ((-X)" @'y). Note that if w¥) — w*~1 is the standard basis vector e;, then u*
T

can be constructed from u*~! as uf = u*~! 4 [a:;l) x§2) xg.N)} and therefore the updates to u”*

and v* can both be computed efficiently from the input data. In particular, in this case, the update to u*

is computed using N additions instead of the O(nN) operations needed to construct u* from scratch.

12

3.3 Relationship with Two-Sided Tropical Linear Systems

An alternate perspective on the optimization problem (8) is as minimizing the residual in the solution of a
two-sided system of tropically linear equations. Indeed, if Y is the NV x N matrix with entries

67 i:] = g
Yi,j = {y . j ’
—00, 1 7&.]

then XHq+y = (YHX) #H q and the objective | X EHp — X Hq — y|| is the same as the norm of the
residual of the two-sided tropical linear system XHp = (YHX)Hq. Two-sided systems of equations in the
form A Hp = BHq are considered in [7], where an alternating algorithm is presented which converges to a
solution (p,q) in finitely many steps when a solution exists. The algorithm in [7] proceeds by initializing a
vector @° and alternately setting p* = (A7) ® (BB q*) and ¢**! = (-BT) @ (A B p*). Note that this
is equivalent to sequentially solving the constrained problems

p* =argmin|[ABp -BHq"|, st. ABp<BHJ"
p

and
"' = argmin [ABp" ~BHql, st. BEq<AHp"
qa

for any finite £ = 1,2,3,.... If this is applied with A = X and B = (Y B X) then at each k, it must be the
case that X A p* — X H q* < y. From a regression point of view, where we expect a nonzero residual, it is
more desirable to solve unconstrained problems at each iteration to avoid such a constraint. Replacing the
constrained updates in the alternating method of [7] with the unconstrained co-norm minimization results
in Algorithm 1.

4 Computational Experiments

In this section, we use Algorithm 1 for regression tasks and examine its convergence behavior empirically.
We provide univariate, bivariate, and higher dimensional examples. In the univariate case we analyze the
relationship between the degree hyperparameter and the error in the computed fit. In the bivariate case,
we analyze the effect of precomposition with a scaling parameter ¢ as in Corollary 2.3.1. For six variable
functions, we examine the use of Algorithm 1 on data generated from tropical rational functions. We then
present the performance of our approach on the existing datasets used by [19, 26, 31]. Finally, we present
preliminary experiments using the output of Algorithm 1 to initialize ReLLU neural networks. All Matlab
and Python codes to reproduce our experiments can be found at

https://github.com/Alex-Dunbar/Tropical-Data.git.

4.1 Univariate Data

We apply Algorithm 1 to a dataset consisting of 200 equally spaced points z(9) € [—1,12] and corresponding
y values y(*) = sin(a:(i)) + € where ¥ is drawn independently from a Gaussian distribution with mean
0 and standard deviation 0.05. Figure 2 shows an example, with d = 15. We use a stopping criterion of
n¥ < 107'2. The infinity norm of the error and the infinity norm of the update step at each iteration are
plotted in Figure 2b. Both the training loss and the update norm are nonincreasing and have regions on
which they are constant.

Effect of Degree Here, we investigate the relationship between the degree of tropical rational function
and the error in the fit. Specifically, we generate a dataset as in the above example and use Algorithm 1
to fit a tropical rational function of degree d to the dataset for d = 1,2,...,20. As a stopping criterion in
Algorithm 1, we use 7* < 107!? or a maximum k. = 10000. Figure 3 shows the relationship between the
degree of the rational function and the error in the fit. Note that the error decreases as a function of the
degree with a large decrease in error when the degree is 5. The number of iterations needed to achieve the
stopping criterion is generally increasing but is not monotonic.

