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On L∞ estimates for Monge-Ampère and Hessian
equations on nef classes 1

Bin Guo, Duong H. Phong, Freid Tong2, and Chuwen Wang

Abstract

The PDE approach developed earlier by the first three authors for L∞ estimates for fully

non-linear equations on Kähler manifolds is shown to apply as well to Monge-Ampère and

Hessian equations on nef classes. In particular, one obtains a new proof of the estimates

of Boucksom-Eyssidieux-Guedj-Zeriahi and Fu-Guo-Song for the Monge-Ampère equation,

together with their generalization to Hessian equations.

1 Introduction

The goal of this short note is to show that the PDE approach introduced in [12, 13] for L∞

and Trudinger-type estimates for general classes fully non-linear equations on a compact

Kähler manifold applies as well to Monge-Ampère and Hessian equations on nef classes.

The key to the approach in [12, 13] is an estimate of Trudinger-type, obtained by

comparing the solution ϕ of the given equation to the solution of an auxiliary Monge-
Ampère equation with the energy of the sublevel set function −ϕ + s on the right hand

side. We shall see that, in the present case of nef classes, the argument can still be made

to work by replacing ϕ by ϕ − V , where V is the envelope of the nef class. Applied to
the Monge-Ampère equation, this gives a PDE proof of the estimates obtained earlier for

nef classes by Boucksom-Eyssidieux-Guedj-Zeriahi [2] and Fu-Guo-Song [9]. The estimates
which we obtain with this method applied to Hessian equations seem new.

We note that the use of an auxiliary Monge-Ampère equation had been instrumental

in the recent progress of Chen and Cheng [3] on the constant scalar curvature Kähler

metrics problem. There the auxiliary equation involved the entropy, and not the energy
of sublevel set functions as in our case. More generally, auxiliary equations have often

been used in the theory of partial differential equations, notably by De Giorgi [5], and
more recently by Dinew and Kolodziej [7, 6] in their approach to Hölder estmates for the

complex Monge-Ampère equation.

2 The Monge-Ampère equation

We begin with the Monge-Ampère equation. Let (X,ω) be a compact Kähler manifold
and χ be a closed (1, 1)-form on X . We assume the cohomology class [χ] is nef and let
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ν ∈ {0, 1, . . . , n} be the numerical dimension of [χ], i.e.

ν = max{k | [χ]k 6= 0 in Hk,k(X,C)}.

When ν = n we say the class [χ] is big.

Let ω̂t = χ+ tω for t ∈ (0, 1]. The form ω̂t may not be positive but its class is Kähler.
We consider the following family of complex Monge-Ampère equations

(ω̂t + i∂∂̄ϕt)
n = cte

Fωn, sup
X

ϕt = 0 (2.1)

where ct = [ω̂t]
n = O(tn−ν) is a normalizing constant and F ∈ C∞(X) satisfies

∫

X eFωn =
∫

X ωn. This equation admits a unique smooth solution ϕt by Yau’s theorem [17].

The form χ is not assumed to be semipositive, so the usual L∞ estimate of ϕt may not
hold [15]. As in [2, 9], we need to modify the solution ϕt by an envelope Vt of the class

[ω̂t], defined as follows,

Vt = sup{v | v ∈ PSH(X, ω̂t), v ≤ 0}.

Then we have:

Theorem 1 Consider the equation (2.1), and assume that the cohomology class of χ is
nef. For any s > 0, let Ωs = {ϕt − Vt ≤ −s} be the sub-level set of ϕt − Vt.

(a) Then there are constants C = C(n, ω, χ) > 0 and α0 = α0(n, ω, χ) > 0 such that

∫

Ωs

exp {α0

(−(ϕt − Vt + s)

A
1/(1+n)
s

)
n+1
n }ωn ≤ C exp (CEt), (2.2)

where As =
∫

Ωs
(−ϕt + Vt − s)eFωn and Et =

∫

X(−ϕt + Vt)e
Fωn.

(b) Fix p > n. There is a constant C(n, p, ω, χ, ‖eF‖L1( logL)p) so that for all t ∈ (0, 1],
we have

0 ≤ −ϕt + Vt ≤ C(n, p, ω, χ, ‖eF‖L1( logL)p). (2.3)

We remark that the estimates in Theorem 1 continue to hold for a family of Kähler

metrics (maybe with distinct complex structures) which satisfy a uniform α-invariant type
estimate.

