

1 The Tropical Easterly Jet over Africa and its Representation in Six Reanalysis Products

2

3 S. E. Nicholson and D. Klotter

4 Earth, Ocean and Atmospheric Science

5 Florida State University

6 Corresponding Author

7 Sharon E. Nicholson

8 Earth, Ocean and Atmospheric Science

9 Florida State University

10 snicholson@fsu.edu

11 1 850 644 4022 (office)

12 1 850 644 9642 (fax)

13

14

15 KEYWORDS

16 Tropical Easterly Jet, Sahel rainfall, Interannual variability, Teleconnections, Africa

17 The project was supported by the National Science Foundation, grant numbers NSF AGS-

18 1445605 and [1854511](#).

19

20

21 Abstract

22

23 This paper compares the characteristics of the Tropical Easterly Jet(TEJ) and upper-level winds in
24 six reanalysis products, compares them with soundings over West Africa, and examines the
25 relationship between Sahel rainfall and the TEJ. The reanalysis products utilized are NCEP 1,
26 **ERA 5, JRA 55**, MERRA 2, CFSR, and 20th Century Reanalysis. For observational winds, pilot
27 balloon and radiosonde data are evaluated at seven locations in West Africa: Ndjamena, Chad;
28 Niamey, Niger; Ouagadougou, Burkina Faso; Bamako, Mali; and Dakar, Senegal, in the Sahel,
29 and Abidjan, Ivory Coast; and Douala, Cameroon in near equator latitudes. The jet characteristics
30 assessed by MERRA2, NCEP 1, JRA 55, **and ERA 5 are similar**, but CFSR and 20th Century
31 Reanalysis are outliers in nearly every analysis. They tend to overestimate jet wind speeds, being
32 as much as 25% to 40% higher than for the other reanalyses. **NCEP 1 is utilized for** establishing
33 a long-term climatology of the Tropical Easterly Jet and for comparisons with Sahel rainfall. Over
34 the period 1948 to 2014, the correlation between rainfall and TEJ magnitude is .72. The results
35 clearly demonstrate a strong relationship between the strength of the TEJ and Sahel rainfall and it
36 appears to be a causal one: the strong jet leading to high rainfall. The factors that appear to control
37 the strength of the jet include the sea-surface temperature (SST) contrast between the central
38 equatorial Pacific and central equatorial Indian Ocean (correlation of -.64), SST contrast between
39 the central equatorial and the southern subtropical Indian Ocean (correlation of -.39), the latitude
40 of the shift between upper-tropospheric easterlies and westerlies in the Southern Hemisphere
41 (correlation of -.84 at 150 hPa), the intensity of the Southern Hemisphere westerlies (correlation
42 of +.52 at 200 hPa). This suggests considerable control on the TEJ by extra-tropical circulation in
43 the Southern Hemisphere.

44

45

46 1. Introduction

47

48 One of the most prominent features of the general atmospheric circulation in the tropics is
49 the Tropical Easterly Jet (TEJ). Its existence has been known since the 1950s (Krishna Rao 1952,
50 Koteswaram 1958). This jet lies in the upper troposphere and extends from Asia to West Africa,
51 reaching core speeds in excess of 35 ms^{-1} . It results from the convective heating over the North
52 Indian Ocean and Himalayan-Tibetan plateau and, as a large-scale phenomenon, the TEJ can be
53 explained by simple linear arguments related to the heating (e.g., Gill 1980). It is generally
54 considered to be a feature of the boreal summer (e.g., Hastenrath 1988), but evidence exists of a
55 comparable jet in the Southern Hemisphere during the austral summer (Nicholson and Grist 2003).

56 The TEJ is an important component of the Indian monsoon. It has been well-studied in
57 that region (e.g., Mishra and Tandon 1983, Chen and van Loon 1987, Mishra 1987, 1993) and
58 several authors have examined its interannual variability in the Asian sector (e.g., Rao and
59 Srinivasan 2016, Nithya et al. 2017, Rao et al. 2015). In contrast, studies of the jet over Africa are
60 sorely lacking (Chen and Yen 1993), despite numerous studies showing that a consistent
61 relationship exists between the strength of the TEJ and rainfall over Africa. The factors are
62 governing its magnitude in the African sector may not be same as those operative in the Asian
63 sector. A case in point is that the interannual variability of the TEJ over Asia is only on the order
64 of 5 ms^{-1} (Roja Raman et al. 2009, Tanaka 1982), while the magnitude over its changes over
65 Africa are two or three times greater (Grist and Nicholson 2001).

66 The core of the TEJ lies over the Indian Ocean, just to the south of the Indian subcontinent.
67 The intensity of the TEJ appears to dictate the intensity of the Indian monsoon, with a
68 stronger/weaker jet being associated with anomalously high/low monsoon rainfall (Chen and Yen
69 1993, Pattanaik and Satyan 2000). The association is apparent not only during the monsoon season
70 but also in May, in advance of the monsoon season. Likewise, the TEJ in the Asian sector tends
71 to be stronger during active monsoon phases than during breaks (Raman et al. 2009).

72 Davies and Sansom (1952) may have been the first to demonstrate that the jet extends over
73 parts of Africa. Some of the earliest suggestions that the TEJ influences African rainfall were the
74 works of Flohn (1964) and Osman and Hastenrath (1969). Flohn applied jet-streak theory to the
75 TEJ, concluding that patterns of upper-level convergence and divergence in its entrance and exit
76 regions could explain the aridity over North Africa during the boreal summer and the summer
77 rainy seasons over the Sahel and India. Similar considerations were applied by Besler (1984) and
78 Pachur and Kröpelin (1987) to explain the role of the TEJ in the paleoclimate of the Sahara.

79 With the occurrence of drought in the Sahel in the late 1960s and early 1970s, the
80 relationship between the TEJ over Africa and African rainfall received further attention. Kidson
81 (1974) and Newell and Kidson (1984) documented a relation between a weakened TEJ over Africa
82 and the Sahel drought. Similarly, Kanamitsu and Krishnamurti (1978) produced a diagnostic
83 analysis of 1972, a year of Sahel drought, and 1967, a year of normal rainfall in the Sahel. They
84 showed a strong contrast in the intensity of the TEJ in the two years, with the jet being notably
85 weaker in the drought year. Hulme and Tosdevin (1989) reviewed relevant prior work and
86 concluded that the TEJ probably influences rainfall in the Sudan, but they did not directly evaluate
87 the link.

88 Later work confirmed that one of the strongest contrasts between wet and dry years in the
89 Sahel is the intensity of the TEJ (Nicholson and Grist 2001, Grist and Nicholson 2001, Nicholson
90 2009a). Its speed over West Africa was nearly twice as great in Sahel wet years as in Sahel dry
91 years, e.g., 20 to 30 ms^{-1} in 1955 versus 15 ms^{-1} in 1983. This contrast was evident in each month
92 from June through September. An intensification of the TEJ was also apparent in wet years over
93 parts of western equatorial Africa (Dezfuli and Nicholson 2013, Nicholson and Dezfuli 2013) and
94 Ethiopia (Segele et al. 2009).

95 In each of these cases, the changes in the TEJ were part of major changes in the basic state
96 that included concurrent changes in the mid-level African Easterly Jet (AEJ) and the low-level
97 westerly flow. Hence, the question arises as to what extent the TEJ is independently linked to
98 rainfall variability, as opposed to the TEJ in conjunction with other circulation features, such as
99 the latitude of the AEJ. The question is particularly important because some degree of recovery
100 of the rainfall regime has occurred in the Sahel (Nicholson et al. 2018), but the TEJ appeared to
101 have remained relatively weak (Nicholson and Grist 2001).

102 In view of this, three questions are posed and evaluated in this article. 1) Is the previously
103 documented relationship between the TEJ and Sahel rainfall evident in recent decades? 2) Is the
104 TEJ in the African sector anomalously strong in all wet years in the Sahel? 3) Conversely, is the
105 Sahel anomalously wet/dry in all years in which the TEJ is anomalously strong/weak in the African
106 sector? In answering these questions, the study will also develop a long-term climatology of the
107 TEJ over West Africa, document its year-to-year variability over West Africa, examine factors in
108 the interannual/decadal variability of the TEJ, and evaluate the long-term relationship between the
109 TEJ and Sahel rainfall.

110 While the questions posed are relatively simple, obtaining answers to them is not. Ideally,
111 one would examine the upper-tropospheric winds at a handful of upper-air stations over the Sahel.
112 Unfortunately, few continuous records exist and coverage is sporadic at most upper-air stations in
113 the region. Moreover, most observations are from pilot balloon (pibal) ascents, which seldom
114 reach the upper-troposphere. In lieu of sounding data, several reanalysis data sets that do provide
115 continuous coverage are available, but most do not extend back to the relatively wet period of the
116 1950s and early 1960s. Furthermore, the lack of observational upper-air data means that the
117 reanalysis products have not been validated over the Sahel.