13

Degree 15 Tropical Rational Fit Convergence History

T T T T T T 10! T T T T
1 -
1073 |
8
0 £ 10771 .
[£a}
10—11 L |
1L
10-15 | | | |
-2 0 2 4 6 8 10 12 0 500 1,000 1,500 2,000 2,500
Iteration
«Data —— Approximation @ ——sinz — ¥l error —— Update norm
(a) Tropical rational approximation (b) Training loss and update norm

Figure 2: Results of applying Algorithm 1 with degree 15 tropical rational functions to noisy data from a
sine curve. Figure 2a shows the training data, the approximation by a tropical rational function, and the
function sinz. The approximating function captures the general behavior of the dataset. Figure 2b shows
the (o error ¢ = | X H pF — X H q" — y|« and the update norm n* = || [p**+* qk“]T — [p* qk]T [l oo-
Both the training loss and the update norm are nonincreasing and contain intervals on which they are nearly
constant.

Dependence of Error on Degree Dependence of Iterations on Degree
1.2 T T T T T T
11 6,000
g
0.8} =
. £ 4,000
mﬁ: 0.6 - “E
2
0.4 g
= 2,000 |-
Z
0.2
O | | | 0 |
0 5 10 15 20 0 5 10 15 20
Degree Degree

Figure 3: Dependence of error and number of iterations on degree of tropical rational function fit to noisy
data from a sine curve. The error decreases monotonoically as a function of degree with a large drop at
degree 5. The number of iterations needed to reach the stopping criterion of n* < 10712 generally increases
with the degree.

14

4.2 Bivariate Data

We use the method to approximate the Matlab peaks dataset using d = (10,10) and d = (31,31) and
training until n* < 10712, Explicitly, the peaks dataset consists of 2401 = 492 equally spaced (1, z2) pairs
in [—3,3]? and their evaluations

x 1
peaks (w1, 1) = 3(1 — 21)%e 1~ @2+D" _ 10 (El — - xg) eI _ ge_(””1+1)2_””§.
The fits and the error are shown below in Figure 4. Note that in both cases there is error in the regions
on which the data is nearly constant despite the piecewise linear nature of the tropical rational functions.
As in the univariate case, the training error and the update norm are nonincreasing and have regions where

they are constant over many iterations.

Effect of Scaling Parameter In the above experiments, we directly fit a tropical rational function to the
data. However, Corollary 2.3.1 suggests that we should fit a function of the form f(cx), where ¢ € R and f
is a tropical rational function. To this end, we fit functions of the form f(cx) for 21 equally spaced values
of c € [1,3] and f a tropical rational function of degree 35. For each value of ¢, we use a stopping criterion
of n* < 10~'2 or a maximum of 500 iterations of the alternating method described in Algorithm 1 to find
a tropical rational function f. The dependence of the training error on c is shown in Figure 5 below. Note
that the optimal value of ¢ in this range is roughly 1.3. More generally, for fixed degree d, changing the value
of ¢ gives a trade-off between maximum slope and resolution between slopes. Due to this trade-off, there
will, in general, be large errors for very large ¢ because each affine piece of the tropical polynomials p(cx)
and ¢(cx) will have large slopes. Conversely, there will be large errors for very small values of ¢ because the
slopes of the affine pieces of the polynomials p(cx) and g(cx) will be bounded.

4.3 Higher Dimensional Examples

We test Algorithm 1 on functions with many variables. These experiments suggest that the alternating
minimization method is able to find solutions with low training loss. However, these solutions do not appear
to generalize well, even on data generated from tropical rational functions.

Regression on 6 Variable Function We fit a tropical rational function to the 6 variable function

9(x) = 212023 + 22422 sin(x?)

on a training set consisting of N = 10000 points drawn uniformly at random from [0,1]® and then test on
a test set generated in the same way. Here, we fix the maximum degree of the numerator and denominator
to be 3 for each variable and train until nk < 10712 or for a maximum of 500 iterations. There are 8192
trainable parameters. The convergence behavior during training is shown in Figure 6a. The £*° error on the
test set is 0.2721, which is roughly 9.75 times the final training error of 0.0279.

Regression on 10 Variable Function We fit a tropical rational function to the 10 variable function

h(x) = 212273 + 22422 sin(z?) — 77787710

on a training set consisting of N = 10000 points drawn uniformly at random from [0, 1]'° and then test on
a test set generated in the same way. Here, we fix the maximum degree of the numerator and denominator
to be 1 for each variable and train until nk < 107!2 or for a maximum of 500 iterations. There are 2048
trainable parameters. The convergence behavior during training is shown in Figure 6b. The £*° error on the
test set is 0.6828, which is roughly 2.9 times the final training error of 0.2342.

