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Abstract. Cyber attacks are a major and routine threat to the modern society.
This highlights the importance of forecasting (i.e., predicting) cyber attacks, just
like weather forecasting in the real world. In this paper, we present a study on
characterizing, modeling and forecasting the number of cyber attacks at an aggre-
gate level by leveraging a high-quality, publicly-available dataset of cyber attacks
against enterprise networks; the dataset is of high quality because more than 99%
of the attacks were examined and confirmed by human analysts. We find that the
attacks exhibit high volatilities and burstiness. These properties guide us to design
statistical models to accurately forecast cyber attacksand draw useful insights.

Keywords: Cybersecurity data analytics · attack forecasting · attack
prediction · burstiness · cyber threats · cybersecurity dynamics · statistical
models

1 Introduction

The importance of forecasting cyber attacks (or attack events) is well appreciated
because it can enable proactive cyber defense, similar to how weather forecasting helps
us in planning our daily activities. For example, being ale to forecast cyber attacks
against a network will give cyber defenders useful information in planning defenses
[32]. Moreover, the forecasting capability allows the defender to dynamically adjust
the allocation of defense resources [3,66,67], including both human analysts who need
to examine the alerts triggered by defense tools [22] and sensor deployments when the
prediction is geared toward specific type of attacks. Moreover, when the predicted num-
ber of attacks is high but the detected number of attacks is low, it hints that the defense
may not be effective and/or the attacks may be new. Although there are studies on fore-
casting cyber attacks (e.g., [12,18,43,44,55,66,67]), these studies are limited primarily
by the quality of the datasets they leverage because they are often collected from non-
enterprise networks (e.g., cyber honeypots). This is not surprising because high-quality
cyber attack data against production/enterprise networks is sensitive.

In this paper, we leverage a dataset which contains some aggregated information
about cyber attacks against enterprise networks, rather than honeypots. The dataset
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Yung et al. (Eds.): SciSec 2023, LNCS 14299, pp. 60–81, 2023.
https://doi.org/10.1007/978-3-031-45933-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45933-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-45933-7_4


Forecasting Cyber Attacks Against Enterprise Networks 61

describes weekly-binned cyber attacks, but not the individual attacks. This dataset is
of high quality in the sense that more than 99% of the attacks are confirmed by ana-
lysts.

Our Contributions. We make three contributions. First, we analyze three time series
derived from the dataset: (i) the weekly-binned number of attacks, referred to as Xt;
(ii) the weekly average attack report length, referred to as Yt; and (iii) the weekly total
attack report length, referred to as Zt and derived from Xt and Yt. Note that Yt and Zt

are analyzed here for the first time. Second, we show that these time series exhibit high
volatilities and burstiness, meaning that they cannot be modeled by simple stochastic
process models (e.g., Poisson). Third, we show that these time series can be accurately
modeled by an ARIMA+GARCH model, where ARIMA stands for “AutoRegressive
Integrated Moving Average” and can model the dynamic mean, and GARCH stands
for “Generalized AutoRegressive Conditional Heteroskedasticity” and can model the
burstiness. Moreover, we show that the ARIMA+GARCH model can forecast the num-
ber of attacks one week ahead of time. These allow us to draw a number of useful
insights, such as: (i) the average attack report length reflects attack sophistication but
not attack newness; (ii) new attacks are not necessarily sophisticated; and (iii) burstiness
in the average attack report length suggests that sophisticated attacks are seen often.

RelatedWork. The first study on forecasting cyber attacks based on real-world datasets
may be [12], which leverages a dataset collected at a campus network from 6/14/2001
to 3/14/2007. The study heuristically uses the ARIMA model without giving statistical
justification. Another study [18] forecasts distributed denial-of-service attack rate based
on data collected by a network blackhole (not enterprise networks). These datasets were
not publicly available. The dataset we analyze has been studied in [3], which was influ-
enced by [66] but only considered the aforementioned time series Xt. Going beyond
[3], we consider time series Xt, Yt, Zt, which allows us to draw more insights.

To our knowledge, the problem of forecasting cyber attacks was not systemat-
ically investigated until [66], which proposed a systematic gray-box framework for
data-driven modeling and forecasting cyber attacks. The term “gray-box” means: first
characterizing the statistical properties exhibited by the data, and then building mod-
els that can accommodate these properties to forecast cyber attacks. The gray-box
nature explains why the resulting statistical models can predict, contrasting the black-
box nature of machine learning, especially deep learning, models. The framework [66]
has been extended to forecast cyber attacks with extreme values [43,67], investigate
the effectiveness of cyber defense early-warning [55], forecast the distribution of mul-
tivariate cyber attack rates while accommodating the dependence between them [44],
characterize the cyber threat posture [65], investigate the prediction upper bound of
cyber attack rates [9], and forecast cyber data breach incidents [20,56]. The present
study can be seen as an extension of the gray-box framework [66] to accommodate
newly identified statistical properties exhibited by cyber attacks against enterprise net-
works (i.e., high volatilities and burstiness). Related to this statistical approach, deep
learning has been applied to forecast this type of data [19] as well as causality-based
forecasting [53].

At a higher level of abstraction, cyber threats forecasting, including the “grey-box”
framework [66], belongs to cybersecurity data analytics, which is integral to Science of
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Cyber Security [64] and one pillar of the broader Cybersecurity Dynamics framework
[58,59,61,62]. This broader framework is driven by cybersecurity metrics and quan-
tification [6,10,15,38,42,63], including the quantification of attack and defense capa-
bilities (e.g., cyber social engineering attacks [39–41,49]). Another pillar of the frame-
work aims to model the evolution of the global cybersecurity state incurred by cyber
attack-defense-use interactions, where “global” highlights the perspective of looking at
a network (e.g., enterprise wide, nation wide, or even the entire cyberspace) as a whole.
This pillar has led to many significant results (e.g., [7,8,23,25,26,34,35,57,60,68]).

