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ON L>* ESTIMATES FOR COMPLEX
MONGE-AMPERE EQUATIONS !

Bin Guo, Duong H. Phong, and Freid Tong

Abstract

A PDE proof is provided for the sharp L estimates for the complex Monge-Ampere
equation which had required pluripotential theory before. The proof covers both cases of
fixed background as well as degenerating background metrics. It extends to more general
fully non-linear equations satisfying a structural condition, and it also gives estimates of
Trudinger type.

1 Introduction

The main goal of this paper is to answer a long-standing question in the theory of complex
Monge-Ampere equations and its applications to complex geometry, namely whether sharp
L estimates can be established by PDE methods and without pluripotential theory. We
shall see that the answer is affirmative and, as may have been anticipated, the PDE proof
also gives new estimates as well as extensions to many other fully non-linear equations.

L estimates have a uniquely storied history in the theory of complex Monge-Ampere
equations. Early on, they were recognized as the defining difficulty in the problem of
finding Kahler-Einstein metrics. Yau’s introduction in 1978 of Moser iteration was the
key step in his solution of the Calabi conjecture, and it ushered in a new era for complex
Monge-Ampere equations [24]. Yau’s Moser iteration method works for equations whose
right hand sides are in L? for ¢ > n, where n is the complex dimension of the underlying
space. The next major advance was the 1998 result of Kolodziej [13], which established L>
estimates for the solution when the right hand side is in L9, for ¢ > 1. This improvement in
the range of ¢ is no mere technicality, and it has a profound geometric significance: that L™
estimates fail for ¢ = 1 is indicative of the necessity of stability conditions in the Kahler-
Ricci flow [15], while the cases 1 < ¢ < n are needed in a wide range of problems, including
singular K&hler-Einstein metrics on manifolds of general type [11, 8], the analytic minimal
model program [17], and degenerating Calabi-Yau metrics [20]. Kolodziej’s method of
proof relied heavily on the pluripotential theory developed in the late 1970’s by Bedford
and Taylor [2, 3]. Actually, for many applications to geometry, an extension of Kolodziej’s
results to the more general case of degenerating background metrics is necessary. Such an
extension was developed in 2007 independently by Demailly and Pali [8] and Eyssidieux,
Guedj, and Zeriahi [11], and pluripotential theory continued to be essential.
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An immediate question for the theory of geometric partial differential equations is
whether the above L estimates can be derived by PDE methods, instead of pluripoten-
tial theory which is specific to Monge-Ampere equations. This question gained considerable
attention over the years, as more and more fully non-linear equations without correspond-
ing pluripotential theory emerged in complex differential geometry. A completely different
proof for right hand sides in L? with ¢ > 2 was found in 2011 by Blocki [4], using the
Alexandrov-Bakelman-Pucci (ABP) maximum principle.! His methods turn out to be re-
markably powerful, and have since been applied successfully to many problems, including
subsolutions [18, 16], equations with gradient terms [22], and the constant scalar curva-
ture problem [6]. Even so, extensions to degenerating backgrounds as well as the full range
g > 1 remained out of reach. In a different direction, a PDE proof of L> estimates for the
complex Monge-Ampere equation was obtained by J.X. Wang, X.J. Wang, and B. Zhou
[23] for domains in C™. However, their methods do not appear adaptable to the compact
manifold case, even in the simplest case when the background Kahler metric is fixed. Thus
a fully effective approach to L estimates remained an open question.

The PDE approach to L*° estimates which we present in this paper combines the
methods of Wang, Wang, and Zhou [23] with a fundamental new idea of Chen and Cheng
[6] in their recent work on constant scalar curvature Kéhler metrics, namely to compare
the given equation with an auxiliary complex Monge-Ampere equation. A key novelty in
our paper resides in the choice of auxiliary complex Monge-Ampere equation, as well as
of the test function ® for the comparison. We now formulate our main results.

Let X be a compact Kahler manifold without boundary of dimension n, and wx its
Kahler form. If ¢ is a real smooth function on X, we let w, = wx + i00¢p, and let h
be the corresponding endomorphism relative to the metric wy. Explicitly, if we write
wx = igg;dz? A dzF in local holomorphic coordinates, then (hy)7y = ¢7™(wy)mi. Let Alhy)]
be the vector of eigenvalues of h,, and consider the non-linear partial differential equation

fAlRG)) = e, supyp =0, Alh] €T, (1.1)

for a given function f()) and real function F normalized such that [y e"Fwh =V = [y wi.
Here the function f(\) is assumed to be invariant under permutations of the components
of A\, and defined on an open cone I' C {\: A\ +...4+ )\, > 0} with vertex at the origin and
containing the ﬁrsatf ((;ctant {A: A >0,...,\, > 0}. We assume throughout f is elliptic

in the sense that aT-) > 0 for any A € I', and that
J

frA)=rf(A), r>0, AeT, (1.2)

which can be viewed as a normalization, as the same homogeneous equation can be ex-
pressed with many different functions f()\). We shall need the L!(log L)? norm of e with

IThe possibility of applying ABP maximum principle to the complex Monge-Ampere equation were
suggested a while ago by S.Y. Cheng and S.T. Yau.



respect to the measure w%, which can be recognized as a generalized entropy Ent,(F'),

1 1
Enty(F) = 3> | € 1FPw = —— €|z (10g 1y (1.3)
Theorem 1 Consider the equation (1.1), and assume that the function f(\) satisfies the

following structural condition, namely that there exists a constant v > 0 so that

af(Alh])

ij

) >, forallXel. (1.4)

Fiz p >n. Then for any solution ¢ € C*(X), we have the estimate
supy|e| < C (1.5)
where the constant C' depends only on n,p,~, wx, and the entropy Ent,(F).

