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On L™ estimates for Monge-Ampere and Hessian
equations on nef classes !

Bin Guo, Duong H. Phong, Freid Tong?, and Chuwen Wang

Abstract

The PDE approach developed earlier by the first three authors for L estimates for fully
non-linear equations on Kéhler manifolds is shown to apply as well to Monge-Ampere and
Hessian equations on nef classes. In particular, one obtains a new proof of the estimates
of Boucksom-Eyssidieux-Guedj-Zeriahi and Fu-Guo-Song for the Monge-Ampeére equation,
together with their generalization to Hessian equations.

1 Introduction

The goal of this short note is to show that the PDE approach introduced in [12, 13] for L*>
and Trudinger-type estimates for general classes fully non-linear equations on a compact
Kéhler manifold applies as well to Monge-Ampere and Hessian equations on nef classes.

The key to the approach in [12, 13] is an estimate of Trudinger-type, obtained by
comparing the solution ¢ of the given equation to the solution of an auxiliary Monge-
Ampere equation with the energy of the sublevel set function —¢ + s on the right hand
side. We shall see that, in the present case of nef classes, the argument can still be made
to work by replacing ¢ by ¢ — V, where V is the envelope of the nef class. Applied to
the Monge-Ampere equation, this gives a PDE proof of the estimates obtained earlier for
nef classes by Boucksom-Eyssidieux-Guedj-Zeriahi [2] and Fu-Guo-Song [9]. The estimates
which we obtain with this method applied to Hessian equations seem new.

We note that the use of an auxiliary Monge-Ampere equation had been instrumental
in the recent progress of Chen and Cheng [3] on the constant scalar curvature Kéhler
metrics problem. There the auxiliary equation involved the entropy, and not the energy
of sublevel set functions as in our case. More generally, auxiliary equations have often
been used in the theory of partial differential equations, notably by De Giorgi [5], and
more recently by Dinew and Kolodziej [7, 6] in their approach to Holder estmates for the
complex Monge-Ampere equation.

2 The Monge-Ampere equation

We begin with the Monge-Ampere equation. Let (X,w) be a compact Kahler manifold
and x be a closed (1,1)-form on X. We assume the cohomology class [x] is nef and let
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v €{0,1,...,n} be the numerical dimension of [x], i.e.
v =max{k | [x]¥ # 0in H**(X,C)}.

When v = n we say the class [x] is big.
Let @y = x + tw for ¢t € (0, 1]. The form @&; may not be positive but its class is Kéhler.
We consider the following family of complex Monge-Ampere equations

(& +100p,)" = crefw™, supg, =0 (2.1)
X

where ¢, = []" = O(t"™) is a normalizing constant and F' € C°°(X) satisfies [y ef'w" =
Jx w™. This equation admits a unique smooth solution ¢; by Yau’s theorem [17].
The form y is not assumed to be semipositive, so the usual L estimate of ¢; may not

hold [15]. As in [2, 9], we need to modify the solution ¢, by an envelope V; of the class
@], defined as follows,

Vi =sup{v | ve PSH(X,w,), v <0}.
Then we have:

Theorem 1 Consider the equation (2.1), and assume that the cohomology class of x is
nef. For any s > 0, let Qg = {¢r — V; < —s} be the sub-level set of @, — V;.
(a) Then there are constants C = C'(n,w,x) > 0 and oy = ag(n,w,x) > 0 such that

—(pr = Vit s)\=*
/Q eXp {ao( A;/(H_n) ) }w < Cexp (CEt)a (2'2)

S

where Ay = [o (—pr + Vi — s)efw™ and E;, = [x(—¢ + V) w™.
(b) Fiz p > n. There is a constant C(n,p,w, X, €| L1(10g 1)) so that for all t € (0, 1],
we have

0< —p+V, < Cln,p,w. X, e[| rog yr)- (2:3)

We remark that the estimates in Theorem 1 continue to hold for a family of Kahler
metrics (maybe with distinct complex structures) which satisfy a uniform a-invariant type
estimate.

Proof of Theorem 1

We would like to find an auxiliary equation with smooth coefficients, so that its solv-
ability can be guaranteed by Yau’s theorem. For this, we need a lemma due to Berman
[1] on a smooth approximation for V; (see also Lemma 2 below). Fix a time ¢ € (0, 1].

Lemma 1 Let ug be the smooth solution to the complex Monge-Ampére equation
(@ +100ug)"™ = ePewm.

