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Abstract—Renewable energy generation sources (RESs) are
gaining increased popularity due to global efforts to reduce carbon
emissions and mitigate effects of climate change. Planning and
managing increasing levels of RESs, specifically solar photovoltaic
(PV) generation sources is becoming increasingly challenging.
Estimations of solar PV power generations provide situational
awareness in distribution system operations. A digital twin (DT)
can replicate PV plant behaviors and characteristics in a virtual
platform, providing realistic solar PV estimations. Furthermore,
neural networks, a popular paradigm of artificial intelligence may
be used to adequately learn and replicate the relationship between
input and output variables for data-driven DTs (DD-DTs). In this
paper, DD-DTs are developed for Clemson University’s 1 MW
solar PV plant located in South Carolina, USA to perform realistic
solar PV power estimations. The DD-DTs are implemented
utilizing multilayer perceptron (MLP) and Elman neural
networks. Typical practical results for two DD-DT architectures
are presented and validated.

Keywords—Digital twin, neural network, power estimation, solar
Pphotovoltaic

[. INTRODUCTION

The electric power generation industry is evolving because
of the ever-rising energy demand, global decarbonization
legislation, and heightened awareness of the negative effects of
climate change. Therefore, utility companies are prioritizing the
development and inclusion of clean renewable energy sources
(RESs) in their generation technology portfolios. Solar
photovoltaic (PV) power plants are at the forefront of RES
technology due to their scalability and distributed energy
resource (DER) capability. To elaborate, solar PV plants may be
utilized in rooftop settings supporting localized residential
loads, campus and community microgrids and industrial farm
arrays for clean energy generation. In any of these
configurations, solar PV plants are subject to challenges that
arise in planning and management of these systems. In this
context, PV power estimations may be used to improve
situational awareness in distribution control centers by
providing insights to the dynamic behaviors of PV plants that
arise from variable weather conditions. The estimations are
computed using meteorological data and mathematical
equations or advanced computational methods. Solar PV power
estimations can be utilized in a variety of control center
applications including expected output comparisons, everyday
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system health and degradation monitoring, maintenance
scheduling, aiding in return on investment (ROI) calculations,
and future site planning [1].

The concept of ‘twins’ was initially introduced in product
life cycle testing during NASA’s Apollo space program [2].
Digital twins (DTs) were first introduced in the manufacturing
industry, making a profound impact by enabling the virtual
representation factories, resources and workforces [2]. Today,
DTs are gaining progressive popularity in both academia and
industry settings across multiple disciplines including
manufacturing, healthcare, aerospace engineering and electrical
engineering. Within power systems, DTs have been developed
for applications in utilities, distributed energy management
systems, operation centers, fault diagnostics and renewable
energy generators [3]. In each of these disciplines and/or
applications, DTs have proven to be powerful tools due to their
ability to represent a physical reality within a virtual
environment. Data-driven DTs (DD-DTs) are developed and
implemented based on measured data, providing a reliable
virtual reproduction of attributes and behaviors of entities in the
physical world [4]. PV plant DD-DTs offer a platform to
virtually represent the plant and estimate its power generation.
Therefore, a reliable, adaptable and up-to-date virtual
representation of PV plants can be created using DTs to further
improve understanding of their complex nature and operational
dynamics in distribution power systems.

In this paper, the development and implementation of data-
driven digital twins for solar PV power estimations of a | MW
solar PV plant located at Clemson University, South Carolina,
USA is studied. Two types of neural networks are used to learn
the relationship between input and output variables from
measured data, without explicit knowledge of the system.
Internet of things (IoT) devices provide environmental data
needed to construct a historical dataset and supply real-time data
to the DD-DT. Typical results for multilayer perceptron and
Elman neural networks are presented.

The remaining sections of the paper are as follows: Section
II introduces DTs for solar PV power estimations. Section III
describes the implementation of DTs. Typical DT results,
discussions and their applications are presented in Section IV.
Finally, Section V provides the conclusion and some directions
for future work.
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II. DIGITAL TWINS FOR SOLAR PV POWER ESTIMATION

Research and deployment of digital twins are drawing
attention of the respective communities due to their capabilities
to contribute to efficient operation and management of complex
systems. DTs are characterized in [4] as consisting of a physical
reality, virtual representation, and interconnection between
them. Physical realities can be decomposed into the following
parts: physical system, physical environment and physical
process. A physical system consists of interacting entities,
ranging from subcomponents of a single piece of machinery to
all interconnected systems of a single asset. A physical
environment refers to the surroundings of which the physical
system resides and interacts with. Generally, this information is
sourced with a variety of environmental sensors. Physical
processes are how the physical system itself interacts with its
physical environment. In the same manner of the physical
reality, a virtual representation must include a virtual system,
environment and process. A virtual system contains data and
models derived from the physical system. As the name suggests,
a virtual environment is simply a virtual representation of the
physical environment. Virtual processes contain computational
models that accurately characterize a physical process. Finally,
the data and information are exchanged utilizing the
interconnection component.