118 Thus, none of the available data sets is ideally suited for an analysis of the long-term
119 behavior of the TEJ over West Africa. For that reason, radiosonde observations are used here
120 along with reanalysis data. Originally, nine reanalysis products were evaluated to determine which
121 is best suited for the study of the TEJ. However, initial results were very similar for three ERA-
122 products (ERA 40, ERA-Interim, ERA 5) and for NCEP 1 and NCEP 2. This is demonstrated in
123 Table 1 and in Figs. S1 and S2. To simplify and condense the results, only six products are
124 evaluated here: NCAR-NCEP 1, ERA-5, MERRA2, CSFR, JRA 55, and 20th Century Reanalysis
125 V2C. Likewise, most analyses are performed only for August, which tends to be the wettest month
126 in the Sahel and the month upon which several prior studies of the TEJ/rainfall association (e.g.,
127 Nicholson and Grist 2001) were based. It should be noted that observations are assimilated into
128 the various reanalysis products, with the exception of 20th Century Reanalysis, which over land is
129 based only on surface pressure. Nevertheless, because vast amounts of additional data are
130 assimilated into the products and possibility that we have assembled a larger observational data
131 set, the comparison with observations is useful.

132 The structure of this article is as follows. The observational and reanalysis data are
133 described in section 2. The data sets are evaluated in section 3 and the best performing reanalysis
134 data set is used to create a long-term climatology of the TEJ over West Africa, presented in Section
135 4. This includes core speed, and latitudinal and vertical location of maximum winds. In Section
136 5 the relationship between Sahel rainfall and the TEJ is examined. Section 6 presents a brief
137 analysis of factors associated with the interannual and decadal variability of the TEJ. Section 7
138 summarizes conclusions concerning the data sets and the results of the various analyses.

139

140 2. Data

141

142 The study utilizes rainfall from an archive assembled by the first author (e.g., Nicholson et
143 al. 2018). It includes roughly 600 rainfall stations in the Sahel, with the majority of records
144 extending through 2014. In this study, only data for August are utilized and a single time series is
145 derived to represent variability in the Sahel. This approach is reasonable because of the
146 exceedingly strong coherence of interannual variability throughout the region (e.g., Nicholson and
147 Grist 2001), but particularly in its central sector. A spatial average is derived for the sector shown
148 in Fig. 1, ranging from 12 ° N to 18 ° N and 10 ° W to 20 ° E. Rainfall is calculated as in past
149 studies (e.g., Nicholson et al. 2018) by expressing the monthly total at each station as a
150 standardized departure (departure from the monthly mean divided by the monthly standard
151 deviation), then averaging these values over all stations in the region shown. The resultant time
152 series is shown in Fig. 2.

153 Upper-level winds are derived both from upper air soundings and from six reanalysis
154 products. Reanalysis winds at 150 hPa and 200 hPa are evaluated, with the level shown depending

155 on the specific analysis; the TEJ is generally stronger at 150 hPa, but data for 200 hPa are probably
156 more reliable, as a result of better observational coverage. Observational data are from the
157 Integrated Global Radiosonde Archive (IGRA), an assemblage of radiosonde and pibal
158 observations from over 2700 globally distributed stations (Durre et al. 2006). The advantage is
159 that these are direct observations, but there are several disadvantages. The full complement of
160 West African stations in the archive within the latitudinal span of the TEJ (10 ° S to 20 ° N) was
161 evaluated. From these, seven with relatively complete records were deemed useful, Douala,
162 Abidjan, Niamey, Ndjamen, Ouagadougou, Bamako, and Dakar. Their locations and the total
163 number of records in IGRA are shown in Fig. 1.

164 To facilitate the discussion, the jet speeds are generally indicated in absolute terms. That
165 is, they are not indicated as negative, although the flow is easterly. The exception is illustrations
166 of vertical profiles, where a distinction between easterly wind (negative) and westerly wind
167 (positive) is necessary.

168 Table 2 gives the temporal and spatial resolution of the six reanalysis products used. All
169 but ERA 5 and JRA 55, which are relatively new products, have frequently been used for studies
170 of circulation over Africa. NCEP 1 (Kalnay et al. 1996), which begins in 1948, is the only one of
171 the six that covers the Sahelian wet period of the 1950s and early 1960s. The disadvantage of
172 NCEP 1 is its low spatial resolution, 2.5 degrees of latitude and longitude. Merra 2 (Gelaro et al.
173 2017), ERA 5, JRA 55, and CSFR (Saha et al. 2010) all have higher spatial resolution, but except
174 for JRA 55, commence only in 1979 or 1980. 20th Century Reanalysis V2C (Compo et al. 2011)
175 has a spatial resolution of 2 degrees. Version V2c, which extends back to 1851, is used. Most
176 analyses are based on the period 1980 to 2014. Only the monthly products are utilized.

177 Additional data utilized are sea-surface temperatures (SSTs), the Southern Oscillation
178 Index (SOI), and the Indian Ocean Dipole Index (DMI). SSTs were derived from the NOAA
179 Extended Reconstructed SST (ERSST) V5 data set (Huang et al. 2017). The SOI (Trenberth 1984)
180 is the normalized pressure difference between Tahiti and Darwin, Australia. The DMI represents
181 the anomalous SST gradient between the two Indian Ocean sectors: 50E-70E, 10S-10N and 90E-
182 110E,10S-0N (Saji and Yamagata 2003).

183

184 3. Evaluation of upper-air data

185

186 3.1 Inter-comparison of reanalysis products

187

188 The six reanalysis products are compared with each other via latitudinal transects of the
189 zonal wind from the surface to 150 hPa, the spatial patterns of vector winds at 150 hPa, local
190 vertical wind profiles, and interannual variability. The 150 hPa level is assumed to represent the
191 maximum development of the TEJ. A quantitative comparison is made for select mean statistics
192 for all four rainy season months (June through September).

193

194 3.1.1 Mean zonal wind

195

196 Fig. 3 shows for the six reanalysis products the meridional cross-sections of the mean zonal
197 wind in August in the three longitudinal sectors. In each case, consistent with previous depictions
198 of the TEJ (e.g., Flohn 1964, Nicholson 2009b), the further east, the stronger the TEJ. At 10° W
199 core speeds (i.e., the speed maximum) are on the order of 15 to 20 ms⁻¹ while at 30° E, core speeds

200 are 25 to 30 ms^{-1} in most analyses. At 10 $^{\circ}$ W, the highest core speeds are in 20th century
201 Reanalysis and CFSR and lowest are in MERRA. Further east the highest core speeds are again
202 in 20th Century Reanalysis and CFSR and the lowest are in NCEP V1.

203 Fig. 4 shows the August mean vector winds over northern Africa. Only the analysis for
204 150 hPa is shown, but comparable results were obtained for 100 hPa and 200 hPa. Strongest winds
205 over Sudan and South Sudan and further east. The vector winds are similar for all reanalyses
206 except CSFR 2 and 20th Century Reanalysis. Among the other products relatively small
207 differences are apparent in the latitudinal expanse and intensity of the TEJ, with MERRA 2 and
208 ERA 5 showing a jet core that is somewhat more intense than that of the other two. All products
209 indicate speeds exceeding 20 ms^{-1} over the two Sudans and eastward, but MERRA 2 shows speeds
210 greater than this in an area extending further west. In NCEP 1, MERRA 2, ERA 5 and JRA 55
211 speeds exceeding 30 ms^{-1} did not extend further west than over the eastern tip of the African
212 continent. In contrast, CFSR shows speeds of this magnitude or greater well into South Sudan,
213 some 20 degrees of longitude further west. CFSR also shows markedly higher speeds than the
214 other products nearly everywhere.

215 The six reanalysis products are inter-correlated with respect to the mean August core speed
216 at 10 $^{\circ}$ E and at 0 $^{\circ}$, i.e., in the heart of the Sahel (Table 3). Core speed for a given month is defined
217 as the maximum speed within the TEJ core as evident in the mean latitude/height wind profile for
218 that month. In order to get more robust correlations, the period of comparison is extended to 1980
219 to 2014. For that period, the 1% significance level is +/- is roughly .42 and all correlations reach
220 this level. However, there is a strong contrast between correlations involving CFSR and 20th
221 Century Reanalysis versus the remaining products. Among the NCEP 1, MERRA 2, ERA 5 and JRA
222 55 products the correlations range from .68 to .97, but they are mostly in the range of .8 to 9. The

223 correlations between ERA 5 and JRA 55 is particularly high, ranging between .89 and .96. In
224 contrast, every case of a correlation of .6 or lower involves CFSR or 20th Century Reanalysis.
225 With those products, the correlations are typically in the range of .5 to .6.

226

227 3.1.2 Characteristics of the TEJ

228

229 The contrasts among the reanalysis products are highlighted by Fig. 5, which shows the
230 mean maximum speed in the jet core as well as the mean pressure level and latitude of the
231 maximum for each product. For magnitude there is good agreement among all products at 10 °
232 W, but the agreement decreases markedly at 30 ° E. 20th Century Reanalysis and, to a lesser extent
233 CFSR, tend to be outliers. This is particularly evident in the higher June and July speeds at 30 °
234 E. 20th Century Reanalysis consistently shows the largest spread of magnitudes between June and
235 September. In nearly all cases the TEJ is strongest in all products in July and August, weakest in
236 June or September. The spread among the products is generally of a few ms^{-1} .