We observe that many equations satisfy the structural condition (1.4). They include
the Monge-Ampere equation f(\) = ([T}-, )\j)%, more generally Hessian equations f(\) =
(MY k =1,...,n, where o,()\) is the k-th symmetric function, and quotient Hessian
equations such as f(\) = (‘;—’;)1/ =0 4 col/™ for some ¢ > 0. Applying Theorem 1 to
the Monge-Ampere equation, we obtain immediately Kolodziej’s [13] sharp L* bounds.
Applying it to Hessian equations, we obtain the L> bounds of Dinew and Kolodziej [10]. In
fact, our result is stronger, as the bound in [10] requires that exp (nF') be in L? for ¢ > 1,
while we only need that exp (nF) be in L*(log L)? for p > n. Beyond these cases, the L*®
estimates in Theorem 1 are new, and appear to be the first obtained in any generality for

fully non-linear equations from Kahler geometry.

We discuss now estimates, particularly important for many geometric applications,
where the background metric is allowed to degenerate. It is convenient to set up the
equation as follows. Let (X, wy) be a compact Kéhler manifold of dimension n as before,
and let x be a fixed closed and non-negative (1, 1)-form. For ¢ € (0, 1], set

wp = X + twx (1.6)

and for each p € C?*(X), let wy, = w; + 100, h:, be the corresponding endomorphism
relative to the metric wy, and Alh; ] be the vector of eigenvalues of h;,. Consider the
family of non-linear partial differential equations

F\hig]) = coe™ supypr =0, Ahg] €D, te(0,1] (1.7)

for given function f(\), real functions F;, and positive constant coefficients ¢;. Here the
functions F} are normalized by [y e"ftwh = [y w%, so that the constants ¢; are determined.
Denote by V; the volume of the metric wy, V; = [y wy', and define the energy E;(p) by

Be) = 1 [ (ol Al et (18)
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For functions ¢; solving the equation (1.7), we obviously have

n
Cy

B = 3¢ [ (medespnF)wg. (19)
Theorem 2 Consider the family of equations (1.7), and assume that f(X\) satisfies the
structural condition (1.4). Let o, be C* functions on X satisfying (1.7). Fiz p > n. Then
for any t € (0,1], we have

81)1<p|s0t| <C (1.10)

where C'is a constant depending only on wx, X, p,n,, and upper bounds for the following
three quantities

n
G

v Ei(pi), Ent,(F). (1.11)

All three quantities in (1.11) have attractive interpretations. We have already noted
from (1.3) that Ent,(F}) is a generalized entropy. The quantity % can be viewed as a
relative volume, and a substitute for a cohomological constraint when dealing with general
equations f(A). The quantity F;(p;) is clearly an energy functional, as it reduces to the
Dirichlet integral in the case of the Laplacian on surfaces.

As a special case, Theorem 2 applied to the Monge-Ampere equation gives back im-
mediately the L™ estimates of Eyssidieux, Guedj, Zeriahi [11], and Demailly, Pali [§8], in
the full generality of degenerating background metrics. The point here is that the relative
volumes ¢}'/V; must be 1/V because of a cohomological constraint, and it follows easily
from Jensen’s inequality that the energies E; are uniformly bounded (see the fuller discus-
sion in Theorem 4 in §4 below). Thus Theorem 2 gives the pure PDE proof of these L
estimates that we sought. In fact, it is particularly simple as the ABP maximum principle
is not even needed.

More generally, as long as the admissible cone I' is the one corresponding to PSH
functions, we can obtain uniform bounds for the energies F;. For example, this applies to
the equations f()\) = (Z—’;)l/(k_l) +calin,

For Hessian equations f(\) = o,(A\)*¥, 1 < k < n, nothing was known in the case of
degenerating background metrics, and Theorem 2 is now the only available result. As we
shall see in Theorem 5 in §5 below, if ||e"**||1» is uniformly bounded for p > %,
bound the energy E; by a multiple of ¢?V,~!. In particular, for big cohomology classes
[we], the volumes V; do not tend to 0, the coefficients ¢} are bounded by the entropy, and
we obtain then uniform L* bounds. Such bounds are completely new for fully non-linear

equations, and in particular Theorem 6 is new for Hessian equations.

we can

This paper is organized as follows. In §2 and §3, we give the proofs of Theorem 1 and
Theorem 2. We actually begin with the proof of Theorem 2 in §2, as Theorem 1 would
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follow from Theorem 2 upon control of the energy term F;. As in [6], we use a comparison
of the given equation to an auxiliary complex Monge-Ampere equation. However, for
Theorem 2, it is very important to choose the auxiliary equation so as to avoid having
to use the ABP maximum principle, as this maximum principle would be an impediment
in the case of degenerating background metrics. The additional step of estimating the
energy terms to get Theorem 1 from Theorem 2 is provided by Theorem 3, which is the
one requiring the ABP maximum principle. In §4 and §5, we show how our results apply
to Monge-Ampere and Hessian equations respectively, and how they improve on many
recent results in the literature. Finally, we have discussed exclusively so far L™ estimates.
But not surprisingly, the same methods apply to LP and exponential estimates as well.
We illustrate this in §6 by some applications to Trudinger exponential inequalities for fully
non-linear equations, which are either new or independent proofs of known sharp estimates.
We also observe that the assumption (1.2) that f(\) was homomegenous of degree 1 was
only for simplicity. The results of this paper still hold with this assumption replaced by
the weaker Euler inequality with some fixed positive constant A,

Z%Ajg/\m), AeT.
j=1 Y%

Furthermore, our methods can be adapted to the setting of families of Kéhler manifolds
(X, w;) of the same dimension, as long as the a-invariant estimates hold uniformly.

2 Proof of Theorem 2

Let ; solve the equation (1.7). Fix p > n, and any upper bound E; > 0 for E;(y;). We
shall actually show that
&

sup lir| < Cof 7 (Ent,, + 1+ exp(C1Ey)) } " By + C(n, p),

for constants Cy, C} depending only on n,wx,Y,7, and C(n,p) depending only on n, p.
Throughout the proof we will fix ¢t € (0, 1], but the constants will be independent of t,
unless stated explicitly otherwise.

For any s > 0, we let ), := {¢; < —s} be the sub-level set of ;.