Paper Outline. Section 2 describes the dataset and its cybersecurity implications.
Section 3 characterizes the time series. Section 4 presents our model fitting and fore-
casting results. Section 5 concludes the paper. To improve the readability of the paper,
Appendix A reviews the statistical knowledge that is used in this study.

2 Dataset and Its Cybersecurity Implications

2.1 Data Description

The dataset [2] is collected by a Network Defense Service Provider. It contains attack
events against multiple enterprise networks managed by the Provider. These attack
events are first detected by cyber defense tools and then more than 99% of them are
manually examined and confirmed by human analysts (i.e., false positives are elim-
inated, while noting that the false-positive rate is not available). This means that at
least 99% of the cyber attacks in the dataset are real attacks (i.e., true positives), while
noting that the dataset may not contain all attacks (i.e., missing the false negatives).
This does not invalidate the value of the present study on forecasting attacks based on
true positives because the predictions can help defenders allocate resources to deal with
detectable attacks. To our knowledge, this is the only publicly available dataset on cyber
attacks against enterprise networks (rather than honeypots and network blackholes).

Fig. 1. Plots of time series Xt, Yt, Zt, where the x-axis represents time (unit: week).

The dataset contains 9,302 cyber attacks over a period of 366 weeks (or 7 years),
but the precise data collection time is not given (except that it was after year 2000).
For each attack, an attack report was written by a human analyst; unfortunately, no
detailed information on attack reports is given. The dataset consists of two time series:
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(i) the weekly-binned number of attacks, denoted by Xt for t = 1, . . . , 366; (ii) the
weekly-binned average length of attack reports, denoted by Yt for t = 1, . . . , 366. We
propose deriving the weekly-binned total length of attack reports, denoted by Zt, as
follows: the weekly-binned total length of attack reports, denoted by Zt = Xt · Yt for
t = 1, . . . , 366. Figure 1a-1c respectively plot Xt, Yt, and Zt.

2.2 Attack Report Length, Attack Newness and Attack Sophistication

The Notions of Attack Newness and Attack Sophistication. We hypothesize that
the attack report length may reflect (i) attack newness, meaning that a new attack that
was not seen before would need to be documented in details, leading to a long report,
and/or (ii) attack sophistication, meaning that a sophisticated attack would need to be
documented in details, also leading to a long report. To (in)validate this, we are allowed
to have access to a random sample of 100 attacks (rather than all the 9,302 attacks) in
terms of the following three attributes: (i) attack report length, which is in the number
of bytes but not the report itself; (ii) attack newness, which is subjectively labeled by
a human analyst as “low”, “medium” or “high”; (iii) attack sophistication, which is
also subjectively labeled by a human analyst as “low”, “medium” or “high”. Among
the 100 attacks, 14, 19, and 67 are respectively labeled as high-, medium-, and low-
newness; whereas, 82, 15, and 3 are respectively labeled as high-, medium-, and low-
sophistication. Since there are only 3 low-sophistication attacks (which are too few
to make statistical sense), we combine medium- and low-sophistication attacks into
one category, also called low-sophistication attacks in contrast to high-sophistication
ones. This leads to 82 high-sophistication attacks and 18 low-sophistication attacks.
Unfortunately, we are not authorized to share the data on these 100 attacks.

Given that newness and sophistication are subjectively labeled, we examine whether
or not there is a dependence between the labels corresponding to them. For this purpose,
we first use the Chi-square test, which is based on the contingency table [14] of the
newness and sophistication labels. The Chi-square test result is 41.432 with a p-value
1.007e−09, suggesting that there is a degree of dependence between these two notions.
In order to characterize the dependence, we code the labels “low” as ‘0’, “medium” as
‘1’, and “high” as ‘2’; we then use the Kendall’s rank correlation test [29] on these coded
values. The estimated Kendall’s tau is −0.5089 with a p-value 1.474e−07, suggesting
that there is a negative dependence between attack newness and attack sophistication.

Insight 1. A high-newness attack can have a low sophistication, namely that a new
attack is not necessarily sophisticated.

Relationship between Attack Report Length, Attack Newness, and Attack Sophis-
tication. Figure 2a is the boxplot of the attack report length vs. attack newness based
on the 100 samples mentioned above. We observe: (i) the boxplots of medium- and
high-newness attacks are similar; (ii) the medians of attack report lengths of low-,
medium-, and high-newness attacks are similar; (iii) there are very long attack reports
(i.e., outliers) for some low-newness attacks; and (iv) the variability among attack report
lengths of low-newness attacks is larger than that of high-newness and medium-newness
attacks. These suggest that there is no significant differences in the attack report length
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of varying attack newness, namely that the attack report length does not reflect attack
newness. Figure 2b is the boxplot of the attack report length vs. attack sophistication.
We observe that attack report lengths of low-sophistication attacks are substantially
smaller than that of high-sophistication attacks. This suggests that attack report length
indeed reflects the level of attack sophistication.

Fig. 2. Boxplots of attack report length vs. newness and report length vs. sophistication.