15

Degree 10 Approximation Degree 31 Approximation
peaks Data

(b) Tropical rational approxi- (¢) Tropical rational approxi-
mation to peaks with degree 10 mation to peaks with degree 31
(a) peaks data function function
Convergence History for Degree 10 Convergence History for Degree 31
‘ — T T T T
100 - . 100 ¥ |
1073 | . 1073 .
) 0
= S
S S
w 1077 1 o 10 .
= =2
— ~
2 1079 12 107° .
— ~
€a) =
—12 | | —12 |
10 — {*° error 10 — {° error
—— Update norm —— Update norm
10-15 \ \ \ 10-15 \ \ |
0 0) 10 15 20 0 0 100 200 300 400
Iteration Iteration
(d) Training for degree 10 peaks regression (e) Training for degree 31 peaks regression

Figure 4: Results of applying Algorithm 1 with degree 10 and 31 tropical rational functions to the peaks
dataset. The resulting degree 31 function sketches the general behavior of the dataset (Figure 4c), while the
degree 10 function fails to approximate the data (Figure 4b). Figures 4d and 4e display the the ¢*° error
e’ = | XBp* — XHB q" — y|~ and the update norm n* = || [p**! q’“‘“]—r - [p” qk}—r |- For both
degrees, the training loss and the update norm are each nonincreasing and contain intervals on which they
are nearly constant.

16

Error vs Scaling Parameter

0.3 T T
0.2 =
—
=
=
0.1 =
| | |
01 1.5 2 2.5 3

Figure 5: Error in approximation to the peaks dataset when using a degree (35, 35) tropical rational function
with inputs scaled by c. Here, the optimal value of ¢ in the range 1 < ¢ < 3 is roughly 1.3 and gives a
much lower training error than the function obtained as the output of Algorithm 1 with unscaled inputs.

Degree Relative Training Error Relative Validation Error

1 2.372 x1071° 0.1271
2 5.869 x 10717 0.2019
3 9.108 x 101° 0.2869
4 1.286 x 10~ 0.3631
) 9.373 x 1076 0.3598

Table 1: Average training and validation error on data generated from 6 variable tropical rational functions.
For each degree, the training loss is low, but the validation error is high and increasing as a function of
degree.

Data Generated from Tropical Rational Functions Here, we investigate the use of Algorithm 1 on
data generated by tropical rational functions. Specifically, for n = 6 we investigate the use of Algorithm 1 for
the recovery of a tropical rational function of degrees 1 through 5 (i.e. Wy = {0,1,2,...,d}® for 1 <d < 5).
For each trial we generate a tropical rational function with coefficients sampled uniformly at random from
[—5, 5] as well as training and validation datasets of N = 10000 points sampled uniformly at random from
[—5,5]%. We then fit a tropical rational function f of the same degree using Algorithm 1 with a stopping
criterion of n¥ < 107® or a maximum of 1000 iterations. In degrees at most 4, the method reached the
stopping criterion in fewer than 1000 iterations for each trial. For degree 5, the method terminated after
reaching 1000 iterations in 3 trials. In this experiment, p and q° are initialized with entries drawn uniformly
at random from [—5,5]6. Table 1 shows the average relative training and validation loss || f(x) — ¥ [lse/ll¥[lc
across the five trials in each degree. Here, the training loss is low, indicating that Algorithm 1 finds a near
optimal solution. However, the validation loss is high and increasing as a function of the degree. This
indicates that when run to completion, Algorithm 1 solves the optimization problem (1) well. However, the
higher validation errors suggest that the solution to (1) is nonunique. In particular, Algorithm 1 does not
necessarily recover the coefficients of the tropical rational function used to generate the data.

17

Convergence for 6 Variable Function Convergence for 10 Variable Function
100 g T T T T T T T

100

10~ |
1071 f

10~2

1072 ¢ E
; | w0
1073 F E : 1
F e 1074 g E
1074 | | | | | | | 10—5 L | | | | | | | |
0 200 400 600 800 1,000 1,200 1,400 0 200 400 600 800 1,000 1,200 1,400
Iteration Iteration
—— Training error —— Update norm —— Training error —— Update norm
—— Validation error —— Validation error
(a) Degree 3 fit for 6 variable function with 10,000 data (b) Degree 1 fit for 10 variable function and 10,000 data
points points

Figure 6: Convergence for tropical rational approximation of 6 and 10 variable functions. The training error
and update norm display similar behavior as in the low dimensional cases with regions on which they remain
constant.