237 There is considerably more variation among the products for pressure level and latitude of
238 the maximum speed. However, no product is a consistent outlier nor does any product appear to
239 show consistent bias with respect to the others. At 10 ° W there is some consistency, with the
240 pressure level of maximum wind being between 150 and 50 hPa and tending to be highest in June
241 and lowest in August or September. The exception is the 20th Century Reanalysis, where the
242 pressure of the core ranges from roughly 100 hPa to 200 hPa. Elsewhere there is considerable
243 spread among the products, with 20th Century Reanalysis, and to a lesser extent CFSR, being on
244 the low side. In terms of latitude of the core, it tends to be highest in June and July, lowest in
245 August and September. In terms of this parameter, 20th Century Reanalysis tends to be an outlier,

246 with generally lower values than the other products and a large spread among the four months at
247 10 ° W.

248

249 3.1.2 Interannual variability of the TEJ

250

251 Fig. 6 shows the interannual variability of TEJ strength in August averaged between 5 ° N
252 and 15 ° N. The year-to-year fluctuations are remarkably similar. In most cases, the spread of the
253 estimates is small among NCEP1, ERA 5, MERRA and JRA 55. The only case with strong
254 disagreement among those products is at 30 ° E and 150 hPa. In contrast, 20th Century Reanalysis
255 and CFSR are clearly outliers, showing substantially higher speeds than the other products. Note
256 that the contrasts among the products are primarily in magnitude; the year-to year patterns of
257 variability are generally similar, even with the outliers. The disparity is particularly strong at 150
258 hPa, where in general the spread of the estimates is greater than at 200 hPa. This might relate to
259 the fact that at 150 hPa fewer observations are available for assimilation into the reanalyses.

260 Table 4 shows the average speed over the period 1980 to 2014. In all cases the mean speed
261 increases from west to east. Speeds tend to be similar for NCEP 1, ERA 40 and to a lesser extent
262 ERA Interim, roughly ms^{-1} in the west and 16 to 17 ms^{-1} in the east at 200 hPa and 12 to 13 ms^{-1} in
263 the west and 20 to 21 ms^{-1} in the east at 150 hPa. Compared to those products, MERRA 2 is
264 anomalously high in the east by roughly 1 ms^{-1} at 200 hPa and 5 ms^{-1} at 150 hPa. 20th century
265 reanalysis and CFSR tend to be 2 to 4 ms^{-1} higher than the other products at 200 hPa and as much
266 as 6 to 8 ms^{-1} higher at 150 hPa.

267

268 3.2 Comparison of NCEP 1 with observational data

269

270 A handful of studies have compared reanalysis winds and upper-air data over West Africa.
271 Stickler and Brönnimann (2011) examined pibal observations for the years 1948 to 1957. They
272 showed that NCEP 1 exhibits a bias compared to observations that can exceed 5 ms^{-1} . They
273 concluded that NCEP 1 overestimates the low-level monsoon flow and produces a monsoon layer
274 that is thicker than observed. Their results further suggested the AEJ speed is overestimated. That
275 study also compared 20th century reanalysis with observations during that period and found
276 somewhat lower differences. The bias was generally of the opposite sign for 20th century
277 reanalysis; notably the bias of monsoon flow was much weaker in 20th century reanalysis and
278 more confined to the coastal region. Wartenburger et al. (2013) evaluated the observational data
279 sets available to Sticker et al. (2010), determining bias and root-mean-square error (RMSE) as
280 compared with ERA Interim. For nine Sahelian stations in West Africa they found that the bias
281 was generally less than 0.8 ms^{-1} and the random error was generally 2 to 3 ms^{-1} at 5000 m elevation.

282 Nicholson and Grist (2003) and Grist and Nicholson (2001) compared several
283 observational data sets over West Africa, including radiosondes, pibals, and the GFDL radiosonde
284 analysis (Oort 1983), with wind estimates from NCEP 1. They concluded that the salient features
285 of the NCEP 1 analyses, such as contrasts in TEJ intensity between wet and dry years, could be
286 confirmed by the observations. However, the contrasts were not quantified.

287 Here NCEP 1 winds are compared with the time series and vertical profiles of wind at five
288 Sahelian stations (in the latitude band 12° N to 14° N) and two stations nearer the equator. A
289 single reanalysis product is used here for the sake of simplicity, but in view of the high correlations
290 with MERRA 2, ERA 5 and JRA 55, those products would presumably yield similar results. The
291 Sahelian stations include Ndjamen, Chad; Niamey, Niger; Ouagadougou, Burkina Faso; Bamako,

292 Mali; and Dakar, Senegal. The remaining two stations are Abidjan, Ivory Coast (c. 5 ° N) and
293 Douala, Cameroon (c. 4 ° N). These were chosen because each station has a large number of data
294 points at and above 200 hPa, as well as a long sequence of years with available data. Notably, the
295 number of observations available varies over time, as does the use of pibals vs. radiosondes.
296 However, the time series created are probably the most realistic estimates of the supra-surface
297 wind regime at the locations examined.

298 The upper-air data for August at each location are compared with a wind average from
299 NCEP 1 over a 3° x 5° box surrounding the station. Some differences are to be expected because
300 point and areal values are being compared. However, the impact of this contrast is not anticipated
301 to be large because there is strong spatial coherence of the wind regime on the monthly time scales
302 examined here.

303 Fig. 7 shows the year-to-year values of mean August wind at 200 hPa and 150 hPa for the
304 Sahelian stations. For four of the five there is good agreement between NCEP 1 and observational
305 winds. At Niamey, the average difference is only 1.4 ms⁻¹ at 200 hPa and 2.4 ms⁻¹ at 150 hPa. For
306 Dakar, the average difference is 1.5 and 1.4 ms⁻¹ for these two levels, respectively. The
307 differences are somewhat greater for Ouagadougou and Bamako: 2.8 and 2.0 ms⁻¹, respectively at
308 200 hPa and 3.2 and 2.6 ms⁻¹ at 150 hPa. The differences between NCEP 1 and observations are
309 notably larger at Ndjamen: 3.0 at 200 hPa and 4.2 at 150 hPa. In all cases, the bias of NCEP 1
310 compared to observations is smaller than suggested by Stickler and Brönnimann (2011). It tends
311 to be negative at Ouagadougou, Niamey and Bamako, positive at Dakar. At Ndjamen the bias
312 tends to be positive in the very early years but generally negative since the late 1960s onward.

313 The situation is very different at the two equatorial stations. NCEP 1 tends to have a
314 positive bias at 150 hPa. At 200 hPa it tends to have a positive bias prior to the 1980s and a

315 negative bias in later years, but not consistently so. Agreement is good at the 200 hPa level,
316 differences being on average 2.4 ms^{-1} for Douala and 2.2 ms^{-1} for Abidjan. However, the
317 differences are more than twice that at 150 hPa: 5.5 ms^{-1} for Douala and 5.3 ms^{-1} for Abidjan. The
318 reason for the larger disparity at 150 hPa is not clear; in these particular cases, roughly the same
319 amount of upper-air data was available at both levels.

320 Fig. 7 also depicts interannual variability of the TEJ. Data for the three stations with
321 records extending back to the 1950s (Niamey, Dakar, and Abidjan) show decreasing TEJ intensity
322 from the 1950s to the early 1980s, and a smaller increase from that time. After that time there is
323 a gradual increase but the high magnitudes of the 1950s and 1960s are not attained at Niamey or
324 Dakar. Ndjamen, which also commences in the 1950s, does not suggest a reduction since the
325 1950s. However, that record may not be reliable as large differences are apparent between
326 observational and reanalysis winds at that location. The remaining stations, which commence
327 much later, do suggest increasing TEJ intensity since the early 1980s. These results are consistent
328 with the results of Grist and Nicholson (2001) and with trends in the TEJ over India, as noted by
329 several authors (see section 6.1).

330 Fig. 8 shows the vertical profile of mean winds in August, averaged for those years for
331 which both observational and reanalysis data are available. The agreement for zonal winds is
332 excellent at each location. However, there is some positive bias for NCEP 1 in the lowest levels
333 and some negative bias (indicating stronger speeds) at the TEJ level. In most cases the bias is less
334 than 2 ms^{-1} . There is most disagreement in the case of meridional winds and it is evident not only
335 the wind magnitude but also in the vertical structure of the meridional wind profile. However, the
336 biases are still relatively small in absolute terms, generally less than 2 ms^{-1} .

337 Several factors can contribute to contrasts between observational and reanalysis data. One
338 is the lower sampling with observational data: over Africa few stations report daily and generally
339 observations are made only one or two times per day. Moreover, there is instrumental and observer
340 error in the case of pibals and radiosondes and error inherent in models that produce the reanalysis
341 data. The agreement shown in Figs. 7 and 8 between observed and reanalysis winds is encouraging
342 and suggests that NCEP winds are reliable over West Africa.

343

344 4. Long-term climatology

345

346 NCEP 1 is used to derive a long-term climatology of the TEJ for the period 1948 to 2017
347 for each month of the year. Mean vector winds, vertical profiles as a function of latitude, and
348 mean characteristics such as core speed and location are presented. The jet profile was examined
349 at two longitudes, 30 ° E (far eastern Sahel) and 10 ° E (central Sahel). As the results were similar,
350 only data for the latter are shown. However, when notable contrasts were apparent between the
351 two longitudes these are described in the text.

352 Fig. 9 shows the mean zonal wind profile in each month of the year. The major circulation
353 features include the subtropical westerlies of both hemispheres, the African Easterly Jet of the mid-
354 troposphere, the Tropical Easterly Jet of the upper-troposphere, and the low-level equatorial
355 westerlies. Since the annual cycle of the other features is very well known, only the TEJ will be
356 discussed here.