To formally confirm the intuitive findings mentioned above, we perform the fol-
lowing two statistical tests: ANOVA, which deals with the mean value of distributions
[14], and Kruskal-Wallis, which is a non-parametric method dealing with distributions
[29]. First, we use the ANOVA test to determine whether or not the mean attack report
length is statistically the same in the three categories (i.e., high, medium, and low). For
attack newness, the F statistic is 0.67 with a p-value 0.514, meaning that there is no
statistical difference between the mean attack report length in the three categories of
attack newness. For attack sophistication, the F statistic is 3.271 with a p-value 0.0736,
where the small p-value indicates that there is a statistical difference between the mean
attack report length in the two categories of attack sophistication. Second, we use the
Kruskal-Wallis test to determine whether or not the attack report lengths in the two cat-
egories have the same distribution. For attack newness, the Kruskal-Wallis test statistic
is 1.0182 with a p-value 0.601, which is consistent with the ANOVA test showing no
statistical difference between the attack report length in the three categories of attack
newness. For attack sophistication, the Kruskal-Wallis test statistic is 4.5789 with a p-
value 0.0324, which confirms that there is a statistical difference between the attack
report length of different attack sophistication. In summary, we draw:

Insight 2. Attack report length reflects attack sophistication (i.e., less sophisticated
attacks lead to shorter attack reports), but does not reflect attack newness (because
a new attack is not necessarily sophisticated).
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3 Characterizing Time Series Xt, Yt, Zt

3.1 Basic Characteristics

From Fig. 1 we observe that Yt for t < 100 can be large while the corresponding Xt

is small, suggesting there are sophisticated attacks when t < 100. We observe that Zt

for t ≥ 300 is large, which is caused by large Xt although the corresponding Yt is not
large. When Yt is large, Zt can still be small (e.g., for t < 100); when Yt is not large,
Zt can still be large (e.g., for x > 300). This discrepancy between Yt and Zt justifies
the importance of analyzing both Yt and Zt. In summary, we draw:

Insight 3. The average attack report length and the total attack report length can
exhibit different characteristics and can have different cybersecurity implications.

From Fig. 1 we also observe that there exist large volatilities in all of the three time
series. This phenomenon is confirmed by the basic statistics reported in Table 1, which
shows that the variances are much larger than the corresponding mean values. This
prompts that the classic Poisson process is not suitable for modeling these time series,
and that we should investigate two statistical properties:

– Long-Range Dependence (LRD): This property, reviewed above, is important to
characterize because it can guide the design of models to fit and forecast time series.

– Burstiness: This property, which is also reviewed above, is important because more
analysts need to be allocated to cope with the bursts in attack events.

It is worth mentioning that extreme values [67] would be another property of interest,
but the dataset contains too few data points to warrant an extreme value analysis.

Table 1. Basic statistics of Xt, Yt, and Zt sample values.

Time series Min Mean Median Var Max

Xt 0 25.4153 21 394.0408 126

Yt 0 533.7213 509 44617.46 1700

Zt 0 14114.33 10884 170066803 81648

3.2 LRD Analysis

Figure 3a-3c plot the AutoCorrelation Function (ACF) of the three time series. We
observe that in each case the ACF decays slowly, suggesting the presence of LRD.
However, nonstationarity can also cause LRD [45,51], meaning that we need to study
whether or not the slow decaying is indeed caused by the nonstationarity of the
time series. For this purpose, we adopt the following widely-used hypothesis tests
[37,47,51]:

– Unit root test: We use the Phillips-Perron test [46] to test if the slow decaying is
caused by the unit root because it is nonparametric and robust against unspecified
autocorrelation and heteroscedasticity. For time series Rt, we have:

H0 : Rt has a unit root. Ha : Rt is a stationary time series.
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Fig. 3. Plots of the ACF (AutoCorrelation Functions) of time series Xt, Yt, Zt.

– Nonstationary test: We use the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [33]
to test if the slow decaying is caused by non-stationarity.

H0 : Rt is stationary. Ha : Rt is nonstationary.

The p-values of the Phillips-Perron test for Xt, Yt, and Zt are all small (< 0.01), sug-
gesting no evidence of unit root in any of the three time series. The p-values of the
KPSS test are all small (< 0.01), suggesting that the three time series are nonstationary.
Therefore, the LRD observed in the time series is indeed caused by nonstationarity.

Insight 4. Cyber attack processes Xt, Yt and Zt are not Poisson but exhibit nonsta-
tionarity, which should be leveraged to design gray-box forecasting models.

3.3 Burstiness Analysis

Burstiness is characterized via inter-event time. Since Xt, Yt and Zt are regular time
series (i.e., their inter-event times are fixed), we pre-process them to obtain irregular
time series of larger values, namely creating new time series by cutting off the small
values of Xt, Yt and Zt to respectively obtain time series X ′

t, Y
′
t and Z ′

t. We here focus
on obtaining X ′

t from Xt, while noting that Y ′
t and Z ′

t are obtained in the same fashion.
Consider Xt for 1 ≤ t ≤ 366, we first sort them as Xt1 ≤ Xt2 ≤ . . . ≤ Xt366 . Then,
we select a threshold ζ and omit any Xt ≤ Xtζ

because we only consider the larger
values. That is, we will analyze the time series X ′

t for t = 1, . . . , 366, where

X ′
t =

{
Xt − Xtζ

if Xt > Xtζ

0 otherwise.