4.4 Performance on Existing Datasets

In this section, we test the performance of our method on datasets generated from convex functions presented
in [26] and datasets generated from nonconvex functions presented in [19, 31].

Convex Functions Here, we use datasets from [26] and demonstrate that Algorithm 1, as a generalization
of tropical polynomial regression, can be used to approximate convex functions. First, we generate data
points (2, g(x®)), where the 2(* are 200 equally spaced points on the interval [~1,12] and g(z(®) =
maX(S,m(i) -2)+ € is a tropical line, where € is drawn independently from a uniform distribution on
[-0.5,0.5]. We fit a tropical rational function and a tropical polynomial with W = {0,1}. The results are
plotted in Figure 7. Note that there is a deviation between the two approximations near x = 11, where the
tropical rational approximation becomes nonconvex.

Next, we generate 500 pairs (xgi), xg)) € [~1,1]? uniformly at random and set y(*) = (a:§“)2+ (mg))z—l—e(i),
where the € are drawn independently from a normal distribution with mean 0 and variance 0.252. We
then fit tropical rational functions of degrees d = 1,2,...,6 to the data and record the error. Figure 8
shows the average and worst error across 25 such trials as well as the results reported in [26, Table 1]. Note
that in the experimental setup of [26], tropical polynomials are fit to the data where the monomials are
chosen via k-means clustering. In our setup, exponents for the numerator and denominator polynomials are
{0,1,...,dmaz}2. Tt appears that the approach in [26] yields a lower error in the low-parameter setting,
while the rational regression leads to lower training error in the high-parameter setting despite the data-
independent monomial selection.

Nonconvex Functions Here, we test the performance of Algorithm 1 on nonconvex functions tested by
[19, 31]. Specifically, we consider the functions

18

Approximation of a Tropical Line

10| - Data P
—— Polynomial =7 d
—— Rational 7
8) =
= 6l |
4 - |
2 [| | | | | | |]
-2 0 2 4 6 8 10 12

Figure 7: Approximation of a tropical line using tropical polynomial regression and Algorithm 1. Note that
the two fits diverge near x = 11, where the tropical rational approximation becomes nonconvex.

g1(z1,20) = 2?2 — 23 for (z1,x2) € [0.5,7.5] x [0.5,3.5]

g2(x1,22) = x%smx(xl) for (x1,z2) € [1,3] x [1,2]
1

g3(w1,9) = exp(—10(x? — 23)?) for (z1,22) € [1,2] x [1,2].

For each function, we study the effect of degree of tropical rational function and number of data points used
on the error and solution time. Specifically, for N € {10%,20%,502,100%}, we generate a dataset of N equally
spaced gridpoints (xgi), xél)) of the function domain and their evaluations g; (;zzgi), ;vgi)) and use Algorithm 1
to fit tropical rational functions of degrees 1,2, ...,25. The results are displayed in Figure 9. Note that the

training errors are comparable to those tested in [19].

4.5 ReLU Neural Network Initialization

Here we investigate the use of Algorithm 1 to initialize the weights of a ReLU neural network. The motivation
for this approach is that the output of Algorithm 1 carries information about the training data. So, networks
with weights initialized from the output of the tropical regression heuristic should start from a lower loss
than those with weights drawn from a distribution that does not depend on the training data. Additionally,
the computational cost of performing an iteration of Algorithm 1 is O(N D), which is comparable to the
cost of an epoch of stochastic gradient descent for a network with D parameters. As noted in Section 2.3,
the networks that we are able to initialize have significantly more than D parameters. Despite the potential
advantages of a tropical initialization, we find that such a scheme does not always lead to faster convergence
or lower training or validation error. Moreover, the network architectures which we are able to initialize
using a tropical rational function appear to have unstable training, even when initialized using well-known
strategies.