Data-driven digital twins (DD-DTs) are built using both
historical data and real-time data as opposed to using a physics-
based model. DD-DTs provide an up-to-date, reliable virtual
representation of a physical reality, without explicit knowledge
of specific physical components [5]. This allows data-driven
approaches for estimation DTs to be highly adaptable and
scalable. Through the use of IoT devices, a greater perspective
of the physical environment may be obtained, further improving
properties of DD-DTs. The higher the density of these devices,
the more comprehensive the data will be when building the DD-
DT. Approaches using artificial intelligence (Al) become even
more adaptable and scalable due to fast learning. Al is able to
use data captured by IoT sensors to learn the relationships
between inputs and outputs in the system. The characteristics of
RESs vary across different locations but can be learned and
replicated by DD-DTs integrated for these sites.

As DERs continue to increase in volume, their operations
increase in complexity. RESs such as PV plants wind plants are
dynamic systems and have variable power output associated
with weather conditions. Solar PV plants have different
characteristics and may be similar to others, but no two sites are
the same [6]. DTs can be implemented at PV sites to gain some
insights to the nonlinear properties, relationships and reactions
in their physical reality. More specifically, a virtual
representation of these systems may provide increased
understanding of their components based on the present level of
abstraction. Furthermore, the progressive penetration of IoT
devices into power systems simpler methods for DD-DTs to be
implemented for PV plants with little change to the existing
infrastructure. This is because loTs provide an efficient
approach to data collection, providing real-time environmental
data for developing a virtual environment. Utilizing Al within
the DTs enables accurate representation of the physical process.
An increased understanding of these qualities introduces a
source of reliable information, leading to more efficient
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integration, operation, and management of PV plants, in an
otherwise volatile setting.

Fig. 1 shows a representation of the implemented DD-DT for
Clemson University’s R-06 IMW solar PV plant. In Fig. 1, the
three components characterizing DTs are shown. First, the
physical reality is shown in the upper portion. Here, the physical
system consists of the PV plant, weather station and micro-
PMU. Meteorological conditions compose the physical
environment. Information on the physical environment is
captured by the IoT devices. These include solar irradiance (SI)
and temperature (T'), both measured at the weather station and
PV power measured by the micro-PMU (Pp,). The physical
process is additionally represented here with the PV panels and
corresponding power inverters. Clemson University’s local area
network (LAN) provides the interconnection between physical
reality at the R-06 site to the DD-DTs, implemented in the Real-
Time Power and Intelligent Systems (RTPIS) Laboratory. Here,
the virtual representation comes to life, as the DD-DT
characterizes the physical system, environment and processes.

R-06 Site Parking Lot
1 MW Solar PV Plant

Wealher Station

Communication
Network

RTPIS Lab

Digital Twins

Control Center

Fig. 1. Digital twin of the R-06 parking lot PV plant. The physical reality
consists of | MW PV plant, weatherstation and micro-PMU.

III. IMPLEMENTATION OF ESTIMATION DIGITAL TWIN

To implement a data-driven digital twin, a variety of neural
networks (NNs) are utilized due to their universal approximation
of nonlinear functions and behaviors capabilities. NNs have
been shown to model solar PV plants with superior accuracy, as
concluded in a review study in [7]. NNs do not require
knowledge of specific mathematics or physics based equations
to relate various parameters. NNs consist of a network of
neurons and synaptic weights. The synaptic weights are updated
through a training procedure until a permissible error and/or
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iteration limit is reached [8]. On the other hand, traditional
physics-based models require explicit knowledge of system
parameters that are often unknown and static.

In the context of PV plants, a NN-based DD-DT must
capture properties, characteristics and behaviors of the physical
process. To elaborate, the physical process for Clemson
University’s | MW PV plant involves conversion of light energy
to electrical energy by solar cells and inversion of DC to AC PV
power on 17 different solar array canopies. The AC PV power
is then combined at a junction point and measured by a micro-
PMU, as pictured in Fig. 2. Different approaches would be
subject to varying levels of abstraction when characterizing the
physical system. For example, one may choose to virtually
represent each component of the physical system (canopies, PV
panels and inverters) separately. However, in our case, a high
level of abstraction is used to characterize all 17 canopies,
junction and measurement of AC PV power as the physical
system. Thus, the virtual process must represent these
components accordingly.