There are two guiding principles for selection threshold ζ: (i)X ′
t, Y

′
t andZ ′

t should have
sufficiently many non-zero values for building statistically significant models; and (ii)
X ′

t, Y
′
t and Z ′

t should have roughly the same number of non-zero values, which assures
that they are equally significant in a statistical sense. Based on X ′

t, we can define inter-
arrival time between two consecutive, non-zero weekly-binned number of attacks as
follows. We say two non-zero values X ′

t and X ′
t′ are consecutive if there does not exist

t∗ such that t < t∗ < t′ and X ′
t∗ > 0. Then, we define the inter-arrival time between

the two consecutive, non-zero values X ′
t and X ′

t′ as t′ − t.
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By examining the dataset, we set ζ = 257 for Xt to obtain 366− ζ = 109 non-zero
values for X ′

t, where Xt257 = X319 = 32; we set ζ = 256 for Yt to obtain 110 non-zero
values for Y ′

t , where Yt256 = Y297 = 610; we set ζ = 256 for Zt to obtain 110 non-zero
values for Z ′

t, where Zt256 = Z173 = 16, 524.

Burstiness Analysis ofX ′
t. Figure 4a plots time seriesX ′

t. We observe that more attacks
are detected in the later weeks perhaps because the networks grow over time. Figure 4b
plots the inter-arrival time between two consecutive, non-zero values. We observe many
small inter-arrival times (i.e., 1week), indicating that many attacks are waged during
consecutive weeks and that bursts are exhibited. Corresponding to Fig. 4b and according
to Eq. (4), the burstiness measure is B = 0.424, meaning that attacks are bursty.

Fig. 4. Plots of X ′
t and inter-arrival times between two consecutive, non-zero weekly-binned

number of attacks.

To compute the more delicate burstiness measure δ given in Eq. (5), we need to fit
the distribution of the inter-arrival times. Figure 5a plots the empirical density of inter-
arrival times. We observe that the density is asymmetric with a long tail, meaning that
distributions like normal, exponential, and weibull cannot fit inter-arrival times and that
we should fit with a mixed distribution. We propose modeling the tail via GPD given in
Eq. (7), and the other part by a lognormal distribution. The mixture density function is

f(x) =

⎧⎨
⎩

1
xσ1

√
2π

e− (ln x−μ1)2

2σ2 , if x ≤ u,

1
k (1 + ξz)−

1
ξ −1

, if x ≥ u,
(1)

where σ1 and μ1 are respectively the standard deviation and the mean of lognormal
distribution, ξ is the shape parameter of GPD, z = (x − u)/σ, and k = 1/(σ · ξ) is
the scale parameter. Figure 5b shows the qq-plot of the inter-arrival times. We observe
that the proposed mixed distribution fits the inter-arrival times well except for one data
point, while all of the data points are within the simulated 95% confidence interval.

Table 2 describes the estimated parameters of the fitted distribution and their stan-
dard deviations. We observe that threshold u for the mixture distribution is 2.001, mean-
ing that the tail proportion for the GPD fitting is around 21% and that the proposed
mixture distribution fits the data well. Based on the fitted mixture distribution, we use
Eq. (5) to derive the burstiness parameter δ = 0.556, which suggests the presence of
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Fig. 5. Empirical density and qq-plot of inter-arrival time (CI stands for “confidence interval”)

burstiness. The memory parameter defined in Eq. (6) is θ = 0.381, suggesting the exis-
tence of positive memory in inter-arrival times, namely that short (long) inter-arrival
times are often followed by short (long) inter-arrival times.

Table 2. Estimated parameters and standard deviations

μ1 σ1 ξ k u

Parameter 0.301 0.409 0.387 5.670 2.001

Standard deviation 0.045 0.045 0.379 4.481 0.001

Burstiness Analysis of Y ′
t . Figure 6a plots time series of large, weekly-binned average

attack report lengths. We observe that larger average lengths are mainly exhibited when
t < 100 and when t > 300. This further confirms the non-uniformality in the average
attack report length and therefore attack sophistication. Figure 6b plots the inter-arrival
times between two consecutive, non-zero Y ′

t values, which are similarly defined as
in the case of X ′

t. We observe that most inter-arrival times between two large, aver-
age attack report lengths are very small (i.e., 1 week). Corresponding to Fig. 6b and
according to Eq. (4), the burstiness measure B is B = 0.462, which suggests that the
inter-arrival times between large, average attack report lengths exhibit the burstiness
property.

To obtain the more delicate burstiness measure δ given by Eq. (5), we fit the distri-
bution of inter-arrival times. Figure 7a plots the empirical density of inter-arrival times
of large average attack report lengths, which also shows asymmetry with a long tail.
This also suggests us to use the mixture distribution in Eq. (1) to fit inter-arrival times
in Y ′

t . Figure 7b shows the qq-plot, indicating the mixed distribution fits inter-arrival
times very well and all of the data points are within the simulated 95% confidence
interval.

Table 3 summarizes the estimated parameters of the fitted distributions and their
standard deviations. We observe that the threshold u for the mixture distribution is
4.999, which means that the tail proportion for the GPD fitting is around 11%. Having
fitted the distribution, we compute the burstiness parameter δ according to Eq. (5) to
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Fig. 6. Plots of Y ′
t and inter-arrival time between two consecutive, non-zero attack report lengths.

Fig. 7. Empirical density and qq-plot of inter-arrival time (CI stands for confidence interval).

Table 3. Estimated parameters and standard deviations

μ1 σ1 ξ k u

Parameter 0.211 0.385 0.594 7.049 4.999

Standard deviation 0.040 0.031 0.487 3.938 0.001

have δ = 0.862, which suggests the presence of strong burstiness. The memory param-
eter θ as defined in Eq. (6) is θ = 0.125, which suggests positive memory, namely that
short (long) inter-arrival times are often followed by short (long) inter-arrival times.