357 It is best developed during January and February, when its axis is at roughly 10 ° S, and
358 during June through September, when its axis is at roughly 5 ° N. It is completely absent in March-
359 through-May. When it reappears in June its mean core speeds attain 12.5 ms⁻¹ at 10 ° E (Fig. 9)

360 and more than 17.5 ms^{-1} at 30° E (not shown). The TEJ peaks in August, with mean core speeds
361 on the order of 20 ms^{-1} at 10° W and 10° E and over 25 ms^{-1} at 30° E . The jet is still clearly
362 apparent in September but in October it is extremely weak at 10° E and disappears at 30° E . The
363 TEJ is completely absent in November and December.

364 Fig. 10 shows the mean vector winds at 150 hPa for August, the month when the TEJ is
365 best developed in the Northern Hemisphere, and for February, when the TEJ is best developed in
366 the Southern Hemisphere. In August the core extends across the continent into the eastern Atlantic.
367 In eastern regions, such as Ethiopia and the eastern Sudan, the jet extends from the equator to
368 roughly 25° N , with speeds between 20 and 30 ms^{-1} in most of that region. In February, when the
369 TEJ develops in the Southern Hemisphere, the jet is weaker, with speeds between 20 and 20 ms^{-1} .
370 It extends between roughly the equator and 10° S and from the central Indian Ocean, across the
371 continent and into the eastern equatorial Atlantic.

372 Table 5 summarizes the climatological statistics for the TEJ at 150 hPa during the four
373 rainy season months of the Sahel. In general, from west to east the core speed increases. This
374 pattern is evident in all months, with few exceptions. In June the core speed is 11.5 ms^{-1} in the
375 west, but reaches 17 ms^{-1} in the east. The jet is notably stronger in July and August, with core
376 speeds in the west of 17.5 and 19.2 ms^{-1} , respectively, in those months but 23.7 and 21.7 ms^{-1} in
377 the east. In September speeds at each longitude are on the order of 14 to 15 ms^{-1} . Pressure level
378 of the core changes substantially from month to month but in a less consistent fashion. In June and
379 July it generally increases eastward, but tends to decrease eastward in August and September. The
380 latitude of the core also varies substantially from month to month and from west to east. At 10° W
381 it is furthest north in June, at 11.1 degrees of latitude, and further south in September at 7.6

382 degrees of latitude. At 10 $^{\circ}$ E it also tends to decrease in latitude between June and September,
383 but is furthest north in July, as it is also at 30 $^{\circ}$ E.

384 Another important characteristic of the TEJ is the pattern of divergence/convergence
385 associated with it. These patterns were calculated at 150 hPa and 200 hPa. Because the patterns
386 were extremely similar at the two levels, Fig. 11 presents only the results for 200 hPa. A strong
387 and consistent region of divergence corresponds to the jet, spanning roughly 5 $^{\circ}$ N to 15 $^{\circ}$ N over
388 western regions and extending diagonally from SW to NE in more eastern sectors. In much of the
389 band of divergence the magnitude exceeds $2 \times 10^{-6} \text{ s}^{-1}$. Roughly the same pattern is evident from
390 June through September, but the divergence is strongest in August and September.

391

392 5. Relationship between Sahel rainfall and the TEJ

393

394 Past studies (section 5.1) suggest a causal relationship between the TEJ intensity and
395 rainfall over West Africa. Potential mechanisms of a link are discussed in section 5.2. There is
396 some evidence that the intensity of the TEJ is affected by latent heat release, and hence dependent
397 on the intensity of convection. This latter effect, if significant, could provide some explanation
398 for the rainfall/TEJ relationship. The issue of the impact of convection is considered heuristically
399 in section 5.3; arguments favor the large-scale control of the TEJ, as opposed to feedback from
400 convection governed by other factors.

401 A caveat here is that these analyses and the conclusions drawn from them are valid on the
402 monthly time scale. On that time scale the character of rainfall over the Sahel is a result of the
403 combined influence of the TEJ and the AEJ. The TEJ appears to govern primarily the intensity of
404 rainfall in the region while the AEJ appears to govern primarily the latitudinal location of the rain

405 belt. The rain belt lies between the cores of the two jets (Nicholson and Grist 2001). As noted
406 earlier, year-to-year changes in the TEJ are associated with a major change in the basic state that
407 includes concurrent changes in the mid-level African Easterly Jet (AEJ). So the question arises as
408 to whether or not the AEJ might be driving some of the changes observed in the TEJ. On monthly
409 time scales, that is unlikely because on that time scale there is little change in the magnitude of the
410 AEJ, despite large changes in the magnitude of the TEJ. Moreover, in some years the distance
411 between the jet cores can be as great as 15 degrees of latitude. This implies that an influence of
412 the AEJ on the TEJ is unlikely on the monthly scales we are considering. This does not rule out a
413 link on synoptic time scales associated, for example, with the instabilities of the AEJ and resultant
414 wave activity.

415

416 5.1 Comparisons between the TEJ and Sahel rainfall

417

418 Prior analyses of the interannual and interdecadal variability of rainfall over West Africa
419 suggested that the strength of the TEJ over Africa is a major factor. Fig. 12 shows the contrast
420 between the TEJ in August, 1955 (one of the wettest years on record in the Sahel) and August,
421 1983 (one of the driest). In wet years the mean August TEJ speed exceeds 30 ms^{-1} while it barely
422 16 ms^{-1} in the dry years (Nicholson and Webster 2007). The difference is much greater than the
423 bias over West Africa as estimated by Stickler and Brönnimann (2011) or in Section 3.2.

424 This relationship holds during multi-year and decadal time scales (Grist and Nicholson
425 2001, Nicholson and Grist 2001). However, only a handful of individual years have been
426 examined (Nicholson 2008, 2009a). Here we examine the robustness of the relationship as applied
427 to individual years.

428 Fig. 13 compares Sahel rainfall in August with 200 hPa winds near Niamey. Rainfall is
429 averaged over the area 12° N to 18° N and 10° W to 20° E (see Fig. 1). The area around Niamey
430 is selected for the winds because Niamey appears to have the most reliable soundings (and the
431 highest number). NCEP 1 winds are averaged for an area near Niamey shown in Fig. 1. Here the
432 200 hPa level is considered because of the greater agreement with observations as evident in Fig.
433 7. Upper-air data for Niamey from the IGRA archive are also utilized. The correlation between
434 August Sahel rainfall and NCEP 1 winds over the 67-year period 1948 to 2014 is .72; with IGRA
435 wind the correlation is .62. When wind anomalies are positive rainfall is generally well above
436 normal or only slightly below the mean. When wind anomalies are negative rainfall is generally
437 below normal or just slightly above the mean. However, there are some clear outliers: for example,
438 rainfall in 1989 and 1994 was well above average but the jet was anomalously weak.

439 A comparison with 20th century reanalysis suggests that the relationship between the TEJ
440 and Sahel rainfall generally holds on the century time scale. For the July-August-September rainy
441 season the correlation is .31 over the period 1871 to 2014, not strong but significant at well above
442 the .1 % level ($r = .21$).

443

444 5.2 Mechanisms linking Sahel rainfall and the TEJ

445

446 The analysis in section 5.1 clearly demonstrates a strong positive relationship between the
447 intensity of the TEJ and rainfall over the Sahel. The physical mechanism of the link appears to be
448 primarily upper-level divergence associated with the jet core (Fig. 11). The
449 convergence/divergence couplet evident in Fig. 11 is consistent with Flohn's (1965) depiction of a
450 jet streak circulation associated with the TEJ, which he theorizes is a major reason for the rainfall

451 in the Sahelian latitudes and the aridity over the Sahara. The divergence is evident in the strong
452 meridional components associated with the TEJ over Africa (Nicholson and Grist 2003). This
453 pattern is particularly pronounced in wet years in the Sahel and it appears to play a role in the jet's
454 impact on rainfall (Nicholson 2009a). This is consistent with the observation that a stronger TEJ
455 is linked not only to more rainfall in the Sahel, but also a more intense rainbelt (e.g., Nicholson
456 2008, 2009a).

457 The increased/reduced vertical and horizontal shear associated with a strong/weak TEJ is
458 probably also a factor. This impacts the development of easterly waves (Grist et al. 2002,
459 Nicholson et al. 2008). Enhanced wave activity appears to be associated with increased rainfall in
460 the Sahel (Grist 2002).

461 An additional mechanism of the TEJ/rainfall link may relate to the dynamic instability of
462 the TEJ itself (Mishra 1993, Mishra and Tandon 1983). Both barotropic and combined barotropic-
463 baroclinic instability have been demonstrated. This permits the development of waves on the TEJ.
464 Such waves have been observed over West Africa (Nicholson et al. 2007) and their characteristics
465 match those predicted by a numerical simulation of African wave activity (Nicholson et al. 2008).

466

467

468 5.3 TEJ as a driver of or response to rainfall variability

469

470 A close relationship between the intensity of the TEJ and West African rainfall has been
471 clearly established. Redelsperger *et al.* (2002) suggest that latent heat released by convection can
472 enhance upper-level shear, and therefore enhance the TEJ. This evokes a question as to whether
473 the stronger TEJ in wet years is a factor in or a product of the more intense rainfall (LaFore and

474 Chapelon 2017, Thorncroft and Blackburn 1999). The fact that the upper-troposphere near the jet
475 is warmer in dry years (Grist and Nicholson 2001) belies that hypothesis. Several other
476 observational points likewise counter the suggestion that rainfall controls the intensity of the TEJ
477 (Nicholson 2009a). The most compelling are the temporal and spatial characteristics of the rainfall
478 field versus the jet.