Lemma 1 There are constants C'= C'(n,wx, x,7) > 0 and By = Bo(n,wx, x,7) > 0 such
that for any s > 0

—(th + S) Y n il
/QS exp {50(W) n }WX < C’eXp (CEt), (21)

where Ag 1= % Jo. (=@ — s)e"Frwk is the energy of (¢ + s)—.
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Proof. We choose a sequence of smooth positive functions 7, : R — R such that

1
(z) = x + o when = > 0, (2.2)
and )
= — < ——
() A when z < iz

and 7(x) lies between 1/2k and 1/k for x € [—1/k,0]. Clearly 7 converge pointwise to
Too() = @ - xr, (x) as k — oo, where yr, denotes the characteristic function of R;.
We solve an auxiliary complex Monge-Ampere equation on X

(v + 8000 = 2T gy = TR T ) menrin - (23)
A&k As,k

with sup ¢y = 0 where A, = % Jx Tr(—p¢ — s)e™tw? is chosen so that the integrals of
both sides of (2.3) are equal. Note that (2.3) admits a unique smooth solution by Yau’s
theorem [24]. We also observe that as k — oo

n

Agp — A, = %/ (—p, — s)e™um, (2.4)
t s

which follows from Lebesgue’s dominated convergence theorem. The limit A, satisfies
A, < Fy, the assumed upper bound of Ey(¢y).

Denote ® to be the smooth function

D= —e(—thp + A)TT — (@ + 5) (2.5)
where A
1 n ; 1 S

0<e= (Tl )BATTy 7, 0<A = x (2.6)

n2

where v > 0 is the constant in the structure condition (1.4) of f.
Since X is compact without boundary, the maximum of ® must be attained at some
point, say, g € X. If 2 € X\Q2, then

sup @ = (wo) = —e(—Yun(z0) + M) — (pi(wo) +5) < —pu(ag) — 5 < 0.

Otherwise 79 € Q2. Then at zg, i00®(xy) < 0, and on the right hand side of (2.3) we have

(=1 — 5)(20) = —(pi(w0) +5) +1/k >0

by the definition of 7 in (2.2).



We denote by G¥ = alogaﬁj[h]) - Jlfa];(h the coefficients of the linearization of the
operator log f(A[h]) with b = wy' - w;,. By the ellipticity assumption of f(A[-]), (G¥) is

positive definite. Moreover, by the structure condition (1.4) on f, we have
ZDNE
Ohij "~ fA)"

Recall that the eigenvalues of h are by definition A = (Ay,...,A,). Working in a basis
where h is diagonal and wx the identity, we find using the definition of G¥ that

i 1 I
%G (W70 = f(A); N, Aj=1

det G = f~"det(

where we have used the assumption that f is homogeneous of degree one, so that ), pyic] a)\ =
f(A). At the maximum point xy of ¢, we can write

0 > G90;(x)

= (Y TG Wi+ g (s + TG () 0 — G (90

> an T (—Yek + A) TG (Wi, )i — G (wi )i + (1= n—+ 1( it B) ) )

> ng_:l,]_(_wt’k n A)_%ﬂn(detGij : det(wwt,k)ji)lm —1+(1- ngfl (=ter +A)” ”“)G”(Wt) i
> ngf1 (=Yuk +A)7 ”““YIM(%)W — 1+ nTlA_#l)Gﬁ(wt)ﬁ
i o L R

where in the third inequality we used the arithmetic-geometric inequality and in the last
one we used the choice of € and A in (2.6). Thus at xy we have

n+1

i) () + O = () + 4) 0

— (¢ +8)(z0) < As,k(

which implies that ®(xy) < 0. Hence we can conclude that sup, ® < 0, that is, on X

As,k

_(<Pt—|—8) S (n+1 n 1 ASk)T S C ( 'th’k—‘— 7

n+1 n+1 nLH 27
Ai/k(n—i_l) n2 )Ty (— ¢tk+(n+1)nn_l ~ )7, (2.7)

for some constant C',, depending only on n and . Taking the ("“) th power of both sides
of the previous equation, multiplying it by some small 5y > 0, taking the exponential on
both sides and then integrating the resulting inequality over €1, we obtain

I exp{ﬁ()(%) Pk < e (Cuodu) [ e (-Cubiek. (28

s



Recall that w; +i90¢; ) > 0 and w; = x + twy. We may assume x < (ag — 1)wy for
some ag = ap(x,w) > 1, so ¢y is also (agwx)-plurisubharmonic. Now it is a basic fact in
Kéhler geometry that, for any Kahler class y on X, there is a constant @ = (X, ) so
that

/ e~ < Cag,n, X, wx) (2.9)
X

for any oy < o and any y-plurisubharmonic function ¢ with supy 1) = 0. The local version
of this statement is in [12], and the above global version in [19]. We apply this statement
with x = apwx, and fix ap with 0 < ap < a(X, x). Then we choose 5y = Bo(n,wx, x,7v) >0
in (2.8) such that 5,C,, = ap, and from (2.8) we can then deduce that

—(pr +8) nt1y
/Q exp {ﬁo(%) k< O, (2.10)
s,k

S

for some constant C' = C'(n,wx, x,7) > 0. Letting k — oo in (2.10) we obtain from (2.4)

+ S n+1 n t
/Q exp {50(%) Jwk < Ce < CeF (2.11)

S

for some constant C' = C'(n,wx, x,7) > 0. The proof of Lemma 1 is complete.