Proof of Theorem 1

We would like to find an auxiliary equation with smooth coefficients, so that its solv-

ability can be guaranteed by Yau’s theorem. For this, we need a lemma due to Berman
[1] on a smooth approximation for Vt (see also Lemma 2 below). Fix a time t ∈ (0, 1].

Lemma 1 Let uβ be the smooth solution to the complex Monge-Ampère equation

(ω̂t + i∂∂̄uβ)
n = eβuβωn.

Then uβ converges uniformly to Vt as β → ∞.
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We remark that by [4], Vt is a C1,1 function on X , although this fact is not used in this
note. We now return to the proof of Part (a) of Theorem 1.

We choose a sequence of positive functions τk : R → R+ such that τk(x) decreases to

x ·χR+(x) as k → ∞. Fix a smooth function uβ as in Lemma 1. The uβ depends on t, but
for simplicity we omit the subscript t. We solve the following auxiliary Monge-Ampère

equation on X

(ω̂t + i∂∂̄ψt,k)
n = ct

τk(−ϕt + uβ − s)

As,k,β
eFωn, sup

X
ψt,k = 0, (2.4)

where As,k,β =
∫

X τk(−ϕt+uβ − s)eFωn. Since ψt,k ≤ Vt and uβ converges uniformly to Vt.
By taking β large enough, we may assume ψt,k < uβ + 1.

Define a function

Φ = −ε(−ψt,k + uβ + 1 + Λ)n/(n+1) − (ϕt − uβ + s),

with the constants

εn+1 = As,k,βn
−n(n+ 1)n, Λ = nn+1(n+ 1)−n−1εn+1. (2.5)

As a smooth function on the compact manifold X , Φ must achieve its maximum at some
x0 ∈ X . If x0 ∈ X\Ω◦

s, then

Φ(x0) ≤ −(ϕt − uβ + s) ≤ −Vt + uβ ≤ ǫβ

where ǫβ → 0 as β → ∞. On the other hand, if x0 ∈ Ω◦

s we calculate (∆t denotes the

Laplacian with respect to the metric ωt = ω̂t + i∂∂̄ϕt)

0 ≥ ∆tΦ(x0)

= −ε
n

n + 1
(−ψt,k + uβ + Λ + 1)−

1
n+1 trωt

(−i∂∂̄ψt,k + i∂∂̄uβ)− trωt
(i∂∂̄ϕt − i∂∂̄uβ)

+
nε

(n+ 1)2
(−ψt,k + uβ + 1 + Λ)−

n+2
n+1 trωt

i∂(ψt,k − uβ) ∧ ∂̄(ψt,k − uβ)

≥
nε

n + 1
(−ψt,k + uβ + Λ + 1)−

1
n+1 trωt

(ω̂t,ψt,k
− ω̂t,uβ

)− n + trωt
ω̂t,uβ

≥
nε

n + 1
(−ψt,k + uβ + Λ + 1)−

1
n+1n

( ω̂n
t,ψt,k

ωn
t

)1/n
− n + (1−

nε

n + 1
(−ψt,k + uβ + Λ + 1)−

1
n+1 )trωt

ω̂t,uβ

≥
n2ε

n + 1
(−ψt,k + uβ + Λ + 1)−

1
n+1

(

τk(−ϕt + uβ − s)A−1
s,k,β

)1/n
− n + (1−

nε

n + 1
Λ−

1
n+1 )trωt

ω̂t,uβ

≥
n2ε

n + 1
(−ψt,k + uβ + Λ + 1)−

1
n+1 (−ϕt + uβ − s)1/nA

−1/n
s,k,β − n.

Therefore, at x0 ∈ Ω◦

s

−(ϕt − uβ + s) ≤ (
nε

n + 1
)nAs,k,β(−ψt,k + uβ + Λ + 1)

n
n+1 = ε(−ψt,k + uβ + Λ + 1)

n
n+1 ,
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i.e. Φ(x0) ≤ 0. Combining the two cases, we conclude that supX Φ ≤ ǫβ → 0 as β → ∞.