Burstiness Analysis of Z ′
t. According to Eq.(4), burstiness of Z ′

t is B = 0.425. When
we proceed to derive burstiness measure δ, which requires to fitting the distribution
of inter-arrival times of two consecutive, non-zero total report length in Z ′

t, we did not
find any accurate fitting of the distribution, despite we tried the normal, weibull, gamma,
GPD, and several mixed models. This means burstiness measure δ as defined in Eq. (5)
is not always practical because fitting distributions may not be feasible especially when
the distribution involves many parameters. Nevertheless, the other burstiness measure
defined in Eq. (6) is θ = 0.392, implying positive memory in inter-arrival times, namely
that long (short) inter-arrival times are often followed by short (long) inter-arrival times.
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Insight 5. The detection or discovery of cyber attacks is bursty. Longer attack reports,
which indicate more sophisticated attacks, are also bursty.

Discussion. It would be ideal to pin down the root cause of burstiness. To this end,
Harang and Kott [28] offer one hypothesis: burstiness is related to a threshold of analyst
knowledge. It is conjectured [30] that the common element of various bursty processes
is a threshold mechanism, namely that events occur infrequently until some domain-
specific quantity accumulates to a threshold value, at which point events “burst out”
at a high frequency. It is interesting to note that cyber analysts recalled episodes that
multiple attacks are detected after the arrival of a crucial piece of new information
about a previously unknown attack behavior or characteristic [28]. This new informa-
tion enables analysts to recognize a particular type of attacks that until then was difficult
or impossible to detect. At that point, analysts are able to rapidly detect a number of pre-
existing attacks within a short period of time (a “burst”). These newly detected attacks
actually represent false negatives before the arrival of a crucial piece of information;
unfortunately, the dataset does not describe which attacks are in this category.

4 Modeling and Forecasting Xt, Yt, and Zt

For this purpose, we divide each time series into an in-sample part (for fitting) and
an out-of-sample part (for forecasting). We use the first 266 samples (e.g., Xt for
1 ≤ t ≤ 266) for in-sample fitting, and use the rest 100 samples (i.e., Xt for
267 ≤ t ≤ 366) for out-of-sample forecasting. We first need to test if there is cor-
relation between Xt and Yt, while noting that there is correlation between Xt and Zt

and between Yt and Zt because Zt = Xt × Yt. This is important because correlation, if
existing, can be leveraged to achieve more accurate fitting and/or forecasting, as shown
in other settings [44,55]. Examining Fig. 1a and 1b leads to the following Hypothesis:
there is a negative relation between the number of attacks and the length of reports.
One possible mechanism underpinning this hypothesis is that with many attacks arriv-
ing, there is less time to write long reports but, conversely, with few attacks arriving,
there is more time to write long reports. Since we have showed the existence of tempo-
ral correlation within each individual time series Xt and Yt, we need to eliminate this
temporal correlation so as not to interfere with the evaluation of the correlation between
Xt and Yt. For this purpose, we measure the correlation between Xt and Yt via the cor-
relation between their respective standardized model residuals. By using the Pearson’s
correlation test to their residuals, we obtain a p-value of 0.117; by using the Kendall’s
rank correlation test, we obtain a p-value 0.5084. These p-values suggest no correlation
between Xt and Yt.

4.1 Model Fitting Xt , Yt and Zt for 1 ≤ t ≤ 266

Motivated by the presence of volatilities and burstiness in Xt as shown above, we pro-
pose using the ARIMA+GARCH model reviewed above to fit Xt because ARIMA
can accommodate the mean part and GARCH can accommodate high volatilities or
burstiness. To be flexible, we allow the orders of p′ and q′ in the mean part of
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ARIMA(p′, d, q′) to vary between 0 and 5, and we use the Akaike Information Cri-
terion (AIC) criterion to select the orders. For the GARCH part, we fix the order
as GARCH(1, 1) because it is adequate to accommodate volatilities in the residu-
als, while recalling that higher-order GARCH models are not necessarily better than
GARCH(1, 1) [27].

Table 4 summarizes the selected model ARIMA(0, 1, 1)+IGARCH(1, 1) with the
skewed Student-T distribution innovations and estimated parameters. We observe that
the estimated coefficients are all significant (i.e., statistical significance at level .05)
except for ω which is the intercept of GARCH model.

Table 4. Estimated parameters (EST.) and their standard deviations (SD) of the
ARIMA(0, 1, 1)+IGARCH(1, 1) fitting of Xt.

ψ1 ω α1 β1 ξ ν

EST. -0.67 1.88 0.20 0.80 1.53 5.20

SD 0.05 1.18 0.05 – 0.13 1.22

Figure 8a plots the ARIMA(0, 1, 1)+IGARCH(1, 1) fitting of Xt, where red-
colored crosses represent fitted values, black-colored empty circles represent the
observed values, and blue-colored lines are the fitted 95% confidence intervals. We
observe that the overall fitting is good except for a few very large data points,
and that the fitted confidence intervals can accommodate the variability of Xt.
Figure 8b plots the ACF of the model residuals. We observe that the residuals fall
in between the two blue-colored dashed lines (indicating the 95% confidence limits)
with probability 95%, meaning that none of the correlation is significant. Therefore,
ARIMA(0, 1, 1)+IGARCH(1, 1) can adequately fit the temporal dependence between
the Xt’s with varying t. By using the Ljung-Box test on the standardized residuals,
we obtain a p-value of 0.09, which implies that ARIMA(0, 1, 1)+IGARCH(1, 1) can
accurately fit Xt.