479 One example is that the location of the TEJ core over West Africa is relatively stationary
480 within the Sahel rainy season and from year to year, despite strong latitudinal shifts in the
481 convection (Nicholson and Grist 2001). Also, the intensity of convection can be equally strong in
482 years of a strong or weak TEJ, as shown by a comparison of the years 1950-56-58 (wet composite)
483 and 1968-84-85 (dry composite). In August the latitudinal profile of rainfall in the central Sahel
484 was roughly identical in the two composites, but displaced some 5 degrees southward in the dry
485 case (Fig. 12). The TEJ core speed reached 30 ms^{-1} in the wet composite versus 16 ms^{-1} in the dry
486 composite; its latitude did not shift, despite the 5 degree shift in the location of maximum
487 convection (Nicholson and Webster 2007). In contrast, the day to day variations of TEJ speed,
488 which arguably reflect the impact of latent heat, are only roughly 2 to 3 ms^{-1} and bear no
489 relationship to day-to-day variations in convection (see Fig. S1). In this same vein, it is useful to
490 point out that the TEJ intensity is stronger over the eastern Sahel than over the central and western
491 Sahel, where rainfall is considerably higher.

492 Another case in point is that the contrast of TEJ intensity between wet and dry years is
493 already apparent in June, a month in which there is little or no contrast in rainfall between wet and
494 dry years in the Sahel (Nicholson 2008, 2009a). In the years examined by Grist and Nicholson
495 (2001), the mean TEJ core speed in June was 18 ms^{-1} in the wet composite versus 8 ms^{-1} in the dry
496 composite. June rainfall as a function of latitude was roughly the same in the two composites,

497 indicating that enhanced convection could not have been responsible for the stronger TEJ in the
498 wet composite.

499 A further relevant argument is that the mid- and upper-tropospheric temperature gradient
500 is greater in the years or composites with a stronger TEJ and that this contrast is imposed by
501 conditions in the higher latitudes (Grist and Nicholson 2001). The temperature contrasts are
502 strongest in the subtropical latitudes, especially those of the Southern Hemisphere, and not in the
503 vicinity of the jet.

504 A final argument is based on model simulations using only dry dynamics. When the basic
505 state corresponding to wet years/composites, with an anomalously strong TEJ, is perturbed, waves
506 growth at a faster rate, become more intense, and extend throughout the troposphere (Nicholson et
507 al. 2008, Grist et al. 2002). In contrast, in the dry cases with the weak TEJ, the resultant waves
508 are limited to lower-levels and best developed near the surface, grow very slowly and remain
509 relatively weak. These simulated changes are consistent with observations. The upper-
510 tropospheric shear, which is dependent mainly on TEJ intensity, appears to be the key factor in
511 wave development. Both horizontal and vertical shear are greater in wet years than in dry years
512 (Grist et al. 2002). Potential vorticity considerations likewise suggest that a link between the
513 surface and TEJ is a major factor in the interannual variability of Sahel rainfall (Nicholson et al.
514 2008).

515

516 6. Factors associated with the interannual variability of the TEJ

517

518 Few studies have examined the interannual variability of the TEJ over Africa. The most
519 comprehensive was Nicholson and Grist (2001), who examined trends in the TEJ between 1958

520 and 1997 using NCEP Reanalysis. The core speed of the TEJ decreased markedly throughout the
521 1960s and early 1970s in all four months of the Sahel rainy season. The decrease was particularly
522 strong in August; core speed dropped from ca. 26 ms^{-1} in 1958 to 15 ms^{-1} in 1972. In later years it
523 varied between ca. 13 and 19 ms^{-1} . Sathiyamoorthy (2005) showed a similar reduction in the
524 African and Atlantic sectors between the 1960s and 1990s.

525 So far, there have been no studies specifically assessing the factors in the interannual
526 variability of TEJ intensity over Africa. However, several papers give hints as to what might play
527 a role. The intensity appears to change in relationship to the intensity of the extra-tropical Southern
528 Hemisphere westerlies (Dezfuli and Nicholson 2013, Nicholson and Dezfuli 2013, Grist and
529 Nicholson 2001). The stronger jet is also commensurate with cooler upper-tropospheric
530 temperatures in the tropics and stronger latitudinal temperature gradients (Nicholson 2009a). On
531 synoptic time scales, acceleration of the TEJ appears to follow the strengthening of the Indian
532 monsoon (LaFore and Chapelon 2017).

533 Here the relationship between TEJ core speed and several large-scale factors is evaluated.
534 These include global sea-surface temperatures (SSTs), upper-level temperature gradients, the
535 Southern Oscillation and Indian Ocean Zonal Mode, and the intensity and location of the extra-
536 tropical upper-level westerlies. The core speed is represented by the average zonal wind in August
537 at 150 hPa in a box extending from 5°N to 15°N , latitudes where the TEJ is best developed, and
538 from 0°W to 20°E (i.e., central areas of West Africa).

539 Fig. 14 shows the location of this box and the correlation of the mean zonal wind in this
540 box with global SSTs between 40°N and 40°S . Correlations are based on the years 1980 to
541 2014, so that the 5% significance level is $+/-.34$ and the 1% significance level is $+/-.44$. The latter
542 is exceeded throughout most of the analysis sector. Strongest correlations are in the central

543 equatorial Indian Ocean, where the correlation exceeds .55, and in the central equatorial Pacific,
544 where the correlation exceeds -.55. This indicates that a stronger TEJ is associated with warmer
545 SSTs in the Indian Ocean, but colder SSTs in the Pacific. This opposition suggests that the SST
546 difference between the two oceans might play a role in the interannual variability of the TEJ. SSTs
547 are calculated for the two **small** boxes shown in Fig. 14 and the difference calculated as the Pacific
548 SSTs minus the Indian Ocean SSTs. The correlation between TEJ zonal wind speed over West
549 Africa and the SST difference between these two regions is -.73, with a greater warming of the
550 Indian Ocean relative to the Pacific being associated with a stronger TEJ over West Africa.

551 The speed of the TEJ was correlated with several other parameters with the results indicated
552 in Tables 6 and 7. Fig. 14 suggests a possible relationship with the latitudinal SST gradient in the
553 Indian Ocean, so that Table 6 includes a correlation between the TEJ zonal speed and SSTs in
554 equatorial and subtropical sectors, as well as a correlation with the SST difference between those
555 sectors (indicated by the larger boxes in Fig. 14). **The correlation with individual sectors is low**
556 **but the correlation of the difference is -.39**, roughly significant at the 5 % level but much lower
557 than the correlation with the Pacific-Indian Ocean SST difference. Table 6 also shows the
558 correlation of the TEJ zonal speed with the Southern Oscillation (SOI) and the Indian Ocean dipole
559 (i.e., the Dipole Mode Index or DMI). A significant correlation is apparent with the SOI (+.44),
560 but the correlation with the DMI (+.16) is not significant. The relatively low correlation with the
561 SOI is somewhat surprising, since the intensity of the TEJ in the Indian Ocean sector is strongly
562 modified by ENSO (Nicholson 2015).

563 The final parameters examined relate to upper-level circulation (Table 7). One is the
564 latitude at which the prevailing wind shifts from easterly to westerly. This is assessed for both
565 hemispheres and at both 150 and 200 hPa. The second is the intensity of the subtropical westerlies

566 at these same pressure levels. The correlations are highly significant in both hemispheres for the
567 latitude of the switch, but considerably higher for the Southern Hemisphere. There the correlation
568 is $-.79$ at 200 hPa and $-.84$ at 150 hPa. The TEJ speed is also significantly correlated with the
569 intensity of the Southern Hemisphere westerlies, $+.38$ at 150 hPa and $+.52$ at 200 hPa. These
570 results suggest substantial control of the TEJ over West Africa by the Southern Hemisphere extra-
571 tropical circulation.

572

573 7. Summary and Conclusions

574

575 The six reanalysis products evaluated show considerable diversity in the representation of
576 the Tropical Easterly Jet. The jet characteristics assessed by MERRA2, NCEP 1, and the two ERA
577 products are fairly similar, but CFSR and 20th Century Reanalysis are outliers in every analysis.
578 They tend to overestimate jet wind speeds, being as much as 25% to 40% higher than in the other
579 reanalyses. Use of those two products to study West Africa is not to be recommended. The most
580 reliable in this region appears to be NCEP 1. It has the highest correlation with the other products
581 and it compares very favorably with upper-air observations at West African stations.

582 The reanalysis products, which commence only in 1979 or 1980, do not show a clear trend
583 over time. However, the upper-air observations for Niamey, Dakar and Abidjan show a definite
584 decrease in TEJ intensity since the 1950s and a slight increase since the 1980s. That increase is
585 apparent at the other upper-air sites as well. This is consistent with analyses of the TEJ over India
586 that likewise show a decreasing trend since the 1950s (e.g., Rao et al. 2004).