Then ug converges uniformly to V; as B — oo.
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We remark that by [4], V; is a Cb! function on X, although this fact is not used in this
note. We now return to the proof of Part (a) of Theorem 1.

We choose a sequence of positive functions 7 : R — R such that 7(x) decreases to
z-XR, (2) as k — oco. Fix a smooth function ug as in Lemma 1. The ugz depends on ¢, but
for simplicity we omit the subscript t. We solve the following auxiliary Monge-Ampere
equation on X

- A5 n Te(—wr +ug —s n
(@0t i05,)" = o EEEF U ) rn g, — (2.4)
Askp X

where A k5 = [x Ti(—¢: +ug — s)ef'w". Since ¥y < V; and ug converges uniformly to V;.
By taking [ large enough, we may assume 9 < ug + 1.
Define a function

o = —8(—¢t,k +ug+1+ A)n/(n+1) — (th —ug + S),
with the constants
= Agn (1), A= (e 1), (25

As a smooth function on the compact manifold X, ® must achieve its maximum at some
xo € X. If zp € X\, then

Do) < —(pr —up+8) < =V, +ug < e

where €5 — 0 as f — 00. On the other hand, if xy € Qf we calculate (A; denotes the
Laplacian with respect to the metric w; = w; + 100¢;)

0 > Atq)(.flf(])
= —¢ n 1(—¢t,k +ug+ A+ 1)_%+1trwt(—i88_wt,k +i00ug) — tr,, (100¢; — i00ug)
n
ne _nt2 -
+72(_¢t,k + up + 1+ A) n+1trwt18(¢t7k — UQ) A 8(1%714 — UQ)
(n+1)
ne 1 ~ ~ ~
> ntl (_¢t,k + ug + A + 1)_”i1 trwt (wmwt’k — wwﬁ) —-n—+ trwtwwﬁ
ne __1 @’Zwt’k 1/n ne 1 N
2 n+1(_wt’k+u5+[\+1) an(w—?) —n‘l‘(l — n+1(_wt7k+uB+A+1) nH)trwtwu%
n’e 1 o \1l/n ne . _ 1 )
> ntl (_wt,k +ug + A+ 1) ] (Tk(—got +ug — S)A&,lﬁ’ﬁ) —n+ (1 — — lA ] )trmwt,uﬁ
TL2€ —1/n
> (s A+ )T (g — )AL

Therefore, at xy € Q2

ne
n+1

~(pr = ug+ 8) < ()" Aspp(—Ver +ug+ A+ 17T = o(=Yup +ug + A+ 17,



i.e. () < 0. Combining the two cases, we conclude that supy ® < eg — 0 as f — 0.
It then follows that on €2,

(~pi+us— )" <C Askﬁ( ¢tk+ug+1+Askg)+e(ﬁn+l)/

Letting § — oo we have
(= Vi = )% < CuA (=t + Vi 1+ A,

where A,p = [y Te(—¢r + Vi + s)ef'w™. Observe that by definition V; < 0 and by the
a-invariant estimate [14, 16], there exists an ag(n,w, x) such that

n+1

(_(Pt_'_‘/;f _ S)T n n CA, g
/QS exp (ao Ai/k" )w < /Q exp (aoCn(—wt,le—i-As,k))w < Ce¥ s+, (2.6)

Letting k — 0o, we obtain

n+1

(—pe+Vi—s5)™\ , CA,
/QS exp (ao Ai/" )w < Ce~7.

Part (a) of Theorem 1 is proved by noting that Ay < F; for any s > 0.

Once Part (a) of Theorem 1 has been proved, Part (b) can be proved by following
closely the arguments in [12].

Fix p > n, and define  : R, — R by n(x) = (log (1 + x))P. Note that n is a strictly
increasing function with 7(0) = 0, and let ! be its inverse function. Denote

o, =+ Vi — S (ay1ym
U= ?(_Al/(n+1) ) (2.7)

then by the generalized Young’s inequality with respect to 7, for any z € €,

o(2)PeF@ < /0 e () x)dx + /
< exp(F(z ))(1+|F( ) +C( )exp(%( )

We integrate both sides in the inequality above over z € ), and get by Part (a), Theorem
1 that

/ v(z)Pef@wn < / F1+|F(2)])Pu" +/
Qs Qs
< el (ogLye +C+C€CEt7

where the constant C' > 0 depends only on n,wy, x. In view of the definition of v, this
implies

n r
| (it V= ) SR Our < 20 AT (e r1og 1y + €+ CETE). (28)



From the definition of A, it follows from Holder inequality that

A, = /(—apt+Vt—s)er"