In our experiments, we apply Algorithm 1 on data from the noisy sine curve and peaks datasets to
generate approximations of the data, then use the output tropical rational function to initialize the weights
of ReLLU networks. The architecture of the initialized network is determined by the number of monomials
in the tropical rational function f used to initialize the network. For each dataset, we compare networks of
the same architecture using the following initialization strategies:

e Repeated applications of (6) to the terms of the tropical rational function f output by Algorithm 1

19

Bivariate Convex Function

14 T T I I
—— MT20
—— Rational Worst
L2p —8— Rational Avg
e 1f :
5
=l
€2
0.8 | s
—o
0.6 =
| | | | | |
0 20 40 60 80 100

Number of Parameters

Figure 8: Errors in tropical approximations to a bivariate dataset generated from a convex function. Note
that despite a data-blind choice of exponents, in the large parameter setting, tropical rational regression
using Algorithm 1 produces approximations with lower training error than that reported in [26, Table 1],
which used tropical polynomials with exponents chosen via k-means clustering.

e He initialization [16]

1
e Weights and biases drawn uniformly at random from [—Fk, k]!, where k = - for each
number of inputs

layer

All neural network parameter optimization is done in PyTorch version 1.11.0 using the Adam optimizer
[20] to minimize the MSE loss.

4.5.1 Univariate Data

We use a degree 15 tropical rational function to initialize a neural network to fit the noisy sin curve from
above. The test data consists of 200 pairs (z(9,y(®), where 2(* is randomly drawn points on the interval
[~1,12] and ¥ = sin(x(?). The networks are trained for 1000 epochs with batches of size 64 and a learning
rate of 5 x 1076 for the tropical initialized network and 102 for the He-initialized and uniformly-initialized
networks. We found choosing a smaller learning rate for the tropical initialization important to prevent the
optimization from reducing the accuracy of the model. Training and validation errors are shown in Figure
10. The network initialized from a tropical rational function has lower training and validation error than
the network initialized using the other methods.

4.5.2 Bivariate Data

We use a degree 31 tropical rational function to initialize the peaks dataset using Algorithm 1 as the
initialization. The networks are trained for 1000 epochs with a batch size of 64 and a learning rate of 10~*
for He-initialized and uniformly-initialized networks and 10~ for the tropically initialized network. Results
are shown in Figure 11. The networks initialized with He initialization and with uniform initialization reach
lower training and validation errors than the tropically initialized network.

IThis is the default initialization for linear layers in PyTorch version 1.11.0

20

5 Discussion

We investigated the solution of regression with tropical rational functions by presenting an alternating
heuristic. The proposed heuristic leverages known algebraic structure in tropical polynomial regression to
iteratively fit numerator and denominator polynomials. Each iteration involves only (tropical) matrix-vector
products and vector addition. The error at each iterate is nonincreasing, and each iterate is located in the
nondifferentiability locus of the £°° loss function. Computational experiments demonstrate that our method
can produce a qualitatively reasonable approximation of the input data. However, the optimal error and
optimality conditions are unknown in general, preventing a quantitative evaluation of the heuristic. On
datasets generated from tropical rational functions of low degrees where the true optimal error is known to
be zero, the heuristic produces an approximation with very low training error. However, the validation error
is large in our experiments, suggesting a need for future work in developing regularization strategies

One potential application domain is in ReLLU network initialization. In this work, we successfully initial-
ized a ReLU network using a tropical rational function for a univariate regression task, while the tropical
initialization was outperformed by existing initialization strategies for a bivariate regression task. This indi-
cates the potential for future work to develop a better understanding of network initialization. In particular,
the network architectures used in our experiments are limited, and a full understanding of correspondences
between network architectures and tropical functions is currently an open problem.

Future work could help to develop a better theoretical understanding of the convergence behavior of
Algorithm 1. In most numerical experiments in Section 4, the method reaches the stopping criterion of
sufficiently small update steps; however, the number of iterations required to reach this criterion appears
highly sensitive to the structure of the underlying data as well as the degree of the approximating function.
For example, when making approximations with degree 3 tropical rational functions of 6 variables, the update
steps converged to 0 for datasets generated from tropical rational functions, while the update steps failed to
converge to 0 before a maximum iteration count on data generated from an arbitrary nonconvex function.