It then follows that on Ωs

(−ϕt + uβ − s)
n+1
n ≤ CnA

1/n
s,k,β(−ψt,k + uβ + 1 + As,k,β) + ǫ

(n+1)/n
β

Letting β → ∞ we have

(−ϕt + Vt − s)
n+1
n ≤ CnA

1/n
s,k (−ψt,k + Vt + 1 + As,k),

where As,k =
∫

X τk(−ϕt + Vt + s)eFωn. Observe that by definition Vt ≤ 0 and by the

α-invariant estimate [14, 16], there exists an α0(n, ω, χ) such that

∫

Ωs

exp
(

α0
(−ϕt + Vt − s)

n+1
n

A
1/n
s,k

)

ωn ≤
∫

Ωs

exp
(

α0Cn(−ψt,k+1+As,k)
)

ωn ≤ CeCAs,k . (2.6)

Letting k → ∞, we obtain

∫

Ωs

exp
(

α0
(−ϕt + Vt − s)

n+1
n

A
1/n
s

)

ωn ≤ CeCAs .

Part (a) of Theorem 1 is proved by noting that As ≤ Et for any s > 0.

Once Part (a) of Theorem 1 has been proved, Part (b) can be proved by following

closely the arguments in [12].

Fix p > n, and define η : R+ → R+ by η(x) = ( log (1 + x))p. Note that η is a strictly

increasing function with η(0) = 0, and let η−1 be its inverse function. Denote

v :=
α0

2
(
−ϕt + Vt − s

A
1/(n+1)
s

)(n+1)/n (2.7)

then by the generalized Young’s inequality with respect to η, for any z ∈ Ωs,

v(z)peF (z) ≤
∫ exp (F (z))

0
η(x)dx+

∫ v(z)p

0
η−1(y)dy

≤ exp (F (z))(1 + |F (z)|)p + C(p) exp (2v(z))

We integrate both sides in the inequality above over z ∈ Ωs, and get by Part (a), Theorem

1 that
∫

Ωs

v(z)peF (z)ωn ≤
∫

Ωs

eF (1 + |F (z)|)pωn +
∫

Ωs

e2v(z)ωn

≤ ‖eF‖L1( logL)p + C + CeCEt ,

where the constant C > 0 depends only on n, ωX , χ. In view of the definition of v, this

implies
∫

Ωs

(−ϕt + Vt − s)
(n+1)p

n eF (z)ωn ≤ 2pα−p
0 A

p

n
s (‖eF‖L1( logL)p + C + CeCEt). (2.8)
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From the definition of As, it follows from Hölder inequality that

As =
∫

Ωs

(−ϕt + Vt − s)eFωn

≤
(

∫

Ωs

(−ϕt + Vt − s)
(n+1)p

n eFωn
)

n
(n+1)p ·

(

∫

Ωs

eFωn
)1/q

≤ A
1

n+1
s

(

2pα−p
0 (‖eF‖L1( logL)p + C + CeCEt)

)
n

(n+1)p ·
(

∫

Ωs

eFωn
)1/q

where q > 1 satisfies n
p(n+1)

+ 1
q
= 1, i.e. q = p(n+1)

p(n+1)−n
. The inequality above yields

As ≤
(

2pβ−p
0 (‖eF‖L1( logL)p + C + CeCEt)

)1/p
·
(

∫

Ωs

eFωn
)

1+n
qn

. (2.9)

Observe that the exponent of the integral on the right hand of (2.9) satisfies

1 + n

qn
=

pn+ p− n

pn
= 1 + δ0 > 1,

for δ0 :=
p−n
pn

> 0. For notation convenience, set

B0 :=
(

2pα−p
0 (‖eF‖L1( logL)p + C + CeCEt)

)1/p
. (2.10)

From ((2.9)) we then get

As ≤ B0

(

∫

Ωs

eFωn
)1+δ0

. (2.11)

If we define φ : R+ → R+ by φ(s) :=
∫

Ωs
eFωn then ((2.11)) and the definition of As imply

that
rφ(s+ r) ≤ B0φ(s)

1+δ0 , ∀r ∈ [0, 1] and s ≥ 0. (2.12)

φ is clearly nonincreasing and continuous, so a De Giorgi type iteration argument shows
that there is some S∞ such that φ(s) = 0 for any s ≥ S∞. This finishes the proof of the

L∞ estimate of ϕt−Vt, combining with a bound on Et by ‖eF‖L1( logL)1 which follows from
Jensen’s inequality (c.f. Lemma 6 in [12]). The proof of Theorem 1 is complete.