Fig. 8. ARIMA(0, 1, 1)+GARCH(1, 1) fitting Xt for 1 ≤ t ≤ 266.
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Using the same model fitting method as in fitting Xt, the selected model is also
ARIMA(0, 1, 1)+IGARCH(1, 1) with the skewed Student-T distribution innovations
and estimated parameters summarized in Table 5. We again observe that all the coef-
ficients for the are significant except for ω.

Figure 9 plots the ARIMA(0, 1, 1)+IGARCH(1, 1) fitting of Yt, where red-colored
crosses represent the fitted values, black-colored empty circles represent the observed
values, and blue-colored lines represent the fitted 95% confidence intervals. We observe
that the fitting is good and the fitted confidence intervals can accommodate the variabil-
ity in Yt. Figure 9b plots the ACF of the model residuals. We observe that none of the
correlation is significant, meaning the selected ARIMA(0, 1, 1)+IGARCH(1, 1) model
can adequately fit the temporal dependence in Yt. By applying the weighted Ljung-
Box test to the standardized residuals, we obtain a p-value of 0.91, which implies that
ARIMA(1, 0, 1)+IGARCH(1, 1) can accurately fit Yt.

Table 5. Estimated parameters (EST.) and their standard deviations (SD) of the
ARIMA(0, 1, 1)+IGARCH(1, 1) fitting of Yt.

ψ1 ω α1 β1 ξ ν

EST. -0.76 237.00 0.20 0.80 1.42 5.81

SD 0.37 176.21 0.05 – 0.13 1.72

Fig. 9. ARIMA(0, 1, 1)+IGARCH(1, 1) fitting Yt.

Similarly, the selected model for fitting Zt is ARIMA(1, 1, 1)+GARCH(1, 1) with
the skewed Student-T distribution innovations and estimated parameters summarized in
Table 6. The coefficient for AR, φ1, is significant at the 0.1 level. The coefficients for
GARCH(1, 1) are significant, and α1 + β1 = 0.99, which explains the burstiness.
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Table 6. Estimated parameters (EST.) and standard deviations (SD) for the
ARIMA(1, 1, 1)+GARCH(1, 1) fitting of Zt

φ1 ψ1 ω α1 β1 ξ ν

EST. 0.27 -0.90 31343 0.08 0.91 1.59 6.14

SD 0.07 0.05 187540 0.04 0.06 0.23 1.86

Figure 10 plots the ARIMA(1, 1, 1)+GARCH(1, 1) fitting result, where red-colored
crosses represent the fitted values, black-colored empty circles represent the observed
values, and blue-colored lines represent the fitted 95% confidence intervals. We observe
that the overall fitting is good except for a few large samples, and the fitted confi-
dence intervals can accommodate the variability in Zt. Figure 10b plots the ACF of
the model residuals, and shows that there is no significant correlation because they are
within the blue-colored lines (i.e., the 95% confidence intervals). That it, the selected
ARIMA(1, 1, 1)+GARCH(1, 1) model can adequately fit Zt. By using the weighted
Ljung-Box test to the standardized residuals, we obtain a p-value of 0.38, meaning
ARIMA(1, 1, 1)+GARCH(1, 1) can accurately fit Zt.

Fig. 10. ARIMA(1, 1, 1)+GARCH(1, 1) fitting Zt.

Insight 6. The three time series Xt, Yt, and Zt can all be accurately fitted using the
ARIMA+GARCH model because they exhibit the burstiness property (which can be
accommodated by the GARCH part).

4.2 Forecasting Xt , Yt and Zt for 267 ≤ t ≤ 366

Now we use the fitted models of Xt, Yt and Zt for 1 ≤ t ≤ 266 to forecast Xt, Yt

and Zt for 267 ≤ t ≤ 366, respectively. To provide more information, we propose
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forecasting distributions of Xt, Yt and Zt for 267 ≤ t ≤ 366. To highlight ideas, we
focus on forecasting Xt, but the idea is equally applicable to Yt and Zt. Recall the fitted
model Ψt−1 = {Xt−1,Xt−2, . . . , X1}. Let {ft(X|Ψt−1)}∞

t=1 be a sequence of one-
step ahead (i.e., one-week ahead in this paper) density forecasting conditioned on the
information available at time t − 1, The cumulative density forecasts are given by

Ft(Xt) =
∫ Xt

−∞
ft(u|Ψt−1)du. (2)

If the model is accurate, the sequence of probability integral transforms {Ft(Xt)|t =
1, 2, . . .} are independent and identically random variables U(0, 1) [1]. That is, the
sequence of transforms being U(0, 1)means we cannot reject the model being accurate.
To evaluating accuracy of the forecasted probability density, we use two metrics:

– Density accuracy: Berkowitz [4] developed a formal test for evaluating the perfor-
mance of density forecasting. The basic idea is to transform {Ft(Xt)|t = 1, 2, . . .}
to the standard normal distribution N(0, 1) by using the normal quantile function,
and then test the normality of transformed data via the Lagrange Multiplier test [52].
Passing the test means the forecasted density is accurate.

– VaR violation: For a random variable Xt, the Value-at-Risk (VaR) at level α
(0 < α < 1) is defined as [36]: VaRα(t) = inf {l : P (Xt ≤ l) ≥ α} . For
example, VaR.95(t) means that there is only a 5% probability that the observed
value is greater than the forecasted VaR.95(t), which leads to a violation and indi-
cates inaccurate forecasting. In order to evaluate the accuracy of the forecasted VaR
values, we propose using the following three popular tests [11,17]:

• The unconditional coverage test, denoted by LRuc: It evaluates whether or not
the fraction of violations is significantly different from the model’s violations. If
so, the forecasting is inaccurate; otherwise, we cannot reject that the forecasting
is accurate.