Additionally, future work could augment the polynomial regression steps using the ideas in [17, 40, 41]
to develop variants of Algorithm 1 for use with different norms or which enforce sparsity patterns or a
regularization term. More generally, the development of a procedure for monomial selection remains open.

6 Acknowledgments

We would like to thank two anonymous referees for their insightful feedback which improved the paper.
Additionally, we would like to thank Georg Loho for bringing the reference [7] to our attention. This work
was supported in part by NSF awards DMS 1751636, DMS 2038118, AFOSR, grant FA9550- 20-1-0372, and
US DOE Office of Advanced Scientific Computing Research Field Work Proposal 20-023231.

References

[1] Alekh Agarwal et al. “Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimiza-
tion”. In: STAM Journal on Optimization 26.4 (2016), pp. 2775-2799.

[2] Marianne Akian et al. “Best approximation in max-plus semimodules”. In: Linear Algebra and its
Applications 435.12 (2011), pp. 3261-3296.

[3] Raman Arora et al. “Understanding Deep Neural Networks with Rectified Linear Units”. In: Interna-
tional Conference on Learning Representations (ICLR). 2018.

[4] Amir Beck. “First-order methods in optimization”. In: vol. 25. MOS-SIAM Series on Optimization.
Society for Industrial and Applied Mathematics (STAM), Philadelphia, PA; Mathematical Optimization
Society, Philadelphia, PA, 2017, pp. xii+475.

[5] Erwan Brugallé et al. Brief introduction to tropical geometry. 2015.

[6] Vasileios Charisopoulos and Petros Maragos. A Tropical Approach to Neural Networks with Piecewise
Linear Activations. 2019.

21

R.A. Cuninghame-Green and P. Butkovic. “The equation AQz = B®y over (max,+)”. In: Theoretical
Computer Science 293.1 (2003). Max-PLus Algebras, pp. 3-12.

Raymond Cuninghame-Green. Minimaz Algebra. Ed. by M. Beckmann and H. P. Kiinzi. Vol. 166.
Lecture Notes in Economics and Mathematical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
1979.

I. Daubechies et al. “Nonlinear Approximation and (Deep) ReLU Networks”. en. In: Constructive
Approzimation 55.1 (Feb. 2022), pp. 127-172.

Bernd Gértner and Martin Jaggi. Tropical support vector machines. Tech. rep. ACS Technical Report
No.: ACS-TR-362502-01. 2008.

Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neural
networks”. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learning
Research. Chia Laguna Resort, Sardinia, Italy: PMLR, 13-15 May 2010, pp. 249-256.

J. Elisenda Grigsby and Kathryn Lindsey. “On Transversality of Bent Hyperplane Arrangements and
the Topological Expressiveness of ReLLU Neural Networks”. In: SIAM Journal on Applied Algebra and
Geometry 6.2 (2022), pp. 216-242.

Boris Hanin and David Rolnick. “Deep ReLU Networks Have Surprisingly Few Activation Patterns”.
In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran
Associates, Inc., 2019.

Boris Hanin and David Rolnick. “How to Start Training: The Effect of Initialization and Architecture”.
In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran
Associates, Inc., 2018.

Philip Hartman. “On functions representable as a difference of convex functions”. In: Pacific J. Math.
9 (1959), pp. 707-713.

Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet

Classification”. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV).
Dec. 2015.

James Hook. “Max-plus linear inverse problems: 2-norm regression and system identification of max-
plus linear dynamical systems with Gaussian noise”. In: Linear Algebra and its Applications 579 (2019),
pp. 1-31.

Michael Joswig and Georg Loho. “Monomial Tropical Cones for Multicriteria Optimization”. en. In:
SIAM Journal on Discrete Mathematics 34.2 (Jan. 2020), pp. 1172-1191.

Kody Kazda and Xiang Li. “Nonconvex multivariate piecewise-linear fitting using the difference-of-
convex representation”. en. In: Computers & Chemical Engineering 150 (July 2021), p. 107310.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014.

Nikolai Krivulin. “Algebraic Solution of Tropical Best Approximation Problems”. In: Mathematics
11.18 (2023).

Nikolai K Krivulin. “On the Solution of a Two-Sided Vector Equation in Tropical Algebra”. In: Vestnik
St. Petersburg University, Mathematics 56.2 (2023), pp. 172-181.