587 In the introduction, three questions were posed. The first is whether the previously
588 documented relationship between the TEJ and Sahel rainfall is maintained in recent decades. This

589 work shows that it clearly is for August. The correlation with TEJ intensity over West Africa over
590 a period of 67 years is .72 based on NCEP 1 winds and .62 based on upper-air observations at
591 Niamey. While this is only one month of the boreal summer rainy season, it is the month that is
592 most critical in determining the annual rainfall total in the Sahel. For the 144-year period 1871 to
593 2014 the Sahel rainfall-TEJ intensity correlation is still -.31, despite the uncertainty of the 20th
594 Century Reanalysis data used to assess the TEJ.

595 The remaining questions are whether the TEJ is anomalously strong in all wet years in the
596 Sahel and, conversely, whether the Sahel is anomalously wet/dry in all years in which the TEJ is
597 anomalously strong/weak. Clearly an anomalously wet year can occur without an anomalously
598 strong TEJ (Fig. 14). Likewise, a strong/weak TEJ does not guarantee wet/dry conditions.
599 Nevertheless, there are relatively few years that deviate strongly from these associations. Overall,
600 however, a strong/weak TEJ is clearly conducive to wet/dry conditions.

601 This study also considered the question as to what controls the intensity of the TEJ.
602 Arguments are presented to counter the suggestion by some authors (e.g., Thorncroft and
603 Blackburn 1999) that its intensity is strongly influenced by latent heat release associated with
604 convection. This would suggest control of TEJ intensity by rainfall variability, rather than the jet
605 serving as a causal factor in rainfall variability. The strongest arguments against this hypothesis
606 are 1) that the location of the TEJ core over West Africa is relatively stationary within the Sahel
607 rainy season and from year to year, despite strong latitudinal shifts in the convection and 2) that
608 the intensity of convection can be equally strong in years of a strong or weak TEJ.

609 A further argument is that the intensity of the TEJ is strongly correlated with global SSTs
610 and with atmospheric circulation parameters. The strongest correlation with SSTs, -.73 over a
611 period of 67 years, is with the difference between SSTs in the central equatorial Pacific and the

612 central equatorial Indian Ocean. This might be indicative of control by the upper-level outflow
613 from the Indian Ocean Walker cell. The highest correlation overall is with the latitude of the shift
614 between upper-tropospheric easterlies and westerlies in the southern Hemisphere (correlation of -
615 .84 at 150 hPa). The TEJ intensity is also strongly correlated ($r = +.56$) with the strength of the
616 Southern Hemisphere westerlies. Correlations with the Southern Oscillation Index, the Indian
617 Ocean dipole, and Northern Hemisphere circulation parameters are much weaker and generally
618 not highly significant.

619 These results suggest considerable control on the Tropical Easterly Jet by extra-tropical
620 circulation in the Southern Hemisphere. This is consistent with studies that showed a strong
621 relationship between Sahel rainfall and Southern Hemisphere parameters (e.g., Silvestri and Vera
622 2009, Sun et al. 2010), as well as a link between African Easterly Waves over the Sahel and the
623 Southern Hemisphere extra-tropics (e.g., Cheng and Thorncroft 2019, Yang et al. 2018). Other
624 evidence of a link between the TEJ and the Southern Hemisphere extra-tropics comes from several
625 papers demonstrating that convection in tropical regions can be affected by potential vorticity
626 streamers associated with Rossby waves in the Southern Hemisphere (e.g., Funatsu and Waugh
627 2008, Rodwell 1997). These streamers reach monsoonal regions of eastern Asia and are advected
628 across the Indian Ocean into Africa (Ortega et al. 2017). While this phenomenon has been
629 demonstrated only on synoptic time scales, this clearly provides a mechanism of interaction
630 between the tropics and the mid-latitudes of the Southern Hemisphere.

631

632

633 ACKNOWLEDGEMENTS

634

635 The project was supported by the National Science Foundation, grant numbers NSF AGS-1445605
636 and 1854511. The authors would also like to thank Chris Funk and colleagues for making the
637 CHIRPS data set available to the scientific community. Valuable suggestions of Prof. Peter
638 Webster are also appreciated.

639

640

641 TABLE 1: Coefficients of linear correlation between winds in the indicated reanalysis products at
642 two longitudes and at 150 hPa and 200 hPa. Calculations are based on the period 1980 to 2014
643 and winds are averaged at the indicated longitude over a latitude span of 5 ° N to 15 ° N.

644

SOURCES		150 hPa		200 hPa	
		10 ° E	0 ° E	10 ° E	0 ° E
CORRELATED	NCEP V1	.87	.90	.94	.95
	ERA 40	.85	.89	.79	.96
ERA 40	ERA 5	.87	.85	.86	.94
	ERA Int	.90	.93	.93	.98

645

646

647 TABLE 2: Characteristics of Reanalysis Products used in this Study

648

Reanalysis	Spatial Resolution in Degrees	Years
NCEP V1	2.5	1948 – present
ERA 5	0.25	1979 - 2019
JRA 55	1.25	1958-2019
MERRA 2	0.667 lon, 0.5 lat	1980 - present

CFSR V1	0.5	1979-2010
CFSR V2	0.5	2010-present
20 th V2c	2.0	1851 - 2014

649

650

651 TABLE 3: Coefficients of linear correlation between August zonal winds in the reanalysis products
 652 at two longitudes and at 150 hPa and 200 hPa. Calculations are based on the period 1980 to 2014.
 653 Correlations lower than or equal to .6 are highlighted.

654

SOURCES		150 hPa		200 hPa	
		10 ° E	0 ° E	10 ° E	0 ° E
NCEP V1	MERRA	0.74	0.79	0.84	0.84
NCEP V1	CFSR	0.69	0.58	0.68	0.59
NCEP V1	20th V2c	0.79	0.69	0.60	0.46
NCEP V1	ERA 5	0.84	0.68	0.87	0.88
NCEP V1	JRA 55	0.75	0.84	0.75	0.89
MERRA	CFSR	0.47	0.61	0.60	0.63
MERRA	20th V2c	0.63	0.61	0.54	0.51
MERRA	ERA 5	0.88	0.95	0.95	0.97
MERRA	JRA 55	0.85	0.96	0.85	0.95
CFSR	20th V2c	0.56	0.57	0.56	0.51
CFSR	ERA 5	0.67	0.72	0.60	0.67
CFSR	JRA 55	0.69	0.71	0.63	0.678

20th V2c	ERA 5	0.75	0.67	0.51	0.53
20th V2c	JRA 55	0.76	0.64	0.64	0.58
ERA 5	JRA 55	0.95	0.94	0.89	0.96

655

656

657

658 TABLE 4: Mean speed of the TEJ (ms^{-1}) in six reanalysis products, at three longitudes and two
 659 levels over West Africa.

660

Source	200 hPa			150 hPa		
	10W	10E	30E	10W	10E	30E
NCEP 1	13.4	13.8	17.3	14.2	15.4	19.9
ERA 5	12.6	14.4	16.5	13.1	16.4	20.7
JRA 55	12.7	15.0	17.5	13.0	17.1	22.9
MERRA	12.2	13.8	17.1	12.9	15.9	23.7
CFSR	14.7	16.2	19.8	15.3	19.9	28.4
20 th VC2	16.1	16.8	20.1	18.1	21.3	26.7

661

662

663 TABLE 5: Climatology of the TEJ, as derived from NCEP 1: mean zonal speed (ms^{-1}), pressure
 664 level of maximum wind (hPa), and latitude of maximum wind.

665

	zonal core speed	pressure of core	latitude of core

	10W	10E	30E	10W	10E	30E	10W	10E	30E
June	11.5	12.2	17.0	89	99	140	11.1	10.6	8.9
July	17.5	18.7	23.7	112	100	138	9.4	11.9	12.3
August	19.2	19.0	21.7	140	113	129	7.9	9.6	11.8
September	14.5	13.7	15.0	130	124	117	7.6	8.5	10.6

666

667

668

669

670 TABLE 6: Coefficients of linear correlation of NCEP1 150 hPa wind in August with SSTs, the
 671 SOI, and the DMI during the period 1980 to 2014.

August Sea Surface Temperatures (SSTs) in equatorial regions			Indian Ocean August SSTs			SOI	DMI
Pacific	Indian	difference	Subtropical	Equatorial	difference	August	August
-.51	+.39	-.64	-.17	.37	-.39	+.44	+.16

672

673

674 TABLE 7: Coefficients of linear correlation between NCEP1 150 hPa wind and select
 675 circulation parameters during the period 1980 to 2014. Winds are averaged over the latitudes 5 °
 676 N to 15 ° N.

Latitude of Shift between Easterlies and Westerlies	Intensity of Extra-tropical Westerlies
--	---

Southern Hemisphere		Northern Hemisphere		Southern Hemisphere		Northern Hemisphere	
200	150	200	150	200	150	200	150
hPa	hPa	hPa	hPa	hPa	hPa	hPa	hPa

-.79	-.84	-.58	-.49	+.52	+.38	+.22	+.10
------	------	------	------	------	------	------	------

677

678

679 FIGURES

680

681

682 1. Sahelian sector over which rainfall data are averaged (green box) and location of seven upper-
 683 air stations used in the analyses. The total number of upper-air observations for each station is
 684 also indicated on the right. Small box indicates sector over which NCEP 1 winds are averaged
 685 for comparison with rainfall in Fig. 13. D = Dakar, B = Bamako, O = Ouagadougou, N =
 686 Niamey, Nj = Ndjamen, A = Abidjan, Do = Douala.