• The conditional coverage test, denoted by LRcc: It is a joint likelihood ratio
test for the independence of violations and unconditional coverage. Passing this
test means that the violations are independent and the coverage is accurate, and
hence we cannot reject that the forecasting is accurate.

• The dynamic quantile test, denoted by (DQ): It is based on the sequence of ‘hit’
variables and it measures whether the present VaR violations are uncorrelated
to the past violations or not. Passing this test means they are uncorrelated, and
hence we cannot reject that the forecasting is accurate.

Forecasting Algorithm. Algorithm 1 describes the rolling algorithm for forecasting
Xt, and can be adapted to forecast Yt and Zt by replacing Xt with Yt or Zt and by
replacing X̂t with Ŷt or Ẑt, respectively.

Forecasting Results. Figure 11 plots the forecasting results of Xt, Yt, and Zt for 267 ≤
t ≤ 366. We observe that the forecasted values are close to the observed ones, and that
the forecasted VaR.95 can describe the violations well. We use rigorous statistical tests
to validate the observation mentioned above. Table 7 summarizes the results. For Xt,
the p-value of the Berkowitz test is 0.1925, indicating the forecasted density functions
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Algorithm 1. Algorithm for forecasting Xt

Input: Historical time series dataset {(t, Xt)|t = 1, . . . , 366}
Output: The predicted {(t, X̂t)|t = 267, . . . , 366}
for t = 266, . . . , 365 do

Fit the historical data {(s, Xs)|s = 1, . . . , t} with the selected
ARIMA(p′, d, q′)+GARCH(1, 1) model
Use the fitted model to forecast Xt+1, denoted the forecasted value by X̂t+1

end for
Return {(t, X̂t)|t = 267, . . . , 366}

Fig. 11. Plots of forecasting results based on ARIMA(p′, d, q′)+GARCH(1, 1)models, where the
red-colored+’s represent forecasted values, black-colored empty circles are the observed values,
and blue-colored lines are the forecasted VaR.95 (Color figure online).

are accurate. For the VaR violation tests at the α = .95 level, all of the p-values are
large. This also suggests that the ARIMA(p′, d, q′)+GARCH(1, 1) models have a good
accuracy performance. For Yt, the p-value of the Berkowitz test is 0.5657, indicating
the forecasted density functions are accurate. The VaR violation tests at the α = .95
level all lead to large p-values, indicating the ARIMA(p′, d, q′)+GARCH(1, 1) models
have a good forecasting accuracy. For Zt, the p-value of the Berkowitz test is 0.1550,
meaning the forecasted density functions are accurate. The VaR violation tests at the
α = .95 level all lead to large p-values, meaning the ARIMA(p′, d, q′)+GARCH(1, 1)
models have a good forecasting accuracy. Summarizing the discussion, we draw:

Table 7. Statistical tests for forecast accuracy of ARIMA(p′, d, q′)+GARCH(1, 1) models.

Density accuracy VaR violation metrics

Berkowitz LRuc LRcc DQ

Xt 0.1925 0.3855 0.4027 0.2725

Yt 0.5657 0.6560 0.6147 1

Zt 0.1550 1 0.7664 0.999
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Insight 7. The distribution of the number of attacks, of the average report length, and
of the total report length can be accurately forecasted, by using models that can accom-
modate the statistical properties exhibited by the data (i.e., burstiness in this case).

Insight 7 is valuable because being able to predict report length, which reflects the
sophistication of incoming attacks, provides a means to proactively allocate defense
resources (e.g., human experts) to achieve more effective defense.

5 Conclusion and Discussion

We have presented an empirical study on a real-world high quality cyber attack dataset,
leading to useful insights, such as: burstiness is commonly exhibited by cyber attacks;
new attacks can be relatively simple (rather than sophisticated); attack report length
reflects attack sophistication (but not attack newness); the detection of cyber attacks
and the detection of sophisticated attacks are both bursty; ARIMA+GARCH model can
fit the number of cyber attacks well; the distribution of the number of attacks against
enterprise networks can be predicted accurately.

The study is limited by the dataset. First, the dataset does not provide information
about individual attacks. Should the available dataset contain information about cyber
attacks (e.g., types of attacks), deeper analysis can be conducted. Second, it is an out-
standing open problem to precisely identify the cause of bursts. Third, the dataset does
not provide any false negative information. Fourth, Insights 1 and 2 are drawn based on
100 random samples rather than all the 9,302 samples because we are only given the
privilege to request for 100 random samples.

Acknowledgment. This work was supported in part by ARL Grant #W911NF-17-2-0127, NSF
Grants #2122631 and #2115134, and Colorado State Bill 18-086.

A Statistical Preliminaries

Long Range Dependence (LRD). Intuitively, LRD means a stochastic process exhibits
persistent temporal correlations, namely its autocorrelation decays slowly. Formally, a
stationary time series {Xi, i ≥ 1} is said to possess LRD [50,54] if its autocorrelation
function ρ(h), which is defined below, has the following property:

ρ(h) = Cor(Xi,Xi+h) ∼ h−βL(h), h → ∞, (3)

for 0 < β < 1, where Cor(·, ·) is the correlation function and L(·) is a slowly varying
function satisfying limx→∞

L(tx)
L(x) = 1 for t > 0 [16]. The degree of LRD is expressed

by the Hurst parameter (H), which is related to the parameter β in Eq. (3) as β = 2−2H .
For LRD, we have 1/2 < H < 1 and the degree of LRD increases as H → 1.