Diane Maclagan and Bernd Sturmfels. Introduction to Tropical Geometry. Vol. 161. Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2015, pp. vii+359.

Alessandro Magnani and Stephen P. Boyd. “Convex piecewise-linear fitting”. en. In: Optimization and
Engineering 10.1 (Mar. 2009), pp. 1-17.

Petros Maragos, Vasileios Charisopoulos, and Emmanouil Theodosis. “Tropical Geometry and Machine
Learning”. In: Proceedings of the IEEE 109.5 (2021), pp. 728-755.

Petros Maragos and Emmanouil Theodosis. “Multivariate tropical regression and piecewise-linear sur-
face fitting”. In: ICASSP 2020-2020 IEEFE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 2020, pp. 3822-3826.

22

Petros Maragos and Emmanouil Theodosis. Tropical Geometry and Piecewise-Linear Approximation
of Curves and Surfaces on Weighted Lattices. 2019.

Smitha Milli et al. “Model Reconstruction from Model Explanations”. In: Proceedings of the Con-
ference on Fairness, Accountability, and Transparency. FAT* ’19. Atlanta, GA, USA: Association for
Computing Machinery, 2019, pp. 1-9.

Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltzmann machines”. In:
Proceedings of the 27th international conference on machine learning (ICML-10). 2010, pp. 807-814.

Lior Pachter and Bernd Sturmfels. “Tropical geometry of statistical models”. en. In: Proceedings of the
National Academy of Sciences 101.46 (Nov. 2004), pp. 16132-16137.

Steffen Rebennack and Josef Kallrath. “Continuous piecewise linear delta-approximations for bivari-
ate and multivariate functions”. In: Journal of Optimization Theory and Applications 167.1 (2015),
pp- 102-117.

David Rolnick and Konrad Kording. “Reverse-engineering deep ReLLU networks”. In: Proceedings of the
37th International Conference on Machine Learning. Ed. by Hal Daumé I1I and Aarti Singh. Vol. 119.
Proceedings of Machine Learning Research. PMLR, 13-18 Jul 2020, pp. 8178-8187.

Georgios Smyrnis and Petros Maragos. “Multiclass neural network minimization via tropical newton
polytope approximation”. In: International Conference on Machine Learning. PMLR. 2020, pp. 9068—
9077.

Georgios Smyrnis and Petros Maragos. “Tropical Polynomial Division and Neural Networks”. In: CoRR
abs/1911.12922 (2019).

Xiaoxian Tang, Houjie Wang, and Ruriko Yoshida. Tropical Support Vector Machine and its Applica-
tions to Phylogenomics. 2020.

Alejandro Toriello and Juan Pablo Vielma. “Fitting piecewise linear continuous functions”. en. In:
European Journal of Operational Research 219.1 (May 2012), pp. 86-95.

Ngoc Mai Tran and Jidong Wang. Minimal Representations of Tropical Rational Signomials. 2022.

Martin Trimmel, Henning Petzka, and Cristian Sminchisescu. “TropEx: An Algorithm for Extracting
Linear Terms in Deep Neural Networks”. In: International Conference on Learning Representations.
2021.

Paul Tseng. “Applications of a Splitting Algorithm to Decomposition in Convex Programming and
Variational Inequalities”. In: SIAM Journal on Control and Optimization 29.1 (1991), pp. 119-138.

Anastasios Tsiamis and Petros Maragos. “Sparsity in max-plus algebra and systems”. In: Discrete
Event Dynamic Systems 29.2 (2019), pp. 163-189.

Nikolaos Tsilivis, Anastasios Tsiamis, and Petros Maragos. “Toward a Sparsity Theory on Weighted
Lattices”. In: Journal of Mathematical Imaging and Vision (2022), pp. 1-13.

Ruriko Yoshida et al. “Tropical Support Vector Machines: Evaluations and Extension to Function
Spaces”. In: CoRR abs/2101.11531 (2021).

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. “Tropical geometry of deep neural networks”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 5824-5832.