We come now to the proof of Theorem 2 proper. Fix p > n, and define n: R, — R,
by n(z) = (log (1 + x))P. Note that n is a strictly increasing function with n(0) = 0, and
let n~! be its inverse function. If we let

Bo,— S\ (n+1)/n
= 5 i) (2.12)

then we have for any z € (), by the generalized Young’s inequality with respect to 7,

exp (nFi(z v(z)P
/ x)dr + /
0

exp (nFy(z))(log (1 + exp (nFi(z2))))? +/exp(v n'(z)dx

exp (nFy(2))(1 + n[Fy(2)])P + v(2)" exp (v(2))
exp (n£y(2))(1 + n|Fy(2)])? + C(p) exp (20(2))

v(z)pe"Ft(z)

IA

INIA A

We integrate both sides in the inequality above over z € ), and get by Lemma 1 that
/ v(z)pe"Ft(z)w} < / "t (1 4+ n|Fy(2)|)Pw'y +/ e2v(2)y
S QS
< ||€nFt||L1(logL)P + C + CGCEt,
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where the constant C' > 0 depends only on n,wx, x,7,p. In view of the definition of v,
this implies

|enFt ||L1(logL)P +C+ C€0Et)- (213)

[ (—on— )" ety < 20,7 AT (
Qs

From the definition of A, in (2.4), it follows from Hélder inequality that
cr

A= [ o9,

C? (ntDp nFy, n (nfl)p C? nFy, n /g
< (& [ o o) (4 [ o)
t s t s

nL Cn _ n _ nn Cn . . 1/q
< o+l (VttQPSOP(He FtHLl(logL)P —l—C—l—CeCEt))( +0p (Vtt /956 Fth)

where ¢ > 1 satisfies m + % =1,ie q= %. The inequality above yields
Ct op g—p (|| nFs CE\ P ﬁ/ nFi, n) e
A, < (142 BoP (e[ 1og 1y + C + Ce“P1)) (Vt x W) ™ (2.14)

Observe that the exponent of the integral on the right hand of (2.14) satisfies

I+n pn+p-—n

=146y >1,
qan pn
for §g := ’% > (. For notation convenience, set
AN n F\ /P
By = (Vtt?’ﬁo Pl 2oz e + C + Ce“F)) (2.15)
From (2.14) we then get
A. < B (i/ e Fiuy) T (2.16)
s > D20 ‘/; Q, X . :
For any r € [0, 1], we note that —p; — s > 7 on Qg = {¢y < —s —r}. Thus
A — i/ (_SO _ S>€TLFtw’n > r. g/ eTLFtw’n (2 17)
° ‘/t s ! X = ‘/; Qs+r X .
If we define ¢ : R, — R, by
ok nFy n
o(s) ::Vtt/se Fepyn
then (2.16) and (2.17) imply that
ro(s +1) < Bop(s)™°,  Vr €[0,1] and s > 0. (2.18)

¢ is clearly nonincreasing and continuous, so the lemma below applies to ¢. It is a classic
lemma due to De Giorgi, which was also used in [13, 11]. We include a sketch of the proof
for the readers’ convenience, and to exhibit the dependence of ||¢;||1~ on the given data.

9



Lemma 2 Let ¢ : Ry — R be a decreasing right-continuous function with lim, . ¢(s) =
0. Assume that r¢(s + 1) < Byp(s)'T% for some constant By > 0 and all s > 0 and
r € [0,1]. Then there exists some Sy = Sso(b0, Bo,®) > 0 such that ¢(s) = 0 for all
$> Se.

Proof. Fix an sy > 0 such that ¢(s0)% < ﬁ. This sp exists since ¢(s) — 0 as s — o0.
Define an increasing sequence (s;) of positive real numbers inductively by

Sjy1 1= sup{s > s;| ¢(s) > %gb(sj)}.

If at some stage ¢(s;) = 0, we stop there. By the right-continuity of ¢, it follows that
d(sj+1) < @ and s;11 < 1+s; since ¢(1+s;) < 1é(s;). It follows from the assumptions
on ¢ that s;11 — s; < 279% which implies that the sequence (s;) converges to

See = So + Z(Sj_H — Sj) < sp+
Jj=0

1—2-%

It is then clear that ¢(s) = 0 for any s > S.. The lemma is proved.
We return now to the proof of Theorem 2. By Chebyshev’s inequality, we have

o(s) = &

nFy n < 10? - nFy n < Et 0
=7 ), ¢ Wk = | (—ppe™twh < — —0ass—oo.
t s

~ sV Ja,
Thus we may choose sg = (2B,)Y* E, in the proof of Lemma 2. By (2.18) and Lemma 2,

we deduce that

so hence

1
1—2-%’
where By is the constant in (2.15) and ¢ := % > 0 depends only on n and p. The proof
of Theorem 2 is complete.

inf oy > —So = —(2B,)V"E, — (2.19)

3 Proof of Theorem 1

Let ¢ solve the equation (1.1), where F' is a given smooth function and f(A[-]) is the
nonlinear operator as introduced in Section 1. The setting of Theorem 1 with a fixed
background wx can be viewed as a special case of the setting of Theorem 2 with x = 0,
and t taken to be 1, w; = wx, and in the notations (1.7) and (1.1) for the two settings,

el =ceft, V=V (3.1)

10



We observe that, in view of the normalization 3 [y e"w% =1 for F},

1
= v /X e"Fwh < Ent,(F) + e" (3.2)

for any p > 1. Thus, applying Theorem 2 and assuming that Ent, is bounded, we find
that L* bounds for ¢ would follow if we can control the energy E = E;_;. However, an
easy application of Holder’s inequality gives

Be) =3 [(oerg < (7 [omeray) ™ <o @y

so it suffices to control the right hand side. This is done in the following theorem, part
(c), which completes the proof of Theorem 1:

Theorem 3 If f(\[:]) satisfies the structure condition (1.4), then the following holds:

(a) Assume that p € (0,n). Then there exist constants c,, C, > 0 depending only on
wx, n, p, v and the generalized entropy Ent,(F) such that

| exple(—)™ 7wk < G, (3.4)

(b) Assume that p = n. Then for any N > 0, there exists constants cxy > 0, Cy > 0
depending on n,wx, N, 7, and the generalized entropy Ent,, (F') so that

[ explen(¢) bk < Cw. (3.5)

(c) We have the energy estimate:

/X (—p)Verfwy < C (3.6)

for N = ni_p if p € [1,n), and for any N > 0 if p = n, where the constant C' on the right
hand side of (3.6) depends on n,wx,vy, N and the entropy Ent,(F').