< ([ (e SBR[ )

1 e 1
< At (QPOZ(]_p(HeFHLl(logL)P +C + CecEt)) e (/ ern) o
Qs

where ¢ > 1 satisfies ]ﬁ + % =1,ie q= p&(ﬁr)l_)n. The inequality above yields
—p (|| F cEN\YP Fon\ o
A, < (21’50 (lle" |21 (log Lyr + C 4 Ce t)) (/Q ew ) : (2.9)

Observe that the exponent of the integral on the right hand of (2.9) satisfies
I+n pn+p—n

=1+ (50 > 1,
qan pn

for §g := % > (. For notation convenience, set

_ 1/

Bo = (2205"(le" | 11 rog 1y + C + Ce“%)) . (2.10)
From ((2.9)) we then get
1+
A, < BO(/ eFwr) T (2.11)
Qs

If we define ¢ : R — Ry by ¢(s) := [,_e"w" then ((2.11)) and the definition of A, imply
that
ré(s +1) < Bop(s)™0,  Vr €[0,1] and s > 0. (2.12)

¢ is clearly nonincreasing and continuous, so a De Giorgi type iteration argument shows
that there is some Sy, such that ¢(s) = 0 for any s > S.. This finishes the proof of the
L™ estimate of ¢; — V;, combining with a bound on E; by ||| L1(log )t Which follows from
Jensen’s inequality (c.f. Lemma 6 in [12]). The proof of Theorem 1 is complete.

Finally, we note the recent advances in the theory of envelopes in [10] and [11], which
can provide an approach to L*> estimates for Monge-Ampere equations on Hermitian
manifolds.

3 Complex Hessian equations

We explain in this section how the proof of Theorem 1 can be modified to give a similar
result for a degenerate family of complex Hessian equations. With the same notations as
above, we consider the o;-equations

(& + 1000, )" A w"F = ¢ef'w™, SI)J(p o = 0. (3.1)
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Define the envelope corresponding to the I'y-cone
Vir = sup{v| v € SHy(X,w, &) NC?%, v < 0}

where v € SH(X,w,w;)NC? means that the eigenvalue vector of the linear transformation
w™t - (@ +i00v) lies in the T'y-cone.
Let
Eie) = [ (=0 + Vig)er Vo

be the entropy associated to the equation (3.1) as in [12] and let E; be an upper bound of
Ei(p4). Then the following L>-estimate holds for the solution ¢; to (3.1).

Theorem 2 Let @, be the solution to (3.1), then there exists a constant depending on Ey,
’ eLkLFHLl(lOgL)p, W, p>n such that

0< —p +Vip <C.

This theorem can be derived using a similar argument as in Section 2 with suitable modi-
fications for oy equations, c.f. [12], so we omit the details. The only novel ingredient is the
smooth approximation of Vj, as in Lemma 1. One can adapt the method in [1] to derive
this required approximation. For the convenience of the reader, we present a sketch of the
proof.

Lemma 2 Fizt € (0,1]. There exists a sequence of smooth functions ug € SHy(X,w, ;)
converging uniformly to Vi as f — oo.

Proof. Let ug € SHy(X,w, ;) be the solution to the ox-equations
(@ + 100up)* A W™ = ¢, (3.2)

which admits a unique smooth solution by [8]. We claim that there is a constant C; > 0
such that
Cilog 3

5 Y

sup |ug — Vil <
b%

from which the lemma follows.

— ~k n—k
By the maximum principle, at a maximum point of ug, iddug < 0, so fug < log 2

Cy, that is ug — % < 0. By the definition of f/t,k, it follows that
C -
ug — Et < Vig (3.3)

On the other hand, we fix a smooth u < 0 such that @, + i00u > 0. Such a u exists
because [&] is a Kahler class by assumption. For any v € SH,(X,w,@;) N C? with v <0,
we consider the barrier function

1 1 Cilog 8
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where C} > 0 is a large constant to be determined. By direct calculation, we have

_ 1 _ _
(& +i00a)" AN w™F > @(@ +i00u)* A w"TF > ePiyn

where the last inequality holds if we choose C] large enough so that

~ ‘05 \k —k
— Bk X wn ’

Therefore we get

(@ 4 1000)% A W'k > P (&) + i0ug)k A Wk

At the maximum point of & — ug, (@; +i000)* Aw™* < (& +i00us)* Aw™ . This shows
that & —ug < 0 on X. Taking supremum over all such v’s in 4, it follows that

Cilog 8

1 -

B

The lemma follows from this and (3.3).
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