687

688 2. August rainfall in the Sahel averaged for the sector shown in Fig. 1. Rainfall is expressed as a
 689 regionally-averaged standard departure.

690

691 3. Meridional profiles of zonal wind in August for 6 reanalysis products and three longitudinal
 692 locations: 10 ° W, 10 ° E and 30 ° E.

693

694 4. Mean vector winds in August for six reanalysis products at 150 hPa.

695

696 5. Mean jet characteristics at three longitudes as depicted by the six reanalysis products: latitude,
697 elevation, and magnitude of the core speed of the jet. Results are shown for the months of June,
698 July, August, and September.

699

700 6. Interannual variability of August zonal winds (ms^{-1}) at three longitudes from 1980 to 2014.
701 Data are given for six reanalysis products and for both the 200 hPa and 150 hPa levels. The
702 wind is averaged over the latitudes 5° N to 15° N.

703

704 7. Interannual variability of NCEP 1 reanalysis zonal wind and upper-air observations for seven
705 stations. Data are for August only and cover all years in which both NCEP 1 and upper-air
706 observations are available. Red portions of the lines indicate cases appears when the NCEP V1
707 value exceeds observations and blue portions of the lines indicate cases when the value of the
708 observations exceeds that of NCEP 1. Data are in ms^{-1} . NCEP 1 data are for the grid box in
709 which the station lies.

710

711 8. Vertical profiles in mean zonal and mean meridional wind at seven West African stations.
712 Red line is wind from NCEP 1; black line is observed wind from pibals and radiosondes.

713

714 9. Mean zonal wind profiles in each month at 10° E and 30° E from NCEP1.

715

716 10. Mean vector winds at 150 hPa in February and August, from NCEP1.

717

718 11. Mean divergence at 150 hPa in June, July, August, and September, based on NCEP 1.

719

720 12. Left: Mean zonal winds at 150 hPa in August of 1955 and 1983 (from Nicholson 2009a).

721 Right: mean August rainfall in the Sahel as a function of latitude in a wet composite and a dry

722 composite (from Nicholson and Webster 2007).

723

724 13. Scatter diagrams of zonal wind versus August Sahel rainfall, with the latter expressed in

725 units of standardized departures from the mean. On the left is NCEP 1 wind; on the right is

726 observed wind from pibals and radiosondes at Niamey. Rainfall is averaged over the box shown

727 in Fig. 1; NCEP 1 wind is averaged for an area near Niamey, as shown in Fig. 1.

728

729 14. Correlation between NCEP 1 wind **in August at 150 hPa** and tropical SSTs **in August**. The

730 black box indicates the area over which wind is averaged. Large and small boxes indicate areas

731 for which the SST difference is correlated with wind (see text for details).

732

733

734 **S1. Meridional profiles of zonal wind in August at 200 hPa based on the three ERA products**

735 **and on observations.**

736

737 **S2. Interannual variability of August zonal winds (ms^{-1}) at three longitudes from 1980 to 2014.**

738 **Data are given for the ERA reanalysis products and for both the 200 hPa and 150 hPa levels.**

739 **The wind is averaged over the latitudes $5^{\circ} N$ to $15^{\circ} N$.**

740

741 S3. Daily values of NCEP 1 wind (ms-1) in the vicinity of Niamey and Niamey rainfall from
742 CHIRPS (Funk et al. 2015) for July and August of the years 1984 and 2007. The standard
743 deviation of wind over the two-month intervals are also indicated. Red line is the mean.

744

745

746 APPENDIX 1

747 Figs. S1 and S2 demonstrate that the results of the analysis of the three ERA products are
748 very similar and adequately replicate the observed winds. The main contrast among the products
749 is the ERA 40 tends to underestimate wind speed at the two western-most locations, especially at
750 150 hPa.

751

752 APPENDIX 2

753 Fig. S3 shows the mean daily TEJ speed at 200 hPa for the peak rainy months of July and
754 August during a very wet year (2007) and a very dry year (1984). Here Niamey is used as an
755 example but results were similar for other stations and years. CHIRPS data (Funk et al. 2015) is
756 used for rainfall, as NIC131 does not have daily values. No relationship is evident between
757 rainfall and TEJ speed on daily time scales. The correlation during 2007 is -.11 at 0 lag, -.10
758 with the TEJ lagged by one day and +.18 with the TEJ lagged by two days. For 1984 the
759 correlation is +.02 at 0 lag and +.04 with the TEJ lagged by one or two days. The standard
760 deviation of TEJ speed is 2.2 ms^{-1} within the dry year and 3.4 ms^{-1} within the wet yet, thus
761 indicating that any possible influence of convection is considerably smaller than the difference in
762 TEJ intensity between wet and dry years.

763

764 **SUPPLEMENTARY MATERIAL**

765

766 Supplementary material is included. It consists of a figure (Fig. S1) comparing wind profiles
767 based on ERA products with observations at seven West African stations, a figure (Fig. S2)
768 showing year-to-year variations of the TEJ speed in the ERA products, and a figure showing
769 daily variations in TEJ speed and rainfall during July and August of a wet year and a dry year
770 (Fig. S3), and two appendices explaining the two figures.

771

772

773 REFERENCES

774

775 Besler H (1984) The tropical easterly jet as a cause for intensified aridity in the Sahara. In Coetze,
776 J. A., and van Zinderen Bakker, E. M., (eds), *Palaeoecology of Africa and the Surrounding
777 Islands*, **16**: 163-172.

778

779 Chen T-C, van Loon H (1987) Interannual variation of the tropical easterly jet. *Monthly Weather
780 Review* **115**: 1739–1759.

781

782 Chen T-C, Yen M-C (1993) The effect of planetary-scale divergent circulation on the interannual
783 variation of the summertime stationary eddies. *Tellus* **45A**: 15–27.

784

785 Cheng Y-M, Thorncroft CD, Kiladis GN (2019) Two contrasting African Easterly Wave
786 behaviors. *Journal of the Atmospheric Sciences* **76**: DOI 10.1175/JAS-D-18-0300.1.

787

788 Compo GP et al (2011) The twentieth century reanalysis project. *Quarterly Journal of the Royal
789 Meteorological Society* **137**: 1–28.

790

791 Davies DA, Sansom HW (1952) Easterly jets above East Africa. *Weather* **7**: 343-344.

792

793 Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data
794 assimilation system. *Quarterly Journal of the Royal Meteorological Society* **137**: 553–597

795

796 Dezfuli AK, Nicholson SE (2013) The relationship of interannual variability in western equatorial
797 Africa to the tropical oceans and atmospheric circulation. Part II. The boreal autumn. *Journal of*
798 *Climate* **26**: 66-84.

799

800 Durre I, Vose RS, Wuertz DB (2006) Overview of the Integrated Global Radiosonde Archive.
801 *Journal of Climate* **19**: 53-68.

802

803 Flohn H (1964) Investigations on the Tropical Easterly Jet. *Bonner Meteorologische*
804 *Abhandlungen* **4**: 83 pp.

805

806 Funatsu BM, Waugh DW (2008) Connections between potential vorticity intrusions and
807 convection in the eastern tropical Pacific. *Journal of the Atmospheric Sciences* **65**: 987-1002.

808

809 Funk C, Peterson P, Landsfeld M, Coauthors (2015) The climate hazards infrared precipitation
810 with stations – a new environmental record for monitoring extremes. *Scientific Data* **2**, No.
811 150066, doi: 10/1038/sdata.2015.66.

812

813 Gelaro R, McCarty W, Suárez MJ et al (2017) The modern-era retrospective analysis for research
814 and applications, version 2 (MERRA-2). *Journal of Climate* **30**: 5419–5454.

815

816 Gill AE (1980) Some simple solutions for heat-induced tropical circulation. *Quarterly Journal of*
817 *the Royal Meteorological Society* **106**: 447-462.

818

819 Grist JP (2002) Easterly waves over Africa. Part I: The seasonal cycle and contrasts between wet
820 and dry years. *Monthly Weather Review* **130**: 197-211.

821

822 Grist JP, Nicholson SE (2001) A study of the dynamic factors influencing the interannual
823 variability of rainfall in the West African Sahel. *Journal of Climate* **14**: 1337-1359.

824

825 Grist JP, Nicholson SE, Barcilon AI (2002) Easterly waves over West Africa II. Observed and
826 modelled contrasts between wet and dry years. *Monthly Weather Review* **130**: 212-225.

827

828 Hastenrath S (1988) *Climate and Circulation in the Tropics*. D. Reidel, 455 pp.

829

830 Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore, JH, Menne MJ, Smith TM,
831 Vose RS, Zhang HM (2017) Extended Reconstructed Sea Surface Temperature version 5
832 (ERSSTv5), Upgrades, validations, and intercomparisons. *Journal of Climate* **30**: 8179-8205.

833

834 Hulme M, Tosdevin T (1989) The Tropical Easterly Jet and Sudan rainfall) A review. *Theoretical
835 and Applied Climatology* **39**: 179-187.

836

837 Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. *Bulletin of the American
838 Meteorological Society* **77**: 437–471

839

840 Kanamitsu M, Krishnamurti TN (1978) Northern summer tropical circulations during drought and
841 normal rainfall months. *Monthly Weather Review* **106**: 331–347.