Finally, we note the recent advances in the theory of envelopes in [10] and [11], which

can provide an approach to L∞ estimates for Monge-Ampère equations on Hermitian
manifolds.

3 Complex Hessian equations

We explain in this section how the proof of Theorem 1 can be modified to give a similar

result for a degenerate family of complex Hessian equations. With the same notations as
above, we consider the σk-equations

(ω̂t + i∂∂̄ϕt)
k ∧ ωn−k = cte

Fωn, sup
X

ϕt = 0. (3.1)
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Define the envelope corresponding to the Γk-cone

Ṽt,k = sup{v| v ∈ SHk(X,ω, ω̂t) ∩ C2, v ≤ 0}

where v ∈ SHk(X,ω, ω̂t)∩C
2 means that the eigenvalue vector of the linear transformation

ω−1 · (ω̂t + i∂∂̄v) lies in the Γk-cone.
Let

Et(ϕt) =
∫

X
(−ϕt + Ṽt,k)e

nF/kωn

be the entropy associated to the equation (3.1) as in [12] and let Ēt be an upper bound of

Et(ϕt). Then the following L∞-estimate holds for the solution ϕt to (3.1).

Theorem 2 Let ϕt be the solution to (3.1), then there exists a constant depending on Ēt,
‖e

n
k
F‖L1( logL)p ,

ct
[ω̂t]k[ω]n−k , p > n such that

0 ≤ −ϕt + Ṽt,k ≤ C.

This theorem can be derived using a similar argument as in Section 2 with suitable modi-
fications for σk equations, c.f. [12], so we omit the details. The only novel ingredient is the

smooth approximation of Ṽt,k, as in Lemma 1. One can adapt the method in [1] to derive
this required approximation. For the convenience of the reader, we present a sketch of the

proof.

Lemma 2 Fix t ∈ (0, 1]. There exists a sequence of smooth functions uβ ∈ SHk(X,ω, ω̂t)

converging uniformly to Ṽt,k as β → ∞.

Proof. Let uβ ∈ SHk(X,ω, ω̂t) be the solution to the σk-equations

(ω̂t + i∂∂̄uβ)
k ∧ ωn−k = cte

βuβωn, (3.2)

which admits a unique smooth solution by [8]. We claim that there is a constant Ct > 0

such that

sup
X

|uβ − Ṽt,k| ≤
Ct log β

β
,

from which the lemma follows.

By the maximum principle, at a maximum point of uβ, i∂∂̄uβ ≤ 0, so βuβ ≤ log
ω̂k
t ∧ω

n−k

ctωn ≤

Ct, that is uβ −
Ct

β
≤ 0. By the definition of Ṽt,k, it follows that

uβ −
Ct

β
≤ Ṽt,k. (3.3)

On the other hand, we fix a smooth u ≤ 0 such that ω̂t + i∂∂̄u > 0. Such a u exists
because [ω̂t] is a Kähler class by assumption. For any v ∈ SHk(X,ω, ω̂t) ∩ C2 with v ≤ 0,

we consider the barrier function

ũ =
1

β
u+ (1−

1

β
)v −

C ′

t log β

β

6



where C ′

t > 0 is a large constant to be determined. By direct calculation, we have

(ω̂t + i∂∂̄ũ)k ∧ ωn−k ≥
1

βn
(ω̂t + i∂∂̄u)k ∧ ωn−k ≥ eβũωn

where the last inequality holds if we choose C ′

t large enough so that

e−C′

t log β ≤
1

βk
min
X

(ω̂t + i∂∂̄u)k ∧ ωn−k

ωn
.

Therefore we get

(ω̂t + i∂∂̄ũ)k ∧ ωn−k ≥ eβ(ũ−uβ)(ω̂t + i∂∂̄uβ)
k ∧ ωn−k.

At the maximum point of ũ−uβ, (ω̂t+ i∂∂̄ũ)k ∧ωn−k ≤ (ω̂t+ i∂∂̄uβ)
k ∧ωn−k. This shows

that ũ− uβ ≤ 0 on X . Taking supremum over all such v’s in ũ, it follows that

(1−
1

β
)Ṽt,k ≤ uβ +

Ct log β

β
.

The lemma follows from this and (3.3).
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