We observe that, in the special case of the Monge-Ampere equation and when p = 1,
these estimates have been established in [9], using pluripotential theory. Further if p > n,
then Theorem 1 implies the solutions are L> bounded. Theorem 3 gives a more complete
integral estimate of such solutions for the full range of p € (0, o), using pure PDE methods.

For the proof of Theorem 1, we only need part (c) of Theorem 3, but we give the
proofs of the other parts as well, as they are of independent interest. As mentioned in
the Introduction, for this we need the ABP method developed in [4] and [6] in order to
get better integral bounds for ¢ as stated in (3.4) and (3.5). In particular, we have fix a
background metric wy, as this method is not effective for handling degenerating families.
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Suppose p € (0,n] and write
1 n n 1 n n
U, = V/X(FQ + 1)P2enF . ~ V/X |F|Pe"F W = Ent,(F).

We can solve the complex Monge-Ampere equation

o (P21

(LUX + Z&éiﬂ) 7

"W, supy = 0. (3.7)
» X

Lemma 3 Let p, 1 be the solutions to the equations (1.1), (3.7), respectively. There exist
constants A, \,C' > 0 depending on n,wx,v,p, and ¥, such that

sup(—(— + AP = Xp) <C

where B ==L € (0,1) if p < n, and if p = n, we choose an arbitrary 3 = N~ € (0,1)
and the constants A\, A, C'" depend additionally on N.

In the proof below, for a smooth function v on X, we denote

Ou = GYuz;,  |Vulb := GIV;5uV,u (3.8)

J

and
trga := GYaj;,  for a smooth (1,1)-form a = aj;y/—1dz" A dZ,

71

where as in Lemma 1, G = %W is the coefficient matrix of the linearized operator of
ij

log f(A[-]) at h = wx' - w,, and by the structure condition (1.4) on f, we have det(G%) >
~f~™ and GY is positive definite.

Proof of Lemma 3. We choose constants as follows:

A:(£2_p

1/n(1-8)
v
n"y ag )

. A=4pA" 0P (3.9)

p

where as usual oy = ap(X,wy) is a fixed constant smaller than the a-invariant of (X, wy).
We denote
pi=—(—1+N)F = Ap. (3.10)
For notation convenience, we set ¢5(t) = ¢t + t2+6 > 0, which is a smoothing of
2max(t,0) and converges to it as 6 — 0. Here we will first fix a 6 > 0 small and later on
0 will be sent to zero. All constants appearing in the proof are independent of §, unless
stated otherwise. From now on we will consider ¢s(p) which is monotone decreasing and
converges to 2p, as 6 — 0. We will omit the § in ¢5(p) and simply write ¢(p).

We define a smooth function
H = ¢(p)",
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where b = 1 + ﬁ > 1 is constant. Since X is compact, H must achieve its maximum at
some point in X, say, zo, and we denote supy H =: M > 0 (if M = 0 there is nothing to
prove). Let r = min{1, r(X,wx)} where r(X,wx) > 0 is the injectivity radius of (X, wx)
viewed as a compact Riemannian manifold. So we can identify the geodesic ball B, (xq) as
an open smooth domain in R** with Euclidean diameter bounded by 3r, say. Let 6 € (0,1)
be a small constant defined by

r2BA~0=F) 2 1

< —. 3.11
100M1/0 ’100n} 10 (3:11)

0 := min{

As in [6], we choose an auxiliary smooth function 1 defined on B, (zy) so that n = 1 on
B, ja(x0) and n = 1 — 0 on X\ Bs, /4(0), and 7 lies between 1 and 1 — 6 in the annulus
By a(20)\ By j2(20). Moreover 1 can be chosen to satisfy

1062 100
Vily < —5—  [V2ily < — (3.12)
r r
where we identify wyx with its associated Riemannian metric g.
We can now calculate,
O(Hn) = nOH + HOn+ 2Re(GIV;HV 7). (3.13)

We observe that the middle term in (3.13) satisfies
- 1060
HDT} = Htl"cﬂ;&&’/] > —H—2tl"Gu)X.
T

The last term in (3.13) satisfies

2Re(GIV;HVm) = 2bp(p)" ' Re(GTV;6(p)Vin)

b(b—1 2b

> MO gpiwso - 5ol IVl
b(b—1 2b 1062

> MO o2 1wo o) — ol e trax

where in the first inequality we applied the Cauchy-Schwarz inequality. The first term in
(3.13) is

nOH = no(p)"~'B6(p) +b(b — 1)ne(p)"~*|Vé(p)lé (3.14)
= nd(p)"'¢' ()Op + nd(p)" " ¢" (P)IVpl& + b(b — 1)ne(p) [V b (p)[2;-
We note that the middle term in (3.14) is nonnegative due to the fact that

SO = e L
VETs (VBT (Eropn

0.

13



To deal with the first term in (3.14) we note by the homogeneity of degree one assumption
on f that
Op = trgiddy = trqw, — trewx = 1 — trewx.

Then we calculate
Op = O(—(—+ A —Ap)
= B+ N0+ B(1— B)(—¢ + A)*?| Vg — ADgp
B(— + A)B_ltr(;ww — B(—=p + AP Mrqwx — A + Mrowy

p/
ey

v

vV

)" 4 (A = B(=1b + AP Htrgwy — A

|E
\I]p

v

B+ AT () A (A = BAP trgwx — A, (3.15)
where in the second inequality we used the arithmetic-geometric inequality and the equa-
tions for ¢ and . Plugging these inequalities into (3.13), we obtain

1060 2b 1002
O(Hn) = —?WP)%YGWX 3= 1¢(P)b
[EP

+bn(p)" ' (p) (my " B(—v + AT
0
(o) {15 (A~ BN (p)trgux — gy d{p)trewx (3.16)
2067 £

_m¢(p)thwX —l—nfyl/nﬁ(_w —l—A)B_l(Z\;—)l/n B A(ﬁ/(p)},

D) trGwX
r

)1/n + ()\ - ﬁAﬁ_l)trGwX - )\)

p

v

where we ignored 7 in the last inequality since n > 9/10. To deal with the right hand side
in the equation (3.16), we note that on the set {p < 0}

o
0§¢(P):P+\/P2+5:m§\/&

and on this same set the function ¢’'(-) satisfies

p 9
VAT R

So on the set {p < 0} the right hand side of (3.16) is greater or equal to

1>¢'(p) =1+

206 2062
bgb(p)b_l( — —Vitrgwxy — ———

3 b= 1) Vitrgwy — )\)

On the other hand, on the set {p > 0}, we know 2 > ¢'(p) > 1, so the first three terms
on the right hand side of (3.16) are positive due to the choice of # in (3.11), and A, X in

14



(3.9) and the fact that ¢(p) < M'®. So on the set {p > 0} the right hand side of (3.16)
is greater or equal to

b (p)"~ (my /"B (- w+mﬁ%g|wn—g.