Canopy 1
Solar Pavel Arvay 1| Pppq pe{f) Ppyac (£)
- Tonverter 1
[ J
e Py (£)
Micro - 4
| —
® E PMU
[ ]
Canopy 17
Solar Panel Array 17| Ppyyz pe(t) Poy1z.ac (&)
- Toverter 17 i

Fig. 2. Physical process at R-06 PV plant. The plant consists of 17 canopies
ranging from 50kW — 60kW, each containing a solar panel array and inverter.

Specifically for this study, two neural networks are trained
with meteorological data to learn the input/output relationship
with generated PV power. The NNs model the solar PV plant as
a whole entity, thus, in addition to learning an input/output
relationship, system parameters such as partial shading and
component degradation due to aging are further included in the
model. A physics-based model for estimating solar PV power is
proposed in (1) and represents the input/output relationship both
NN are learning

SI(t)

Slref Pref,mp [1 + V(T(t) - Tref)]

Ppy (t) = (1)

where Ppy is the estimated PV power, S/ is solar irradiance,
S5 is reference solar irradiance, Py¢f myp is the maximum PV
power reference, vy is the solar array coefficient, 7 is temperature
and T,f is reference temperature. Note that Sh.cr, Prefmp, ¥

and T;..; are strict parameters relating to the properties of a
given solar array.

The neural network architectures implemented in this study
include a multilayer perceptron (MLP) NN and an Elman NN.
Both NNs utilize the same set of meteorological inputs, solar
irradiance and temperature at time # to estimate PV power.

248

A. MLP Neural Network

A MLP NN features a feedforward architecture consisting of
an input layer, hidden layer and output layer represented in Fig.
2. Each node represents a single neuron and accompanying
transfer function, linear for input and output layers, and sigmoid
for the hidden layer. The edges represent synaptic weights (W
and V). between different layers. The input weight matrix, W,
connects the input layer to the hidden layer, and output weight
matrix, ¥, connects the hidden layer with the output layer.
Combining the input matrix containing solar irradiance and
temperature with synaptic weight matrices forms the
relationship to estimate PV power, as seen in (2) [8]. With a
simpler network design, MLP NNs excel in fast paced
computations due to reduced computational requirements. 15
hidden layer neurons are determined to be sufficient in capturing
the nonlinear dynamics of solar PV plants, while balancing
computational stress. This creates a MLP NN of size 2 x 15 x 1
with 45 synaptic weights.

Ppy, mip(®) = frse(SI(E), T(2), W, V) 2
Hidden Layer
Input Layer
w 4 Output Layer
SI (t) / )
/ Ppy (t)

/

T (t)

Q-QOQ

Fig. 3. MLP neural network with inputs SI(t) and T(¢) as implemented to
characterize the physical process shown in Fig. 2.

B. Elman Neural Network

An Elman NN features a recurrent architecture consisting of
four layers: input, hidden, context and output which is
represented in Fig. 3. The neurons, transfer functions and
synaptic weights are represented in the same manner as the MLP
NN. The context layer consists of the hidden layer output matrix,
D, featuring linear neurons. This layer is time-delayed and fed
back to the input matrix, thus memory is introduced in this
architecture. This creates a relationship to estimate PV power
based on solar irradiance, temperature, ¥, V, at time ¢ and D at
the previous instant, seen in (3). However, as more neurons in
the hidden layer are introduced, the input layer grows to
incorporate these values, thus computational requirement
increase. An Elman NN is implemented with six hidden layer
neurons creating a NN size (2 + 6) x 6 x 1 with 56 synaptic
weights. While a smaller hidden layer can impact performance,
the computational requirements during training remained
approximately equivalent for MLP and Elman NNs.

Py, giman() = fese(SI), T(®), W, V, D(t —1)) (3)
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Fig. 4. Elman neural network with inputs SI(t), T(t) and D(t —1) as
implemented to characterize the physical process shown in Fig. 2.
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C. Training Procedure

The collected dataset consists of historical solar irradiance,
temperature PV power data from 86 days ranging from March
2023 to June 2023 polled every minute (approximately 360,000
data points) in Clemson, South Carolina, USA. This provides a
wide variety of weather conditions, solar irradiance profiles,
temperature profiles and cloud coverage. Collected data
undergoes a filtering process where outlying data points
resulting from faulty measurements or lost data are removed to
further improve correlation. Next, variables are normalized to
the range [0, 1] based on standard deviation and statistical mean.