23

10t

Error

10°

1071

10°

1071

Error

1072

Error

Error and Degree

F T T T T — 103
k — N=100 |]
i — N =400 |] 10°
E — N = 2500 [
r _ 1 10!
E N = 10000 | |
| i = 100
g
E E £ -1
i | g 10
i] 107
E E 1073
L ! ! ! ! L 10~4
0 5 10 15 20 25
Degree
(a) g1(z1,22) = a7 — a3
Error and Degree
F T T T T T B
[— N =100 | 103
[— N =400 ||
i — N =2500 | 10
— N =10000 | | Lo
N
| | o 10
i 1 i
r . & 107!
: | 1072
1073
Lo | | | | [1074
0 5 10 15 20 25
Degree
(c) g2(@1,w2) = 23 sin(x1) /21
Error and Degree
r T T T T]
I 1 103
102
10*
=
0
E 10
T
1072
1073
[T | | | | i

10 15
Degree

(e) gs(z1,x2) = exp(~10(F — 23)?)

Time and Degree

E T T T T E|
F|l— N =100]
E|l— N =400 El
H— N =2500 b
F|— N = 10000 E
E I | | | | [
0 5 10 15 20 25
Degree

(b) g1(21,22) = 23 — 23

2

Time and Degree

b N =100 |]
— N =400 |]
- — N =2500 |4
& —— N = 10000 |
E I | | | 1 1 3
0 5 10 15 20 25
Degree

(d) ga(z1, 2) = a3 sin(z1) /21

Time and Degree

T
— N =100

— N =400
— N =2500

— N = 10000

o
(G0

Degree

(f) gs(1, 22) = exp(~10(a — 23)?)

Figure 9: Performance of Algorithm 1 on datasets generated from nonconvex bivariate functions. The plots
on the left display the relationship between error, degree, and number of sample points, while the figures on
the right show the dependence of computation time on degree and number and sample points.

24

Training Error Validation Error

T T T I I T T T I I
—— Tropical —— Tropical

oL i

107 1 — He || 107 ¢ — He |

B —— Uniform [5 —— Uniform [

| | om0ty E

L 107t ER- k]

= B 1 : :

3 L 1 3 i |
£ b {1 &

e s 1 =102 ‘ I E

102} | i “Lk | l 'LM]

g | I M i‘ AL M\ 1

i 1 J0-3 | il |

! ! ! ! ! ! £ ! ! ! ! [

0 200 400 600 800 1,000 0 200 400 600 800 1,000

Epoch Epoch

Figure 10: Training and validation errors for neural network fit to noisy sin data. The network initialized
from a tropical rational approximation to the dataset starts and remains at lower training and validation
losses than the networks initialized with the He Initialization [16]. and with uniform initialization

Training Error Validation Error
101 F T T T I — F : : ‘ : —
B —— Tropical || r —— Tropical (]
100 B — He || 100 | — He |
B —— Uniform [{ E —— Uniform E
101} N e ;
o0 F) B 7
S . | 1 & . |]
—2 | N | —2 L i |
s 10 il til b 11 R "\"I F g o
o - ' 11 e | o r | ! (B
| L ” “1 "I‘ \” Phlupu' H" 1 @ § U ﬁ‘l ‘h I"” H“”‘I ‘ﬂl' |
107 ¢ Tl \ | E 1073 | . H | 'BE
§ il L k | : BT 1| 1 ‘ i
74 | | [1
10 i g 1074 E
L ! ! ! ! L L ! ! ! ! ! ! i
0 200 400 600 800 1,000 0 200 400 600 800 1,000

Epoch Epoch

Figure 11: Training and validation errors for neural network fits to peaks data. The networks initialized the
He Initialization [16] and uniform initialization reach lower training and validation errors than the tropically
initialized network.

25

	Introduction
	Background
	Tropical Algebra
	Weighted Lattices and Tropical Polynomial Regression
	Relations to ReLU Neural Networks

	Alternating Method For Tropical Rational Regression
	Nondifferentiability of the Loss Function
	Polynomial Evaluation
	Relationship with Two-Sided Tropical Linear Systems

	Computational Experiments
	Univariate Data
	Bivariate Data
	Higher Dimensional Examples
	Performance on Existing Datasets
	ReLU Neural Network Initialization
	Univariate Data
	Bivariate Data

	Discussion
	Acknowledgments