Combining the above two cases, we obtain

|F| 1/n
] >/ _A)'X{p>0}

p

2067
(b—1)r2

O(Hn) > b(p)" ™ (my/"Bl= + A (G-

200
—bo(p)* (%\/gtrgwx + ftrgwx + )\) X{p<0}>

where yg denotes the characteristic function of a set E.

We now apply the ABP maximum principle to the function H7 on the domain B,.(x¢) =
By in R?™. Tt follows that

n

sup(Hi) < sup(Hi) + C(n)r{

D) (1= + )P () - N
/Boﬂ{p>0}

— w
Bo 0Bo (detG”) :
/ ¢(p)2n(b 1) (209\/7t1”GWX + WftrGwX + )\) }1/2n
Bon{p<0} (detG¥)? “x
BN (my /" B(— + M) (G -
<  sup(Hn)+C(n / - WX
sup(Ho) + Co){ [ =3 %
1/2n
L 5n(b—1)} / (3.17)

where the constant C" = C'(n, F, G,wx) in the last term may not be uniformly bounded,
but this is not a concern, since later on we will let 6 — 0. We observe that the inte-
gral involved in the last inequality is in fact integrated over the set where ny'/"3(— +
A)B_l(%)l/" — A <0 and p > 0, and over this set we have from the choice of constants
n (3.9)

A
n,}/l/nﬁ

At the same time, on the same set, we have 0 < p < —Ag and ¢(p) < 2p+ /6. Therefore,
we obtain from (3.17) that

1P| < (T,)7( ) "+ AP ”/P——( Wb+ A)=Bm/p,

M < (1—9)supH+C(/( SOJF\/‘)l/zeXp( (— ¢+A)(1 n/p)w Lo gn- 1)1/2n

aBo BO

IN

(1-0)M + C(/B (—QO + exp (ao(—¢ + A)(l—ﬁ)n/p)) W+ C/én(b—l))l/%
< (1=0)M +Cy+ 60D (3.18)
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where Cy = Cy(n,wx, v, V,,p) > 0 is independent of ¢ and in the last inequality we have
used the following inequalities:

(1) [x(—p)w% < C(n,wx) which follows from the Green’s formula, n + Ay, ¢ > 0
(since Alhy] € I' C {1 + - -+ A, > 0}) and the normalization condition supy ¢ = 0.

(2) [x exp (ao(—w + A)(l_[”)"/”)u);‘< < C(n,wx, V,,p). By the choice of g, if p < n,
(1—pB)n/p=1;and if p = n, then (1 — B)n/p =1— N~! < 1, Young’s inequality gives
the desired estimate.

Hence we conclude that with the choice of 6 in (3.11)

min(M'"5, M) < Cy+ C'§OV/? = M < Cy+ C'6?,

which implies that
sup 2p4 < sup p(p) = M < Cy + C'6%.
X X

Finally letting 6 — 0 yields the desired estimate supy py+ < Cj for some positive constant
Co = Cy(n,wx, 7, ¥,) (which may be different from the Cj in (3.18)). The proof of Lemma
3 is complete.

Proof of Theorem 3. (a) and (b) follow easily from Lemma 3 and the fact the wx-
plurisubharmonic function v satisfies [y e~ *%w% < C(n,wx).

The inequality (3.6) in (c) is an immediate consequence of the estimates in (a) and (b),
and Jensen’s inequality. More precisely, we have

1 1
v /X e‘"F+60(—¢)Ne"Fw} = G /X 6c0(—80)Nw;l< < C(n,wx, 7, ¥p, N).
Taking the logarithms of both sides and applying Jensen’s inequality yields
1
V / (CO(_SO)N - nF)6an;L( < C(?’L, wx, 7, \DP? N)>
X
from which (3.6) follows after noting that W, is equivalent to the entropy Ent, and if p > 1
1 n n
V/XFe Fu < Ent,.

The proof of Theorem 3 is complete.

4 Monge-Ampere equations

In this and the next section, we apply Theorems 1 and 2 to the specific cases of the
Monge-Ampere and Hessian equations on a compact Kéhler manifold (X, wx).

We begin by noting that the structural condition (1.4) holds for many equations and
is usually easy to check:
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Lemma 4 Assume that f:R"™ = Ry is a concave and homogeneous function of degree
one, which satzsﬁes ( > 0 for any A in an admissible cone I' C R™. Assume that there
1s ay > 0 such that

) =y ([T )™ forallpe T, :={N € R": A1 >0,...,\, > 0}. (4.1)

J
Then f satisfies the structural condition (1.4).

Proof. By the concavity of f on I', for any A, up € [' we have

flw) < fN) + i(—)\j + Mj)af()\) = iﬂj 8£}(\)'\)’ (4.2)

where we have used the homogeneity of degree one assumption on f, which implies that
PPV 97A) — £()\). Taking the infimum of the right hand side of (4.2) over all y € I',, with

Jox;
[I7_; uj = 1, by the arithmetic-geometric inequality and the assumption (4.1) on f, we get
2Of(A
A " (1) =)
7j=1 a)\J Uern,Hj =1

The desired inequality (1.4) follows from this inequality upon diagonalizing the matrix h.
The proof of Lemma 4 is complete.