Due to the nature of PV power estimation DTs, a progressive
time dependency is not present in the data. Rather, solar
irradiance and temperature are presented at a specific time ¢, and
the corresponding PV power estimate for the same instance is
calculated. Therefore, a batch training algorithm is utilized for
network training. Batch calculations feature large matrices
containing input data, intermediate variables and weights,
further improving computational speed while training. To begin
training, the synaptic weights are initialized to random values.
The backpropagation algorithm discussed in [8] is utilized to
update weights for the NN. This is done over a set number of
iterations where error values between measured and estimated
PV power are calculated. To further improve computational
efficiency, an attention-based training approach is implemented
to fine-tune synaptic weights. This is done by identifying
intervals of high error and amplifying the calculated error signal,
increasing the impact during training.

IV. RESULTS, DISCUSSIONS & APPLICATIONS

This section presents DT implementation results and
discussion in Section IV. A and potential applications in Section
IV.B.

A. Results & Discussion

Both neural networks are trained until a 1000 iteration limit
is achieved. Fig. 5 displays the average MSE progression across
100 trials of back propagation training.
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After training is completed, the DTs are tested over 21 days
under highly variable weather conditions. To better understand
and compare performances of the DTs, the 21-day dataset is
classified based on cloud coverage and solar irradiance
variations. This provides the opportunity to further tune NN
parameters to account for high volatility in weather data. Sample
results for both NNs based on weather classification are shown
as follows: Figs. 6, 7, 8 and 9 for a clear day, partially cloudy

day, moderately cloudy day, and mostly cloudy day,
respectively.
MLP MSE
Elman MSE
w
0]
= 100 lterations .
@ MLP: MSE = 0.0327 £0.011
@ | Eiman: MSE =00278 £0.007
=10
1000 lterations
MLP: MSE = 0.0141 £ 0.0009 ——— ]
12 L Elman: MSE = 00147 +0.0013

10°

102
No. of lterations

10’

Fig. 5. MSE progression shown for MLP (blue) and Elman (green) NNs with
training for 1000 iterations.
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Fig. 6. Sample clear day with measured PV power (red) MLP NN estimated
PV power (blue) and Elman NN estimated PV power(green).
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Fig. 7. Sample partially cloudy day comparing measured PV power (red) with
(a) MLP NN estimated PV power and (b) Elman NN estimated PV power.
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Fig. 8. Sample moderately cloudy day comparing measured PV power (red)
with (a) MLP NN estimated PV power and (b) Elman NN estimated PV power.
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Fig. 9. Sample mostly cloudy day comparing measured PV power (red) with
(a) MLP NN estimated PV power and (b) Elman NN estimated PV power.

Training performance displayed in Fig. 5 reveals some
characteristics of MLP and Elman NNs. Averaging MSE
training for both networks over 1000 iterations results in nearly
the same training MSE, 0.0141 for MLP and 0.0147 for Elman
with standard deviations on the order of 10~3. However, at 100
iterations, MSE for MLP is 0.0327 and 0.0279 for Elman, with
standard deviations on the order of 1072, Evidently, through the

first potion of training, the Elman NN had significantly lower
MSE, signifying a faster learning rate, but both architectures
tended to converge to similar MSE values at 1000 iterations.
This trend may be contributed to similar network sizes between
architectures (45 weights for MLP and 56 weights for Elman).

As seen in Figs. 6 - 9 both DTs are capable of estimating PV
power with some variations in performances between both DTs.
The clear day sampled in Fig. 6 proved to be a difficult day for
the DTs to estimate. While the profile of the measured PV power
curve is preserved, peak and falling edge information is skewed.
A sampled partially cloudy day is featured in Fig. 7. Similarly,
to the clear day, estimates captured the general profile of
measured PV power, but still struggled to capture variation, peak
and falling edge information. Shortcomings for these two
weather conditions may be explained by a lower correlation
between input weather data and measured PV power. For the
moderately cloudy and mostly cloudy samples pictured in Figs.
8 and 9, respectively, the performances of both models are very
accurate. Rising edge, peak and falling edge information are
accurately captured for these weather conditions. This trend may
be contributed to a higher correlation between solar irradiance
and measured PV power for these days.