842

843 Kidson JW (1977) African rainfall and its relation to the upper air circulation. *Quarterly Journal*
844 *of the Royal Meteorological Society* **103**: 441–456.

845

846 Koteswaram P (1958) The easterly jet stream in the tropics. *Tellus* **10**: 43–57.

847

848 Krishna Rao PRKri (1952) Probable regions of jet streams in the upper air over India. *Current*
849 *Science* **21**: 63-64.

850

851 Lafore JP, Chapelon N (2017) West African synthetic analysis and forecast: WASA/F. In (Parker
852 DJ and Diop-Kane J, eds) *Meteorology of Tropical West Africa*, Wiley Blackwell, Chichester,
853 United Kingdom, 423-451.

854

855 Mishra SK (1993) Non-linear barotropic instability of upper- tropospheric tropical easterly jet on
856 the sphere. *Journal of the Atmospheric Sciences* **50**: 3541–3552.

857

858 Mishra SK (1987) Linear barotropic instability of the tropical easterly jet on a sphere. *Journal of*
859 *the Atmospheric Sciences* **44**: 373–383.

860

861 Mishra SK, Tandon MK (1983) A combined barotropic-baroclinic instability study of the upper
862 tropospheric tropical easterly jet. *Journal of the Atmospheric Sciences* **40**: 2708–2723.

863

864

865

866 Nagarjuna Rao D, Gibies G, Sabeerali CT, Ramu DA, Rao Suryachandra A (2015) Changing
867 relationship between the Tropical Easterly Jet and summer monsoon rainfall: Role of the Indian
868 Ocean warming. *Indian Journal of Geo-Marine Science* **44**: 1678-1683.

869

870 Newell RE, Kidson JW (1984) African mean wind changes between Sahelian wet and dry periods.
871 *Journal of Climatology* **4**: 1-7.

872

873 Nicholson SE, Grist JP (2001) A simple conceptual model for understanding rainfall variability in
874 the West African Sahel on interannual and interdecadal time scales. *International Journal of
875 Climatology* **21**: 1733-1757.

876

877 Nicholson SE, Grist JP (2003) The seasonal evolution of atmospheric circulation over West Africa
878 and Equatorial Africa. *Journal of Climate* **16**: 1013-1030.

879

880 Nicholson SE, Barcilon AI, Challa M, Baum J (2007) Wave Activity on the Tropical Easterly Jet.
881 *Journal of the Atmospheric Sciences* **64**: 2756-2763.

882

883 Nicholson SE, Webster PJ (2007) A Physical Basis for the Interannual Variability of Rainfall in
884 the Sahel. *Quarterly Journal of the Royal Meteorological Society* **133**: 2065-2084.

885

886 Nicholson SE, Barcilon AI, Challa M (2008) An analysis of West African dynamics using a
887 linearized GCM. *Journal of the Atmospheric Sciences* **65**: 1182-1203.

888

889 Nicholson SE (2008) The intensity, location and structure of the tropical rainbelt over West Africa
890 as factors in interannual variability. *International Journal of Climatology* **28**: 1775-1785.

891

892 Nicholson SE (2009a) On the factors modulating the intensity of the tropical rainbelt over West
893 Africa. *International Journal of Climatology* **29**: 673-689.

894

895 Nicholson SE (2009b) A revised picture of the structure of the "monsoon" and land ITCZ over
896 West Africa. *Climate Dynamics* **32**: 1155-1171.

897

898 Nicholson SE (2015) Long-term variability of the East African "short rains" and its links to large-
899 scale factors. *International Journal of Climatology* **35**: 3979-3990.

900

901 Nicholson SE, Dezfuli AK (2013) The relationship of interannual variability in western equatorial
902 Africa to the tropical oceans and atmospheric circulation. Part I. The boreal spring. *Journal of
903 Climate* **26**: 45-65.

904

905 Nicholson SE, Fink A, Funk C (2018) Assessing recovery and regime change in West African
906 rainfall from a 161-year record. *International Journal of Climatology* **38**: 3770-3786.

907

908 Nithya N, Manoj MG, Mohankumar K (2017) Effect of El Niño/La Niña on tropical easterly jet
909 stream during Asian summer monsoon season. *International Journal of Climatology* **37**:
910 doi.org/10.1002/joc.5137.

911

912 Oort A (1983) *Global atmospheric circulation characteristics: 1958– 73*. NOAA Professional

913 Paper 14, 180 pp (47 microfiches).

914

915 Ortega S, Webster PJ, Toma V, Chang H-R (2017) Quasi-biweekly oscillations of the South Asian

916 monsoon and its co-evolution in the upper and lower troposphere. *Climate Dynamics* **49**: 3159-

917 3174.

918

919 Osman OE, Hastenrath SL (1969) On the synoptic climatology of summer rainfall over Central

920 Sudan. *Archives für Meteorologie, Bioklimatologie, und Geophysik, Ser. B* **17**: 297-324.

921

922 Pachur H-J, Kröpelin S (1987) Wadi Howar: Paleoclimatic evidence from an extinct river system

923 in the southeastern Sahara. *Science* **237**: 298-300.

924

925 Pattanaik DR, Satyan V (2000) Fluctuations of Tropical Easterly Jet during contrasting monsoons

926 over India) a GCM study. *Meteorology and Atmospheric Physics* **75**: 51–60.

927

928 Raman C, Ramanathan Y (1964) Interaction between lower and upper tropospheres. *Nature* **204**:

929 31–35.

930

931 Rao BRS, Rao DVB, Rao VB (2004) Decreasing trend in the strength of Tropical Easterly Jet

932 during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay

933 of Bengal. *Geophysical Research Letters* **31**: L141031–L141033S.

934

935 Rao S, Srinivasan J (2016) The impact of latent heating on the location and strength of the
936 tropical easterly jet. *Meteorology and Atmospheric Physics* **128**: 247-261.

937

938 Redelsperger J-L, and Coauthors (2002) Multi-scale description of a Sahelian weather system
939 representative of the West African monsoon. *Quarterly Journal of the Royal Meteorological
940 Society* **128**: 1229–1257.

941

942 Rodwell MJ (1997) Breaks in the Asian monsoon: The influence of Southern Hemisphere weather
943 systems. *Journal of the Atmospheric Sciences* **54**: 2597-2611.

944

945 Saha S, Moorthi S, Wu XR, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Chuang HY, Iredell
946 M, Ek M, Meng J, Yang RQ, Mendez MP, Van den Dool H, Zhang Q, Wang WQ, Chen MY,
947 Becker E (2014) The NCEP Climate Forecast System Version 2. *Journal of Climate* **27**: 2185-
948 2208.

949

950 Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean Dipole mode events on global
951 climate. *Climate Research* **25**: 151-169.

952

953 Sathiyamoorthy V (2005) Large scale reduction in the size of the Tropical Easterly Jet.
954 *Geophysical Research Letters* **32**: Article ID L14802.

955

956 Segele ZT, Lamb PJ, Leslie LA (2009) Large-scale atmospheric circulation and global sea surface
957 temperature associations with Horn of Africa June-September rainfall. *International Journal of*
958 *Climatology* **29**: 1075–1100.

959

960 Silvestri F, Vera C (2009) Nonstationary Impacts of the Southern Annular Mode on Southern
961 Hemisphere Climate. *Journal of Climate* **22**: 6142-6148.

962

963 Stickler A, Grant AN, Ewen T and Coauthors (2010) The Comprehensive Historical Upper-Air
964 Network. *Bulletin of the American Meteorological Society* **91**: 741-7511.

965

966 Stickler A, Brönnimann S (2011) Significant bias of the NCEP/NCAR and twentieth-century
967 reanalyses relative to pilot balloon observations over the West African Monsoon region (1940-
968 1957). *Quarterly Journal of the Royal Meteorological Society* **137**: 1400-1416.

969

970 Sun J, Wang H, Yuan W (2010) Linkage of the boreal spring Antarctic Oscillation to the West
971 African summer monsoon. *Journal of the Meteorological Society of Japan* **88**: 15-28.

972

973 Tanaka M (1982) Interannual fluctuations of the Tropical Easterly Jet and the summer monsoon
974 in the Asian region. *Journal of the Meteorological Society of Japan* **60**: 865-875.

975

976 Thorncroft CD, Blackburn M (1999) Maintenance of the African easterly jet. *Quarterly Journal*
977 *of the Royal Meteorological Society* **125**: 763–786.

978

979 Trenberth KE (1984) Signal versus noise in the Southern oscillation. *Monthly Weather Review*
980 **112**: 326–332.

981

982 Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Florino M, Gibson JK,
983 Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP,
984 Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann
985 N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm
986 E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-
987 J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D,
988 Viterbo P, Woolen J (2005) The ERA-40 re-analysis. *Quarterly Journal of the Royal*
989 *Meteorological Society* **131**: 2961-3012.

990

991 Wartenburger R, Brönnimann S, Stickler A (2013) Observation errors in early historical upper-air
992 observations. *Journal of Geophysical Research-Atmospheres* **118**: 12012-12028.

993

994 Yang G-Y, Methven J, Woolnough S, Hodges K, Hoskins B (1984) Linking African Easterly
995 Wave activity with equatorial waves and the influence of Rossby waves from the Southern
996 Hemisphere. *Journal of the Atmospheric Sciences* **75**: 1783-1809.

997