1

It follows immediately from this lemma that the functions f(\) = (ITj=; Aj)7=, f(A) =

or(N)F, and f(\) = (%)ﬁjtcap()\)% forc>0,n>k>¢>1,n2>p>1,corresponding
respectively to the Monge-Ampere, the Hessian, and the quotient Hessian equations, all
satisfy the structural condition (1.4), and the constant v depends only on the given num-
bers n, k, ¢, p,c > 0, and the admissible cone I' =T, = {A € R" : 01(\) > 0,...,0x(\) >
0}. The last equation appeared recently in [7].

In this section, we focus on the Monge-Ampere equation. To discuss the underlying

geometry, it is convenient to rewrite it in the more usual form

(wi +100p)" = ¢ W, Ahiy] €T, supg; =0, (4.3)
X

where w; = twx + x is the family of degenerating background metrics. To apply Theorem
2, we need to control the ratio ¢}'/V; and the energy E;. This can be readily done using
the following two easy lemmas:

Lemma 5 Let V = [y w% be the volume of (X,wx), then

n
Cy

V_lzv, VtE(O,l]
t
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Proof. Integrating both sides of (4.3), we get

Vo= c?/Xe”Ftw} = /X(wt +i00p,)" = /wa =V,.

Lemma 6 There is a uniform constant C > 0 depending only on n, ||e™*|

wx, X such that for all t € (0,1]

|L1(logL)1(w’;()7

Et(SOt) <C. (4.4)

Proof. Recall that

Cn n n 1 n
Bl = [ (e = - [ (o

so that it suffices to show that ¢- [y (=@ w}, < O, ¥Vt € (0,1]. We may assume with-
out loss of generality that y < wy, so the w;-plurisubharmonic function ¢, is also 2wx-
plurisubharmonic and by the a-invariant estimate, there is an g = ao(X,wyx) > 0 such

that 1 " 1 C(n,wy)
w _ n, Wy

— [ e — log -2 — « w”I—/eo‘Wt"<7’

%/X  ( & e R

By Jensen’s inequality it follows that
1 Wy

Pt n
Vt/x ( — log@ — Ozo%)w% < logC — logV;

which implies that

1 1
V/X(—ao%)wzt < V/X IOg(enFtC?)wzt + logC' — logV};
t t
cy c?
= /X(nﬂ)e"Ftvttwf}( + log C' + logvtt

< Clle™ |1 (tog 1)t x) + C
from which the estimate follows since ¢} and V; are uniformly equivalent by Lemma 5.

Theorem 2 together with the preceding lemmas implies at once the following basic
estimates of Kolodziej [13], Eyssidieux, Guedj, and Zeriahi [11], and Demailly and Pali [8]:

Theorem 4 Consider the above family (4.3) of complex Monge-Ampére equations, with
respect to the degenerating background metrics wy, t € (0,1]. Fiz any ¢ > n. If p; is a
family of C* solution, normalized by supy w; = 0, and if ||€"*|| 1(10g Lys(n) s uniformly
bounded in t, then ||| Lo (x) is uniformly bounded in t as well.

In many applications, the (1, 1)-form y is chosen to be x = 7*wy, where 7 : X — Y is
a holomorphic map between Kéhler manifolds and wy is a Kéhler metric on Y.
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5 Fully non-linear and Hessian equations

In this section, we consider applications of Theorem 2 to fully non-linear equations besides
Monge-Ampere equations. For these applications, we need to consider the relative volumes
c*V;7! and the energies Ey(yp;). We begin with a simple estimate for E;(;), which gener-
alizes the simple considerations which applied earlier to Monge-Ampeére equations and is
a straightforward application of the Holder inequality,

Lemma 7 Consider the energy E(¢;) in the formalism for degenerating background met-
rics as in the set-up (1.7). Then we have for any p,q > 1 and % + % =1,

n
2

nFy
‘Ul La p. 5.1
v " | [loell (5.1)

Et(%) <

Next we note the following uniform LP estimate for general functions u, whose Hessian
is in a cone I'y = {\;0, > 0, 1 < ¢ < k}, which is an analogue of the a-invariant estimate
for plurisubharmonic functions. It is well-known to experts, but we supply a statement
and proof without pluripotential theory, as we could not find a convenient reference:

Lemma 8 For any p € (0,-"), there is a uniform constant C' = C(n,p,wx) > 0 such
that
||u||LP(w’;() < 07

with supy u =0 and Aw,] € Tk, w, = wx + i00u.

Proof. We use an idea in [10]. Without loss of generality we may assume Vol(X,wx) = 1.

Fix an s > 0 and a small € > 0. Let K = {u < —s} C X be compact sub-level set of

u. We choose a sequence of smooth positive functions n; with [y nw% = 1 which converge

t0 Moo := aVi 'k +a - xx\x in L'T(w?) and also pointwise, where Vi = [ w% is the

volume of the set K and a > 0 is a constant such that
/X Mooy = /X(aVI%E_IXK +a- xx\x)wy = aV + aVol(X\K) = 1.

It is not hard to see that 1/2 < a < max(2,2%) = 2. Hence

14+e, n _ l4ey e+2e? 1+e€

/ Ny Wy = a T VE + a7 Vol(X\K) < 4.
X

Thus we may assume [|9;{|L1+ew,) < 5 for j large enough. We solve the complex Monge-
Ampere equations

(wx + i00v;)" = n;w%, supv; = 0.

X

By Theorem 1 (or [13]), it holds that ||v;||z~ < Cy for a uniform Cy = Cy(n, wx, €).
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By integration by parts we have
/X (—u)(wx + i0Fv))F A wi* (5.2)
- /X(—u)wx A wffj_l AWEF 4 (—v;) (e — wx) A wfj PAwWE*
< /(—u)wX/\wkl/\w —I—Co/wu/\wkl/\w"k
X
:/(u)kl/\ nk+1—|—C0.
X
Applying (5.2) inductively we get
/X(—u)(wx +i00v;)F AwF < / u)wy + kCy < C, (5.3)

for some uniform constant C' = C(n, k,wx, €) > 0. On the other hand, by Newton-
wk AwTR
Maclaurin inequality that (%::7,1}()1”€ > c(n, k)( )l/n we derive from (5.3) that
X

[ (F0m) s < Ol ko, o).