Table I summarizes performance metrics for both MLP and
Elman NNs in comparison to a statistical approach utilizing an
ARIMA model [9]. Calculations for mean absolute percent error
(MAPE) and mean square error are given for each weather
classification based on daytime and nighttime intervals.
Comparing both NNs, the Elman NN is slightly more accurate
with daytime clear and partially cloudy weather conditions. On
the other hand, MLP NN estimations are more accurate with
daytime moderately cloudy, mostly cloudy and nighttime
conditions for every classification. These trends may be
explained by the hidden layer size for each architecture. A
greater number of neurons increases computational power and
performance when approximating nonlinear relationships.
Increasing the number of neurons in either architecture could
perhaps improve performance at the expense of computational
burden. Comparing the MAPEs of both NNs to the ARIMA
model reveals greater estimation accuracy with the NNs for
moderately and mostly cloudy conditions. This can be attributed
to the highly variable power generation of solar PV plants on
days with these classifications. However, the ARIMA model
outperformed both NNs in clear daytime and nighttime
conditions and in partially cloudy nighttime conditions. Overall,
the NNs outperform the ARIMA model during daytime
conditions with cloud cover.

The coefficients of determination (R?) shown in Figs. 10 and
11 shows the accuracy of PV power estimations compared to the
actual measurement. An ideal 1:1 line is additionally plotted to

TABLE L. DIGITAL TWIN PERFORMANCE COMPARISON
MLP Neural Network Elman Neural Network ARIMA

Daytime Daytime Nighttime Daytime Daytime Nighttime Daytime Daytime Nighttime

Weather Profile MAPE (%) MSE MSE MAPE (%) MSE MSE MAPE (%) MSE MSE
Clear 28.15 4.84x10°  5.91x10° 26.11 4.33x10°  1.88x10* 5.12 1.68x10*  3.99x107
Partly Cloudy 31.22 2.11x102  5.81x107 29.52 2.09x102  2.03x10* 22.2 2.50x102  5.41x107
Moderately Cloudy 1.93 4.87x10%  2.93x107 7.45 1.14x10°3  8.18x10* 8.21 1.40x10°  4.04x107
Mostly Cloudy 5.22 6.70x10°  3.72x107 6.41 7.77x10*  1.91x10* 13.00 3.13x10*  7.67x107
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show ideal correlation. The coefficient of determination is
calculated using (4),

R?2 = _M )

2(Ppv, i~ Ppy)
where Ppy, ; is the ith measured power, Pp, ; is the ith
estimated power and Ppy, is the mean measured power. In both
cases, MLP and Elman NNs accounted for over 97% of
variation.
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| | R“ =0.97452 |
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0.2

Fig. 10. MLP estimated PV power vs. measured PV power.
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Fig. 11. Elman estimated PV power vs. measured PV power.

B. Applications of Estimation Digital Twin

Estimation-based DTs offer a variety of applications for
solar PV site planning and enhanced situational awareness in
distribution center operation and management. Comparison of
measured and estimated PV power enable PV plant performance
monitoring by alerting operators when sustained discrepancies
occur. In these instances, PV panels may require cleaning or
repair. In addition to providing these alerts, DTs may be able to
identify the affected panels [10]. Over time, progressive learning
updates will allow the DT to account for PV plant performance
degradation. System aging may be tracked by periodically
recording and comparing DT estimations [11].  Finally,
estimation-based DTs can provide intelligence when planning
future PV plant sites of any size due to their scalability and
adaptability. This includes reliable PV power output
expectations and return-on-investment planning for PV plants
ranging from rooftop setups to distributed generation [12].

V. CONCLUSION

In the electric power generation industry with increasing
levels of distributed renewable energy sources, reliable and
trustworthy sources of information providing situational
awareness are necessary in distribution operational control
centers. In addition to an increased understanding of nonlinear
PV plant behaviors, data-driven digital twins (DD-DTs) provide
information for planning and managing PV plant sites in
distributed networks. In this study, DD-DTs for Clemson
University’s 1 MW PV plant were developed with PV power
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estimations. These DD-DTs have shown the capability of
capturing PV plants behaviors and characteristics using static
and dynamic neural networks. Categorizing days based on
meteorological conditions enabled the comparison of
performances of DD-DTs.

In future work, implementing a higher density network of
distributed IoT devices will lead to greater accuracy and
modularity of DD-DTs. Obtaining data from individual modules
in the physical process will provide detailed abstraction when
characterizing the physical system of Clemson University’s R-
06 PV plant. Further tuning of neural network parameters will
maximize accuracy while minimizing computational expense.
Lastly, new applications can be explored in order to more fully
utilize capabilities of DD-DTs.
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