Burstiness. Intuitively, burstiness indicates an abnormally large number of events
within a short period of time when compared with the Poisson and regular stochastic
processes. Unlike LRD, burstiness has no universally accepted definition. The simplest
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definition of burstiness is perhaps the coefficient of variation, namely r = σ/μ, where σ
and μ are respectively the standard deviation and the mean of inter-event times [24,31].
Since r can be an arbitrary number, a refined burstiness definition is [31]:

B =
σ − μ

σ + μ
=

r − 1
r + 1

, (4)

where B ∈ [−1, 1], B = −1 corresponds to the regular time series (i.e., r = 0), B = 0
corresponds to the Poisson process, and B → 1 indicates bursty time series [31].

By observing that burstiness can be rooted in two deviations from the Poisson pro-
cess (i.e., the distribution and memory of the inter-event time), burstiness has also been
defined as a vector (δ, θ), where δ, θ ∈ [−1, 1] [24]. The first element δ reflects the
distribution of inter-event time τ and is defined as

δ =
sign(σ − μ)

2

∫ ∞

0

|Pr(τ) − Prp(τ)|dτ, (5)

where “sign” is the sign function, σ is the standard deviation, μ is the mean of inter-
event time τ , Pr(·) is the density function of τ , and Prp(·) is the exponential distribu-
tion. Note that δ measures the difference between Pr(·) and Prp(·), δ = −1 indicates
the regular time series, δ = 0 indicates the Poisson process, and δ → 1 indicates bursty
time series. The second element θ reflects the memory of inter-event times, namely the
correlation coefficient of consecutive inter-event times

θ =
1
N

N−1∑
i=1

(Ti − μ1)(Ti+1 − μ2)
σ1 × σ2

, (6)

where μ1 (μ2) and σ1 (σ2) are respectively the sample mean and the standard deviation
of inter-event times T1, . . . , TN−1 (T2, . . . , TN ), and N is the sample size. Note that
θ is the memory coefficient describing the correlation of consecutive inter-event times,
where θ > 0 means positive memory, namely short (long) inter-event times are often
followed by short (long) ones, and θ < 0 means negative memory, namely short (long)
inter-event times are often followed by long (short) ones.

Generalized Pareto Distribution (GPD). To characterize burstiness in inter-arrival
times, we can first transform a regular time series into an irregular time series as fol-
lows. Given a sequence of independent and identically distributed (iid) observations
X1, . . . ,Xn, the excesses Xi − � of some suitably large threshold � can be modeled by,
under certain mild conditions, the generalized Pareto distribution (GPD) [16,48]. For
characterizing burstiness, we choose the � such that 30% of the excess values will be
investigated, which is in contrast to the study of extreme values that would only consider
the largest 1% samples. The survival function of the GPD is

Ḡξ,σ1,�(x) = 1 − Gξ,σ1,� =

⎧⎨
⎩

(
1 + ξ x−�

σ1

)−1/ξ

, ξ �= 0,

exp
{

−x−�
σ1

}
, ξ = 0,

(7)

where x ≥ � if ξ ∈ R
+, x ∈ [�, � − σ1/ξ] if ξ ∈ R

−, and ξ and σ1 are respectively
called the shape and scale parameters.
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ARIMA and GARCH Models. ARIMA (AutoRegressive Integrated Moving Aver-
age) and GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) are
widely-used time series models [13]. Intuitively, ARIMA can model the mean of a
time series, and GARCH can model the high volatility of a time series. Formally, let

φ(x) = 1 − ∑p′

j=1 φjx
j , ψ(x) = 1 +

∑q′

j=1 ψjx
j , and εt be independent and iden-

tical normal random variables with mean 0 and variance σ2
ε . A time series {Xt} is

said to be a ARIMA(p′, d, q′) process if φ(B)(1 − B)d(Xt − μ) = ψ(B)εt, where
d is the number of difference, B is the back shift operator, and μ is the mean. A
time series {Yt} is called a GARCH process [5] if Yt = σtεt, where εt (also called
innovation) is the standard white noise. For the standard GARCH model, we have
σ2

t = w +
∑q′

j=1 αjε
2
t−j +

∑p′

j=1 βjσ
2
t−j . A restricted version of the GARCH model

is called the integrated GARCH (IGARCH) by requiring
∑q′

j=1 αj +
∑p′

j=1 βj = 1. To
accommodate more general classes of noise, we will use the skewed Student-T distri-
bution, whose density can be written as [21]:

g(z;ϑj) =
2

ξ + ξ−1

[
tν(ξz)I(z < 0) + tνv

(
ξ−1z

)
I(z ≥ 0)

]
,

where I(·) is the indicator function, ϑj = (ξj , νj), ξ > 0 is the skewness parameter,
ν > 0 is the shape parameter, and

tν(z) =
Γ ((ν + 1)/2)√

νπΓ (ν/2)
[
1 + z2/ν

]−(ν+1)/2
.

Akaike’s Information Criterion (AIC). When fitting time series, we need criteria for
model section. AIC is a widely used criterion [13,36,45] for balancing the goodness-of-
fit of a model and its complexity such that a smaller AIC value indicates a better model.
Formally, AIC = −2 log(MLE) + 2k, where MLE measures the goodness-of-fit of a
model and k is the number of model parameters (indicating model complexity).
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