Letting 7 — oo and applying Fatou’s lemma we get
/K(—u)V[(fe_l)k/"w?( < C(n,k,wy,¢)
from which we obtain that
Vi = Vol({u < —s}) < C(n, k:,wX,e)s_m.

For any p < ~-, we have

/ (—u)Pwy < 14 pC(n, k,wy, e)/ Pl EEET s < C(n, k,wx,p)
X 1

if € = €(p) > 0 is chosen small enough so that the integral above is integrable. The proof
of Lemma 8 is complete.

Returning to the applications of Theorem 2, we observe that the condition that p < -
is equivalent to the dual exponent ¢ satisfying ¢ > 2Z. Thus Theorem 2 combined with

k
Lemmas 7 and 8 imply at once:

Theorem 5 Consider the family of fully non-linear equations (1.7) with respect to the
degenerating background metrics wy, t € (0,1]. Assume that we have solutions ¢, € C?,
normalized by supy ¢y = 0. Assume that Nhy,,] € Ty, for some fized k, 1 < k <n. Fix
q > n/k. Then ||<pt]|Loo is uniformly bounded by a constant C depending only on n, k,q
wx, X €™ aqny and
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We illustrate this theorem by specializing now to the case of Hessian equations, where
FN) = ox(A)F for some 1 < k < n. The more familiar form of this equation is

(wy +100¢0,)* A Wi = cFekbryn SUp ¢y = 0, (5.4)
and the condition Awy,] € Ty is part of the equation?. Thus Theorem 5 applies and,
assuming uniform bounds for ||e""||1s for some ¢ > n/k, it reduces the uniform estimates
for ¢; to a uniform estimate for the relative volumes ¢}'/V;. An important geometric case
when the relative volumes can be controlled is when the classe y is big, in the sense that
its volume [x"] = [y X" is strictly positive. In this case, we obtain

Theorem 6 Fiz 1 < k < n, and consider the family (5.4) of Hessian equations with
respect to the degenerating background metrics. Assume that x is big. Then for any q¢ > %,
ol is bounded uniformly by a constant C' depending only onn, k,q, wx, x and an upper
bound for ||| Lagun -

Proof of Theorem 6. In view of Theorem 5, it suffices to show that ¢V, is uniformly
bounded. Since V; > [x"] for any ¢, this reduces to showing that ¢; are themselves uniformly
bounded.

The factors ¢; are determined by
Cf/ e :/ wE AWEF=0(1). (5.5)
X X

To estimate ¢;, we still need a uniform lower bound of [y efftw?%. We use Holder’s inequality
as before. Thus we write

/ e 2/ e"Ffw}—i-/ W (5.6)
X {F<0} {F:>0}
Recall that by our normalization on F;
V :/ et :/ et +/ e 5.7
X X Jir<oy X0 im0 X (5.7)

If the first term on the right hand side of (5.7) is greater than V/2, then (5.6) shows that
Jx e*Ftwt > V/2; otherwise the second term in (5.7) is greater than V/2. Then we have
by the Holder inequality

nkFy, n qnFy /g n %
Jioay "5 = (™) 5)

which yields a uniform lower bound of the second term in (5.6) depending additionally
on the assumed ||e"*||q. Therefore we conclude from (5.5) that ¢; < C for a uniform
constant C' > 0. The proof of Theorem 6 is complete.

*We remark that usually in the equation (5.4), one normalizes the function F; such that | X ekt = V.
However, our normalization is that [, e"™w% = V.
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6 Trudinger Inequalities

In this section, we illustrate the versatility of our approach by establishing also inequalities
of Trudinger type for general non-linear energies. Let f(\) be a fully nonlinear operator
satisfying the same structural conditions as in Theorem 1, and define for each p > 0,

By(e) = o [ (~o) f Ol (6.1)

(this notation is slightly different from the notation E; used earlier for degenerating back-
ground metrics, but there should be no confusion, as the background metric is here fixed,
and the index t can be dropped). Recall that we had established before integral estimates
for ¢ in terms of the entropy Ent,. Trudinger estimates are also exponential estimates,
but in terms of the energy E,. We have

Theorem 7 Let ¢ be a plurisubharmonic function such that sup = —1. Then

— ntp

/Xexp{c(n,p,y)oz(Ep(Tﬁ)pn%p) " }w} <20, (6.2)

where a and C,, are the constants coming from the a-invariant estimate of (X, wx).

We note that when specialized to the case when f(\) is the Monge-Ampeére operator
FN) = (IT}—y M), our theorem recovers an inequality proved in [1, 9]. Moreover, our
estimate has the major advantage that all constants there depend only on the a-invariant
of the underlying manifold, hence is uniform over degenerating families with uniform a-
invariants.

Proof of Theorem 7: Let us solve the following auxiliary Monge-Ampere equation with
sup ¢ = 0, which is solvable due to Yau’s theorem [24].

(wx + 000y = SO (6.3)

then by the same maximum argument as in Lemma 1, we obtain the inequality

==

(. 7) (o) <+ O, p, ) By() (6.4)

E, (i) 1/ 7)

Now we pick kK = 27is O'tp c_n7_+LP, where C' and ¢ are constants in estimate above, which
1
only depends on n,p and v. Now set U, = {—¢ < kE,(¢)?}. Then on X \ Uy, we have

by our choice of &,
ntp

1 — .
§c(n,p, 7)(W) < -9 (6.5)
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and on U,, we have

_SO n+p

c(n,p,7) (W) < —c(n,p, )R (6.6)

now multiplying by min(c¢'x~%,1/2)a and integrating, we get
n+p

/ —p n n —ay, n —ap, n
/Xexp{c(n,p,v)a(—Ep(sp)l/(ner)) }wX < /Une wX—l—/X\UKe wy <2C, (6.7)

which is the desired result.
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